人教A版高中数学选修同步练习离散型随机变量的方差
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-3 2.3.2 离散型随机变量的方差
一、选择题
1.下面说法中正确的是( )
A .离散型随机变量ξ的均值E (ξ)反映了ξ取值的概率的平均值
B .离散型随机变量ξ的方差D (ξ)反映了ξ取值的平均水平
C .离散型随机变量ξ的均值E (ξ)反映了ξ取值的平均水平
D .离散型随机变量ξ的方差D (ξ)反映了ξ取值的概率的平均值 [答案] C
[解析] 离散型随机变量ξ的均值E (ξ)反映ξ取值的平均水平,它的方差反映ξ的取值的离散程度.故答案选C.
2.已知随机变量X 的分布列为:P (X =k )=1
3,k =1、2、3,则D (3X +5)=( )
A .6
B .9
C .3
D .4
[答案] A
[解析] E (X )=(1+2+3)×1
3=2,
D (X )=[(1-2)2+(2-2)2+(3-2)2]×13=2
3,
∴D (3X +5)=9D (X )=6.
3.设X ~B (n ,p ),且E (X )=12,D (X )=4,则n 与p 的值分别为( ) A .18,1
3
B .12,2
3
C .18,2
3
D .12,1
3
[答案] C
[解析] 由⎩⎪⎨⎪⎧ E (X )=12D (X )=4得⎩⎪⎨⎪⎧
np =12
np (1-p )=4
则p =2
3
,n =18.
4.(2010·山东理,6)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( )
A.
6
5
B.65
C. 2
D .2
[答案] D
[解析] ∵a +0+1+2+3
5
=1,∴a =-1,
故s 2=1
5
[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.
5.已知随机变量ξ的数学均值为E (ξ),方差为D (ξ),随机变量η=ξ-E (ξ)
D (ξ),则D (η)的值
为( )
A .0
B .-1
C .1
D.D (ξ)
[答案] C
[解析] E (ξ)与D (ξ)均为常数,不妨设E (ξ)=a ,D (ξ)=b , 则η=ξ-E (ξ)D (ξ)=1b ξ-a b .
∴D (η)=D ⎝⎛⎭⎫1b ξ-a b =1
b 2D (ξ)=1.
6.随机变量X ~B (100,0.2),那么D (4X +3)的值为( ) A .64 B .256 C .259
D .320 [答案] B
[解析] 由X ~B (100,0.2)知随机变量X 服从二项分布,且n =100,p =0.2,由公式得D (X )=np (1-p )=100×0.2×0.8=16,因此D (4X +3)=42D (X )=16×16=256,故选B.
7.已知X 的分布列如下表.则在下列式子中:①E (X )=-13;②D (X )=2327;③P (X =0)=13.
正确的有( )
A.0个 B .1个 C .2个
D .3个
[答案] C
[解析] 易求得D (X )=⎝⎛⎭⎫-1+132×12+⎝⎛⎭⎫0+132×13+⎝⎛⎭⎫1+132×16=5
9,故只有①③正确,故选C.
8.甲,乙两台自动机床各生产同种标准产品1000件,ξ表示甲车床生产1000件产品中的次品数,η表示乙车床生产1000件产品中的次品数,经过一段时间的考察ξ,η的分布列分别如表一,表二所示.据此判定( )
表一
表二
A.甲比乙质量好 B .乙比甲质量好 C .甲与乙质量相同 D .无法判定 [答案] B
[解析] 由分布列可求甲的次品数期望为E (ξ)=0.7,乙的次品数期望为E (η)=0.7,进而得D (ξ)=(0-0.7)2×0.7+(1-0.7)2×0+(2-0.7)2×0.2+(3-0.7)2×0.1=1.21,D (η)=(0-0.7)2×0.6+(1-0.7)2×0.2+(2-0.7)2×0.1+(3-0.7)2×0.1=1.01,故乙的质量要比甲好.
二、填空题
9.某射手击中目标的概率为p ,则他射击n 次,击中目标次数X 的方差为________. [答案] np (1-p ) [解析] ∵X ~B (n ,p ), ∴D (X )=np (1-p ).
10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是________.
[答案] 10.5、10.5
[解析] 由题意得a +b
2=10.5,∴a +b =21,
x =
2+3+3+7+21+13.7+18.3+20+12
10
=10,
∴s 2=
1
10
[(10-2)2+(10-3)2+(10-3)2+(10-7)2+(10-a )2+(10-b )2+(10-12)2+(10-13.7)2+(10-18.3)2+(10-20)2]
=110
[82+72+72
+32+(10-a )2+(10-b )2+4+3.72+8.32+102] =1
10
[(10-a )2+(10-21+a )2+…] =
1
10
[2(a -10.5)2+…] 当a =10.5时,方差s 最小,b =10.5. 11.随机变量X 的分布列如下表:
其中a ,b ,c 成等差数列,若E (X )=1
3,则D (X )的值是______.
[答案] 5
9
[解析] ∵a +b +c =1,2b =a +c , ∴b =13,a +c =23
,
又∵E (X )=13,∴1
3=-a +c ,
故a =16,c =1
2
,
D (X )=(-1-13)2×16+(0-13)2×13+(1-13)2×12=59
.
12.(2009·广东·理12)已知离散型随机变量X 的分布列如下表,若E (X )=0,D (X )=1,,则a =________,b =__________.
[答案]
512;14
[解析] 考查离散型随机变量的分布列、期望和方差的计算. 由条件及E (X )=x 1p 1+x 2p 2+…+x n p n ,
D (X )=(x 1-
E (X ))2p 1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n 得
⎩⎪⎨⎪⎧ a +b +c =
1112
-a +c +16=0a +c +13
=1,∴⎩⎪⎨⎪⎧
a =512
b =14
c =14
.
三、解答题
13.有三张形状、大小、质地完全一致的卡片,在每张卡片上写上0、1、2,现从中任意抽取一张,将其上数字记作x ,然后放回,再抽取一张,其上数字记作y ,令X =x ·y .求
(1)X 的概率分布;
(2)随机变量X 的均值与方差. [解析] (1)P (X =0)=
53×3=59
;
P (X =1)=13×3=1
9;
P (X =2)=23×3=2
9;
P (X =4)=13×3=1
9.
X 的分布列如下表:
(2)E (X )=1,D (X )=16
9
.
14.甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ与η,且ξ、η的分布列为
求:(1)a 、b 的值;
(2)计算ξ、η的均值与方差,并以此分析甲、乙的技术状况. [解析] (1)由离散型随机变量的分布列的性质可知a +0.1+0.6=1, ∴a =0.3.
同理0.3+b +0.3=1,b =0.4.
(2)E (ξ)=1×0.3+2×0.1+3×0.6=2.3, E (η)=1×0.3+2×0.4+3×0.3=2,
D (ξ)=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81, D (η)=(1-2)2×0.3+(2-2)2×0.4+(3-2)2×0.3=0.6.
由于E (ξ)>E (η),说明在一次射击中,甲的平均得分比乙高,但D (ξ)>D (η),说明甲得分的稳定性不如乙,因此甲、乙两人技术水平都不够全面,各有优势与劣势.
[点评] 比较技术水平、机器性能、产品质量,通常要同时考虑期望与方差这两个特征数. 15.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相同.而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:
甲保护区:
乙保护区:
[解析] 甲保护区的违规次数X 的均值和方差为E (ξ)=0×0.3+1×0.3+2×0.2+3×0.2=1.3,
D (ξ)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21; 乙保护区的违规次数η的均值和方差为
E (η)=0×0.1+1×0.5+2×0.4=1.3,
D (η)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.
因为E (ξ)=E (η),D (ξ)>D (η),所以两个保护区内每季度发生的违规平均次数是相同的,但乙保护区内的违规事件次数更集中和稳定,而甲保护区的违规事件次数相对分散和波动.
16.有一批零件共10个合格品,2个不合格品.安装机器时从这批零件中任选1个,取到合格品才能安装;若取出的是不合格品,则不再放回.
(1)求最多取2次零件就能安装的概率;
(2)求在取得合格品前已经取出的次品数X 的分布列,并求出X 的均值E (X )和方差D (X )(方差计算结果保留两个有效数字).
[分析] 注意取到不合格品时不再放回,故可考虑用等可能性事件的概率公式求概率值. [解析] (1)设安装时所取零件的次数是η,则P (η=1)=1012=5
6,这是取1次零件就取到了
合格品,可以安装;
P (η=2)=212×1011=5
33,这是第1次取到不合格品,第2次取到了合格品.
∴最多取2次零件就能安装的概率为 56+533=6566
. (2)依题意X 的所有可能取值为0、1、2, P (X =0)=P (η=1)=5
6,
P (X =1)=P (η=2)=5
33,
P (X =2)=1-56-533=1
66.
故X 的分布列是
于是E (X )=0×56+1×533+2×166=2
11
,
D (X )=5
6×⎝⎛⎭⎫2112+533×⎝⎛⎭⎫9112+166×⎝⎛⎭⎫20112≈0.18.
所以X 的期望值和方差值分别是2
11和0.18.。