合肥市第三中学校2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合肥市第三中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 下列4个命题:
①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”; ②若“¬p 或q ”是假命题,则“p 且¬q ”是真命题;
③若p :x (x ﹣2)≤0,q :log 2x ≤1,则p 是q 的充要条件;
④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2; 其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个
2. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( ) A .∅ B .{1,4} C .M D .{2,7}
3. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )
A.{}|12x x <≤
B.{}|21x x -≤<
C. {}|21x x -≤≤
D. {}|22x x -≤≤
【命题意图】本题主要考查集合的概念与运算,属容易题.
4. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )
A .
π B .2
π
C .4
π
D .
π
5. 函数
是( )
A .最小正周期为2π的奇函数
B .最小正周期为π的奇函数
C .最小正周期为2π的偶函数
D .最小正周期为π的偶函数
6. 如图,空间四边形OABC 中,,
,
,点M 在OA 上,且
,点N 为BC 中点,
则
等于( )
A .
B .
C .
D .
7. 已知=(2,﹣3,1),=(4,2,x ),且⊥,则实数x 的值是( )
A .﹣2
B .2
C .﹣
D .
8. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )
A .21a 和22a
B .22a 和23a
C .23a 和24a
D .24a 和25a 9. 设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )
A .1
B .
C .
D .﹣1 10.函数y=a x +1(a >0且a ≠1)图象恒过定点( )
A .(0,1)
B .(2,1)
C .(2,0)
D .(0,2)
11.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .
B .y=x 2
C .y=﹣x|x|
D .y=x ﹣2
12.若a >0,b >0,a+b=1,则y=+的最小值是( ) A .2 B .3
C .4
D .5
二、填空题
13.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .
14.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .
15. 设函数()x
f x e =,()ln
g x x m =+.有下列四个命题:
①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;
②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2
ln 2m e <-;
③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22
e
m <
-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .
【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.
16.抛物线y=x 2的焦点坐标为( )
A .(0,)
B .(
,0)
C .(0,4)
D .(0,2)
17.在(2x+
)6
的二项式中,常数项等于 (结果用数值表示).
18.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹
为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;
③曲线E 只关于y 轴对称,但不关于x 轴对称;
④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;
⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。
其中真命题的序号是 .(填上所有真命题的序号)
三、解答题
19.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x =相交于点A 、B 两点,设
11(,)A x y ,22(,)B x y .
(1)求证:12y y 为定值;
(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由. 20.在中,,
,
.
(1)求的值;
(2)求的值。
21.(本小题满分10分)选修41-:几何证明选讲
如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;
(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.
【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.
22.如图,在四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是矩形,且AD=2CD=2,AA 1=2,∠A 1AD=.若O
为AD 的中点,且CD ⊥A 1O (Ⅰ)求证:A 1O ⊥平面ABCD ;
(Ⅱ)线段BC 上是否存在一点P ,使得二面角D ﹣A 1A ﹣P 为?若存在,求出BP 的长;不存在,说明理
由.
23.一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.
24.已知函数f(x)=sin2x+(1﹣2sin2x).
(Ⅰ)求f(x)的单调减区间;
(Ⅱ)当x∈[﹣,]时,求f(x)的值域.
合肥市第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】C
【解析】解:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2
﹣x ≠0”,①正确; ②若“¬p 或q ”是假命题,则¬p 、q 均为假命题,∴p 、¬q 均为真命题,“p 且¬q ”是真命题,②正确; ③由p :x (x ﹣2)≤0,得0≤x ≤2,
由q :log 2x ≤1,得0<x ≤2,则p 是q 的必要不充分条件,③错误;
④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2,④正确. ∴正确的命题有3个. 故选:C .
2. 【答案】D
【解析】解:∵M ∪N=M ,∴N ⊆M , ∴集合N 不可能是{2,7}, 故选:D
【点评】本题主要考查集合的关系的判断,比较基础.
3. 【答案】B
【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.
4. 【答案】C
【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为: cm ;
已知球心到该截面的距离为1,所以球的半径为:,
所以球的体积为: =4
π
故选:C .
5. 【答案】B
【解析】解:因为
=
=cos (2x+
)=﹣sin2x .
所以函数的周期为:
=π.
因为f (﹣x )=﹣sin (﹣2x )=sin2x=﹣f (x ),所以函数是奇函数.
故选B.
【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.
6.【答案】B
【解析】解:===;
又,,,
∴.
故选B.
【点评】本题考查了向量加法的几何意义,是基础题.
7.【答案】A
【解析】解:∵=(2,﹣3,1),=(4,2,x),且⊥,
∴=0,
∴8﹣6+x=0;
∴x=﹣2;
故选A.
【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x的方程求出x的值.
8.【答案】C
【解析】
考点:等差数列的通项公式.
9.【答案】A
【解析】解:y'=2ax,
于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0平行
∴有2a=2
∴a=1 故选:A
【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.
10.【答案】D
【解析】解:令x=0,则函数f (0)=a 0
+3=1+1=2.
∴函数f (x )=a x
+1的图象必过定点(0,2).
故选:D .
【点评】本题考查了指数函数的性质和a 0
=1(a >0且a ≠1),属于基础题.
11.【答案】D
【解析】解:函数为非奇非偶函数,不满足条件;
函数y=x 2为偶函数,但在区间(0,+∞)上单调递增,不满足条件; 函数y=﹣x|x|为奇函数,不满足条件;
函数y=x ﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件; 故选:D
【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.
12.【答案】C
【解析】解:∵a >0,b >0,a+b=1,
∴y=+=(a+b )=2+
=4,当且仅当a=b=时取等号.
∴y=+的最小值是4. 故选:C .
【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.
二、填空题
13.【答案】1 【解析】
试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直
【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,
0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,
需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是2
12121c c
b b a a ≠=,当直线是斜截式直线方程时,两直线垂直
121-=k k ,两直线平行时,21k k =,21b b ≠.1
14.【答案】 平行 .
【解析】解:∵AB 1∥C 1D ,AD 1∥BC 1,
AB 1⊂平面AB 1D 1,AD 1⊂平面AB 1D 1,AB 1∩AD 1=A C 1D ⊂平面BC 1D ,BC 1⊂平面BC 1D ,C 1D ∩BC 1=C 1 由面面平行的判定理我们易得平面AB 1D 1∥平面BC 1D
故答案为:平行.
【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.
15.【答案】①②④ 【
解
析】
16.【答案】D
【解析】解:把抛物线y=x 2方程化为标准形式为x 2
=8y ,
∴焦点坐标为(0,2).
故选:D .
【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.
17.【答案】 240
【解析】解:由(2x+
)6
,得
=
.
由6﹣3r=0,得r=2. ∴常数项等于
.
故答案为:240.
18.【答案】①④⑤
解析:∵平面内两定点M (0,﹣2)和N (0,2),动点P (x ,y )满足||•||=m (m ≥4),
∴
•
=m
①(0,0)代入,可得m=4,∴①正确;
②令y=0,可得x 2+4=m ,∴对于任意m ,曲线E 与x 轴有三个交点,不正确; ③曲线E 关于x 轴对称,但不关于y 轴对称,故不正确;
④若P 、M 、N 三点不共线,|
|+|
|≥2
=2
,所以△PMN 周长的最小值为2
+4,正确;
⑤曲线E 上与M 、N 不共线的任意一点G 关于原点对称的点为H ,则四边形GMHN 的面积为2S △MNG =|GM||GN|sin ∠MGN ≤m ,∴四边形GMHN 的面积最大为不大于m ,正确. 故答案为:①④⑤.
三、解答题
19.【答案】(1)证明见解析;(2)弦长为定值,直线方程为1x =. 【解析】
(2 ,进而得
1a =时为定值.
试题解析:(1)设直线AB 的方程为2my x =-,由2
2,
4,
my x y x =-⎧⎨=⎩
得2
480y my --=,∴128y y =-, 因此有128y y =-为定值.111]
(2)设存在直线:x a =满足条件,则AC 的中点11
2(
,)22
x y E +,AC =,
因此以AC 为直径圆的半径12r AC ==
=E 点到直线x a =的距离12||2
x d a +=-,
所以所截弦长为==
=
当10a -=,即1a =时,弦长为定值2,这时直线方程为1x =.
考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题. 20.【答案】
【解析】 解:(Ⅰ)在中,根据正弦定理,
,
于是
(Ⅱ)在中,根据余弦定理,得
于是
所以
21.【答案】
【解析】(Ⅰ)∵EC EF DE ⋅=2,DEF DEF ∠=∠ ∴DEF ∆∽CED ∆,∴C EDF ∠=∠……………………2分 又∵AP CD //,∴C P ∠=∠, ∴P EDF ∠=∠.
(Ⅱ)由(Ⅰ)得P EDF ∠=∠,又PEA DEF ∠=∠,∴EDF ∆∽EPA ∆,
∴
ED
EP
EF EA =,∴EP EF ED EA ⋅=⋅,又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅. ∵EC EF DE ⋅=2,2,3==EF DE ,∴ 2
9
=EC ,∵2:3:=BE CE ,∴3=BE ,解得427=EP .
∴4
15
=-=EB EP BP .∵PA 是⊙O 的切线,∴PC PB PA ⋅=2
∴)29427(4152+⨯=
PA ,解得4
315=PA .……………………10分 22.【答案】
【解析】满分(13分).
(Ⅰ)证明:∵∠A 1AD=,且AA 1=2,AO=1,
∴A 1O==
,…(2分)
∴
+AD 2=AA 12,
∴A 1O ⊥AD .…(3分) 又A 1O ⊥CD ,且CD ∩AD=D , ∴A 1O ⊥平面ABCD .…(5分)
(Ⅱ)解:过O 作Ox ∥AB ,以O 为原点,建立空间直角坐标系O ﹣xyz (如图), 则A (0,﹣1,0),A
1(0,0,),…(6分)
设P (1,m ,0)m ∈[﹣1,1],平面A 1AP 的法向量为
=(x ,y ,z ),
∵=
,
=(1,m+1,0),
且
取z=1,得
=
.…(8分)
又A 1O ⊥平面ABCD ,A 1O ⊂平面A 1ADD 1 ∴平面A 1ADD 1⊥平面ABCD .
又CD ⊥AD ,且平面A 1ADD 1∩平面ABCD=AD , ∴CD ⊥平面A 1ADD 1.
不妨设平面A 1ADD 1的法向量为=(1,0,0).…(10分)
由题意得
=
=
,…(12分)
解得m=1或m=﹣3(舍去).
∴当BP 的长为2时,二面角D ﹣A 1A ﹣P 的值为
.…(13分)
【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.
23.【答案】
【解析】解:如图,设所截等腰三角形的底边边长为xcm,
在Rt△EOF中,,
∴,
∴
依题意函数的定义域为{x|0<x<10}
【点评】本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围.
24.【答案】
【解析】解:(Ⅰ)f(x)=sin2x+(1﹣2sin2
x)=sin2x+cos2x
=2(sin2x+cos2x)=2sin(2x+),
由2kπ+≤2x+≤2kπ+(k∈Z)得:kπ+≤x≤kπ+(k∈Z),
故f(x)的单调减区间为:[kπ+,kπ+](k∈Z);
(Ⅱ)当x∈[﹣,]时,(2x+)∈[0,],2sin(2x+)∈[0,2],
所以,f(x)的值域为[0,2].。