2020年中考数学第一轮复习 第十八讲 等腰三角形与直角三角形 知识点+真题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学第一轮复习教案
第三章图形的认识与三角形
第十八讲等腰三角形与直角三角形
【基础知识回顾】
一、等腰三角形
1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边
三角形
2、等腰三角形的性质:
⑴等腰三角形的两腰等腰三角形的两个底角简称为
⑵等腰三角形的顶角平分线、互相重合,简称为
⑶等腰三角形是轴对称图形,它有条对称轴,是
3、等腰三角形的判定:
⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三
角形,简称
注意:
1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等。
2、因为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证,讨论角时应主要底角只被为角
4、等边三角形的性质:⑴等边三角形的每个内角都都等于
⑵等边三角形也是对称图形,它有条对称轴
5、等边三角形的判定:
⑴有三个角相等的三角形是等边三角形
⑵有一个角是度的三角形是等边三角形
注意:
1、等边三角形具备等腰三角形的所有性质
2、有一个角是直角的等腰三角形是三角形】
二、线段的垂直平分线和角的平分线
1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线
2、性质:线段垂直平分线上的点到得距离相等
3、判定:到一条线段两端点距离相等的点在
4、角的平分线性质:角平分线上的点到的距离相等
5、角的平分线判定:到角两边距离相等的点在
注意:
1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的集合。
2、要能够用尺规作一条已知线段的垂直平分线和已知角的角平分线
三、直角三角形:
1、勾股定理和它的逆定理:
勾股定理:若 一 个直角三角形的两直角边为a 、b 斜边为c 则a 、b 、c 满足 逆定理:若一个三角形的三边a 、b 、c 满足 则这个三角形是直角三角形
注意:
⑴、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合
⑵、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,
⑶、勾股数,列举常见的勾股数三组 、 、
2、直角三角形的性质:
除勾股定理外,直角三角形还有如下性质:
⑴直角三角形两锐角
⑵直角三角形斜边的中线等于
⑶在直角三角形中如果有一个锐角是300,那么它所对 边是 边的一半
3、直角三角形的判定:
除勾股定理的逆定理外,直角三角形还有如下判定方法:
⑴定义法有一个角是 的三角形是直角三角形
⑵有两个角 的三角形是直角三角形
⑶如果一个三角形一边上的中线等于这边的 这个三角形是直角三角形
注意:直角三角形的有关性质在四边形、相似图形、圆中均有广泛应用,要注意这几条性
质的熟练掌握和灵活运用
【中考真题考点例析】
考点一:角的平分线
例1 (丽水)如图,在Rt △ABC 中,∠A=Rt ∠,∠ABC 的平分线BD 交AC 于点
D ,AD=3,BC=10,则△BDC 的面积是 .
对应练习1-1 (泉州)如图,∠AOB=70°,QC ⊥OA 于C ,QD ⊥OB 于D ,若QC=QD ,则∠
AOQ= °.
考点二:线段垂直平分线
例2 (2019山东东营)如图,在Rt △ABC 中,∠ACB=90°,分别以点B 和点
C 为圆心,大于2
1BC 的长为半径作弧,两弧相交于D 、E 两点,作直线DE 交AB 于点F ,交BC 于点G ,连结CF ,若AC=3,CG=2,则CF 的长为( )
A .
25 B .3 C .2 D .2
7
对应练习2-1(义乌市)如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC= .
对应练习2-2(天门)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm
考点三:等腰三角形性质的运用
例3 (2019年枣庄)用一条宽度相等的足够长的纸条打一个结(如图1所示),
∠=____度.然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,BAC
对应练习3-1(武汉)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC 的度数是()
A.18°B.24°C.30°D.36°
对应练习3-2(云南)如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD= .
例4 (黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度.
对应练习4-1(黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE= .
考点五:三角形中位线定理
例5 (2019聊城中考)如图,在Rt ABC V 中,90ACB ∠=︒,60B ∠=︒,DE 为ABC △的中位线,延长BC 至F ,使12CF BC =,连接FE 并延长交AB 于点M .若BC a =,则FMB V 的周长为_______.
对应练习5-1 (2019年威海)如图,在四边形ABCD 中,AB ∥DC ,过点C 作CE ⊥BC ,交AD 于点E ,连接BE ,∠BEC =∠DEC ,若AB =6,则CD =
对应练习5-2 (昆明)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,∠A=50°,∠ADE=60°,则∠C 的度数为( )
A .50°
B .60°
C .70°
D .80°
考点八:三角形、中垂线及角平分线相关的尺规作图
例8 ( 2019山东济宁)如图,点M 和点N 在∠AOB 内部.
(1)请你作出点P ,使点P 到点M 和点N 的距离相等,且到∠AOB 两边的距离也相等(保留作图痕迹,不写作法);
(2)请说明作图理由.
对应练习8-1 (2019潍坊)如图,已知∠AOB .按照以下步骤作图:
①以点O 为圆心,以适当的长为半径作弧,分别交∠AOB 的两边于C ,D 两点,连接CD . ②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在∠AOB 内交于点E ,连接CE ,DE .
③连接OE 交CD 于点M .
(第15题图)A
C
B E
D O A B C
D E M
(第15题图)F
A
B
C
E
D
下列结论中错误的是( )
A .∠CEO =∠DEO
B .CM =MD
C .∠OC
D =∠ECD D .S 四边形OCED =21CD ·O
E 对应练习8-2 (2019年枣庄)如图,BD 是菱形ABCD 的对角线,
75CBD ∠=︒,,1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹);,2)在(1)条件下,连接BF ,求DBF ∠的度数.
【聚焦中考真题】
一、选择题
1.(2019年山东滨州)满足下列条件时,△ABC 不是直角三角形的为( )
A .AB=41,BC=4,AC=5
B .AB ︰B
C ︰AC=3︰4︰5
C .∠A ︰∠B ︰∠C=3︰4︰5
D .213cos (tanB )023A -+-=
2.(临沂)如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( )
A .AB=AD
B .A
C 平分∠BC
D C .AB=BD D .△BEC ≌△DEC
3.(枣庄)如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为( )
A .20
B .12
C .14
D .13
4.(淄博)如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长为( )
A . 32
B .52
C .3
D .4
5.(威海)如图,在△ABC 中,∠A=36°,AB=AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD ,下列结论错误的是( )
A .∠C=2∠A
B .BD 平分∠ABC
C .S △BC
D =S △BOD
D .点D 为线段AC 的黄金分割点
6.(莱芜)在平面直角坐标系中,O为坐标原点,点A的坐标为(1,3),M为坐标轴上
一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()
A.4 B.5 C.6 D.8
7.(遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别
交AB、AC于点M和N,再分别以M、N为圆心,大于1
2
MN的长为半径画弧,两弧交于点P,
连结AP并延长交BC于点D,则下列说法中正确的个数是()
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.4
8.(铁岭)如果三角形的两边长分别是方程x2-8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()
A.5.5 B.5 C.4.5 D.4
9.(柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()
A.15
7
B.
12
5
C.
20
7
D.
21
5
10.(德宏州)在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()
A.5 B.52C.53D.6
11.(大庆)正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()
A.
3
4
B.
33
4
C.
9
4
D.
93
4
12.(南充)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()
A.70°B.55°C.50 D.40°
13.(淮安)若等腰三角形有两条边的长度为3和1,则此等腰三角形的
周长为()
A.5 B.7 C.5或7 D.6
14.(长沙)下列各图中,∠1大于∠2的是()
A.B.C.D.
15.(宜昌)如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()
A.8 B.6 C.4 D.2
16.(南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是()A.∠B=48°B.∠AED=66°C.∠A=84°D.∠B+∠C=96°17.(鄂州)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,
点B到直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足
MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()
A.6 B.8 C.1 D.12
18.(徐州)若等腰三角形的顶角为80°,则它的底角度数为()
A.80°B.50°C.40°D.20°
19.(成都)如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()
A.2 B.3 C.4 D.5
二、填空题:
20.(滨州)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长
为.
21.(烟台)如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为.
22.(泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.
23.(烟台)如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.24.(菏泽)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是(写出1个即可).
25.(莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是.
26.(厦门)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.
27.(白银)等腰三角形的周长为16,其一边长为6,则另两边为.
28.(广州)点P在线段AB的垂直平分线上,PA=7,则PB= .
29.(长沙)如图,BD是∠ABC的平分线,P为BD上的一点,PE⊥BA于点E,PE=4cm,则点P到边BC的距离为 cm.
30.(宿迁)如图,为测量位于一水塘旁的两点A、B间的距离,在地面上确定点O,分别取OA、OB的中点C、D,量得CD=20m,则A、B之间的距离是 m.
31.(漳州)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是.32.(泰州)如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD 的周长为 cm.
33.(吉林)如图,在平面直角坐标系中,点A,B的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为.
34.(资阳)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= .35.(锦州)在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为
D,连接BE.已知AE=5,tan∠AED=3
4
,则BE+CE= .
36.(无锡)如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC= °.
37.(鄂州)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A 、B 能在滑槽内自由滑动,将笔插入位于木棒中点P 处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm ,则画出的圆的半径为 cm .
38.(沈阳)已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 .
39.(哈尔滨)在△ABC 中,AB=22,BC=1,∠ABC=45°,以AB 为一边作等腰直角三角形ABD ,使∠ABD=90°,连接CD ,则线段CD 的长为 .
40.(扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为 .
41.(滨州)在等腰△ABC 中,AB=AC ,∠A=50°,则∠B= .
三、解答题
42.(2019年枣庄)在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .
(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;
(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =;
(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:2AB AN AM +=.
43.(威海)操作发现 将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC 的斜边与含30°角的直角三角板DEF 的长直角边DE 重合.
问题解决
将图①中的等腰直角三角板ABC 绕点B 顺时针旋转30°,点C 落在BF 上,AC 与BD 交于点O ,连接CD ,如图②.
(1)求证:△CDO 是等腰三角形;
(2)若DF=8,求AD 的长.
44.(湘西州)如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3. (1)
求DE 的长; (2)
求△ADB的面积.
45.(永州)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC 于点D,已知AB=10,BC=15,MN=3。
(1)求证:BN=DN;
(2)求△ABC的周长.。