弧、弦、圆心角、圆周角--知识讲解(基础)
华东师大初中数学九年级下册《圆》全章复习与巩固—知识讲解(基础)
《圆》全章复习与巩固—知识讲解(基础)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系;2.探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;3.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;4.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;5.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;6.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等. 要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.两圆的五种位置关系可以概括为三类:要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的有关概念及性质【高清ID号: 362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题1-2】1.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为.【解析】由已知得BC ∥x 轴,则BC 中垂线为2412x -+== 那么,△ABC 外接圆圆心在直线x=1上,设外接圆圆心P(1,a),则由PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为P(1,0) 则 22(11)(03)13r PA ==++-=【总结升华】 三角形的外心是三边中垂线的交点,由B 、C 的坐标知:圆心P (设△ABC 的外心为P )必在直线x=1上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到P (1,0);连接PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,∠DEB =60°, 求CD 的长.【思路点拨】作OF ⊥CD 于F ,构造Rt △OEF ,求半径和OF 的长;连接OD ,构造Rt △OFD ,求CD 的长. 【答案与解析】作OF ⊥CD 于F ,连接OD .∵ AE =1,EB =5,∴ AB =6. ∵ 32ABOA ==,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵ ∠DEB =60°,∴ ∠EOF =30°,∴ 112EF OE ==,∴ 223OF OE EF =-=. 在Rt △DFO 中,OF =3,OD =OA =3,∴ 22223(3)6DF OD OF =-=-=(cm). ∵ OF ⊥CD ,∴ DF =CF ,∴ CD =2DF =26cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.举一反三: 【变式】如图,AB 、AC 都是圆O 的弦,OM⊥AB,ON⊥AC,垂足分别为M 、N ,如果MN =3,那么BC = .【答案】由OM⊥AB,ON⊥AC,得M 、N 分别为AB 、AC 的中点(垂径定理),则MN 是△ABC 的中位线,BC=2MN=6.3.(2017•曲靖一模)如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC 和∠BOC 互补,则弦BC 的长度为.【思路点拨】首先过点O 作OD ⊥BC 于D ,由垂径定理可得BC=2BD ,又由圆周角定理,可求得∠BOC 的度数,然后根据等腰三角形的性质,求得∠OBC 的度数,利用余弦函数,即可求得答案. 【答案】4.【解析】解:过点O 作OD ⊥BC 于D , 则BC=2BD ,∵△ABC 内接于⊙O ,∠BAC 与∠BOC 互补, ∴∠BOC=2∠A ,∠BOC+∠A=180°, ∴∠BOC=120°, ∵OB=OC ,∴∠OBC=∠OCB=(180°﹣∠BOC )=30°, ∵⊙O 的半径为4, ∴BD=OB•cos∠OBC=4×=2,∴BC=4.故答案为:4.【总结升华】此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用. 举一反三:【变式】如图,⊙O 的半径是2,AB 是⊙O 的弦,点P 是弦AB 上的动点,且1≤OP≤2,则弦AB 所对的圆周角的度数是( )N MO C BAA.60°B.120°C.60°或120°D.30°或150°【答案】C.【解析】作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系【高清ID号: 362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题6】4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.请判断直线CE与⊙O的位置关系,并证明你的结论.【答案与解析】直线CE与⊙O相切理由:连接OE∵OE=OA∴∠OEA=∠OAE∵四边形ABCD是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线CE与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为(x、y).(1)求与直线相切时点P的坐标.(2)请直接写出与直线相交、相离时x的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,(,).当与直线相切时,点的坐标为(5,7.5)或(,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD ,∴∠ABC=∠ODB , ∵AB=AC ,∴∠ABC=∠ACB , ∴∠ODB=∠ACB , ∴OD ∥AC ,∵DF 是⊙O 的切线, ∴DF ⊥OD , ∴DF ⊥AC .(2)解:连接OE ,∵DF ⊥AC ,∠CDF=22.5°, ∴∠ABC=∠ACB=67.5°, ∴∠BAC=45°, ∵OA=OE ,∴∠AOE=90°, ∵⊙O 的半径为4,∴S 扇形AOE =4π,S △AOE=8 , ∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,AB 所在圆的圆心为O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【思路点拨】求覆盖棚顶的帆布的面积,就是求以AB 为底面的圆柱的侧面积.根据题意,应先求出AB 所对的圆心角度数以及所在圆的半径,才能求AB 的长. 【答案与解析】连接OB ,过点O 作OE ⊥AB ,垂足为E ,交AB 于点F ,如图(2). 由垂径定理,可知E 是AB 中点,F 是AB 的中点,∴ 12AE AB ==EF =2. 设半径为R 米,则OE =(R-2)m .在Rt △AOE 中,由勾股定理,得222(2)R R =-+. 解得R =4.∴ OE =2,12OE AO =,∴ ∠AOE =60°,∴ ∠AOB =120°.∴AB的长为120481803ππ⨯=(m).∴帆布的面积为8601603ππ⨯=(m2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.【答案】①作法略.如图所示.②如图所示,过O作OC⊥AB于D,交于C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为10cm.。
人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿
人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的第三节“弧、弦、圆心角”是整个章节的重要组成部分。
本节内容主要介绍了弧、弦、圆心角的定义及其相互关系,旨在让学生理解和掌握圆的基本概念和性质,为后续学习圆的周长、面积等知识打下基础。
教材从生活实例出发,引出弧、弦、圆心角的概念,并通过观察、操作、猜想、证明等环节,让学生体会圆的性质。
教材注重培养学生的空间想象能力、逻辑思维能力和动手操作能力,使其能够运用所学知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和观察能力有一定的提高。
但是,对于弧、弦、圆心角的定义和相互关系,学生可能还存在一定的模糊认识。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生从生活实际出发,理解并掌握弧、弦、圆心角的性质。
三. 说教学目标1.知识与技能:理解和掌握弧、弦、圆心角的定义及其相互关系,能够运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、猜想、证明等环节,培养学生的空间想象能力、逻辑思维能力和动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养其积极思考、合作探究的学习态度。
四. 说教学重难点1.教学重点:弧、弦、圆心角的定义及其相互关系。
2.教学难点:圆心角、弧、弦之间的数量关系。
五. 说教学方法与手段1.教学方法:采用问题驱动、观察猜想、证明验证的教学方法,引导学生主动探究,提高其思维能力。
2.教学手段:利用多媒体课件、实物模型等辅助教学,增强学生的直观感受。
六. 说教学过程1.导入:从生活实例出发,引出弧、弦、圆心角的概念,激发学生的学习兴趣。
2.新课讲解:讲解弧、弦、圆心角的定义,通过观察、操作、猜想、证明等环节,让学生理解并掌握其相互关系。
3.例题讲解:分析并解决典型例题,让学生运用所学知识解决实际问题。
4.课堂练习:布置针对性的练习题,巩固所学知识。
华东师大初中数学中考总复习:圆综合复习--知识讲解(基础)
中考总复习:圆综合复习—知识讲解(基础)【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点诠释:圆心确定圆的位置,半径确定圆的大小.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB ,BC ,AC 都是弦.②直径:经过圆心的弦叫做直径,如AC 是⊙O 的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧.⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧.⑦同心圆:圆心相同,半径不相等的圆叫做同心圆.⑧弓形:由弦及其所对的弧组成的图形叫做弓形.⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角.考点二、圆的有关性质1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合.2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB 不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r要点诠释:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点诠释:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.要点诠释:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r 1-r 2”时,要特别注意,r 1>r 2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°. 要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n n n n n S a r n P r ==.考点五、圆中的计算问题1.弧长公式:180n R l π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇. 3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和.要点诠释:在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.考点六、求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.【典型例题】类型一、圆的有关概念及性质1. (2015•石景山区一模)如图,A ,B ,E 为⊙0上的点,⊙O 的半径OC ⊥AB 于点D ,若∠CEB=30°,OD=1,则AB 的长为( )A .B .4C .2D .6【思路点拨】 连接OB ,由垂径定理可知,AB=2BD ,由圆周角定理可得,∠COB=60°,在Rt △DOB 中,OD=1,则BD=1×tan60°=,故AB=2.【答案】C ;【解析】连接OB ,∵AB 是⊙O 的一条弦,OC ⊥AB ,∴AD=BD ,即AB=2BD ,∵∠CEB=30°,∴∠COB=60°,∵OD=1, ∴BD=1×tan60°=,∴AB=2,故选C .【总结升华】弦、弦心距,则应连接半径,构造基本的直角三角形是垂径定理应用的主要方法.举一反三:【变式】如图,⊙O 的直径CD=5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OD=3:5.则AB 的长是( )A 、2cmB 、3cmC 、4cmD 、221cm【答案】 解:连接OA ,∵CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,∴AB=2AM ,∵CD=5cm ,∴OD=OA=12CD=12×5=52cm , ∵OM :OD=3:5,∴OM=35OD=×=, ∴在Rt △AOM 中,AM =22OA OM -=2253()()22-=2,∴AB=2AM=2×2=4cm.故选C .类型二、与圆有关的位置关系2.如图所示,已知AB 为⊙O 的直径,直线BC 与⊙O 相切于点B ,过A 作AD ∥OC 交⊙O 于点D ,连接CD .(1)求证:CD 是⊙O 的切线;(2)若AD =2,直径AB =6,求线段BC 的长.【思路点拨】要证明DC 是⊙O 的切线,因为点D 在⊙O 上,所以连接交点与圆心证垂直即可.【答案与解析】(1)证明:如图(2),连接OD .∵ AD ∥OC ,∴ ∠1=∠3,∠2=∠A ,∴ OA =OD ,∴ ∠3=∠A ,∴ ∠1=∠2.∵ OD =OB ,OC =OC .∴ △COD ≌△COB ,∴ ∠CDO =∠CBO =90°,∴ CD 是⊙O 的切线.(2)解:连接BD ,∵ AB 是⊙O 的直径,∴ ∠ADB =90°.在△DAB 和△BOC 中,∵ ∠ADB =∠OBC ,∠A =∠2,∴ △DAB ∽△BOC ,∴AD BD OB BC =, ∴ OB BD BC AD =. 在Rt △DAB 中,由勾股定理得22226242BD AB AD =-=-=.∴ 342622BC ⨯==.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,已知CD 是△ABC 中AB 边上的高,以CD 为直径的⊙O 分别交CA 、CB 于点E 、F ,点G 是AD 的中点.求证:GE 是⊙O 的切线.【答案与解析】证法1:连接OE 、DE(如图(1)).∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.∵ G 是AD 的中点,∴ EG =12AD =DG . ∴ ∠1=∠2.∵ OE =OD ,∴ ∠3=∠4.∴ ∠1+∠3=∠2+∠4,即∠OEG =∠ODG =90°.∴ GE 是⊙O 的切线.证法2:连接OE 、ED(如图(2)).在△ADC 中,∠ADC =90°,∴ ∠A+∠ACD =90°.又∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.在△AED 中,∠AED =90°,G 是AD 中点,∴ AG =GE =DG ,∴ ∠A =∠AEG .又∵ OE =OC ,∴ ∠OEC =∠ACD .又∵ ∠A+∠ACD =90°,∴ ∠AEG+∠OEC =90°.∴ ∠OEG =90°,∴ OE ⊥EG .∴ GE 是⊙O 的切线.类型三、与圆有关的计算3.在一节数学实践活动课上,老师拿出三个边长都为5cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为 cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.【思路点拨】(1)(Ⅰ)连接正方形的对角线BD,利用勾股定理求出BD的长即可;(Ⅱ)利用勾股定理求出小正方形对角线的长即可;(Ⅲ)找出过A、B、C三点的圆的圆心及半径,利用勾股定理求解即可;(2)连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,再根据勾股定理解答.【答案与解析】解:(1)(Ⅰ)如图连接BD,∵ AD=3×5=15cm,AB=5cm,∴ BD==cm;(Ⅱ)如图所示,∵三个正方形的边长均为5,∴ A、B、C三点在以O为圆心,以OA为半径的圆上,∴ OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)如图所示,连接OA,OB,∵ CE⊥AB,AC=BC,∴ CE是过A、B、C三点的圆的直径,∵ OA=OB=OD,∴ O为圆心,∴⊙O的半径为OA,OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为5×2=10cm;(2)如图④为盖住三个正方形时直径最小的放置方法,连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,则有:,解得:,则ON=,∴直径为.【总结升华】此题比较复杂,解答此题的关键是找出以各边顶点为顶点的圆的圆心及半径,再根据勾股定理解答.举一反三:【变式】如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).【答案】 解:(1)图1:∵点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动,∴∠BAM=∠CBN ,又∵∠APN=∠BPM ,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;同理可得:图2中,∠APN=90°;图3中∠APN=108°.(2)由(1)可知,∠APN=所在多边形的内角度数,故在图n 中,.4.如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【思路点拨】观察图形,可以适当进行“割”与“补”,使阴影面积转化为扇形面积.【答案】256π; 【解析】连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD. 答案:256π. 【总结升华】用等面积替换法将不规则的图形转化为简单的规则图形是解本类题的技巧.类型四、与圆有关的综合应用5.(2014•黄陂区模拟)如图,在△ABC中,以AC为直径的⊙O交BC于D,过C作⊙O的切线,交AB的延长线于P,∠PCB=∠BAC.(1)求证:AB=AC;(2)若sin∠BAC=35,求tan∠PCB的值.【思路点拨】(1)连接AD,根据圆周角定理求得∠ADC=90°,根据弦切角定理求得∠PCB=∠CAD,进而求得∠CAD=∠BAD,然后根据ASA证得△ADC≌△ADB,即可证得结论.(2)作BE⊥AC于E,得出BE∥PC,求得∠PCB=∠CBE,根据已知条件得出=,从而求得=,根据AB=AC,得出tan∠CBE===,就可求得tan∠PCB=.【答案与解析】解:(1)连接AD,∵AC是⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵PC是⊙O的切线,∴∠PCB=∠CAD,∵∠PCB=∠BAC,∴∠CAD=∠BAD,在△ADC和△ADB中,,∴△ADC≌△ADB(ASA),∴AB=AC.(2)作BE⊥AC于E,∵PC是⊙O的切线,∴AC⊥PC,∴BE ∥PC ,∴∠PCB=∠CBE ,∵sin ∠BAC==, ∴=, ∵AB=AC ,∴tan ∠CBE===,∴tan ∠PCB=.【总结升华】本题考查了圆周角定理,切线的性质,三角形全等的判定和性质,直角三角函数等,作出辅助线构建直角三角形是解题的关键.举一反三:【高清课堂:圆的综合复习 例2】【变式】已知:如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC=30°,CD 是⊙O 的切线,ED ⊥AB 于F .(1)判断△DCE 的形状并说明理由;(2)设⊙O 的半径为1,且213-=OF ,求证△DCE ≌△OCB .【答案】(1)解:∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD=90°,∴∠DCE=180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED=90°-∠BAC=30°.故△CDE 为等腰三角形.(2)证明:在△ABC 中,∵AB=2,AC=AO=1,∴BC=2212-=3.OF=213-,∴AF=AO+OF=213+.又∵∠AEF=30°,∴AE=2AF=3+1.∴CE=AE-AC=3=BC .而∠OCB=∠ACB-∠ACO=90°-60°=30°=∠ABC,故△CDE ≌△COB.6.如图,已知⊙O 的直径AB =2,直线m 与⊙ O 相切于点A ,P 为⊙ O 上一动点(与点A 、点B 不重合),PO 的延长线与⊙ O 相交于点C ,过点C 的切线与直线m 相交于点D .(1)求证:△APC ∽△COD .(2)设AP =x ,OD =y ,试用含x 的代数式表示y .(3)试探索x 为何值时, △ACD 是一个等边三角形.【思路点拨】(1)可根据“有两个角对应相等的两个三角形相似”来说明 △APC ∽△COD ; (2)根据相似三角形的对应边成比例,找出x 与y 的关系;(3)若△ACD 是一个等边三角形,逆推求得x 的值.【答案与解析】解 (1)∵PC 是⊙O 的直径,CD 是⊙O 的切线, ∴∠PAC =∠OCD =90°.由△DOA ≌△DOC ,得到∠DOA =∠DOC , ∴∠APC =∠COD , ∴△APC∽△COD.(2)由△APC∽△COD,得AP OC PC OD = , ∴y x 12= 则 xy 2= (3)若ACD △是一个等边三角形,则6030ADC ODC ∠=∠=,于是2OD OC =,可得2y =,从而1=x ,故当1x =时,ACD △是一个等边三角形.【总结升华】本例是一道动态几何题.(1)考查了相似三角形的判定,证三角形相似有:两个角分别对应相等的两个三角形相似;两条边分别对应成比例,且夹角相等的两个三角形相似;三条边分别对应成比例的两个三角形相似;(2)考查了相似三角形的性质.利用第一问的结论,得出对应边成比例,找出y 与x 间的关系.(3)动点问题探求条件.一般运用结论逆推的方法找出结论成立的条件.本题应从ACD △是一个等边三角形出发,逆推6030ADC ODC ∠=∠=,,于是2OD OC =,可得2y =,从而1=x , 故当1x =时,ACD △是一个等边三角形.举一反三:【高清课堂:圆的综合复习 例1】【变式】如图,MN 是⊙O 的直径,2MN =,点A 在⊙O 上,30AMN =∠,B 为弧AN 的中点,P 是直径MN 上一动点,则PA PB +的最小值为( ) A.22 B.2 C.1 D.2【答案】选B ;解:过B 作BB ′⊥MN 交⊙O 于B ′,连接AB ′交MN 于P ,此时PA+PB =AB ′最小.连AO 并延长交⊙O 于C ,连接CB ′,在Rt △ACB ′中,AC =2,∠C =190452⨯=°°, ∴ 2sin 45222AB AC '==⨯=°.。
第十讲弧、弦、圆心角、圆周角
B '第十讲 弧、弦、圆心角、圆周角知识点一弧、弦、圆心角的关系【定义】、如图所示,∠AOB 的顶点在圆心,像这样顶点在圆心的角叫做 .【探究】如图所示的⊙O 中,分别作相等的圆心角∠AOB•和∠A•′OB•′将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′的位置,你能发现哪些等量关系?为什么?相等的弦: ;相等的弧: 【探究】在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?如图1,在⊙O 和⊙O ′中,•分别作相等的圆心角∠AOB 和∠A ′O ′B ′得到如图2,滚动一个圆,使O 与O ′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA 与O ′A ′重合.你能发现哪些等量关系?说一说你的理由? 因此,我们可以得到下面的定理: 【归纳】在同圆或等圆中,相等的圆心角所对的弧 ,所对的弦 。
几何语言:在同圆或等圆中,如果两条弧相等,那么它们所对的 相等,•所对的 也相等. 几何语言:在同圆或等圆中,如果两条弦相等,那么它们所对的 相等,•所对的 也相等. 几何语言: 【辨析】定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?你能举出反例吗? 【拓展】如图,在⊙O 中,AB 、CD 是两条弦. (1) 如果AB=CD ,那么______,________ (2) 如果弧AB=弧CD ,那么______,_______ (3) 如果∠AOB=∠COD ,那么______,_______ (4) 如果AB=CD, OE ⊥AB ,OF ⊥CD,OE 与OF 相等吗? (5)如果OE=OF ,那么与的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?【归纳】:在同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦心距中有一组量相等,它们所对应的其'A'AB CD D余各组量也 。
圆周角和圆心角的关系—知识讲解(基础)
圆周角和圆心角的关系--知识讲解(基础)【学习目标】1.理解圆周角的概念,了解圆周角与圆心角之间的关系;2.理解圆周角定理及推论;3.熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.3.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)要点二、圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.ODCBA2.圆内接四边形性质:圆内接四边形的对角互补.如图,四边形ABCD 是⊙O 的内接四边形,则∠A+∠C=180°,∠B+∠D=180°.要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补.【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用1.如图,在⊙O 中,,求∠A 的度数.【答案与解析】.【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的 弦也相等. 举一反三:【变式】如图所示,正方形ABCD 内接于⊙O ,点E 在劣弧AD 上,则∠BEC 等于( )A .45°B .60°C .30°D .55° 【答案】A.∵ AB =BC =CD =DA ,∴ 90AB BC CD DA ====°, ∴ ∠BEC =45°.类型二、圆周角定理及应用2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角. 【答案与解析】(a)∠1顶点在⊙O 内,两边与圆相交,所以∠1不是圆周角; (b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;(c)图中∠3、∠4、∠BAD 的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD 是圆周角. (d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角; (e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角. 【总结升华】 紧扣定义,抓住二要素,正确识别圆周角.3.(2015•台州)如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC=BC=DC . (1)若∠CBD=39°,求∠BAD 的度数; (2)求证:∠1=∠2.【答案与解析】(1)解:∵BC=DC , ∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°, ∴∠BAD=∠BAC+∠CAD=39°+39°=78°; (2)证明:∵EC=BC ,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠CBD,∴∠1=∠2.【总结升华】本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【思路点拨】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD,证明AD是高或是∠BAC的平分线即可.【答案与解析】BD=CD.理由是:如图,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB,∴BD=CD.【总结升华】解题的关键是正确作出辅助线.举一反三:【变式】(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()DABCOA .2B . 4C . 4D .8【答案】C.提示:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O 的直径AB 垂直于弦CD ,∴CE=DE,△OCE 为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4. 故选:C .类型三、圆内接四边形及应用5.圆内接四边形ABCD 的内角∠A :∠B :∠C=2:3:4,求∠D 的度数.【思路点拨】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D 的度数. 【答案与解析】解:∵圆内接四边形的对角互补, ∴ ∠A :∠B :∠C :∠D=2:3:4:3 设∠A=2x ,则∠B=3x ,∠C=4x ,∠D=3x , ∴2x+3x+4x+3x=360°, ∴x=30°. ∴∠D=90°.【总结升华】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.举一反三:【变式】如图,⊙O中,四边形ABCD是圆内接四边形,∠BOD=110°,则∠BCD的度数是().A.110°B.70°C.55°D.125°【答案】D.C。
圆周角与圆心角、弧的关系
(教案)圆周角与圆心角、弧的关系一、知识讲解:1.圆周角与圆心角的的概念:顶点在圆上,同时两边都和圆相交的角叫做圆周角。
2.在同圆或等圆中,假如两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。
3.一条弧所对的圆周角等于这条弧所对的圆心角的一半。
4.直径所对的圆周角是90度,90度的圆周角所对的弦是直径。
5.圆的内接四边形对角之和是180度。
6.弧的度数确实是圆心角的度数。
解题思路:1.已知圆周角,能够利用圆周角求出圆心角2.已知圆心角,能够利用圆心角求出圆周角3.已知直径和弧度,能够求出圆周角与圆心角1.圆周角与圆心角的定义顶点在圆上,同时两边都和圆相交的角叫做圆周角。
注意圆周角定义的两个差不多特点:(1)顶点在圆上;(2)两边都和圆相交。
二、教学内容【1】圆心角:顶点在圆心的角。
利用两个错误的图形来强调圆周角定义的两个差不多特点:练习:判断下列各图形中的是不是圆周角,并说明理由.【2】明白得圆周角定理的证明一条弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半。
已知:⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC,求证:∠BAC= 1/2∠BOC.分析:通过图形的演示指导学生进一步去查找圆心O与∠BAC的关系本题有三种情形:(1)圆心O在∠BAC的一边上 O(2)圆心O在∠BAC的内部(3)圆心O在∠BAC的外部 B D C●假如圆心O在∠BAC的边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明●假如圆心O在∠BAC的内部或外部,那么只要作出直径AD,将那个角转化为上述情形的两个角的和或差即可证明:圆心O在∠BAC的一条边上 AOA=OC==>∠C=∠BAC∠BOC=∠BAC+∠C O==>∠BAC=1/2∠BOC. B C【3】圆周角与圆心角的关系(1).在同圆或等圆中,假如两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。
圆的概念 弧、圆心角、圆周角、弦 知识点+例题+练习(分类全面)
例题
1:圆的性质应用
例 1 如图,CD 是⊙O 的直径,BE 是⊙O 的弦,DC、EB 的延长线相交于点 A.若∠A=25°, AB=OC,求∠EOD 的度数.
2:利用圆的性质进行证明
例1如图,⊙O 的半径OA、OB 分别交弦C D 于点E、F,且CE=DF.试说明∠OEF 与∠OFE 的关系.
例 2 如图,O为AB所在圆的圆心,已知OA⊥OB,M为弦AB的中点,且MC∥OB交AB于点C.求AC的度数.60
延长CM交OA于E,OE=1/2 OA=1/2 OC
3:圆的性质和矩形性质综合
例 1 如图,点 A、D、G、M 在半圆 O 上,四边形 ABOC、DEOF、HMNO 为矩形,设 BC=a,EF=b,NH=c.则下列各式正确的是( )
A.a>b>c B.a=b=c C.c>a>b D.b>c>a
4:点与圆的位置关系中分类讨论思想
例1若⊙O 所在平面上的一点P到⊙O 上的点的最大距离是10,最小距离是2,则此圆的半径为
5:利用圆的定义与直角三角形的性质综合进行证明
例1、已知:如图,BD、CE 是△ABC 的高,M 为B C 的中点,试说明点B、C、D、E 在以点M为圆心的同一个圆上.
例2、如图,在□ABCD 中,∠BAD 为钝角,且A E⊥BC,AF⊥CD. (1)求证:A、E、C、F 四点共圆;
(2)设线段B D 与(1)中的圆交于点M、N.求证:BM=ND.。
圆专题-弦、弧、圆心角
教师学科数学课时教学内容教学重点、难点中心对称图形——圆圆、弧、弦、圆心角、圆周角圆的有关概念圆的有关概念圆的对称性圆心角、弦、弧之间的关系圆周角定理及其推论垂径定理及其推论圆的有关的位置关系点与圆的位置关系直线与圆的位置关系三角形的外接圆圆的内接四边形正多边形和圆正多边形的外接圆正多边形的对称性与圆的有关的计算弧长公式180Rnlπ=扇形面积公式lRRnS213602==π圆锥侧面积公式rlSπ=一.圆的定义(1)运动定义:把线段OP的一个端点O固定,使线段OP绕端点O在平面上旋转一周,另一个端点P运动所形成的图形叫做圆.其中,点O叫做圆心,线段OP叫做半径.(2)静态定义:圆是定点的距离等于定长的点的集合,定点叫做圆心,定长叫做半径.例1:以O为圆心,可以画个圆;以已知线段AB的长为半径,可以画个圆;以已知点O为圆心,以已知线段AB长为半径,可以画个圆;二.点和圆的位置关系点和圆的位置关系有三种:点在圆外,点在圆上,点在圆内,设圆的半径为r,点到圆心的距离为d,则点在圆外 d>r.点在圆上 d=r.点在圆内 d<r.三.与圆有关的概念(1)弦:连接圆上任意两点的线段叫做弦.(2)直径:通过圆心的弦叫做直径.(3)弧:圆上任意两点间的部分叫做圆弧,简称弧;大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧;(4)圆心角:顶点在圆心的角叫做圆心角;(5)等圆:能重合的两个圆叫做等圆;(6)等弧:能够互相重合的弧叫做等弧.例2:下列说法错误的个数是()(1)弧分为优弧和劣弧(2)半径相等的圆是等圆(3)长度相等的弧是等弧(4)过圆心的线段是直径(5)半径是弦A. 2B. 3C.4D.5例3:已知圆心在原点O,半径为5的⊙O,则点P(-3.4)在⊙O .例4:在△ABC中,∠C=90°,AC=20,AB=25,以点C为圆心,r为半径画圆,使得点A在⊙C外,点B在⊙C内,则r的取值范围是 .基础巩固:1.下列说法正确的是()A.半圆是弧,弧也是半圆B.过圆上任意一点只能作一条弦,且这条弦是直径C.弦是直径D.直径是同一圆中最长的弦2.已知,⊙O 的半径为1,点P 到点O 的距离为d ,且方程022=+-d x x 无实数根,则点P 在⊙O ( ) A.内 B.上 C.外 D.无法确定3.如图所示,点A,D,G,M 都在半圆O 上,四边形ABOC ,DEOF,HMNO 都是矩形,设BC=a,EF=b,NH=c,则下列各式中正确的是( )A. a>b>cB. a=b=cC. c>a>bD.b>c>a4.如图所示,已知在⊙O 中,直径MN=10,正方形ABCD 的四个顶点分别在半径OM,OP 以及⊙O 上,并且∠POM=45°,则AB= .5.如图,在正方形ABCD 中,点P 是对角线AC 上的任意一点,过点P 作EF 和GH 分别平行于BC 和AB ,交各边于点E,F,G,H ,求证:点E,F,G,H 在同一个圆上.二.圆的对称性1.圆既是轴对称图形也是中心对称图形;例1:P 是⊙O 内一点,⊙O 的半径为15,P 点到圆心O 的距离为9,通过P 点,长度是整数的弦的条数是( ) A. 5 B.7 C.10 D.12例2:如图,M,N分别是⊙O中不平行的两条弦AB和CD的中点,且AB=CD.求证:∠AMN=∠CNM.2.圆心角、弧、弦之间的关系定理:在同圆或者等圆中,相等的圆心角所对的弧相等,所对的弦也相等;重要结论:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优弧相等,劣弧相等.注意:不能忽略在“同圆或等圆中”这个前提条件,如果丢掉这个前提条件,即使圆心角相等,所对的弧、弦也不一定相等.3.圆心角的度数与它所对的弧的度数关系圆心角的度数与它所对的弧的度数相等例3:如图,在Rt△ABC中,∠ACB=90°,∠A=26°,以点C为圆心,BC为半径的圆分别交AB、AC于点D,E,则弧BD的度数为()A.26°B.64°C.52°D.128°4.垂径定理定理内容:垂直于弦的直径平分弦,并且平分弦所对的两条弧.提醒:(1)定理中的“垂直于弦的直径”可以是直径,也可以是半径,甚至可以是过圆心的直线或线段;(2)该定理也可以理解为:若一条直线具有两条性质:(1)过圆心;(2)垂直于一条弦,则此直线具有另外的三条性质:(1)平分此弦;(2)平分此弦所对的优弧;(3)平分此弦所对的劣弧;(3)圆心到圆的一条弦的距离我们称之为弦心距.例4:如图,∠AOB=90°,C、D是AB的三等分点,连接AB分别交OC、OD于E、F.求证:AE=BF=CD.例5:一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,求截面圆心O 到水面的距离.例6:如图所示,在⊙O 中,弦AB=CD ,AB ⊥CD ,垂足为G 点,OE ⊥AB,OF ⊥CD ,垂足分别为E,F.求证:四边形OEGF 是正方形. 基础巩固1.如图,点A,B 是⊙O 上两点,AB=10,点P 是⊙O 上的动点(P 与A,B 不重合),连接AP,BP ,过点O 分别作OE ⊥AP 于E ,OF ⊥PB 于F ,则EF= .2.如图,AB ,CD 是半径为5的⊙O 的两条弦,AB=8,CD=6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F,P 为EF 上的任意一点,则PA+PC 的最小值是 .3.如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则GHEF的值是 .CBD AF OE4.如图,在半径为5的⊙O 中,AB 与CD 是互相垂直的两条弦,垂足为P ,且AB=CD=8,则OP 的长为 ( ) A. 3 B.4 C.23 D.245.如图,AB 是⊙的直径,且AB=10,弦MN 的长为8,若弦MN 的两端在圆周上滑动,始终与AB 相交,记点A,B 到MN 的距离为21,h h ,则||21h h -等于( )A.5B.6C.7D.86.如图,在半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE=6,∠BAC+∠EAD=180°,则弦BC 的弦心距等于( )A.241 B.234 C.4 D.37.如图,在⊙O 中,已知AB 是直径,P 为AB 上一点,弦MN 过P 点,∠NPB=45°. (1)若AP=2,BP=6,求MN 的长;(2)当P 点在AB 上运动时(保持∠NPB 的度数不变),试问:222AB PN PM +的值是否改变?若不变,请求其值;若改变,求其值的取值范围.课后作业 完成课后作业教研组审批签字时间。
垂径定理-弦-弧-圆心角-圆周角-
圆的对称性,圆周角1. 圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。
2. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
3. 定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。
推论: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.圆周角和圆心角的关系:1. 圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.2. 圆周角定理; 一条弧所对的圆周角等于它所对的圆心角的一半.推论1: 同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等; 推论2: 半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;1、如图,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,•错误的是(A 、CE=DEB 、BC BD = C 、∠BAC=∠BAD D 、AC >AD2、如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM的长为3,则弦AB 的长是(A 、4 B 、6 C 、7 D 、83、某居民小区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图所示,污水水面宽度为60cm ,水面到管道顶部距离为10cm,则修理人员应准备_________cm 内径的管道(内径指内部直径). 4、如图,一条公路的转弯处是一段圆弦(即图中CD ,点O 是CD 的圆心,•其中CD=600m ,E 为CD 上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.5、如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.6、如图,已知AB 是⊙O 的直径,AC 为弦,D 是AC 的中点,6BC cm =,求OD 的长.7. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么?第4题CE O A D B 8. 等腰三角形ABC 中,B 、C 为定点,且AC=AB ,D 为BC 中点,以BC 为直径作圆D 。
初三-数学-圆的常见考点
圆的常见考点考点1:圆的有关概念和性质一、考点讲解:1.圆的圆的有关概念:(1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中,定点为圆心,定长为半径.(2)圆心角:顶点在圆心的角叫做圆心角.(3)圆周角:顶点在圆上,两边分别与圆还有另一个交点的角叫做圆周角.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.(5)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.2.圆的有关性质:(1)圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(3)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.3.三角形的内心和外心(1)确定圆的条件:不在同一直线上的三个点确定一个圆.(2)三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.(3)三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心二、经典例题剖析:【例题1-1】如图1-3-l,在⊙O中,已知∠ACB=∠CDB=60○,AC=3,则△ABC的周长是____________.【例题1-2】如图1-3-2,在⊙O中,弦AB=1.8cm,圆周角∠ACB=30○,则⊙O的直径等于=_________cm.三、针对性训练:1.如图l-3-3,MN所在的直线垂直平分弦AB,利用这样的工具最少使用__________次,就可找到圆形工件的圆心.2.如图1-3-4,A、B、C是⊙O上三个点,当BC平分∠ABO时,能得出结论_______(任写一个).3.在△ABC 中,∠A=62°,点I 是外接圆圆心,则∠BIC=___________4.下列命题正确的是()A .相等的圆心角所对的弦相等B .等弦所对的弧相等C .等弧所对的弦相等D .垂直于弦的直线平分弦5.“圆材埋壁”是我国古代《九章算术》中的问题:“今有圆材,埋在壁冲,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何”.用数学语言可表述为如图1-3-5,CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB=10寸,则直径CD 的长为()A .12.5寸B .13寸C .25寸D .26寸6.如图1-3-6,已知AB 是半圆O 的直径,弦AD 和BC 相交于点P ,那么CD AB等于() A .sin ∠BPDB .cos ∠BPDC .tan ∠BPDD .cot ∠BPD7.⊙O 的半径是5,AB 、CD 为⊙O 的两条弦,且AB ∥CD ,AB=6,CD=8,求AB 与CD 之间的距离.8.在半径为1的圆中,弦AB 、AC,则∠BAC 的度数为多少?考点2:与圆有关的角一、考点讲解:1.圆心角:顶点在圆心的角叫圆心角.圆心角的度数等于它所对的弧的度数.2.圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角.圆周角的度数等于它所对的弧的度数的一半.3.圆心角与圆周角的关系.同圆或等圆中,同弧或等弧所对的圆周角等于它所对的国心角的一半.4.弦切角:圆的切线与圆的弦组成的顶点在圆上的角.弦切角的度数等于它所夹得弧的度数的一半.弦切角的度数等于它所夹的弧所对的圆周角.5.圆内接四边形顶点都在国上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角.二、经典例题剖析:【例题2-1】如图1-3-7,A、B、C是⊙O上的三点,∠BAC=30°则∠BOC的大小是()A.60○B.45○C.30○D.15○【例题2-2】如图1-3-8,PA、PB是⊙O的切线,切点分别为A、B,点C 在⊙O上.如果∠P=50○,那么∠ACB等于()A.40○B.50○C.65○D.130○三、针对性训练:1.如图1-3-9,已知AB 是⊙O 的直径,AD ∥OC,∠ADB 的度数为80°,则∠BOC=_________.2.如图1-3-10,⊙O 内接四边形ABCD 中,AB=CD 则图中和∠1相等的角有______3.如图1-3-l ,弦AB 的长等于⊙O 的半径,点C 在上,则∠C 的度数是________-.4.如图l -3-12,四边形ABCD 内接于⊙O ,若∠BOD=100°,则∠DAB 的度数为()A .50°B .80°C .100°D .130°5.如图1-3-13是中国共产主义青年团团旗上的图案,点A 、B 、C 、D 、E 五等分圆,则∠A+∠B+∠C+∠D+∠E 的度数是()A .180°B .150°C .135°D .120°6.如图1-3-14所示,直线AB 交圆于点A ,B ,点M 的圆上,点P 在圆外,且点M ,P 在AB 的同侧,∠AMB=50°.设∠APB=x °,当点P 移动时,求x 的变化范围,并说明理由.考点3:点与圆,直线与圆的位置关系一、考点讲解:1.点和圆的位置关系有三种:点在圆外,点在圆上,点在圆内,设圆的半AMB径为r ,点到圆心的距离为d ,则点在圆外d >r .点在圆上d=r .点在圆内d <r .2.直线和圆的位置关系有三种:相交、相切、相高.设圆的半径为r ,圆心到直线的距离为d ,则直线与圆相交d <r ,直线与圆相切d=r ,直线与圆相离d >r二、经典例题剖析【例题3-1】Rt △ABC 中,∠C=90°,∠AC=3cm ,BC =4cm ,给出下列三个结论:①以点C 为圆心1.3cm 长为半径的圆与AB 相离;②以点C 为圆心,2.4cm 长为半径的圆与AB 相切;③以点C 为圆心,2.5cm 长为半径的圆与AB 相交.上述结论中正确的个数是()A .0个B .l 个C .2个D .3个【例题3-2】已知半径为3cm ,4cm 的两圆外切,那么半径为6cm 且与这两圆都外切的圆共有______个.三、针对性训练:1.两个同心圆的半径分别为1cm 和2cm ,大圆的弦AB 与小圆相切,那么AB=()A . 3B .2 3C .3D .42.在△ABC 中,∠C=90°,AC=3cm ,BC=4cm ,CM 是中线,以C 为圆心,以3cm 长为半径画圆,则对A 、B 、C 、M 四点,在圆外的有_________,在圆上的有________,在圆内的有________.考点4:圆与圆的位置关系一、考点讲解:⇔⇔⇔⇔⇔⇔1.同一平面内两圆的位置关系:(1)相离.如果两个圆所包含的区域没有公共部分,那么就说这两个圆相离.(2)内含:如果一个圆在另外一个圆的里面,那么就说这两个圆内含。
圆的确定,圆心角、圆周角、弧、弦、弦心距之间的关系
儒洋教育学科教师辅导讲义6、多边形与圆如果一个圆经过一个多边形的各顶点,那么这个圆叫做这个多边形的外接圆,这个多边形叫做这个圆的内接多边形,提示:1、与圆的确定有关的两个图形一定要学生重点理解。
2、补充两个知识点:线段垂直平分线的性质和角平分线的性质3、和学生一起重点分析课本例题1和2,理解题目考察的细节和解题方法。
二、例题分析:1、以线段AB为弦的圆的圆心的轨迹是___________。
cm。
2、已知扇形的圆心角为120°,半径为2cm,则扇形的弧长是cm,扇形的面积是23、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例1:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、下列四边形:①平行四边形,②菱形;③矩形;④正方形。
其中四个顶点一定能在同一个圆上的有()A、①②③④B、②③④C、②③D、③④5、(07上海中考)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块 B.第②块C.第③块 D.第④块6、三角形的外接圆的圆心是(),A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点7、直角三角形的两条直角边分别为5cm和12cm,则其外接圆半径长为。
(三)巩固练习1、圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为.2、三角形的外接圆的圆心——三角形的外心——三角形的交点;三角形的内切圆的圆心——三角形的内心——三角形的交点;3、三角形的外心一定在该三角形上的三角形()(A)锐角三角形(B)钝角三角形(C)直角三角形(D)等腰三角形,第7题 (第2题) 7、如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=_______8、如图,OE ⊥AB 、OF ⊥CD ,如果OE=OF ,那么_______(只需写一个正确的结论)B A CEDOF(第8题) (第11题)9、已知,如图所示,点O 是∠EPF 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B和C 、D 。
九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版知识精讲
九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版【本讲教育信息】一、教学内容:弧、弦、圆心角、圆周角之间的关系 1. 圆心角、圆周角的概念. 2. 弧、弦、圆心角之间的关系. 3. 圆周角定理及推论.二、知识要点:1. 弧、弦、圆心角(1)我们把顶点在圆心的角叫做圆心角. (2)弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.如图所示,(1)若∠AOB =∠COD ,则︵AB =︵CD ,AB =CD ;(2)若︵AB =︵CD ,则∠AOB =∠COD ,AB =CD ;(3)若AB =CD ,则∠AOB =∠COD ,︵AB =︵CD.OABCD2. 圆周角(1)顶点在圆上,并且两边与圆都相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.③②①(3)推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.三、重点难点:本节重点是圆心角、弦、弧之间的相等关系及圆周角定理. 难点是从圆的旋转不变性出发,得到圆心角、弦、弧之间的相等关系以及圆周角定理的证明.【典型例题】例1. 在⊙O 中,如图所示,∠AOB =∠DOC ,试说明:(1)︵DB =︵AC ; (2)BD =AC.B分析:(1)∵∠DOC =∠AOB ,∴︵DC +︵BC =︵AB +︵BC ,∴︵BD =︵AC. (2)∵在同圆或等圆中,相等的弧所对的弦相等,∴BD =AC.解:(1)∵∠DOC =∠AOB ,∴︵DC =︵AB , ∴︵DC +︵BC =︵AB +︵BC ,即︵BD =︵AC.(2)由(1)得︵BD =︵AC ,∴BD =AC.例2. 如图所示,C 是︵AB 的中点,与∠ADC 相等的角的个数是( ) A. 7个 B. 3个 C. 2个 D. 1个分析:由同弧或等弧所对的圆周角相等知,∠ADC =∠ABC =∠CAB =∠CDB ,故与∠ADC 相等的角共有3个.解:B评析:同弧或等弧所对的圆周角相等常用来证明两角相等;或进行角的转换,将一个圆周角转换为同弧所对的其他圆周角,从而达到题目中的要求.例3. 如图所示,BC 为半圆O 的直径,G 是半圆上异于B 、C 的点,A 是︵BG 的中点,AD ⊥BC 于点D ,BG 交AD 于点E ,请说明AE =BE.分析:在圆中,有关直径的问题常常需要添加辅助线,以便利用直径所对的圆周角是直角的性质,因此,欲说明AE 与BE 相等,可转化为说明∠BAD =∠ABE ,圆周角∠ABE 所对的弧为︵AG ,连结AB 、AC 即可解决问题.C解:连结AB 、AC. ∵︵AB =︵AG ,∴∠ABE =∠ACB. 又∵AD ⊥BC ,∴∠ABD +∠BAE =90°.∵BC 为直径,∴∠BAC =90°,∴∠ABD +∠BCA =90°, ∴∠BCA =∠BAE. ∴∠BAE =∠ABG , ∴AE =BE.例4. 如图所示,在⊙O 中,∠AOC =150°,求∠ABC 、∠ADC 、∠EBC 的度数,并判断∠ABC 和∠ADC 、∠EBC 和∠ADC 的度数关系.分析:解题的关键是分清同弧所对的圆心角和圆周角,如劣弧AC 所对的圆心角是∠AOC ,所对的圆周角是∠ABC ,优弧ABC 所对的圆心角是大于平角的∠α,所对的圆周角是∠ADC.解:∵∠AOC =150°,∴∠ABC =12∠AOC =75°.∵∠α=360°-∠AOC =360°-150°=210°,∴∠ADC =12∠α=105°,∠EBC =180°-∠ABC =180°-75°=105°.∵∠ABC +∠ADC =75°+105°=180°,∠EBC =∠ADC =105°, ∴∠ABC 和∠ADC 互补,∠EBC 和∠ADC 相等. 评析:理解圆周角的概念,分清同弧所对的圆心角和圆周角是熟练运用圆周角性质解题的前提.例5. 如图所示,AB 、CD 是⊙O 的弦,∠A =∠C. 求证:AB =CD.分析:此题的证明方法很多,由于AB 和CD 在圆中,且为弦,可证明AB 和CD 所对的圆心角相等或弧相等,也可直接或间接利用全等证明AB 和CD 相等. 等等.解法一:如图(1)所示,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F.∴AB =2AE ,CD =2CF ,∠AEO =∠CFO =90°. 又∵∠A =∠C ,OA =OC , ∴△AOE ≌△COF ,∴AE =CF. ∴AB =CD.(1)解法二:如图(2)所示,连结OB 、OD.∵OA =OB =OC =OD ,∴∠A =∠B ,∠C =∠D. ∵∠A =∠C ,∴∠B =∠D. ∴△OAB ≌△OCD ,∴AB =CD.(2)(3)解法三:如图(3)所示,连结AC. ∵OA =OC ,∴∠1=∠3.又∵∠BAO =∠DCO ,∴∠2=∠4. ∴︵BC =︵AD.∴︵BC +︵BD =︵AD +︵BD ,即︵AB =︵CD , ∴AB =CD.例6. AB 、BC 、CA 是⊙O 的三条弦,O 到AB 的距离OE 等于12AB ,求∠C 的度数.分析:∠C 可能为一个钝角,也可能为一个锐角,要分类画图、分析和解答.BB m解:如图(1)所示,连结AO 、BO.因为OE ⊥AB ,所以EB =AE =12AB.又OE =12AB ,所以EB =OE =AE.所以∠EBO =∠EOB =∠EOA =∠EAO =45°.所以∠C =12∠AOB =12(∠AOE +∠EOB )=12×90°=45°.如图(2)所示,由(1)得∠AOB =90°,所以优弧A m B 所对的圆心角是270°,所以∠C =135°.即∠C 的度数为45°或135°.评析:图(1)中,△ABC 为锐角三角形,圆心在△ABC 内部;图(2)中,△ABC 为钝角三角形,圆心O 在△ABC 外部,两种情形都符合题意,所以本题应有两解.【方法总结】1. 圆不仅是轴对称图形和中心对称图形,实际上,圆绕圆心旋转任意一个角度α,都能与原来的图形重合,这样就把圆和其他的中心对称图形区别开来,即圆不仅是中心对称图形,而且还突破了中心对称图形旋转180°后才能与原来图形重合的局限性,得出圆所特有的性质:圆绕圆心旋转任意一个角度,都能与原来的图形重合,这叫做圆的旋转不变性. 利用这一性质可以推出圆的一些其他性质.2. 在利用圆心角、弧、弦的关系定理解题时,我们应注意:①作圆心到弦的垂线是圆中一种常见的作辅助线的方法;②由圆心到弦的垂线、弧、圆心角的相等来证明弦相等是证明线段相等的一条重要途径.3. 圆周角定理及其推论在证明和计算中应用非常广泛,它是证明角相等、线(弦)相等、弧相等的重要依据,尤其是其推论为在圆中确定直角、构成垂直关系创造了条件,它是圆中的一个很重要的性质,要熟练掌握. 同时它也是证明弦为直径的常用方法,若图中有直径,往往构造直径所对的圆周角形成直角,这也是圆中重要的辅助线.【预习导学案】(点和圆的位置关系)一、预习前知1. 圆可以看作是到__________的距离等于__________的点的集合,也就是说圆上的点到圆心的距离都等于__________.2. 圆的内部可以看作是到__________的距离小于半径的点的集合.3. 圆的外部可以看作是到__________的距离大于半径的点的集合.二、预习导学1. ⊙O 的半径r =5cm ,圆心O 到直线的距离OD =3cm . 点A 、B 、C 在直线l 上,若AD =23cm ,BD =4cm ,CD =5cm . 则点A 在⊙O__________,点B 在⊙O__________,点C 在⊙O__________.2. 下列条件中,可以画一个圆,并且只可以画一个圆的条件是( ) A. 已知圆心 B. 已知半径 C. 已知三点 D. 过直线上两点和直线外一点3. 三角形外接圆的圆心是( ) A. 三内角平分线的交点 B. 三边垂直平分线的交点 C. 三中线的交点 D. 三高线的交点4. 用反证法证明:“在△ABC 中,至少有两个内角是锐角”时,第一步假设__________成立.反思:(1)点和圆有哪些位置关系?(2)经过不在同一直线上的三点画圆的时候,如何确定圆心?(3)反证法的基本思路和一般步骤是怎样的?【模拟试题】(答题时间:50分钟)一、选择题1. 一条弦分圆周为5∶7,这条弦所对的两个圆周角分别为( )A. 150°,210°B. 75°,105°C. 60°,120°D. 120°,240°2. 已知AC 为⊙O 的直径,弦AB =10cm ,∠BAC =30°,那么⊙O 的半径为( )A. 5cmB. 52cmC. 1033cmD. 2033cm3. 如图所示,⊙O 的弦AB 、CD 相交于点E ,已知∠ECB =60°,∠AED =65°,那么,ADE的度数为( )A. 40°B. 45°C. 55°D. 65°*4. 如图所示,劣弧︵AE 所对的圆心角为40°,则∠B +∠D 等于( ) A. 320° B. 160° C. 300° D. 260°D5. 如图所示,AB 为⊙O 的直径,∠ACD =15°,则∠BAD 的度数为( ) A. 75° B. 72° C. 70° D. 65°6. 如图所示,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 的度数为( ) A. 80° B. 100° C. 120°D. 130°**7. 已知⊙O 的半径为6cm ,⊙O 的一条弦AB 的长为63cm ,则弦AB 所对的圆周角是( ) A. 30° B. 60° C. 30°或150° D. 60°或120°二、填空题1. 如图所示,D 、E 分别是⊙O 的半径OA 、OB 上的点,CD ⊥OA ,CE ⊥OB ,CD =CE ,则AC 与CB 弧长的大小关系是__________.2. 如图所示,点A 、B 、C 、E 都在圆周上,AE 平分∠BAC 交BC 于点D ,则图中相等的圆周角是__________.3. 如图所示,AB 是⊙O 的直径,︵BC =︵BD ,∠A =30°,则∠BOD =__________.AB4. 如图所示,已知⊙O 的半径为2,圆周角∠ABC =30°,则弦AC 的长是__________.5. 如图所示,AB 是半圆O 的直径,∠BAC =40°,D 是︵AC 上任意一点,那么∠D 的度数是__________.A**6. 如图所示,A 、B 、C 、D 、E 是⊙O 上顺次五点,且AB =BC =CD ,如果∠BAD =50°,那么∠AED =__________.B三、解答题1. 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F. (1)如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE =OF ,那么AB 与CD 的大小有什么关系?︵AB 与︵CD 的大小关系?为什么?∠AOB 与∠COD 呢?BD2. 如图所示,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD =CE ,BE 与CE 的大小有什么关系?为什么?*3. 如图所示,AB 为⊙O 的直径,AC 为弦,P 为AC 延长线上一点,且AC =PC. PB 的延长线交⊙O 于D. 求证:AC =DC.P*4. 如图所示,已知A 、B 、C 、F 、G 是⊙O 上的五点,AF 交BC 于点D ,AG 交BC 于点E ,且BD =CE ,∠1=∠2. 求证:AB =AC.试题答案一、选择题1. B2. C3. C4. B5. A6. D7. D二、填空题 1. 相等2. ∠ABC =∠AEC ,∠ACB =∠AEB ,∠BAE =∠CAE =∠BCE =∠CBE3. 60°4. 25. 130°6. 75°三、解答题1.(1)如果∠AOB =∠COD ,那么OE =OF ,理由是:因为∠AOB =∠COD ,所以AB =CD. 因为OE ⊥AB ,OF ⊥CD ,所以AE =12AB ,CF =12CD ,所以AE =CF. 又因为OA =OC ,所以R t △OAE≌R t △OCF. 所以OE =OF. (2)如果OE =OF ,那么AB =CD ,︵AB =︵CD ,∠AOB =∠COD ,理由是:因为OA =OC ,OE =OF ,所以R t △OAE ≌R t △OCF. 所以AE =CF ,又因为OE ⊥AB ,OF ⊥CD ,所以AE =12AB ,CF =12CD. 所以AB =2AE ,CD =2CF. 所以AB =CD. 所以︵AB =︵CD ,∠AOB =∠COD.2. BE =CE. 理由:∵AB 、DE 为⊙O 的两条相交的直径,∴∠AOD =∠BOE ,∴BE =AD ,又∵AD =CE ,∴BE =CE.3. 连结AD ,∵AB 是⊙O 的直径,∴∠ADP =90°,∵AC =CP ,∴CD =12AP. ∴CD =AC =12AP.∴AC =DC.4.∵∠1=∠2,∴⌒BF =⌒CG ,∴BF =CG ,⌒BG =⌒CF ,∴∠FBC =∠GCE. 又BD =CE ,∴△BFD ≌△CGE (SAS ),∴∠F =∠G. ∴⌒AB =⌒AC ,∴AB =AC.。
【初中数学】初中数学知识点:圆心角,圆周角,弧和弦
【初中数学】初中数学知识点:圆心角,圆周角,弧和弦圆的定义:在同一平面上,到固定点的距离等于固定长度的一组点称为圆。
这个固定点叫做圆心。
圆的长度是圆的周长。
弧:圆上任意两点之间的部分称为弧,简称弧。
弧用符号“⌒”表示以a,b为端点的弧记作“,读“弧AB”或“弧AB”。
优弧:大于半圆的弧(多用三个字母表示);下弧:比半圆小的弧(通常用两个字母表示)圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
圆弧、弦、弦中心距与圆心角的关系定理:在同一圆或等圆中,等中心角的圆弧相等,等中心角的弦相等,等中心角弦的弦中心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
中心角:顶点在圆心的角叫做圆心角。
圆周角:顶点位于圆上且两侧与圆相交的角度称为圆周角。
圆周角的顶点在圆上,它的两边为圆的两条弦。
中心角特征识别:①顶点是圆心;② 两边都与圆周相交。
计算公式:① L(弧长)=n/180XπR(n为圆心角的度数,下同);②s(扇形面积)=n/360xπr二;③ 扇形中心角n=(180L)/(πR)(度)。
④k=2rsin(n/2)k=弦长;n=弦所对的圆心角,以度计。
中心角定理:圆心角的度数等于它所对的弧的度数。
理解:(定义)(1)等弧对等圆心角(2)将圆心顶点的圆周角分成360个部分时,每个部分的中心角为1°(3)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.(4)圆的中心角的度数等于它们相对的弧的度数推论:如果每组(2)中的两个和弦具有相同的中心,那么如果每组(2)中的两个和弦具有相同的中心,则其他两个和弦对应于相同的圆与圆周角关系:在同一圆或等圆中,同一圆弧或弦的圆周角等于中心角的一半。
定理证明:分三种情况讨论,始终做直径cod,利用等腰三角形等腰底角相等,外角等于两内角之和来证明。
弧、弦、圆心角、圆周角--知识讲解(基础)
弧、弦、圆心角、圆周角--知识讲解(基础)责编:常春芳【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
*如果它们中间有一组量不相等,那么其它各组量也分别不等。
第九讲(圆心角、弧、弦、圆周角)
第九讲:弧、弦、圆心角、圆周角一、基本知识:1、垂径定理:垂直于弦的直径 ,并且平分 垂径定理推论:平分弦( )的直径垂直于弦,并且平分2、圆心角定理:在同圆或等圆中,相等的圆心角所对的 ,所对的 ____. 圆心角定理推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦心距中有一对量相等,那么 都相等。
注解:在由“弦相等,得出弧相等”或由“弦心距相等,得出弧相等”时,这里的“弧相等”是指对应的劣弧与劣弧相等,优弧与优弧相等。
3、圆周角定理:一条弧所对的圆周角等于它所对的圆周角定理推论1:半圆(或直径)所对的圆周角是 ;90°的圆周角所对的弦是______圆周角定理推论2:在同圆或等圆中, 所对的圆周角相等; _______ 的也相等 4、圆内接四边形的对角之和为 。
二、例题讲解 1、圆心角定理(1)如图,⊙O 是△ABC 的外接圆,且AB=AC=13,BC=24,求⊙O 的半径为 .⑵ 下列说法正确的是( )A .相等的圆心角所对的弧相等 B.等弧所对的圆心角相等 C .相等的弦所对的圆心到弦的距离相等 D.圆心到弦的距离相等,则弦相等⑶ 如图AB 是⊙O 的直径,弧AD=弧AC ,求证:∠BOD= ∠ BOC(4)如图,⊙O 的两条弦AB 、CD 相交于P ,M 、N 分别是 AB 、CD 的中点,PM =PN ,求证:AB =CD2、圆周角定理⑴ 求圆中的角x 的度数?⑵ 如图,AB 是⊙O 的直径,∠ A =80°,∠ABC =______.B⑶ 如图,D 是弧AC 的中点,与∠ABD 相等的角是________________.⑷ 如图,已知AB 为⊙O 的直径, C 为⊙O 外一点, BC 交⊙O 于 AC 交⊙O 于D ,∠DOE =60°,求∠ C 的度数.三、练 习1. 如图所示,在⊙O 中,AB 是⊙O 的直径,∠ACB 的 角平分线CD 交⊙O 于D ,则∠ABD =_____________度。
九年级圆基础知识点圆讲义
一对一授课教案一、圆的定义:1. 描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.2 圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O⊙”,读作“圆O”.3 同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:同圆或等圆的半径相等.1. 弦:连结圆上任意两点的线段叫做弦.2. 直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.3. 弦心距:从圆心到弦的距离叫做弦心距.4. 弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的圆弧记作AB,读作弧AB.5. 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.6. 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.7. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.8. 弓形:由弦及其所对的弧组成的图形叫做弓形.1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆或直径所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.一、圆的对称性1. 圆的轴对称性:圆是轴对称图形,对称轴是经过圆心的任意一条直线.2. 圆的中心对称性:圆是中心对称图形,对称中心是圆心.3. 圆的旋转对称性:圆是旋转对称图形,无论绕圆心旋转多少角度,都能与其自身重合.二、垂径定理1. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2. 推论1:⑴平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧;⑵弦的垂直平分线经过圆心,并且平分弦所对的两条弧;⑶平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3. 推论2:圆的两条平行弦所夹的弧相等.练习题;1.判断:1直径是弦,是圆中最长的弦; 2半圆是弧,弧是半圆; 3等圆是半径相等的圆;4等弧是弧长相等的弧; 5半径相等的两个半圆是等弧; 6等弧的长度相等;2.P为⊙O内与O不重合的一点,则下列说法正确的是A.点P到⊙O上任一点的距离都小于⊙O的半径 B.⊙O上有两点到点P的距离等于⊙O的半径C.⊙O上有两点到点P的距离最小 D.⊙O上有两点到点P的距离最大3.以已知点O为圆心作圆,可以作A .1个B .2个C .3个D .无数个 4.以已知点O 为圆心,已知线段a 为半径作圆,可以作A .1个B .2个C .3个D .无数个5、如下图,1若点O 为⊙O 的圆心,则线段__________是圆O 的半径;线段________是圆O 的弦,其中最长的弦是______;______是劣弧;______是半圆. 2若∠A =40°,则∠ABO =______,∠C =______,∠ABC =______.5.一点和⊙O 上的最近点距离为4cm,最远距离为9cm,则这圆的半径是 cm . 6.圆上各点到圆心的距离都等于 ,到圆心的距离等于半径的点都在 . 7.如图,点C 在以AB 为直径的半圆上,∠BAC=20°,∠BOC 等于A .20°B .30°C .40°D .50°8、如图,在⊙O 中,弦AB=8cm,OC ⊥AB 于C,OC=3cm,求⊙O 的半径长.9.如图1,如果AB 为⊙O 的直径,弦CD ⊥AB,垂足为E,那么下列结论中,•错误的是 .A .CE=DEB .BC BD = C .∠BAC=∠BAD D .AC>ADB ACEDOBAOMBACDP O BACED O BA CEDOF 51 2 3 410.如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是A .4B .6C .7D .811.如图3,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,•则下列结论中不正确的是A .AB ⊥CD B .∠AOB=4∠ACDC .AD BD = D .PO=PD12.如图4,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D,BD=3,AB=10,则AC=_____.13.P 为⊙O 内一点,OP=3cm,⊙O 半径为5cm,则经过P 点的最短弦长为________;•最长弦长为_______.14、深圳南山区,3分如图1-3-l,在⊙O 中,已知∠A CB =∠CDB =60○,AC =3,则△ABC 的周长是____________.15.如果两个圆心角相等,那么 A .这两个圆心角所对的弦相等;B .这两个圆心角所对的弧相等 C .这两个圆心角所对的弦的弦心距相等;D .以上说法都不对16、大连,3分如图1-3-7,A 、B 、C 是⊙O 上的三点,∠BAC=30°则∠BOC 的大小是 A .60○ B .45○ C .30○ D .15○三、综合题1、如图,⊙O 直径AB 和弦CD 相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD 长.BACE DO3、已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°,求∠C 及∠AOC 的度数.板块三:点与圆的位置关系一、点与圆的位置关系点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定.设O ⊙的半径为r ,点P 到圆心O 的距离为d ,则有:点在圆外⇔d r >;点在圆上⇔d r =;点在圆内⇔d r <. 位置关系图形定义 性质及判定点在圆外 Pr O点在圆的外部d r >⇔点P 在O ⊙的外部.点在圆上Pr O点在圆周上d r =⇔点P 在O ⊙的圆周上.点在圆内Pr O点在圆的内部d r <⇔点P 在O ⊙的内部.二、确定圆的条件 1. 圆的确定确定一个圆有两个基本条件:①圆心定点,确定圆的位置;②半径定长,确定圆的大小.只有当圆心和半径都确定时,远才能确定. 2. 过已知点作圆⑴经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个. ⑵经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个. ⑶过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个.⑷过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心. 3. 定理:不在同一直线上的三点确定一个圆.注意:⑴“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆; ⑵“确定”一词的含义是“有且只有”,即“唯一存在”. 板块四:直线和圆的位置关系一、直线和圆的位置关系的定义、性质及判定设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表:位置关系图形定义性质及判定相离lOdr直线与圆没有公共点. d r >⇔直线l 与O ⊙相离相切lOdr直线与圆有唯一公共点,直线叫做圆的切线,唯一公共点叫做切点. d r =⇔直线l 与O ⊙相切相交lOd r直线与圆有两个公共点,直线叫做圆的割线.d r <⇔直线l 与O ⊙相交从另一个角度,直线和圆的位置关系还可以如下表示:二、切线的性质及判定 1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 2. 切线的判定定义法:和圆只有一个公共点的直线是圆的切线; 距离法:和圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理:⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. 三、三角形内切圆 1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 1、 如图,ABC ∆中,AB AC =,O 是BC 的中点,以O 为圆心的圆与AB 相切于点D ;求证:AC 是O 的切线;OD CBA2、 如图,已知AB 是O 的直径,BC 是和O 相切于点B 的切线,过O 上A 点的直线AD OC ∥,若2OA =且6AD OC +=,则CD = ;直线和圆的位置关系相交相切 相离 公共点个数2 1圆心到直线的距离d 与半径r 的关系d r <d r =d r >公共点名称 交点 切点 无 直线名称割线切线无CODBA3、 如图⊿ABC 中∠A =90°,以AB 为直径的⊙O 交BC 于D,E 为AC 边中点,求证:DE 是⊙O 的切线;8 如图,在ABC △中90ACB ∠=,D 是AB 的中点,以DC 为直径的O 交ABC △的三边,交点分别是G F E ,,点.GE CD ,的交点为M ,且ME =:2:5MD CO =.1求证:GEF A ∠=∠. 2求O 的直径CD 的长.A。
中考数学知识点专题分类复习:第24讲与圆相关的角
中考数学知识点专题分类复习:第24讲与圆相关的角【知识巩固】一、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。
2、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
3、圆周角定理及推论(1)定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于⑧这条弧所对的圆心角的一半. 2. 推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 4、弧、弦、圆周角、弦切角之间的关系(1)定理:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等,所对弦的弦心距也相等.(2)推论(1)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中⑨有一组量相等,那么其他各组量也分别对应相等.(2)弧的度数等于它所对的圆心角的度数.【典例解析】典例一、圆心角(2016·山东省济宁市·3分)如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.【变式训练】(2016·山东省滨州市·3分)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A.②④⑤⑥ B.①③⑤⑥ C.②③④⑥ D.①③④⑤【考点】圆的综合题.【分析】①由直径所对圆周角是直角,②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论;⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.【解答】解:①、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,②、∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,∴∠AOC≠∠AEC,③、∵OC∥BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴CB平分∠ABD,④、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,⑤、由④有,AF=DF,∵点O为AB中点,∴OF是△ABD的中位线,∴BD=2OF,⑥∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,故选D【点评】此题是圆综合题,主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质.典例二、圆周角(2017江苏徐州)如图,点A,B,C在⊙O上,∠AOB=72°,则∠ACB等于()A.28°B.54°C.18°D.36°【考点】M5:圆周角定理.【分析】根据圆周角定理:同弧所对的圆周角等于同弧所对圆心角的一半即可求解.【解答】解:根据圆周角定理可知,∠AOB=2∠ACB=72°,即∠ACB=36°,故选D.【变式训练】(2017江苏盐城)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=110°.【考点】M5:圆周角定理.【分析】根据圆周角定理和圆内接四边形的性质即可得到结论.【解答】解:∵点C在上,点D在上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°,故答案为:110.典例三、圆周角与切线之间的关系(2017贵州)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.4【考点】M5:圆周角定理;KQ:勾股定理;M2:垂径定理.【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2OE=2,故选A.【变式训练】(2017贵州)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.4【考点】M5:圆周角定理;KQ:勾股定理;M2:垂径定理.【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2OE=2,故选A.典例四、与圆周角有关的证明(2017哈尔滨)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B.35°C.34°D.44°【考点】M5:圆周角定理.【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.【解答】解:∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选B.【变式训练】(2017湖北荆州)如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是60°或120°.【考点】M6:圆内接四边形的性质;L8:菱形的性质;M5:圆周角定理.【分析】连接OB,则AB=OA=OB故可得出△AOB是等边三角形,所以∠ADC=60°,∠AD′C=120°,据此可得出结论.【解答】解:连接OB,∵四边形OABC是菱形,∴AB=OA=OB=BC,∴△AOB是等边三角形,∴∠ADC=60°,∠AD′C=120°.故答案为:60°或120°.典例五、角的综合应用(2017贵州安顺)如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为()A.B.C.D.【考点】T7:解直角三角形;JA:平行线的性质;M5:圆周角定理.【分析】首先由切线的性质得出OB⊥BC,根据锐角三角函数的定义求出cos∠BOC的值;连接BD,由直径所对的圆周角是直角,得出∠ADB=90°,又由平行线的性质知∠A=∠BOC,则cos∠A=cos∠BOC,在直角△ABD中,由余弦的定义求出AD的长.【解答】解:连接BD.∵AB是直径,∴∠ADB=90°.∵OC∥AD,∴∠A=∠BOC,∴cos∠A=cos∠BOC.∵BC切⊙O于点B,∴OB⊥BC,∴cos∠BOC==,∴cos∠A=cos∠BOC=.又∵cos∠A=,AB=4,∴AD=.故选B.【变式训练】(2016海南4分)如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP= 5.5.【考点】圆周角定理;垂径定理.【分析】解:由AB和DE是⊙O的直径,可推出OA=OB=OD=4,∠C=90°,又有DE⊥AC,得到OP∥BC,于是有△AOP∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵AB和DE是⊙O的直径,∴OA=OB=OD=4,∠C=90°,又∵DE⊥AC,∴OP∥BC,∴△AOP∽△ABC,∴,即,∴OP=1.5.∴DP=OP+OP=5.5,故答案为:5.5.【点评】本题主要考查了圆周角定理,平行线的判定,相似三角形的判定和性质,熟练掌握圆周角定理是解决问题的关键.【能力检测】1. (2017宜昌模拟)如图,CD是圆O的直径,AC,BD是弦,C是弧AB的中点,且∠BDC=25°,则∠AOC的度数是()A.25°B.45°C.50°D.60°【考点】M5:圆周角定理.【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOC=2∠CDB,进而可得答案.【解答】解:∵C是弧AB的中点,∴=,∴∠AOC=2∠CDB,∵∠BDC=25°,∴∠AOC=50°,故选:C.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2. (2017湖北宜昌)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA【考点】M4:圆心角、弧、弦的关系.【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选B.3.(2017毕节)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为()A.30°B.50°C.60°D.70°【考点】M5:圆周角定理.【分析】连接BD,根据直径所对的圆周角是直角,得∠ADB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠ACD,从而可得到∠BAD的度数.【解答】解:连接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故选C.4.(2016·山东省济宁市·3分)如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.5. (2017山东枣庄)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为π.【考点】MC:切线的性质;L5:平行四边形的性质;MN:弧长的计算.【分析】先连接OE、OF,再求出圆心角∠EOF的度数,然后根据弧长公式即可求出的长.【解答】解:如图连接OE、OF,∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,的长==π.故答案为:π.6.(2016·青海西宁·2分)⊙O的半径为1,弦AB=,弦AC=,则∠BAC度数为75°或15°.【考点】垂径定理;圆周角定理;解直角三角形.【分析】连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据垂径定理求出AE、FA值,根据解直角三角形的知识求出∠OAB和∠OAC,然后分两种情况求出∠BAC即可.【解答】解:有两种情况:①如图1所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE==,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图2所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE═=,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°;故答案为:75°或15°.7. (2017湖北宜昌)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.。
圆周角和圆心角的关系—知识讲解(基础)
圆周角和圆心角的关系--知识讲解(基础)【学习目标】1 •理解圆周角的概念,了解圆周角与圆心角之间的关系;2 •理解圆周角定理及推论;3 •熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1. 圆周角定义:像图中/ AEB / ADB / ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2. 圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半3. 圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交(2)圆周角定理成立的前提条件是在同圆或等圆中(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周要点二、圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆2.圆内接四边形性质:圆内接四边形的对角互补•如图,四边形ABCD是O 0的内接四边形,则/ A+Z C=180°, / B+Z D=180°D要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用C^1・如图,在O 0中 , _ ;i| ',求/ A的度数.【答案与解析】v AB =腮:.AB =腮•債养【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的弦也相等.举一反三:【变式】如图所示,正方形ABCD内接于O 0,点E在劣弧AD上,则/ BEC等于()A . 45°B . 60°C . 30°D . 55【答案】A.AB = BC= CD= DAAB =BC =CD 二DA =90°,/ BEC= 45°.类型二、圆周角定理及应用C"2.观察下图中角的顶点与两边有何特征?指出哪些角是圆周角?(C) (d)【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角•【答案与解析】⑻/1顶点在O O内,两边与圆相交,所以/ 1不是圆周角;(b) / 2顶点在圆外,两边与圆相交,所以/ 2不是圆周角;(c) 图中/ 3、/ 4、/ BAD的顶点在圆周上,两边均与圆相交,所以/ 3、/ 4、/ BAD是圆周角.(d) / 5顶点在圆上,一边与圆相交,另一边与圆不相交,所以/ 5不是圆周角;(e) / 6顶点在圆上,两边与圆均不相交,由圆周角的定义知/ 6不是圆周角.【总结升华】紧扣定义,抓住二要素,正确识别圆周角.3. (2015?台州)如图,四边形ABCD内接于O O,点E在对角线AC上,EC=BC=DC .(1)若/ CBD=39 °,求/ BAD 的度数;(2 )求证:/ 1 = / 2 .【答案与解析】(1)解:T BC=DC ,•••/ CBD= / CDB=39 °•••/ BAC= / CDB=39 ° / CAD= / CBD=39 °• / BAD= / BAC+ / CAD=39 °+39°=78 °(2)证明:T EC=BC ,:丄 CEB= / CBE ,而/ CEB= / 2+ / BAE ,/ CBE= / 1 + Z CBD ,•••/ 2+Z BAE= / 1 + / CBD ,•••/ BAE= / CBD ,•••/ 仁/2.【总结升华】 本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.BD 是O 0的弦,延长BD 到C ,使AC=AB BD 与CD 的大小有什么关系?【思路点拨】BD=CD 因为AB=AC 所以这个厶ABC 是等腰三角形,要证明 D 是BC 的中点,只要连结 AD,证明AD 是高或是/ BAC 的平分线即可.【答案与解析】BD=CD.理由是:如图,连接 AD•/ AB 是O 0的直径•••/ ADB=90 即 ADL BC 又••• AC=AB • BD=CD.【总结升华】 解题的关键是正确作出辅助线 举一反三:【变式】(2015?安顺)如图,O O 的直径AB 垂直于弦CD ,垂足为E ,/ A=22.5 ° OC=4 , CD 的长为( ).如图,AB 是O 0的直径,为什么?【思路点拨】 根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为 得/ D 的度数.【答案与解析】 解:•••圆内接四边形的对角互补,••• / A: / B:/ C:/ D=2:3:4 : 3设/ A=2x ,则/ B=3x ,/ C=4x,/ D=3x,• 2x+3x+4x+3x=360 ° ,• x=30°• / D=90° .【总结升华】本题考查圆内接四边形的性质和四边形的内角和为提示:T/ A=22.5°,• / BOC=/A=45 ,TOO 的直径AB 垂直于弦CD• C E=DE △ OCE 为等腰直角三角形,• C E= :OC=2 匚,2• CD=2CE=4 匚.故选:C.类型三、圆内接四边形及应用5 •圆内接四边形 ABCD 勺内角/ A : / B:Z C=2:3:4,求/ D 的度数.360 °,从而求 360°的运用. B . 4【答案】C.举一反三:【变式】如图,O O中,四边形ABCD是圆内接四边形,/ BOD=110,则/ BCD的度数是()A.110 °B.70 °C.55 °D.125 °【答案】D.。
“圆”来如此——圆周角定理
“圆”来如此——圆周角定理【圆心角、圆周角、弧、弦之间的关系】圆心角、圆周角、弧、弦之间的关系:在同圆或等圆中,如果两个圆心角、两个圆周角、两条弧或两条弦中有一组量相等,那么它们所对应的其余各组量也分别相等(知其1即知其3)这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.【注意】同弧所对圆周角相等,在三角形全等、相似方面,有着极为广泛的应用!【垂径定理】垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.【知2求3】“过圆心的直线”、“垂直于弦”、“平分弦(非直径)”、“平分弦所对的优弧”、“平分弦所对的劣弧”中的任意两个成立,则另外三个都成立.【四点共圆】•3点确定一个圆•4点可以共圆•5点也可以共圆•几何题,一定要寻找特殊图形、特殊变换、特殊关系!【点与圆】圆外1点与圆的距离关系,做与圆心的连线即可。
寻找特殊关系学会转化【切线判定】【定义法】和圆只有一个公共点的直线是圆的切线;【距离法】和圆心距离等于半径的直线是圆的切线;【定理法】经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;【总结】通常情况下,要证明切线,就需要连接切点与半径。
在证明垂直关系即可。
【圆与圆】·连心线是对称轴.·两圆相切时,切点一定在对称轴上.·如果两圆⊙O_1、⊙O_2相交于A、B两点,那么O_1O_2垂直平分AB.·如果两个半径不相等的圆O_1、圆O_2相离,那么内公切线交点、外公切线交点都在直线O_1O_2上,并且直线O_1O_2平分两圆外公切线所夹的角和两圆内公切线所夹的角.·如果两条外公切线分别切圆O_1于A、B两点、切圆O_2于C、D两点,那么两条外公切线长相等,且AB、CD都被O_1O_2垂直平分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弧、弦、圆心角、圆周角--知识讲解(基础)
【学习目标】
1.了解圆心角、圆周角的概念;
2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;
3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它
两组量对应相等,及其它们在解题中的应用.
【要点梳理】
要点一、弧、弦、圆心角的关系
1.圆心角定义
如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.
2.定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
3.推论:
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.
要点诠释:
(1)一个角要是圆心角,必须具备顶点在圆心这一特征;
(2)注意定理中不能忽视“同圆或等圆”这一前提.
要点二、圆周角
1.圆周角定义:
像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.
2.圆周角定理:
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3.圆周角定理的推论:
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
要点诠释:
(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.
(2)圆周角定理成立的前提条件是在同圆或等圆中.
4.圆内接四边形:
(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.
(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:
在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
*如果它们中间有一组量不相等,那么其它各组量也分别不等。
【典型例题】
类型一、圆心角、弧、弦之间的关系及应用
1.如图,在⊙O中,,求∠A的度数.
【答案与解析】
.
【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的
弦也相等.
举一反三:
【变式】如图所示,中弦AB=CD,求证:AD=BC.
【答案】
证法1:∵AB=CD,∴(在同圆中,相等的弦所对的弧(同为优弧或同为劣弧)也相等) ∴
∴AD=BC(在同圆中,相等的弧所对的弦也相等)
证法2:如图,连接OA,OD,OB,OC,
∵AB=CD,∴(在同圆中,相等的弦所对的圆心角相等)
∴
∴AD=BC(在同圆中,相等的圆心角所对的弦也相等)
类型二、圆周角定理及应用
2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?
【答案与解析】
(a)∠1顶点在⊙O内,两边与圆相交,所以∠1不是圆周角;
(b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;
(c)图中∠3、∠4、∠BAD的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD是圆周角.
(d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角;
(e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角.
【总结升华】紧扣定义,抓住二要素,正确识别圆周角.
3.(台州)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.
(1)若∠CBD=39°,求∠BAD的度数;
(2)求证:∠1=∠2.
【答案与解析】
(1)解:∵BC=DC,
∴∠CBD=∠CDB=39°,
∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,
∴∠BAD=∠BAC+∠CAD=39°+39°=78°;
(2)证明:∵EC=BC,
∴∠CEB=∠CBE,
而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,
∴∠2+∠BAE=∠1+∠CBD,
∵∠BAE=∠CBD,
∴∠1=∠2.
【总结升华】本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.
4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
【答案与解析】
BD=CD.
理由是:如图,连接AD
∵AB是⊙O的直径
∴∠ADB=90°即AD⊥BC
又∵AC=AB,∴BD=CD.
【总结升华】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD,证明AD是高或是∠BAC的平分线即可.
举一反三:
【变式】(安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()
A.2B.4C.4D.8
【答案】C.
提示:∵∠A=22.5°,
∴∠BOC=2∠A=45°,
∵⊙O的直径AB垂直于弦CD,
∴CE=DE,△OCE为等腰直角三角形,
∴CE=OC=2,
∴CD=2CE=4.
故选:C.。