人教版八年级下册第十九章一次函数19.1.2函数的图像

合集下载

八年级数学人教版下册第19章一次函数19.1.2函数的图像(第1课时图文详解)

八年级数学人教版下册第19章一次函数19.1.2函数的图像(第1课时图文详解)

八年级数学下册第19章(一3次)函数下图表示的是小明放学回家途中骑车速度与 时间的关系.你能想象出他回家路上的情景吗?
速度
O
时间
Байду номын сангаас
八年级数学下册第19章一次函数
用空心 圈表示 不在曲 线的点
用平滑 的曲线
连接
表示x与S的 对应关系的点 有无数个.但是 实际上我们只 能描出其中有 限个点,同时 想象出其他点 的位置.
八年级数学下册第19章一次函数
上图的曲线即函数S=x2 (x>0)的图象.
一般地,对于一个函数,如果把自变量与函数的 每对对应值分别作为点的横、纵坐标,那么坐标平面 内由这些点组成的图形,就是这个函数的图象.
图书馆离小明家0.8km,小明从图书馆回家的平 均速度0.08km/min.
分析:小明离家的距离y是时间x的函数,从图象中 有两段是平行于x轴的线段可知,小明离家后又两段 时间内先后停留在食堂与图书馆.
八年级数学下册第19章一次函数
(1)函数图象会使函数关系更为清晰,怎样画出 函数的图象呢?
(2)如何根据函数图象中获得的信息来研究实际 问题?
八年级数学下册第19章一次函数
第19章一次函数
八年级下册
八年级数学下册第19章一次函数
19.1 函数
19.1.2 函数的图象 第1课时
八年级数学下册第19章一次函数
下图是自动测温仪记录的图象,它反映了北京春 季某天气温T如何随时间t变化而变化,你从图象中 得到了哪些信息?
T/ c
8
-3
14
24 t/时
八年级数学下册第19章一次函数
气温T是时间t的函数.
(1)最低、最高温度分别是多少?

八年级数学下册 第十九章 一次函数 19.1 函数 19.1.2 函数的图象课件 (新版)新人教版

八年级数学下册 第十九章 一次函数 19.1 函数 19.1.2 函数的图象课件 (新版)新人教版

知识点3:函数图象的画法 例3 画出函数y=2x-1的图象,并判断点(1,1),(-1,0),(-2,3),(2,3)在不在函数图象上.
解:①列表如下:
x

-2
-1
0
1
y

-5
-3
-1
1
2

3

②描点,连线. 点(1,1),(2,3)在函数 y=2x-1 的图象上,点(-1,0),(-2,3)不在函数 y=2x-1 的图象上.
(3)一人追上另一人时,距出发点多远?
解:(3)结合函数图象可知:一人追上另一人时,距出发点的距离即甲走了4小时的路程, 所以4×6=24(千米). 答:一人追上另一人时,距出发点24千米.
(C)( 2 ,3 2 +2) (D)( 1 ,2 1 ) 22
3.如图,匀速地向该容器内注水,最后把容器注满,在注水过程中容器内液面高度h随时间 t变化的函数图象最接近实际情况的是( B )
4.甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离 B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两 车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时), 两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当甲车到达B地时,乙车距A 地 100 千米.
19.1.2 函数的图象
1.函数图象的定义:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为 点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的 图象 . 2.函数的表示方法:写出函数解析式,或者列表格,或者画函数图象都可以表示具体的函 数,这三种表示函数的方法,分别称为 解析式法、列表法和图象法 .

人教版版八年级下册数学习题课件19.1函数19.1.2函数的图象第1课时函数的图象及其画法

人教版版八年级下册数学习题课件19.1函数19.1.2函数的图象第1课时函数的图象及其画法
(1)体育馆离家的距离为__2. 接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致是( A )
二、填空题(每小题6分,共6分) 2.(4分)(株洲中考)爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图形中表示爷爷离家的距离y(米)与 爷爷离开公园的时间x(分)之间的函数关系是( B )
第十九章 一次函数
19.1.2 函数的图象
第1课时 函数的图象及其画法
八年级下册·数学·人教版
12.(12分)某车间的甲、乙两名工人分别同时生产同种零件,他们生产的零件个数y(个)与生产时间t(小时)之间的函数关系如图所示.
1.对于一个函数,如果把自变量与函数的每对对应值分别作为点的__横、纵坐标
(1)体育馆离家的距离为__2.5__千米,书店离家的距离为__1.5__千米;王亮同学在 书店待了__30__分钟. (2)分别求王亮同学从体育馆走到书店的平均速度和从书店出来散步回家的平均速 度.
解:(2)从体育馆到书店的平均速度 v=2.5-1.5= 1 千米/分钟,从书店散步到家的平均 50-35 15
解:(1)由题意可知,乙的函数图象是l2,甲的速度是60=30(km/h),乙的速度是60=
2
3
20(km/h).故答案为l2,30,20
(2)设甲出发x小时两人恰好相距5 km.
由题意30x+20(x-0.5)+5=60或30x+20(x-0.5)-5=60,解得x=1.3或1.5,答:
甲出发1.3小时或1.5小时两人恰好相距5 km
【综合应用】 14.(14分)(青岛中考)A,B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:

19.1.2 一次函数的图象与性质 说课稿-人教版八年级数学下册

19.1.2 一次函数的图象与性质 说课稿-人教版八年级数学下册

19.1.2 一次函数的图象与性质一、教材分析《人教版八年级数学下册》第19章是关于一次函数的内容,本节课主要介绍了一次函数的图象与性质。

通过本节课的学习,学生将会掌握一次函数的图象特点以及对应的性质,培养学生对一次函数图象的观察和描述能力,同时提高学生解决实际问题的能力。

二、教学目标1.知识目标:–了解一次函数的定义和特点。

–掌握一次函数的图象特征。

–理解一次函数图象的斜率与函数的性质之间的关系。

2.能力目标:–能够绘制一次函数的图象。

–能够根据一次函数的图象确定相应函数的性质。

3.情感目标:–培养学生对数学的兴趣和学习的主动性。

–培养学生观察和分析问题的能力。

三、教学重点1.理解一次函数的图象特征。

2.掌握一次函数图象的斜率与函数性质的关系。

四、教学内容与步骤1. 一次函数的定义与特点(10分钟)•引入:通过一个例子引出一次函数的定义和特点。

小明去超市买东西,他购买的商品数量与总价之间存在一定的关系,我们用函数来表示这个关系。

假设每个商品的价格是5元,小明购买的商品数量用x表示,总价用y表示。

那么,这个关系可以表示为:y = 5x。

这就是一个一次函数。

•定义:一次函数(线性函数)是指函数的自变量和因变量之间存在一个一次关系的函数。

•特点:–一次函数的图象是一条直线。

–一次函数的定义域是所有实数。

–一次函数的值域也是所有实数。

2. 一次函数图象的斜率与函数性质的关系(15分钟)•引入:通过一个例子引出斜率与函数性质的关系。

小明用自行车从学校骑到家里,中间有一段上坡路和一段下坡路。

我们可以用一次函数来描述小明的行驶过程。

假设小明骑车的时间用x表示,距离用y表示。

上坡路的一次函数表示为y = 5x,下坡路的一次函数表示为y = -5x。

这两个一次函数的斜率分别为5和-5,你能猜出这两条路的特点吗?•斜率与函数性质的关系:–斜率为正数的一次函数,图象上的点由左下方向右上方倾斜,对应的函数表示一个增长函数。

新人教版八年级数学下册《十九章 一次函数 19.1 函数 19.1.2函数的图象 画函数图象》课件_15

新人教版八年级数学下册《十九章 一次函数  19.1 函数  19.1.2函数的图象  画函数图象》课件_15
1、列表: x 0 0.5 1 1.5 2 2.5 3 …
s 0 0.25 1 2.25 4 6.25 9 …
2、描点:
3、连线: 用空心圈表
示不在曲线
的点
用平滑曲线去 连接画出的点
归纳一: 函数的图象的意义:
一般地,对于一个函数,如果把自变 量与函数的每对对应值分别作为点的横坐 标和纵坐标,那么坐标平面内由这些点组 成的图形就是这个函数的图象。
画函数的图像
八年级下册(人教版)
画函数的图像
一 , 复 习 回 顾
龟兔赛跑
龟兔赛跑的故事: 领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉, 当它醒来时,发现乌龟快到终点了,于是急忙追赶,但已 经来不及了,乌龟先到达了终点………现在用S1 和 S 2 分别表示乌龟、兔子所走的路程,t为时间,则下列 图象中,能够表示S 和t之间的函数关系式的是( C )
典例精讲
例1 画出下列函数的图象:
(1)y 2x 1;
(2) y
.
6 x
解:(1)从x 0 (2)从函数解析式可以看出,x的取值范围是
.
归纳二:函数图象的画法:
1、列表 列出自变量与函数的对应值表。
注意:自变量的值(满足取值范围), 并取值要适当,以便画图.
画出y=2x和y=
2 x 1
一、函数的图象的意义:
一般地,对于一个函数,如果把自变量与函数的每对对 应值分别作为点的横坐标和纵坐标,那么坐标平面内由这些 点组成的图形就是这个函数的图象。
二、函数图象的画法:
列表、描点、连线
S/m
S/m
s1
s2
O
X/s O
s1 s2
S/m X/s
O

人教版八年级数学下册第十九章19.1.2函数的图象(第一课时)函数的图象

人教版八年级数学下册第十九章19.1.2函数的图象(第一课时)函数的图象

为什么没有 “0”?
解:(1)列表 取自变量的一些值, 并求出对应的函数值,填入表中.
y
新知探究
6
5
4
3
2
1
解:(1)列表
-5 -4 -3 -2 -1 o -1
(2)描点 分别以表中对应的x、y为 -2
横纵坐标,在坐标系中描出对应的 -3
点.
-4
-5
(3)连线 用光滑的曲线把这些点 -6
依次连接起来.
2
填写下表,再描点、连线)
的图象.(先
x … -3 -2 -1 0
y

3 2
-1
1 2
0
2.点P(2,5)不在 (填“在”或 “不在”)函数y=2x的图象上.
12
1
1
2
y
3
2
1
3…
3 2

-4 -3 -2 -1O-1 -2 -3
12345 x
3.下面的图象反映的过程是:张强从家跑步去体 育场,在那里锻炼了一阵后又走到文具店去买笔, 然后散步走回家,图中x表示时间,y表示张强离家 的距离.
思考:对于某个函数,给定一个自变 b 量的值x,确定唯一的函数值y,由此能否 确定一个点(x,y)呢?
(a,b) a
函数图象的意义 问题:请画出下面问题中能直观地反映函数变化规
律的图形: 正方形面积 S 与边长 x 之间的函数解析式为 S=x2.
思考:(1)这个函数的自变量取值范围是什么? x >0
第十九章 一次函数 19.1.2 函数的图象
第1课时 函数的图象
学习目标
【学习目标】 1.知道函数图象上的点的横坐标与纵坐标的意义. 2.能从函数图象上读取信息. 【学习重点】 从函数图象上读取信息. 【学习难点】 函数图象上的点的横坐标与纵坐标的意义.

最新人教版初中八年级下册数学【第十九章一次函数 19.1.2 函数的图像(1)】教学课件

最新人教版初中八年级下册数学【第十九章一次函数 19.1.2 函数的图像(1)】教学课件
小明家、食堂、图书馆在同一直线上.
根据图象回答下列问题:
(1)食堂离小明家多远?小明
从家到食堂用了多少时间?
(2)小明在食堂吃早餐用了多
少时间?
(3)食堂离图书馆多远?小明
从食堂到图书馆用了多少时间?
(4)小明读报用了多长时间?
(5)图书馆离小明家多远?小
明从图书馆回家的平均速度是
多少?
分析:图象表示小明离家的距离y与时间x
探究新知
对于x的每一个确定的值,S都有唯一确定的值与其对应
活动一
问题1.正方形的边长x与面积S的函数关系_______,
x与S一一对应
平面直角坐标系
有序数对表示点
(x ,S)
探究新知
活动一
• 填写下表:

用平滑曲线
连接各点
S S
= ( > )
当x 2.5时,y 2 x 1 2 2.5 1 4,
点B在函数y 2 x 1的图象上。
解答疑问
疑问二:函数图象千变万化,是否平面直角坐标系里的所有曲
线都是函数图象呢?
解答疑问
例2、下列曲线是否y关于x的函数图象呢?
对于x的每一个确定的值,y都有唯一确定的值与其对应。
解答图象信息题主要运用数形结合思想,化图象信息为数字信息
.
主要方法如下:
(1)了解横、纵轴的意义;
(2)关注特殊点和取值范围;
(3)分析升降趋势、计算相关信息。
巩固练习
小明同学骑自行车去郊外春游,如图表示他离家的距离
y(km)与所用的时间x(h)之间关系的函数图象.
3
(1)根据图象回答:小明到达离家最远的地方需
A
A不是y与x的函数图象

人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)

人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)

在问题三中,是否各有两个变量?同一 个问题中的变量之 间有什么联系?
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
八年级 数学
第十九章 一次函数
19.1.1变量与函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
∴ s 与 n 的函数关系式为: s = 3n-3
八年级 数学
第十九章 一次函数
19.1.1变量与函数 课堂练习(备用)
4、节约资源是当前最热门的话题,我市居民每月用电 不超过100度时,按0.57元/度计算;超过100度电时,其中不 超过100度部分按0.57元/度计算,超过部分按0.8元/度计算.
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
八年级 数学
第十九章 一次函数
19.1 .1 变量与函数
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4x2+5x-7 (4) S = Лr2
巩固练习
• 填空:
• 1、计划购买50元的乒乓球,所能购买的总数
2.圆的周长公式C2r,这里的变量是 r和C ,常量
是 2 。
3.下列表格是王辉从4岁到10岁的体重情况
年龄(岁) 4 5 6 7 8 9
10 …
体重(千克)15.4 16.7 18.0 19.6 21.5 23.2 25.2 …

新人教版八年级数学下册《十九章 一次函数 19.1 函数 19.1.2函数的图象 画函数图象》课件_22

新人教版八年级数学下册《十九章 一次函数  19.1 函数  19.1.2函数的图象  画函数图象》课件_22

(2)y 1 x 2
y
5 4
y1x 2
3
2 1
-5 -4 -3 -2 -1 012345
12 3 4 5
x y1x
2
归纳
y=kx (k是常数,k≠0)的图象是一条经过原点的直线 y=kx 经过的象限 从左向右 Y随x的增大而
k>0 第一、三象限 上升
增大
k<0 第二、四象限 下降
减小
y 2x
y 2x
k>0
k<0
两图象都是经过原点的 直线 ,
函数y=2x的图象从左向右 上升 ,经过第 y随x的增大而 增大 ; 函数y=-2x的图象从左向右 下降 ,经过第 y随x的增大而 减小 。
一、三 象限, 二、四 象限,
在同一坐标系下,观察下列函数的图 象,并对它们进行比较:
(1) y 1 x 2
3、关于函数y=-2x,下列判断正确的是( C ) A、图象必过点(-1,-2) B、图象经过一、三象限 C、y随x增大而减小 D 、 不论x为何值都有y<0
4、在正比例函数y=4x中, y随x的增大而( 增大 ) 在正比例数 y=-6x中 , y随x的增大( 减小 )。
5、任意写一个图象经过二、四象限的正比例函数 的解析式为( Y=-3x )。
画图步骤: 1、列表;
2、描点; 3、连线。
y=2x 的图象为:
x … -3 -2 -1 0 1 2 3 … y … -6 -4 -2 0 2 4 6 …
y=-2x 的图象为:
x … -3 -2 -1 0 1 2 3 … y … 6 4 2 0 -2 -4 -6 …
探索新知:比较两个函数图象的相同点与不同点
19.2 一次函数 第2课时 正比例函数的性质

人教版八年级数学 下册 第十九章 19.1.2 函数的图像 课件(3课时,共69张PPT)

人教版八年级数学 下册 第十九章 19.1.2 函数的图像 课件(3课时,共69张PPT)

(3)如果水位的变化规律不变,按上述 函数预测,再持续2小时,水位的高度: __y_=_0_.3_×__7_+_3_=_5_._1_(m__)_____. 此时函数图象(线段AB)向 ___________延伸到对应的位置,这时 水位高度约为___5_.1_m______米.
由例可以看出,函数的不同表示法 之间可以__转__化_______.
值范围是: X取全体实数 ; 第一步:从的取值范围中选取一些简洁的数 值,算出的对应值,填写在表格里;
x … -3 -2 -1 0 1 2 …
y … -2.5 -1.5 -0.5 0.51.52.5 …
知识点 用描点法画函数图象 第二步:根据表中数值描点( x ,y);
y=x+0.5
• • • • • •
1、如果A、B两人在一次百米赛跑中, 路程(米)与赛跑的时间t(秒)的关系
如图所示则下列说法正确的是( C)
A. A比B先出发; B. A、B两人的速度相同; C. A先到达终点; D. B比A跑的路程多.
2、用列表法与解析式法表示n边形 的内 角和m(单位:度)关于边数的n函数.
解:列表法:
边数n 3 4 5 …
内角和 m/度 180 360 540

解析法:m=(n-2)×180 °,n≥3
大而减小,当x>0时,y随x的增大而增大。
画函数图象的一般步骤:
列表、描点、连线,这种画函数图象 的方法称为描点法。
函数图象的三种表示法
1、描点法画函数图象的一般步骤: (1)_列__表__,(2)_描__点__,(3)_连__线___. 2、表示函数的三种方法分别为:
__解_析__式__法__、___列_表__法__ 、_图__象_法__ .

新人教版八年级数学下册《十九章 一次函数 19.1 函数 19.1.2函数的图象 画函数图象》教案_8

新人教版八年级数学下册《十九章 一次函数  19.1 函数  19.1.2函数的图象  画函数图象》教案_8

19.1.2 函数的图象(1)一、教材分析本节课的教学内容为“函数的图象”,在此之前学生已经掌握了平面直角坐标系和函数的概念,并且了解有些函数关系可以用解析式表示,而有些函数关系虽然难以用解析式表示但是可以用图象直观表示,这为本节课的学习做好了铺垫。

本节课将结合实际问题,经历用图象表示函数和分析函数图象的过程,进一步建立数形结合解决问题的思想,为以后研究函数、探索函数性质打好基础。

二、教学目标1、了解函数图象的概念,了解用描点法画函数图象的一般步骤;2、会观察函数图象获取信息,能根据图象初步分析函数的对应关系和变化规律;3、体会函数图象建立数形结合的关键是分别用点的横、纵坐标表示自变量和对应的函数值。

三、教学重难点1、重点:根据函数的图象来获取相关的信息和用描点法画函数图象;2、难点:观察图象获取信息。

四、教学过程(一)复习引入1、我们在前面学习了函数的概念,什么是函数呢?2、函数是刻画变量间对应关系的数学模型。

大家来看这张图,它是什么图?(心电图)它反映的是哪两个变量间的关系?是函数关系吗?心电图所反映的函数关系能列式子表示吗?心电图直观反映了心脏部位的生物电流和时间之间的关系。

即使对于能列式表示的函数关系,如果也能画图表示,那么会使函数关系更直观。

这节课我们一起来学习《函数的图象》。

(二)探究新知1、活动:正方形的面积S与边长x的函数解析式为S=x2,根据问题的实际意义,自变量x的取值范围是什么?(x>0),你能不能在坐标系中画出表示S与x关系的图形呢?思考:(1)图形是由什么组成的?(2)怎样确定点的坐标?(3)自变量x的一个确定的值与它所对应的唯一的函数值S,是否确定了一个点(x,S)呢?(4)图形由多少个点组成?作图:(1)列表利用表格列出部分自变量的值及其对应的函数值,自变量的最小值是多少?最大值是多少?请同学们计算并填写下表:(2)描点把自变量的值作为点的横坐标,把对应的函数值作为点的纵坐标。

【最新】人教版八年级数学下册第十九章《19-1-2函数的图象(1)》公开课课件.ppt

【最新】人教版八年级数学下册第十九章《19-1-2函数的图象(1)》公开课课件.ppt

(3)下图表示的是小明放学回家途中骑车速 度与时间的关系.你能想象出他回家路上的情景吗?
速度
O
时间
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/112021/1/11Monday, January 11, 2021
(1)7,12 (2)高:0~7,12~24 低:7~12
四、解决问题
例:如图(1),小明家、食堂、图书馆在同一条 直线上,小明从家去食堂吃早餐,接着去图书馆读 报,然后回家.图(2)反映了这个过程中,小明离他 家的距离 y与时间 x之间的对应关系.
y/km
0.8
(1)
0.6
O8
2528
58 68
一般地,对于一个函数,如果把自变量与函数的 每对对应值分别作为点的横、纵坐标,那么坐标平面 内由这些点组成的图形,就是这个函数的图象.
通过图象,我们可以数形结合地研究函数.
三、巩固新知
下图是某一天北京与上海的气温随时间变化的 图象.
(1)这一天内,上海与北京何时气温相同? (2)这一天内,上海在哪段时间比北京气温高?在 哪段时间比北京气温低?
(4)小明读报用了多少时间?
小明读报用了30min.
(5)图书馆离小明家多远?小明从图书馆回家的 平均速度是多少?
图书馆离小明家0.8km,小明从图书馆回家的平 均速度0.08km/min.
分析:小明离家的距离y是时间x的函数,从图象中 有两段是平行于x轴的线段可知,小明离家后又两段 时间内先后停留在食堂与图书馆.
下降:0~4时;14~24时上升:4~14时 (3)我们可以从图象中看出这一天中任一时刻的 气温大约是多少吗?

人教版数学初中八年级下册《第十九章 一次函数》 19.1.2函数的图象(1)

人教版数学初中八年级下册《第十九章 一次函数》 19.1.2函数的图象(1)
(1)这个函数的自变量取值范围是什么? x>0
(2)怎样获得组成曲线的点? 先确定点的坐标.
探究
问题 请画出下面问题中能直观地反映函数变化规 律的图形:
正方形面积 S 与边长 x 之间的函数解析式为 S=x2. 思考:
(3)怎样确定满足函数关系的点的坐标? 取一些自变量的值,计算出相应的函数值.
(4)自变量x 的一个确定的值与它所对应的唯一 的函数值S,是否唯一确定了一个点(x,S)呢?
0.8 0.6
O8
25 28
58 68 x/min
根据图象回答下列问题:
(1)食堂离小明家多远?小明从家到食堂用了多少时
间?
应用
例1 下图反映的过程是小明从家去食堂吃早餐, 接着去图书馆读报,然后回家.其中x 表示时间,y 表 示小明离家的距离,小明家、食堂、图书馆在同一直线 上. y/km
0.8 0.6
58 68 x/min
应用
例1 下图反映的过程是小明从家去食堂吃早餐, 接着去图书馆读报,然后回家.其中x 表示时间,y 表 示小明离家的距离,小明家、食堂、图书馆在同一直线 上. y/km
0.8 0.6
O8
25 28
58 68 x/min
根据图象回答下列问题:
(5)图书馆离小明家多远?小明从图书馆回家的平均
(2)最清楚; (4)最不清楚.
探究
去掉斜面,保留运动时经过的路径,建立如图所示
的直角坐标系,就可以看出x,y 分别是小球所在位置的
横纵坐标,小球运动过程中,y 随着x 的增大而减小.ຫໍສະໝຸດ 也就是说,以满足函数关系的 y
自变量的值和对应的函数值分别为 4
横纵坐标,画出这些点,并用光滑 的曲线连接这些点,就得到一个能 直观反映变量之间关系的图形,从

最新人教版八年级下册第19章--一次函数PPT课件

最新人教版八年级下册第19章--一次函数PPT课件

变化与对应的思想包括两个基本意思:
(1)世界是变化的,客观事物中存在大量的变量;Байду номын сангаас
(2)在同一个变化过程中,变量之间相互联系,一 些变量的变化会引起其他变量的相应变化,这些 变量之间存在对应关系.
某些变化规律为变量之间满足单值对应的关系,
函数就是通过数或形定量地描述这种对应关系的
数学工具. “变化与对应”的观点蕴涵于本章内容
图象法,即通过坐标系中的曲线上点的坐标反映 变量之间的对应关系. 这种表示方法的产生,将 数量关系直观化、形象化,提供了数形结 合地研究问题的重要方法,这在数学发展中具
有重要地位.
2021
33
从直观到抽象,“由形想数”之例
2021
34
数形结合地思考之例
2021
35
4. 引导学生关注“四基”
• 基础知识:函数的基本概念,函数的表示法和一 次函数的概念、解析式、图象、性质等.
2021
37
例如, 用待定系数法确定一次函数的表达式, 关系到图象到解析式的转化,涉及方程组与 函数的联系,对提高学生的综合数学能力很 有益.
2021
38
5. 结合课题学习,引导学生提高实践意 识与综合应用数学知识的能力
• “课题学习 选择方案” 具有特殊的地位和作用. 这些问题具有实践性、综合性、探究性、趣味性, 是检验和提高学习能力的较好素材.
2021
14
2021
15
2021
16
2021
17
2021
18
4.注重联系实际问题,体现数学建模 的作用
函数是研究运动变化的重要数学模型,本章教 科书中实际问题贯穿于始终
(1)有些是作为认识函数概念的实际背景,为抽象 概括概念服务的;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数的解析式,反之则不
(2)判断点A(-2.5,-4),B(1,3)在,。
C(2.5,4)是否在函数y 2x 1的图象上 ?
2.如图是某一天北京与上海的气温随时间变化的图象.
(1)这一天内,上海与北京何时气温相同? 答:7时 和 12时上海与北京气温相同。
(2)这一天内,上海在哪段时间比北京气温高?在 哪段时间比北京气温低? 答:0时-7时和12时-24时上海比北京气温高。 7时—12时上海比北京气温低。
函数 s x2 (x>0)
的图象.
用描点法画函数图象
例3 在下列式子中,对于x的每一个确定的值,y都 有唯一的对应值,即y是x的函数.画出这些函数的图象:
知 识
(1)y

x

0.5;(2) y

6 x
(x>0).
点 解:(1)从函数可以看出,x的取值范围是:全体实数

列表:从x的取值范围中选取一些数值,算出y的对应值, 填写在表格里;
2.表示函数的三种方法:解析式法、列表法和图 像法
练习册:第二学时 课本:练习1、2、3
习题19.1第6题。
今日作业
3、(1)画出函数 y x2 的图象; 列表:
y x2
x -3 -2 -1 0 1 2 3
y9410149
描点并连线:
y随x的增 大而减小
(2)从图象中观察,当x<0时,y随x的增大 而增大,还是y随x的增大而减小?当x>0时呢?
由上可知,写出函数解析式, 或者列表格,或者画函数图像, 都可以表示具体的函数。这三 种表示函数的方法,分别称为 解析式法、列表法和图像法。
第十九章 一次函数
19.1 函数 19.1.2函数的图象 (第二课时)
学习目标
1 会用描点法画出函数的图像; 2 体会数形结合的思想.
回顾知识
函数的图象
对于一个函数,如果把自变量与函数的
每对对应值分别作为点的横、纵坐标,那么
坐标平面内由这些点组成的图形,就是这个
函数的图象。
s x2
右图中的曲线即为
课堂小结
1.归纳: 描点法画函数的一般步骤为: 第一步,列表——表中给出一些自变量的值及 其对应的函数值; 第二步,描点——在平面直角坐标系中,以自 变量的值为横坐标,相应的函数值为 纵坐标, 描出表格中数值对应的各点; 第三步:连线——按照横坐标 由小到大 的顺序, 把所描出的各点用 平滑曲线 连接起来.
y
5 4 3 2 1
-5 -4 -3 -2 -1 0 -1 -2 -3 -4 -5
y=x+0.5Biblioteka 12 3 4 5x
用描点法画函数图象
(2) y

6 x
(x>0).
第一步:列表: x … 1 1.5 2 2.5 3 4 6 … y … 6 4 3 2.4 2 1.5 1 …
第二步:描点 第三步:连线
y 6(x 0) x
从由函小数变图大象时观,察函得数,曲y 线6x从随左之向右减少下.降,即当x
归纳: 描点法画函数的一般步骤为:
第一步,列表——表中给出一些自变量的值及
知 其对应的函数值; 识 第二步,描点——在平面直角坐标系中,以自 点 变量的值为 横坐标,相应的函数值为 纵坐标, 一 描出表格中数值对应的各点;
第三步:连线——按照横坐标 由小到大 的顺序, 把所描出的各点用 平滑曲线 连接起来.
练习
1、(1)画出函数 y 2x 1 的图象; 列表:
2x–1 -1 0 1 … … .. .. y -3 -1 1 … … .. ..
y 2x 1
描点并连线:
若一个点在某个函数图
AB不在,C在
象上,那么这一点的横、 纵坐标一定满足这个函
注意:1.一般选取5-7个点 即可。
2.在取值范围内,一般要对称取点。
x … -3 -2 -1 0 1 2 3 … y … -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 …
从当描连函x由点线数小图:变象在 用大可时直平以,看角滑函出坐曲数,y标线=直x线系 连+0从.中 接5左随描 这向之右出 些增上大表 点升.格.,即中各点
相关文档
最新文档