石楼县三中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石楼县三中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=5﹣b,P=()c,则M、N、P的大小关系为()
A.M>N>P B.P<M<N C.N>P>M
2.执行如图所示的程序框图,若a=1,b=2,则输出的结果是()
A.9 B.11 C.13 D.15
3.在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的()
A.充分非必要条件B.必要非充分条件
C.充要条件 D.既不充分也非必要条件
4.定义在R上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f(7)=6,则f(x)()A.在[﹣7,0]上是增函数,且最大值是6
B.在[﹣7,0]上是增函数,且最小值是6
C.在[﹣7,0]上是减函数,且最小值是6
D.在[﹣7,0]上是减函数,且最大值是6
5.若函数f(x)=﹣a(x﹣x3)的递减区间为(,),则a的取值范围是()
A.a>0 B.﹣1<a<0 C.a>1 D.0<a<1
6.双曲线的焦点与椭圆的焦点重合,则m的值等于()
A .12
B .20
C .
D .
7. 定义运算:,,a a b
a b b a b
≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )
A .⎡⎢⎣⎦
B .[]1,1-
C .,12⎤⎥⎣⎦
D .1,2⎡-⎢⎣
⎦ 8. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )
A .34种
B .35种
C .120种
D .140种
9. 下列各组表示同一函数的是( )
A .y=
与y=(
)2
B .y=lgx 2与y=2lgx
C .y=1+与y=1+
D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )
10.设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n C .m ⊥α,n ⊂β,m ⊥n ,则α⊥β D .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β
11.如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )
A .
B .
C .
D .
12.设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )
A .
B .
C .
D .
二、填空题
13.已知函数5()sin (0)2
f x x a x π
=-≤≤的三个零点成等比数列,则2log a = . 14.设不等式组
表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2
的概率是 .
15.若函数63e ()()32e
x x b
f x x a =-∈R 为奇函数,则ab =___________.
【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.
16.抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=.17.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是.
18.已知i是虚数单位,且满足i2=﹣1,a∈R,复数z=(a﹣2i)(1+i)在复平面内对应的点为M,则“a=1”是“点M在第四象限”的条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)
三、解答题
19.已知数列{a n}的首项为1,前n项和S n满足=+1(n≥2).
(Ⅰ)求S n与数列{a n}的通项公式;
(Ⅱ)设b n=(n∈N*),求使不等式b1+b2+…+b n>成立的最小正整数n.
20.已知函数f(x)=4x﹣a•2x+1+a+1,a∈R.
(1)当a=1时,解方程f(x)﹣1=0;
(2)当0<x<1时,f(x)<0恒成立,求a的取值范围;
(3)若函数f(x)有零点,求实数a的取值范围.
21.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD ⊥平面PAC ;
(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.
22.在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ()
=1,M ,N 分别为C 与x 轴,y 轴的交点.
(1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.
23.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且
AM FN =,求证://MN 平面BCE .
24.已知函数f(x)=的定义域为A,集合B是不等式x2﹣(2a+1)x+a2+a>0的解集.(Ⅰ)求A,B;
(Ⅱ)若A∪B=B,求实数a的取值范围.
石楼县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】A
【解析】解:∵0<a <b <c <1,
∴1<2a
<2,
<5﹣b <1,
<()c
<1,
5﹣b =()b
>(
)c
>(
)c
,
即M >N >P ,
故选:A
【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键.
2. 【答案】C
【解析】解:当a=1时,不满足退出循环的条件,故a=5, 当a=5时,不满足退出循环的条件,故a=9, 当a=9时,不满足退出循环的条件,故a=13, 当a=13时,满足退出循环的条件, 故输出的结果为13, 故选:C
【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.
3. 【答案】A
【解析】解:∵sinB+sin (A ﹣B )=sinC=sin (A+B ), ∴sinB+sinAcosB ﹣cosAsinB=sinAcosB+cosAsinB , ∴sinB=2cosAsinB , ∵sinB ≠0,
∴cosA=,
∴A=,
∴sinA=,
当sinA=,
∴A=
或A=
,
故在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=
的充分非必要条件,
故选:A
4.【答案】D
【解析】解:∵函数在[0,7]上是增函数,在[7,+∞)上是减函数,
∴函数f(x)在x=7时,函数取得最大值f(7)=6,
∵函数f(x)是偶函数,
∴在[﹣7,0]上是减函数,且最大值是6,
故选:D
5.【答案】A
【解析】解:∵函数f(x)=﹣a(x﹣x3)的递减区间为(,)
∴f′(x)≤0,x∈(,)恒成立
即:﹣a(1﹣3x2)≤0,,x∈(,)恒成立
∵1﹣3x2≥0成立
∴a>0
故选A
【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.6.【答案】A
【解析】解:椭圆的焦点为(±4,0),
由双曲线的焦点与椭圆的重合,可得=4,解得m=12.
故选:A.
7.【答案】D
【解析】
考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.
8.【答案】A
【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种.
故选:A.
【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题
9.【答案】C
【解析】解:A.y=|x|,定义域为R,y=()2
=x,定义域为{x|x≥0},定义域不同,不能表示同一函数.
B.y=lgx2,的定义域为{x|x≠0},y=2lgx的定义域为{x|x>0},所以两个函数的定义域不同,所以不能表示同一函数.
C.两个函数的定义域都为{x|x≠0},对应法则相同,能表示同一函数.
D.两个函数的定义域不同,不能表示同一函数.
故选:C.
【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.
10.【答案】B
【解析】解:对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面,故A错;
对于B,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n相交,
且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,
故命题B正确.
对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C 不正确;
对于D,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以D不成立.
故选B.
【点评】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力,基本知识的应用题目.
11.【答案】D
【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),
联立,得(2k2+1)x2+8k2x+8k2﹣2=0,
∵过点M(﹣2,0)的直线l与椭圆有公共点,
∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,
整理,得k2,
解得﹣≤k≤.
∴直线l的斜率k的取值范围是[﹣,].
故选:D.
【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.12.【答案】C
【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},
P={x|0≤x≤1},且M,N都是集合P的子集,
∴根据题意,M的长度为,N的长度为,
当集合M∩N的长度的最小值时,
M与N应分别在区间[0,1]的左右两端,
故M∩N的长度的最小值是=.
故选:C.
二、填空题
13.【答案】
1 2
考点:三角函数的图象与性质,等比数列的性质,对数运算.
【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.
14.【答案】.
【解析】解:到坐标原点的距离大于2的点,位于以原点O为圆心、半径为2的圆外
区域D:表示正方形OABC,(如图)
其中O为坐标原点,A(2,0),B(2,2),C(0,2).
因此在区域D内随机取一个点P,
则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,
且在扇形OAC的外部,如图中的阴影部分
∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣π•22=4﹣π
∴所求概率为P==
故答案为:
【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.
15.【答案】2016
【解析】因为函数()f x 为奇函数且x ∈R ,则由(0)0f =,得00
63e 032e b
a -=,整理,得2016a
b =. 16.【答案】 3 .
【解析】解:∵抛物线y 2
=4x=2px ,
∴p=2,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=4=x+=4, ∴x=3, 故答案为:3.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
17.【答案】 .
【解析】解:由题意可得,2a ,2b ,2c 成等差数列
∴2b=a+c
∴4b 2=a 2+2ac+c 2
①
∵b 2=a 2﹣c 2
②
①②联立可得,5c 2+2ac ﹣3a 2=0
∵
∴5e 2
+2e ﹣3=0
∵0<e <1
∴
故答案为:
【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题
18.【答案】充分不必要
【解析】解:∵复数z=(a﹣2i)(1+i)=a+2+(a﹣2)i,
∴在复平面内对应的点M的坐标是(a+2,a﹣2),
若点在第四象限则a+2>0,a﹣2<0,
∴﹣2<a<2,
∴“a=1”是“点M在第四象限”的充分不必要条件,
故答案为:充分不必要.
【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.
三、解答题
19.【答案】
【解析】解:(Ⅰ)因为=+1(n≥2),
所以是首项为1,公差为1的等差数列,…
则=1+(n﹣1)1=n,…
从而S n=n2.…
当n=1时,a1=S1=1,
当n>1时,a n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1.
因为a1=1也符合上式,
所以a n=2n﹣1.…
(Ⅱ)由(Ⅰ)知b n===,…
所以b1+b2+…+b n=
==,…
由,解得n>12.…
所以使不等式成立的最小正整数为13.…
【点评】本小题主要考查数列、不等式等基础知识,考查运算求解能力,考查化归与转化思想
20.【答案】
【解析】解:(1)a=1时,f(x)=4x﹣22x+2,
f(x)﹣1=(2x)2﹣2•(2x)+1=(2x﹣1)2=0,
∴2x=1,解得:x=0;
(2)4x﹣a•(2x+1﹣1)+1>0在(0,1)恒成立,
a•(2•2x﹣1)<4x+1,
∵2x+1>1,
∴a>,
令2x=t∈(1,2),g(t)=,
则g′(t)===0,
t=t0,∴g(t)在(1,t0)递减,在(t0,2)递增,
而g(1)=2,g(2)=,
∴a≥2;
(3)若函数f(x)有零点,
则a=有交点,
由(2)令g(t)=0,解得:t=,
故a≥.
【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题.21.【答案】
【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,
又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A
所以BD⊥平面PAC
(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,
所以BO=1,AO=OC=,
以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则
P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)
所以=(1,,﹣2),
设PB与AC所成的角为θ,则cosθ=|
(III)由(II)知,设,
则
设平面PBC的法向量=(x,y,z)
则=0,
所以令,
平面PBC的法向量所以,
同理平面PDC的法向量,因为平面PBC⊥平面PDC,
所以=0,即﹣6+=0,解得t=,
所以PA=.
【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
22.【答案】
【解析】解:(Ⅰ)由
从而C的直角坐标方程为
即
θ=0时,ρ=2,所以M(2,0)
(Ⅱ)M点的直角坐标为(2,0)
N点的直角坐标为
所以P点的直角坐标为,则P点的极坐标为,
所以直线OP的极坐标方程为,ρ∈(﹣∞,+∞)
【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
23.【答案】证明见解析.
【解析】
考点:直线与平面平行的判定与证明.
24.【答案】
【解析】解:(Ⅰ)∵,化为(x﹣2)(x+1)>0,解得x>2或x<﹣1,∴函数f(x)=的
定义域A=(﹣∞,﹣1)∪(2,+∞);
由不等式x2﹣(2a+1)x+a2+a>0化为(x﹣a)(x﹣a﹣1)>0,又a+1>a,∴x>a+1或x<a,
∴不等式x2﹣(2a+1)x+a2+a>0的解集B=(﹣∞,a)∪(a+1,+∞);
(Ⅱ)∵A∪B=B,∴A⊆B.
∴,解得﹣1≤a≤1.∴实数a的取值范围[﹣1,1].。