自动检测系统课程设计说明书正文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
1前言 (1)
2总体方案设计 (2)
2.1 方案比较 (2)
2.2 方案论证与选择 (3)
3单元模块设计 (4)
3.1各单元模块功能介绍及电路设计 (4)
3.1.1 电源电路 (4)
3.1.2 湿度传感器电路 (4)
3.1.3 单片机最小系统电路 (5)
3.1.4 外部时钟电路 (6)
3.1.5 复位电路 (6)
3.1.6 LCD1602显示电路 (7)
3.2电路参数计算及元器件选择 (7)
3.3特殊器件的介绍 (8)
3.3.1 NE555 (8)
3.3.2 HS1101湿度传感器 (9)
3.3.3 STC89C52单片机 (9)
3.3.4 LCD1602 (12)
3.3.5 晶振 (13)
3.4各单元模块的联接 (17)
4 软件模块设计 (19)
4.1 软件设计原理及所用工具 (19)
4.1.1 软件设计原理 (19)
4.1.2 设计所用编程工具 (19)
4.1.3 下载工具ISP-STC (20)
4.2系统软件设计图及其功能 (20)
5 系统调试 (22)
5.1调试内容 (22)
5.2调试方法 (22)
6 系统功能、指标参数 (24)
6.1系统能实现的功能 (24)
6.2系统指标参数测试 (24)
6.3系统功能及指标参数分析 (24)
7 设计总结 (25)
8 谢辞 (26)
9 参考文献 (27)
附录1:相关设计图 (28)
附录2:元器件清单表 (29)
附录3:相关设计软件 (29)
1前言
湿度的检测广泛应用于工业过程、农业温室、仓库和气象、环保、智能建筑等领域,人感觉的舒适程度、物质的反应过程以及农作物的生长发育均与周围环境的湿度有着密切的关系。

例如:在存放水果的仓库里湿度决定水果的成熟。

在存放金属的仓库里湿度过高可能导致腐蚀。

其它许多货物比如化学药剂、烟、酒、香肠、木、艺术品、集成电路等等也必须在一定的湿度或在湿度为零的条件下存放。

因此在许多仓库、博物馆、图书馆、计算机中心和一定的工厂(比如微电子工业)中都有空调装置来控制室内的湿度随着社会的发展和生活水平的提高,小型,快速,灵敏的湿度测量仪表在现代生活中,尤其是在智能办公大厦和智能居民小区中有着广阔的应用前景。

湿度:表示大气干燥程度的物理量。

在此意义下,常用绝对湿度、相对湿度、以及露点等物理量来表示。

(1)绝对湿度是一定体积的空气中含有的水蒸气的质量,一般其单位是克/立方米。

绝对湿度的最大限度是饱和状态下的最高湿度。

(2)相对湿度是50%的空气含有达到同温度的空气的饱和点的一半的水蒸气。

相对湿度超过100%的空气中的水蒸气一般凝结出来。

随着温度的增高空气中可以含的水就越多,也就是说,在同样多的水蒸气的情况下温度升高相对湿度就会降低。

因此在提供相对湿度的同时也必须提供温度的数据。

通过相对湿度和温度也可以计算出露点。

(3) 露点温度:当保持压力一定而降温,使混合气体中的水蒸气达到饱和而开始结露或结霜时的温度称为露点温度( ℃) ,简称为露点。

目前应用最多的是相对湿度。

我们的测量仪测量的就是空气的相对湿度(RH)。

现代湿度测量方案最主要的有两种:干湿球测湿法,电子式湿度传感器测湿法。

干湿球测湿法的维护相当简单,在实际使用中,只需定期给湿球加水及更换湿球纱布即可。

与电子式湿度传感器相比,干湿球测湿法不会产生老化,精度下降等问题。

所以干湿球测湿方法更适合于在高温及恶劣环境的场合使用。

而电子式湿度传感器是近几十年,特别是近20年才迅速发展起来的。

湿度传感器生产厂在产品出厂前都要采用标准湿度发生器来标定,电子式湿度传感器的准确度可以达到2%一3%RH。

人工气候室是在环境试验、科学研究诸如种养殖、植保、组培、生物工程等领域应用广泛的实验设备。

它能模拟自然界的各种气象条件按照实验要求精确控制室内的温度、湿度、光照以及CO2等指标复现各种气候环境。

为研究不同物种的生长、发育、生理、生化过程创造了环境条件。

因此人工气候室广泛应用在科研、现代农业、医药、冶金、化工、林业、环境科学及生物遗传工程等领域。

2总体方案设计
2.1 方案比较
方案一:
HS1101电容传感器,在电路构成中等效于一个电容器件,其电容量随着所测空气湿度的增大而增大。

涉及如何将电容的变化量准确地转变为计算机易于接受的信号时,将HS1101置于运放与阻容组成的桥式振荡电路中,所产生的正弦波电压信号经整流、直流放大、再A/D转换为数字信号,将电容值的变化转为数字信号,此信号经处理器处理后再通过串口通信与个人PC机通信,上位机上显示出空气湿度值。

图2.1方案一整体构架
方案二:
HS1101电容传感器,在电路构成中等效于一个电容器件,其电容量随着所测空气湿度的增大而增大。

涉及如何将电容的变化量准确地转变为计算机易于接受的信号时,将HS1101置于555振荡电路中,将电容值的变化转为与之呈反比的电压频率信号,然后将此信号通过单片机处理后,再在LCD1602上显示出来。

图2.2方案二整体构架
2.2 方案论证与选择
方案一与方案二的主要区别在于信号转换部分与显示模块,相比之下,方案二的信号比方案一要精确,而且电路较为简单。

而通常我们测量的是室内湿度,显示也没有必要显示在PC机上,所以最好我们决定选择方案二。

3单元模块设计
3.1各单元模块功能介绍及电路设计
3.1.1 电源电路
图3.1 电源模块电路
该模块主要由整流电路,滤波电路,稳压电路三部分组成,整流电路由4个1N4007构成,用于将交流变压器输出地低压交流电变为直流电,由于1N4007最大能承受1A 的电流,所以该电路可为后级输出最大2A电流。

滤波电路为电容滤波,我们选取470uf,该电路用于滤去整流输出电压中的纹波。

稳压电路是由三端集成稳压器7805与一个10uf 小电容组成,该电路作用是输出一个平滑而又稳定的5v电压,总的来说,电源是整个电路的能量源。

3.1.2 湿度传感器电路
图3.2 传感器模块电路
555芯片外接电阻R1,R3与HS1101,构成对HS1101的充电回路。

7端通过芯片内部的晶体管对地短路实现对HS1101的放电回路,并将引脚2,6端相连引入到片内比较器,构成一个多谐波振荡器,其中,R1相对于R3必须非常的小,但决不能低于一个最小值。

R2是防止短路的保护电阻。

HS1101作为一个变化的电容器,连接2和6引脚。

引脚作为R2的短路引脚。

H S1101的等效电容通过R57和R58充电达到上限电压(近似于0.67 VCC,时间记为T 1),这时555的引脚3由高电平变为低电平,然后通过R3开始放电,由于R1被7
引脚内部短路接地,所以只放电到触发界线(近似于0.33 VCC,时间记为T2),这时555芯片的引脚3变为高电平。

通过不同的两个电阻R1,R3进行传感器的不停充放电,产生方波输出。

3.1.3 单片机最小系统电路
图3.3 单片机最小系统
该电路作为空气湿度测量系统的核心,通过对89C52芯片进行编程检测及处理湿度信号并将其显示出来。

所有的信号分析和处理都是在这个模块上实现,该芯片就相当于人的大脑。

当各个传感器将检测的信号发送给该模块时,该模块就会对收到的信号进行处理,并按照芯片内部的程序对相应的模块进行控制,进而去执行相应的操作。

由于使用单片机片内程序存储器,所以EA引脚接+5v高电平,而单片机P0口用于控制数码管的段选,而P0口是开漏输出,所以需加10k上拉电阻来使P0口能有电流输出。

3.1.4 外部时钟电路
图3.4 外部时钟电路
由于本系统使用的STC89C52,针对其工作频率选用了12M的晶振,该电路可以起振然后为单片机提供时序,为单片机内部的定时器/计数器的工作找到一个基准时序作为参考。

两个22pf电容用于帮助晶振起振和平衡电路中负载电容。

3.1.5 复位电路
图3.5 复位电路
单片机复位是使CPU和系统中的其他功能部件都处在一个确定的初始状态,并从这个状态开始工作,例如复位后PC=0000H,使单片机从第—个单元取指令。

无论是在单片机刚开始接上电源时,还是断电后或者发生故障后都要复位。

在复位期间(即RESET 为高电平的时候),P0口为高组态,P1-P3口输出高电平;外部程序存储器读选通信号PSEN无效。

地址锁存信号ALE也为高电平。

根据实际情况选择如图3.7所示的复位电路。

在接通电源的那一瞬间,电容上的只有很小的电压,因此,下拉电阻上的电压几乎接近电源电压,此时,RESET为高电平。

随着电容的充电,RESET的电压就会逐渐变小,当它的电压小于一定的值后,CPU将会脱离复位状态。

因此需要选用足够大的电容,以此保证RESET高电平的有效时间大于24个振荡周期,确保CPU能进行复位。

此电路在设计的时候还增加了一个按键,用于避免在死机的时候,无法自动复位的情况。

当此按键按下后电容通过电阻进行放电。

当放电结束后,RESET又重新变为高电平,CPU处于复位状态。

当按下的键松开后,电容进行充电,RESET的电压又开始下降,CPU便脱离复
位状态。

电阻的作用在于限制按键按下瞬间电容的放电电流,避免产生火花,以保护按键触电。

3.1.6 LCD1602显示电路
图3.6 液晶显示电路
此部分由1602液晶构成,1602液晶也叫1602字符型液晶,它是一种专门用来显
成,每个点阵字符位都可以显示一个字符,每位之间有一个点距的间隔,每行之间也有间隔,起到了字符间距和行间距的作用,正因为如此所以它不能很好地显示图形(用自定义CGRAM,显示效果也不好)。

1602LCD是指显示的内容为16X2,即可以显示两行,每行16个字符液晶模块(显示字符和数字)。

3.2电路参数的计算及元器件的选择
在电源模块电路中,二极管选用1N4007,最大能承受1A的电流,所以该电路可为后级输出最大2A电流。

滤波电路为电容滤波,我们选取470uf,足以滤去整流输出电压中的纹波。

稳压电路是由三端集成稳压器L7805CV与一个10uf小电容组成,我们选取7805最大输出电流为1.5A,输入电压为5-35v,足够红绿灯与数码管显示电路用电。

在红绿灯模块电路中,led灯选取为5mm直径,选取500Ω的电阻用来限制通led灯的最大电流,经过测试,led的亮度刚好合适。

在复位电路中,电容的的大小是10uF,电阻的大小是10k。

所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。

也就是说在电脑启动的0.1S内,电容两端的电压时在0~3.5V增加。

这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。

所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。

在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。

所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间
为0.1S左右)。

单片机最小系统电路中,单片机选取增强型8051单片机STC89C52RC,其指令代码完全兼容传统8051。

工作电压为5.5-3.3v,工作平率范围0-40MHz,相当于普通8051的0-80MHz,用户程序空间为8K字节,偏上集成512字节RAM,且具有EPROM功能,共有3个16位定时计数器,共有两个外部中断,下降沿或低电平触发,工作温度范围为0-75°,且价格便宜,所以选取STC89C52RC单片机。

晶振选取12MHz,理论上来讲晶体的负载电容C=C1/2+C0(电路杂容),而在市场中晶体的负载电容C为7PF,12.5PF,16PF,18PF,20PF,33PF,所以C1会更高,如果按芯片的要求C1=5PF的,根据晶体的理论,实际接电容比晶体的标称电容小,输出的频率就比晶体标称的频率要偏高(晶体负载电容对晶体频率起微调作用),所以最终还是要看芯片所要求的这实际频率,C1,C2对晶体的起振没多大影响,但对输出频率会有差别,电路中选取22pf电容。

3.3特殊器件的介绍
3.3.1 NE555
图3.7 NE555各脚功能-管脚图
Pin 1 (接地) -地线(或共同接地) ,通常被连接到电路共同接地。

Pin 2 (触发点) -这个脚位是触发NE555使其启动它的时间周期。

触发信号上缘电压须大于2/3 VCC,下缘须低于1/3 VCC 。

Pin 3 (输出) -当时间周期开始555的输出脚位,移至比电源电压少1.7伏的高电位。

周期的结束输出回到O伏左右的低电位。

于高电位时的最大输出电流大约200 mA 。

Pin 4 (重置) -一个低逻辑电位送至这个脚位时会重置定时器和使输出回到一个低电位。

它通常被接到正电源或忽略不用。

Pin 5 (控制) -这个接脚准许由外部电压改变触发和闸限电压。

当计时器经营在稳定或振荡的运作方式下,这输入能用来改变或调整输出频率。

Pin 6 (重置锁定) - Pin 6重置锁定并使输出呈低态。

当这个接脚的电压从1/3 VCC 电压以下移至2/3 VCC 以上时启动这个动作。

Pin 7 (放电) -这个接脚和主要的输出接脚有相同的电流输出能力,当输出为ON 时为LOW ,对地为低阻抗,当输出为OFF 时为HIGH ,对地为高阻抗。

Pin 8 (V +) -这是555个计时器IC 的正电源电压端。

供应电压的范围是+4.5伏特(最小值)至+16伏特(最大值)。

NE555是一个能产生精确定时脉冲的高稳度控制器,其输出驱动电流可达200mA.。

在多谐振荡器工作方式时,其输出的脉冲占空比由两个外接电阻和一个外接电容确定;在单稳态工作方式时,其延时时间由一个外接电阻和一个外接电容确定,它可以延时数微秒到数小时。

其工作电压范围为:4.5V ≤≤cc V 16V 。

NE555的框图如图2-3所示[5]。

图3.8:NE555框图
NE555电路功能的简单概括为:当6端和2端同时输入为“1”时,3端输出为“0”;当6端和2端同时输入为“0”时,3端输出为“1”。

在此电路中,555定时器正是根据这一功能用作多稳态触发器输出频率信号的。

当电源接通时,由于6和2端的输入为“0”,则定时器3脚输出为“1”;又由于C1 两端电压为0,故cc V 通过R2 和R3 对C1充电,当C1 两端电压达到2cc V /3 时,定时电路翻转,输出变为“0”。

此时555定时器内部的放电BJT 的基极电压为“1”,放电BJT
导通,从而使电容C1 通过R3 和内部放电BJT 进行放电,当C1 两端电压降低到
V/3
cc 时,定时器又翻转,使输出变为“1”,内部放电BJT 截止,VCC 又开始通过R2 和R3 对C1 充电,如此周而复始,形成振荡。

其工作循环中的充电时间为
T=0.7(R2+R3)C1;放电
h
时间为
T = 0.7R3*C1;输出脉冲占空比为q =(R2+R3)/(R2+2R3),为了使输出脉冲占
1
空比接近50%,R2应远远小于R3。

当外界湿度变化时,HS1101 两端电容值发生改变,从而改变定时电路的输出频率。

因此只要测出555的输出频率,并根据湿度与输出频率的关系,即可求得环境的湿度[6]。

3.3.2 HS1101湿度传感器
湿度传感器HS1101是基于独特工艺设计的电容元件,这些相对湿度传感器可以大批量生产。

可以应用于办公室自动化,车厢内空气质量控制,家电,工业控制系统等。

它有以下几个显著的特点:
1、全互换性,在标准环境下不需校正
2、长时间饱和下快速脱湿
3、可以自动化焊接,包括波峰或水浸
4、高可靠性与长时间稳定性
5、专利的固态聚合物结构
6、可用于线性电压或频率输出回路
7、快速反应时间
HS1101的简单物照图如图2-1[5]。

图3.9:HS1101实物照
相对湿度在0%~100%RH范围内;电容量由162pF变到200pF,其误差不大于 2%RH;响应时间小于5s;温度系统为0.04pF/℃。

可见其精度是较高的。

其湿度-电容响应曲线如图2-2:
20 40 60 80 100
相对湿度%
图3.10:HS1101湿度-电容响应曲线
HS1101的一些常用参数如表3-1:
HS1101电容传感器,在电路构成中等效于一个电容器件,其电容量随着所测空气湿度的增大而增大。

涉及如何将电容的变化量准确地转变为计算机易于接受的信号时,常用两种方法:一是将HS1101置于运放与阻容组成的桥式振荡电路中,所产生的正弦波电压信号经整流、直流放大、再A/D转换为数字信号;另一种是将HS1101置于555振荡电路中,将电容值的变化转为与之呈反比的电压频率信号,可直接被计算机所采集。

3.3.3 STC89C52单片机
图3.10 单片机实物图
STC89C52是STC公司生产的一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash存储器。

STC89C52使用经典的MCS-51内核,但做了很多的改进使得芯片具有传统51单片机不具备的功能。

在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。

具有以下标准功能: 8k字节Flash,512字节RAM, 32 位I/O 口线,看门狗定时器,内置4KB EEPROM,MAX810复位电路,3个16 位定时器/计数器,4个外部中断,一个7向量4级中断结构(兼容传统51的5向量2级中断结构),全双工串行口。

另外 STC89C52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。

空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。

掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。

最高运作频率35MHz,6T/12T可选。

特性:
8K字节程序存储空间;512字节数据存储空间;内带2K字节EEPROM存储空间;可直接使用串口下载;
参数:
1. 增强型8051单片机,6 时钟/机器周期和12 时钟/机器周期可以任意选择,指令代码完全兼容传统8051.
2. 工作电压:5.5V~
3.3V(5V单片机)/3.8V~2.0V(3V 单片机)
3.工作频率范围:0~40MHz,相当于普通8051 的0~80MHz,实际工作频率可达48MHz
4. 用户应用程序空间为8K字节
5. 片上集成512 字节RAM
6. 通用I/O 口(32 个),复位后为:P0/P1/P2/P3 是准双向口/弱上拉, P0 口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为 I/O 口用时,需加上拉电阻。

7. ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无需专用仿真器,可通过串口(RX D/P3.0,TX D/P3.1)直接下载用户程序,数秒即可完成一片
8. 具有EEPROM 功能
9. 共3 个16 位定时器/计数器。

即定时器T0、T1、T2
10.外部中断4 路,下降沿中断或低电平触发电路,Power Down 模式可由外部中断低电平触发中断方式唤醒
12. 工作温度范围:-40~+85℃(工业级)/0~75℃(商业级)
13. PDIP封装
STC89C52引脚功能说明:
Vcc:电源电压
GND:地
P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口,作为输出口用时,每位能驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端口。

在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。

在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

P1口:P1口是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。

作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号校验期间,P1口接收低8位地址。

P2口:P2口是一个带有内部上拉电阻的8位双向I/O口,P2口的输出缓冲级可驱动4个TTL逻辑门电路。

对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流。

P3口:P3口是一组带有内部上拉电阻的8位双向I/O口。

P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。

作输入端口时,被外部拉低的P3口将用上拉电阻输出电流。

P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能。

P3.0 RXD(串行输入口)
P3.1 TXD(串行输出口)
P3.2 /INT0(外部中断0)
P3.3 /INT1(外部中断1)
P3.4 T0(记时器0外部输入)
P3.5 T1(记时器1外部输入)
P3.6 /WR(外部数据存储器写选通)
P3.7 /RD(外部数据存储器读选通)
RESET:复位输入。

当振荡工作时,RST引脚出现两个机器周期上高电平将使单片机复位。

WDT益出将使该引脚输出高电平,设置SFR AUXR 的 DISRTO 位(地址8EH)可打开或关闭该功能。

DISRTO 位缺省为RESET输出高电平打开状态。

ALE/ p:当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。

即使不访问外部存储器,ALE仍以时钟振荡频率的1/6输出的正脉冲信号,因此它可对外输出时钟或用于定时目地,
PSEN:程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当STC89C52由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。

当访问外部数据存储器,高有两次有效的PSEN信号。

_
EA/VP:外部访问允许。

欲使CPU公访问外部程序存储器(地址0000H-FFFFH),_EA端必须保持低电平(接地)。

需注意的是:如果加密位LB1被编程,复位时内部会锁存EA 端状态。

如EA端为高电平(接Vcc端),CPU则执行内部程序存储器中的指令。

Flash 存储器编程时,该引脚加上+12V的编程电压Vpp。

X1:振荡器反相放大器及内部时钟发生器的输入端。

X2:振荡器反相放大器的输出端。

3.3.4 LCD1602
图3.11 LCD1602实物图
1602采用标准的16脚接口,其中:
第1脚:VSS为电源地
第2脚:VCC接5V电源正极
第3脚:V0为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高(对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度)。

第4脚:RS为寄存器选择,高电平1时选择数据寄存器、低电平0时选择指令寄存器。

第5脚:RW为读写信号线,高电平(1)时进行读操作,低电平(0)时进行写操作。

第6脚:E(或EN)端为使能(enable)端,高电平(1)时读取信息,负跳变时执行指令。

第7~14脚:D0~D7为8位双向数据端。

第15~16脚:空脚或背灯电源。

15脚背光正极,16脚背光负极。

特性:
3.3V或5V工作电压,对比度可调
内含复位电路
提供各种控制命令,如:清屏、字符闪烁、光标闪烁、显示移位等多种功能
有80字节显示数据存储器DDRAM
内建有192个5X7点阵的字型的字符发生器CGROM
8个可由用户自定义的5X7的字符发生器CGRAM
3.3.5 晶振
图3.12 晶振实物图
石英晶体振荡器是一种高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。

国际电工委员会(IEC)将石英晶体振荡器分为4类:普通晶体振荡(SPXO),电压控制式晶体振荡器(VCXO),温度补偿式晶体振荡(TCXO),恒温控制式晶体振荡(OCXO)。

目前发展中的还有数字补偿式晶体损振荡(DCXO)微机补偿晶体振荡器(MCXO)等等。

石英晶体振荡器是利用石英晶体的压电效应制成的一种谐振器件,它的构成是从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就组成了石英晶体谐振器,可以称为石英晶体或晶体;而在封装内部添加IC 组成振荡电路的晶体元件称为晶体振荡器。

其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。

应用:
1.通用晶体振荡器,用于各种电路中,产生振荡频率。

2.时钟脉冲用石英晶体谐振器,与其它元件配合产生标准脉冲信号,广泛用于数字电路中。

3.微处理器用石英晶体谐振器。

4.CTVVTR用石英晶体谐振器。

5.钟表用石英晶体振荡器。

技术指标:
⒈总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大频差。

说明:总频差包括频率温度稳定度、频率温度准确度、频率老化率、频率电源电压稳定度和频率负载稳定度共同造成的最大频差。

一般只在对短期频率稳定度关心,而对其他频率稳定度指标不严格要求的场合采用。

例如:精密制导雷达。

⒉频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或带隐含基准温度的最大允许频偏。

f(T=±(fmax-fmin)/(fmax+fmin)
fTref =±MAX[|(fmax-fref)/fref|,|(fmin-fref)/fref|] fT:频率温度稳定度(不带隐含基准温度)
fTref:频率温度稳定度(带隐含基准温度)
fmax :规定温度范围内测得的最高频率
fmin:规定温度范围内测得的最低频率
fref:规定基准温度测得的频率
说明:采用fTref指标的晶体振荡器其生产难度要高于采用fT指标的晶体振荡器,故fTref指标的晶体振荡器售价较高。

⒊频率稳定预热时间:以晶体振荡器稳定输出频率为基准,从加电到输出频率小于规定频率允差所需要的时间。

说明:在多数应用中,晶体振荡器一直是出于加电状态的,但是在一些情况下晶体振荡器需要经常的开、关机,这时频率的稳定预热时间指标就必须被考虑(尤其是对于在苛刻环境中使用的军用通讯电台,当要求频率温度稳定度≤±0.3ppm(-45℃~85℃),采用OCXO作为本振,频率稳定预热时间将不少于5分钟,而采用DTCXO只需要十几秒钟)。

⒋频率老化率:在确定的环境下进行振荡器频率的测量时,其频率与时间的关系。

这种长期的频率漂移是由于晶体元件本省和振荡器元件的变化缓慢造成的,可用规定时限后的最大变化率(如±10ppb/天,加电72小时后),或规定时间内最大总频率变化(如:±1ppm/(第一年)和±5ppm/(十年))来表示。

说明:TCXO的频率老化率为:±0.2ppm~±2ppm(第一年)和±1ppm~±5ppm(十年)。

相关文档
最新文档