北师大版小学数学五年级下册期末复习应用题专项练习及解析答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版小学数学五年级下册期末复习应用题专项练习及解析答案
一、北师大小学数学解决问题五年级下册应用题
1.5个棱长都是10cm的正方体纸箱堆放在墙角处(如下图)。
露在外面的面积是多少平方厘米?
2.先认真阅读下面的背景资料再根据信息完成问题。
幸福小区里有个为民超市,超市房间从里面量长8米,宽5.6米,高3米,门窗面积共5.2平方米。
超市收银台旁有一个长6分米,宽5分米,高4分米的长方体鱼缸。
新冠肺炎疫情得到控制后,今年5月,超市进行了重新装修:房间的四壁和房顶贴上了新的墙纸,地面重新铺了正方形的地板砖,鱼缸(无盖)的棱上贴上了装饰条儿,鱼缸还放了美丽的珊瑚……6月1日超市重新开业,购进大量的商品,其中有很多小朋友爱喝的饮料,还有一些大米和80桶食用油。
(1)装修时至少用了多大面积的墙纸(门窗不贴墙纸)?
(2)如果用边长8分米,每块单价为108元的地砖来铺地,一共需要多少钱?
3.超市购进甲和乙两种品牌的大米共101袋,其中甲品牌大米的袋数比乙品牌的1.2倍还多24袋。
超市购进甲、乙两种品牌的大米各多少袋?(列方程解答)
4.某工厂用一批钢材做零件,每个零件用钢4.5kg,可做160个,改进技术后,每个零件节约用钢1.3kg,改进技术后,这批钢材可做多少个零件?(用方程解)
5.张华买了一批菜油,放在A,B两个桶里,两个桶都未能装满。
如果把A桶油倒入B桶后,B桶装满,A桶还剩10升菜油;如果把B桶油倒入A桶后,A桶还要再加20升菜油才满。
已知A桶容量是B桶的2.5倍。
问:张华一共买了多少升菜油?
6.芳芳用10元钱买了3支圆珠笔和7本练习本。
剩下的钱若买一支圆珠笔就少1角4分,若买一本练习本还多8角钱。
圆珠笔和练习本的单价各是多少元?
7.甲、乙两辆汽车同时从A、B两地开出,相向而行,经过1.25小时相遇。
已知甲车比乙车快,甲车每小时行80千米,乙车每小时行x千米。
?
(1)不计算,将左边的问题与右边正确的算式用线连起来。
(可多连)
(2)若A、B两地的距离是150千米,你能找到甲乙两车相遇的位置吗?请在图上画一
画,并写出你的解答过程。
8.宁元小学共有121人参加体操表演,其中男生人数是女生人数的1.2倍。
参加体操表演的男、女生各有多少人?(列方程解答)
9.有4个棱长是3dm的正方体礼品盒,现在要把它们用包装纸包装起来,有如下两种方案(如下图)。
(1)哪种方案能节省包装纸?
(2)至少需要多少平方米的包装纸?
10.如图,计算这块空心砖的表面积。
(单位:厘米)
11.某公司订购400根方木,每根方木横截面的面积是25平方分米,长是4米,这些木料一共有多少方?(1方=1立方米)
12.某公司买了8箱防疫物资,箱子的棱长是1m,要堆放在仓库里。
小青设计了如下沿墙角摆放的方法:
① ② ③ ④
(1)占地面积最大的是第________种摆放方法,占地面积是________m2。
(2)露在外面的面积最少的是第几种摆放方法?露在外面的面积是多少?
13.一个长方体高24厘米,平行于底面截成三个长方体后,表面积比原来增加了120平方厘米,原来长方体的体积是多少立方厘米?
14.玲玲家有一个长方体的玻璃鱼缸,长8dm,宽4dm,高6dm。
(1)制作这个鱼缸至少需要多少玻璃?【鱼缸上面没有玻璃】
(2)鱼缸里原来有一些水,放入4个同样大的装饰球后(如右图),水面上升了0.05dm。
每个装饰球的体积是多少dm3?
15.挖一个长10米,宽6米、深2米的蓄水池。
(1)这个蓄水池的占地面积是多少平方米?
(2)这个蓄水池已经蓄水1.5米,最多还能蓄水多少立方米?
16.希望小学有一间长10米、宽6米、高3.5米的长方体教室。
(1)这间教室的空间有多大?
(2)现在要在教室粉刷墙壁,扣除门、窗、黑板面积6平方米,这间教室要刷多少平方米?
17.一个棱长是15cm的正方体水槽中,水深8cm,现将一块长12cm,宽是7.5cm的长方体石块,完全浸没在水中(水未溢出),水面上升5cm,石块的高是多少厘米?
18.明明家的厨房长2.4米,宽2米,高2.6米,用瓷砖贴它的四壁,若购买边长2分米的正方形瓷砖,每块5元,一共要用多少元?
19.鱼缸里水深2.8分米,放入一块珊瑚石完全浸没在水中,水面上升到3分米珊瑚石的体积是多少立方分米?
20.要粉刷一个长24m、宽10m、高3m的礼堂,门窗的面积是64m2,如果每平方米的涂料费是6元,粉刷礼堂四周墙壁共需涂料费多少元?
21.一个无水观赏鱼缸中放有一块高为28cm,体积为4200cm³的假石山(如图),如果水管以每分钟7dm³的流量向鱼缸内注水,那么至少需要多少分钟才能将假石山完全淹没?
22.一个养殖场一共养鸡680只,其中母鸡的只数是公鸡的2.4倍。
公鸡和母鸡各有多少只?
23.一个正方体容器,棱长为20厘米,放入一个土豆后(完全浸没水中),水面升高了3厘米,这个土豆的体积是多少?
24.南湖小区准备修建一个长4m,宽2.5m,高3.6m的长方体小型蓄水池。
(1)给这个蓄水池的地面铺正方形地砖,要使铺的地砖都是整块,地砖的边长最长是多少?一共需要这样的地砖多少块?
(2)在蓄水池的四壁上贴2.4米高的瓷砖,需要多少平方米的瓷砖?
25.富安小区要建一个游泳池,游泳池长12m,宽是6m,深2m。
(1)这个游泳池的占地面积是多少平方米?
(2)如果在游泳池的四周和底面贴上瓷砖,这个游泳池需要贴多少平方米的瓷砖?
(3)这个游泳池最多可以装多少升水?
26.修一个长30米,宽20米,深3米的长方形的游泳池。
(1)要在四周与底面贴上磁砖,贴磁砖的面积是多少平方米?
(2)往池中注水6小时,平均每小时注水150立方米,这时池中水深多少米?
27.一杯纯牛奶,乐乐喝了半杯后,觉得有些凉,就兑满了热水。
他又喝了半杯,就出去玩了。
乐乐一共喝了多少杯纯牛奶?多少杯水?
28.乐乐家新买了一个长方体的鱼缸,鱼缸长8分米,宽4分米,高6分米,注入4分米深的水,然后放入一个假山,假山完全浸没在水中,这时水面距缸口1.4分米。
这个假山的体积是多少立方分米?
29.红铅笔每支1.9元,蓝铅笔每支1.1元,两种铅笔共买了16支,花了28元。
问:红、蓝铅笔各买了几支?
30.下图是一个长方体纸盒的展开图,计算立体图形的表面积和体积。
(单位:cm)
31.一个长方体玻璃鱼缸(无盖),长50厘米、宽40厘米、高30厘米。
(1)做这个鱼缸至少需要玻璃多少平方厘米?
(2)在鱼缸里注入40升水,水深大约多少厘米?
(3)往水里放入鹅卵石,测得水面上升了2.5厘米,求放入物体的体积一共是多少立方厘米?
32.将四个大小相同的正方体粘成一个长方体(如图)后,表面积减少54平方厘米,求长方体的表面积和体积。
33.爱心书屋里的科技书的本数是故事书的1.5倍,科技书的本数比故事书多240本。
科技书和故事书各有多少本?(用方程解)
34.一个长方体水箱,从里面量长是40cm,宽是35cm,水箱中浸没一个钢球(水未溢出),水深15cm。
取出钢球后,水深12cm。
这个钢球的体积是多少立方厘米?
35.有两桶油,甲桶油的质量是乙桶油质量的3倍,如果从甲桶油倒24千克给乙桶,则两桶油同样重。
原来甲乙两桶油各重多少千克?
36.如图所示:一个长方体的水槽,被一块玻璃隔板分成左、右两部分。
A部分的底面积为25平方分米,B部分的底面积为15平方分米,水槽高为4分米。
左边原来装满了水,现将隔板抽出,水槽里的水有多高?
37.如图,一个5×5×5的立方体,在一个方向上开有1×1×5的孔,在另一个方向上开有2×1×5的孔,在第三个方向上开有3×1×5的孔。
(1)在一个方向上开有1×1×5的孔中,挖去了多少个孔?
(2)三个方向上开孔后,剩余部分的体积是多少?
38.把的分子、分母加上同一个数以后,正好可以约成。
这个加上去的数是多少?39.一个长20cm、宽15cm、高8cm的长方体木块,每次都从这个木块中锯下一个最大的正方体。
锯三次后,剩下的体积是多少?
40.一个无盖的长方体铁皮水槽(如下图),做这个水槽至少需要多少平方分米铁皮?这个水槽最多可以盛水多少升?(单位:dm)
【参考答案】***试卷处理标记,请不要删除
一、北师大小学数学解决问题五年级下册应用题
1.解:观察几何体得:从上面可以看到4个正方形面,从前面可以看到3个正方形面,从右面可以看到4个正方形面,所以露在外面的面一共有:4+3+4=11(个),则露在外面的面积:10×10×11=1100(平方厘米)。
答:露在外面的面积是1100平方厘米。
【解析】【分析】先从不同的方向观察几何体,得到每个方向看到的正方形面的数量,从
而求得露在外面的正方形面的数量,再根据“露在外面的面积=棱长×棱长×露在外面的正方形面的数量”,代入数据解答即可。
2.(1)解:8×5.6+(5.6×3+8×3)×2-5.2
=44.8+(16.8+24)×2-5.2
=44.8+81.6-5.2
=126.4-5.2
=121.2(m²)
答:装修时至少用了121.2m²的墙纸。
(2)解:8m=80dm,5.6m=56dm
80÷8=10
56÷8=7
10×7×108=7560(元)
或 80×56÷ (8×8)×108=7560(元)
答:一共需要7560元钱。
【解析】【分析】(1)墙纸面积=房间的四壁和房顶面积- 门窗面积,房间的四壁和房顶面积=长×宽+(宽×高+长×高)×2。
(2)1米=10分米,总价=数量×单价,数量=行数×列数,行数=宽÷地砖边长,列数=长÷地砖边长。
3.解:设超市购进乙品牌的大米x袋,则甲品牌大米为(1.2x+24)袋。
x+1.2x+24=101
2.2x+24=101
2.2x+24-24=101-24
2.2x=77
x=35
甲品牌:1.2x+24
=35×1.2+24
=42+24
=66(袋)
答:超市购进甲品牌的大米66袋、乙品牌的大米35袋。
【解析】【分析】根据等量关系式“甲品牌袋数+乙品牌袋数=甲乙品牌总袋数”,列方程解答即可。
4.解:设改进技术后,这批钢材可做x个零件。
(4.5-1.3)x=4.5×160
3.2x=720
x=720÷3.2
x=225
答:改进技术后,这批钢材可做225个零件.
【解析】【分析】等量关系:改进技术后,每个零件用钢的质量×做的零件个数=改进技术前,每个零件用钢的质量×做的零件个数,根据等量关系列方程,根据等式性质解方程。
5.解:设B桶能装x升油,则A桶的容量是2.5x升。
x+10=2.5x-20
x+10-x=2.5x-20-x
10=1.5x-20
1.5x-20=10
1.5x=20+10
1.5x=30
x=30÷1.5
x=20
20+10=30(升)
答:张华一共买了30升油。
【解析】【分析】本题可列方程进行解答,更好理解。
设B桶能装x升油,A桶容量是B 桶的2.5倍,所以A桶的容量是2.5x升,由于把A桶油倒入B桶后,B桶装满,A桶还多10升,由此可知,共有油(x+10)升;又把B桶倒入A桶,A 桶还能再加20升才满,则油的总量是(2.5x-20)升,则此可得方程:x+10=2.5x-20,解此方程求出B桶的容量后,即能求出张华一共买了多少升油。
分析本题要注意两次倒入的油的总量没有发生变化,并由此列出等量关系式是完成本题的关键。
6.解:设练习本单价是x元,则圆珠笔单价是(x+0.8+0.14)元。
7x+3(x+0.8+0.14)=10-(x+0.8)
x=0.58
0.58+0.8+0.14=1.52(元)
答:圆珠笔单价是1.52元,练习本单价是0.58元。
【解析】【分析】剩下的钱若买一支圆珠笔就少1角4分,若买一本练习本还多8角钱。
据此可知圆珠笔的单价=练习本的单价+8角+1角4分;
等量关系:买7本练习本的钱+买3支圆珠笔的钱=10元-(一本练习本的钱数+8角),根据等量关系列方程,综合利用等式性质解方程。
7.(1)
(2)解:1.25×(80+x)=150
80+x=150÷1.25
x=120-80
x=40
40×1.25=50(千米)如图:
【解析】【分析】(1)用减法表示每小时甲车比乙车多行多少千米;用乙车速度乘相遇时
间表示乙车行驶的路程,用甲车速度乘相遇时间表示甲车行驶的路程,把两车行驶的路程相加就是两地的距离,也可以用速度和×相遇时间表示两地的路程;
(2)根据“速度和×相遇时间=总路程”列出方程,解方程求出乙车的速度,然后用乙车速度乘相遇时间求出乙车行驶的路程,再确定相遇的位置即可。
8.解:设女生有x人、则男生有1.2x人。
x+1.2x=121
x=55
1.2x=1.2×55=66
答:参加体操表演的男生有66人,女生有55人。
【解析】【分析】此题主要考查了列方程解答含有两个未知数的应用题,根据条件“男生人数是女生人数的1.2倍”可以设女生有x人,则男生有1.2x人,用男生人数+女生人数=全校学生的人数,据此列方程解答。
9.(1)解:方案A减少了4×2=8个面,方案B减少了6个面,
因为8>6,
所以方案A能节省包装纸。
(2)解:方案A:长方体的长3×2=6dm,宽为3dm,高为3×2=6dm,
(6×3+6×6+3×6)×2
(18+36+18)×2
=72×2
=144(dm2)。
144dm2=1.44m2。
答:至少需要1.44平方米的包装纸。
【解析】【分析】(1)分别观察方案A和方案B,可得方案A减少了8个面,方案B减少了6个面,即可得出减少面数量多的节省包装纸;
(2)方案A中长方体的长3×2=6dm,宽为3dm,高为3×2=6dm,再根据长方体的表面积=(长×宽+长×高+宽×高),代入数值计算即可。
10.解:(40×30+30×25+40×25)×2-12×10×2+(12+10)×25×2=6760(平方厘米)
答:这块空心砖的表面积是6760平方厘米。
【解析】【分析】先计算出大长方体的表面积,然后减去两个长12厘米、宽10厘米的长方形的面积,最后加上空心部分四周的面积即可.
11. 25平方分米=0.25平方米
0.25×4×400=400(立方米)=400(方)
答:这些木料一共有400方。
【解析】【分析】1根方木体积=方木横截面的面积×长,1根方木体积×400根=400根方木体积。
12.(1)1;8
(2)解:①露在外面的面积:1×1×8×2+1×1=16+1=17(m²);
②露在外面的面积:1×1×8+1×1×4+1×1×2=8+4+2=12+2=14(m²);
③露在外面的面积:1×1×4×3=4×3=12(m²);
④露在外面的面积:1×1+1×1×4+1×1×5+1×1×6=1+4+5+6=10+6=16(m²);
17>16>14>12;
答:露在外面的面积最少的是第③中摆放方法,露在外面的面积是12m²。
【解析】【解答】(1)①占地面积:1×1×8=1×8=8(m²);②占地面积:1×1×4=1×4=4(m²);③占地面积1×1×4=1×4=4(m²);④占地面积:1×1×6=1×6=6(m²);8>6>4;占地面积最大的是第1种摆放方法,占地面积是8m²。
故答案为:1;8。
【分析】占地面积一般是指几何体的底层面积;露在外面的面积一般是指不接触底面或墙面的面积;据此解答即可。
13.解:120÷4×24
=30×24
=720(立方厘米)
答:原来长方体的体积是720立方厘米。
【解析】【分析】沿着平行于底面截成三个长方体后,表面积比原来增加了4个横截面的面积,平均每个横截面的面积(原来长方体的底面积)=表面积增加的总面积÷4,长方体的体积=底面积×高,代入数值计算,据此解答即可。
【解析】【分析】等量关系:我国省级行政区总数× =6个省级行政区;根据等量关系列方程,根据等式性质解方程。
14.(1)解:8×4+8×6×2+4×6×2
=32+96+48
=176(平方分米)
答:制作这个鱼缸至少需要176平方分米玻璃。
(2)解:8×4×0.05÷4
=8×0.05
=0.4(立方分米)
答:每个装饰球的体积是0.4立方分米。
【解析】【分析】(1)底面面积+前后两个面的面积+左右两个面的面积=制作这个鱼缸至少需要的玻璃面积;
(2)鱼缸的长×宽×水面上升的高度=4个装饰球的体积;4个装饰球的体积÷4=每个装饰球的体积。
15.(1)解:10×6=60(平方米)
答:这个蓄水池的占地面积是60平方米。
(2)解:10×6×(2-1.5)
=10×6×0.5
=60×0.5
=30(立方米)
答:最多还能蓄水30立方米。
【解析】【分析】(1)根据题意可知,已知长方体的长、宽、高,求底面积,用长×宽=长
方体的底面积;
(2)要求长方体的容积,用公式:长方体蓄水池内还能蓄水的容积=长×宽×还能蓄水的高度,据此列式解答。
16.(1)解:10 ×6×3.5
=60×3.5
=210(立方米)
答:这间教室的空间有210立方米。
(2)解:10×6+(10×3.5+3.5×6)×2-6
=60+(35+21)×2-6
=60+56×2-6
=60+112-6
=166(平方米)
答:这间教室要刷166平方米。
【解析】【分析】(1)长方体体积=长×宽×高,根据体积公式计算这间教室的空间;(2)地面是不需要粉刷的,根据长方体表面积公式,只计算一个底面,再加上四个侧面,然后减去门、窗、黑板的面积即可求出需要粉刷的面积。
17.解:15×15×5÷(12×7.5)
=1125÷90
=12.5(厘米)
答:石块的高是12.5厘米。
【解析】【分析】石块的高=上升的体积÷(石块的长×宽)=正方体水槽的棱长×棱长×水面上升的高度×(石块的长×宽),据此代入数值解答即可。
18.解:(2.4×2.6+2×2.6)×2
=(6.24+5.2)×2
=11.44×2
=22.88(平方米),
22.88÷(0.2×0.2)×5
=22.88÷0.04×5
=572×5
=2860(元)。
答:一共要用2860元。
【解析】【分析】先根据“厨房四壁的面积=(长×高+宽×高)×2”计算出厨房四壁的面积,再根据“一共要用的钱数=瓷砖的数量×每块瓷砖的价钱=厨房四壁的面积÷每块瓷砖的面积×每块砌砖的价钱=厨房四壁的面积÷(瓷砖的边长×边长)×每块砌砖的价钱”,代入数值解答即可。
19.解: 6×5× (3-2.8)
=30×0.2
= 6(dm³)
答:水面上升到3分米珊瑚石的体积是6立方分米。
【解析】【分析】珊瑚石的体积=底面积×(放入珊瑚石后水面高度-原来水深)。
20.解:(24×3+10×3)×2﹣64
=(72+30)×2﹣64
=204﹣64
=140(平方米)
140×6=840(元)
答:粉刷礼堂四周墙壁共需涂料费840元。
【解析】【分析】四个侧面积=(长×高+宽×高)×2;需要粉刷的面积=四个侧面积-门框面积;粉刷的面积×6元=需要的涂料费。
21.解:46×25×28-4200
=1150×28-4200
=32200-4200
=28000(cm3)
=28(dm3)
28÷7=4(分钟)
答:至少需要4分钟才能将假石山完全淹没。
【解析】【分析】根据题意可知,先求出水的体积,长×宽×假山石的高-假山石的体积=注水的体积,然后把cm3化成dm3,除以进率1000,最后用需要注水的体积÷水管每分钟的流量=需要的时间,据此列式解答。
22.解:设公鸡有x只,则母鸡有2.4x只,
x+2.4x=680
3.4x=680
3.4x÷3.4=680÷3.4
x=200
母鸡:200×2.4=480(只)
答:公鸡有200只,母鸡有480只。
【解析】【分析】此题主要考查了列方程解决问题,设公鸡有x只,则母鸡有2.4x只,公鸡的只数+母鸡的只数=养殖场一共养鸡的只数,据此列方程解答。
23.解:20×20×3
=400×3
=1200(立方厘米)
答:这个土豆的体积为1200立方厘米。
【解析】【分析】水面升高部分水的体积就是土豆的体积,因此用容器的底面积乘水面升高的高度即可求出土豆的体积。
24.(1)解:4m=40dm;2.5m=25dm,
因为40和25的最大公因数是5,所以地砖的边长最长是5dm,
所以一共需要这样的地砖的块数=(40÷5)×(25÷5)
=8×5
=40(块)
答:地砖的边长最长是0.5米;一共需要这样的地砖40块。
(2)解:需要瓷砖的面积=(4×2.4+2.5×2.4)×2
=(9.6+6)×2
=15.6×2
=31.2(平方米)
答:需要31.2平方米的瓷砖。
【解析】【分析】(1)将4m和2.5m转化成dm,即4m=40dm;2.5m=25dm,地砖的边长最长是40和25的最大公因数,40和25的最大公因数是5dm,所以一共需要地砖的块数=(蓄水池的长÷最大公因数)×(蓄水池的宽÷最大公因数),代入数值计算即可;(2)需要瓷砖的面积=(蓄水池的长×四壁贴瓷砖的高度+蓄水池的宽×四壁贴瓷砖的高度)×2,代入数值计算即可。
25.(1)解:12×6=72(平方米)
答:这个游泳池的占地面积是72平方米。
(2)解:12×6+(12×2+6×2)×2
=72+(24+12)×2
=72+36×2
=72+72
=144(平方米)
答:这个游泳池需要贴144平方米的瓷砖。
(3)解:12×6×2
=72×2
=144(立方米)
=144000升
答:这个游泳池最多可以装水144000升水。
【解析】【分析】(1)游泳池的占地面积=游泳池的底面积=长×宽,代入数值计算即可;(2)需要贴瓷砖的平方米数=长×宽+(长×高+宽×高)×2,长方体的表面积-上面的面积,代入数值计算即可;
(3)水的体积=长×宽×高,最后将单位转化成升即可。
26.(1)解:30×20+(30×3+20×3)×2
=600+150×2
=600+300
=900(平方米)
答:贴瓷砖的面积是900平方米。
(2)解:150×6÷(30×20)
=900÷600
=1.5(米)
答:这时池中水深1.5米。
【解析】【分析】(1)贴磁砖的面积=底面积+(前面面积+侧面面积)×2=长×宽+(长×高+宽×高)×2。
(2)水的深度=水的体积÷底面积。
27.解:纯牛奶:
+×
=+
=(杯)
水喝了×=(杯)
答:乐乐一共喝了杯纯牛奶,杯水。
【解析】【分析】根据题意可知,把这杯纯牛奶的总量看作单位“1”,先喝了半杯,则喝了
杯纯牛奶,剩下杯纯牛奶;然后兑满了热水,他又喝了半杯,此时喝了剩下杯纯牛奶的
一半,一共喝了+×杯纯牛奶;水则喝了杯的一半,据此解答。
28.解:8×4×(6-1.4-4)
=8×4×0.6
=32×0.6
=19.2(立方分米)
答:这个假山的体积是19.2立方分米。
【解析】【分析】此题主要考查了不规则物体的体积,先求出放入假山后,水面上升的高度,然后用水面上升的高度×鱼缸的长×宽=上升部分的水的体积,也就是假山的体积,据此列式解答。
29.解:设红铅笔买了x支,蓝铅笔买了(16-x)支。
1.9x+(16-x)×1.1=28
1.9x+17.6-1.1x=28
0.8x=28-17.6
0.8x=10.4
x=10.4÷0.8
x=13
16-13=3(支)
答:红铅笔买了13支,蓝铅笔买了3支。
【解析】【分析】此题属于鸡兔同笼问题,用列方程的方法解答比较容易理解。
设红铅笔买了x支,蓝铅笔买了(16-x)支。
等量关系:红铅笔的总价+蓝铅笔的总价=28元,根据等量关系列方程,解方程求出红铅笔的支数,进而求出蓝铅笔的支数即可。
30.解:(30-10×2)÷2=5(cm)
(10×20+20×5+10×5)×2=700(cm2)
10×20×5=1000(cm3)
【解析】【分析】长方体的长是20厘米,宽是10厘米,长方体的高=(30-2×宽)÷2;(长×宽+长×高+宽×高)×2=长方体表面积;长×宽×高=长方体体积。
31.(1)解:50×40+(50×30+40×30)×2
=50×40+(1500+1200)×2
=50×40+2700×2
=2000+5400
=7400(平方厘米)
答:做这个鱼缸至少需要玻璃7400平方厘米。
(2)解:40×1000=40000(立方厘米)
40000÷(50×40)
=40000÷2000
=20(厘米)
答:水深大约20厘米。
(3)解:50×40×2.5
=2000×2.5
=5000(立方厘米)
答:放入物体的体积一共是5000立方厘米。
【解析】【分析】(1)无盖的长方体的表面积=长×宽+(长×高+宽×高)×2;
(2)水深就是水的高,高=容积÷底面积;
(3)求物体的体积就等于容器内水上升的体积=底面积×高。
32.解:每个正方形面的面积:54÷6=9(平方厘米),
长方体表面积:9×18=162(平方厘米),
3×3=9,所以正方体棱长是3厘米,
体积:3×3×3×4=27×4=108(立方厘米)
答:长方体的表面积是162平方厘米,体积是108立方厘米。
【解析】【分析】四个正方体拼成长方体后,表面积会减少6个正方形的面的面积,所以用54除以6即可求出一个正方形面的面积。
长方体的表面积共有18个小正方形面的面积,由此计算长方体表面积。
根据正方形面积公式确定正方体的棱长,然后用正方体体积乘4求出长方体的体积即可。
33.解:设故事书有x本,则科技书有1.5x本,
1.5x-x=240
0.5x=240
0.5x÷0.5=240÷0.5
x=480
科技书:480×1.5=720(本)
答:科技书有720本,故事书有480本。
【解析】【分析】此题主要考查了列方程解决问题,设故事书有x本,则科技书有 1.5x 本,科技书的本数-故事书的本数=240,据此列方程解答。
34.解:h=15-12=3 cm
40×35×3=4200cm3
答:这个钢球的体积是4200立方厘米。
【解析】【分析】这个钢球的体积=水箱的长×水箱的宽×取出钢球后的高度差,其中取出钢
球后的高度差=取出钢球前水的深度-取出钢球后水的深度,据此代入数据作答即可。
35.解:设乙桶油重x千克,则甲桶油重3x千克,根据题意得
3x-24=x+24
2x=48
x=24
24×3=72(千克)
答:甲桶油重72千克,乙桶油重24千克。
【解析】【分析】可设乙桶油重x千克,则甲桶油重3x千克,根据甲桶油-24千克=乙桶油+24千克列方程,解方程可求出乙桶油的重量,进而可计算出甲桶油的重量。
36.解:25×4=100(立方分米)
100÷(15+25)
=100÷40
=2.5(分米)
答:水槽里的水高2.5分米。
【解析】【分析】由于前后水的体积不变,只需先求出水槽左边部分的容积,再除以这个水槽的底面积,就能求出现在水槽里水的高度,据此列式解答。
37.(1)解:1×1×5=5(个)
答:挖去5个孔。
(2)解:5×5×5-1×1×5-2×1×5+2-3×1×5+3
=125-5-10+2-15+3
=120-10+2-15+3
=110+2-15+3
=112-15+2
=97+3
=100
答:三个方向上开孔后,剩余部分的体积是100。
【解析】【分析】(1)观察图可知,在一个方向上开有1×1×5的孔中,挖去了1×1×5个孔,据此列式解答;
(2)观察图形可得:每个小正方体的体积是1×1×1=1,在一个方向上开有1×1×5的孔,去掉的体积是5,和另一个方向上开有2×1×5的孔,去掉的体积为10,交叉2个;第三个方向上开有3×1×5的孔,去掉体积为15,和第一次交叉1个,第二次交叉3个,所以剩余的体积应该是125-5-10+2-15+3=100,据此列式解答。
38.解:设加上去的数是x。
3×(5+x)=2×(23+x)
15+3x=46+2x
3x-2x=46-15
x=31
答:加上去的数是31。
【解析】【分析】等量关系:的分子分母都加上x,等于,根据等量关系列方程,根据等式性质解方程。
39.解:第一次:8×8×8
=64×8
=512(cm3)
第二次:8×8×8
=64×8
=512(cm3)
第三次:7×7×7
=49×7
=343(cm3)
剩下的体积=20×15×8-512-512-343
=300×8-512-512-343
=2400-512-512-343
=1888-512-343
=1376-343
=1033(cm3)
答:剩下的体积是1033 cm3。
【解析】【分析】第一次:从长上锯一个棱长为8厘米的正方体;第二次从宽上锯一个长为8厘米的立方体;第三次宽只剩下7厘米,所以只能锯一个棱长为7的正方体,再用长方体的体积(长×宽×高)减去三个正方体的体积(棱长×棱长×棱长),代入数值计算即可。
40.解:12×5+(12×2+5×2)×2=128(dm2)
12×5×2=120(dm3)=120(L)
答:做这个水槽至少需要128平方分米铁皮,这个水槽最多可以盛水120升。
【解析】【分析】因为无盖,所以做这个水槽至少需要的铁皮面积就是5个面的面积,长×宽+长×高×2+宽×高×2=至少需要铁皮的面积;长×宽×高=长方体体积,据此先算出长方体体积,再把体积单位化为容积单位。