古蔺县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
古蔺县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )
A .512个
B .256个
C .128个
D .64个
2. 直线的倾斜角是( )
A .
B .
C .
D .
3. 自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 2
2
(3)(4)4x y -++=(,)P x y Q P 原点的长,则点轨迹方程为(
)
O P A . B . C . D .86210x y --=86210x y +-=68210x y +-=68210
x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.
4. 已知点F 1,F 2为椭圆
的左右焦点,若椭圆上存在点P 使得
,
则此椭圆的离心率的取值范围是(
)
A .(0,)
B .(0,]
C .(,]
D .[,1)
5. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( )A .16
B .﹣16
C .8
D .﹣8
6. 执行如图所示的程序框图,若a=1,b=2,则输出的结果是(
)
A .9
B .11
C .13
D .15
7. 复数z=
(其中i 是虚数单位),则z 的共轭复数=(
)
A .﹣i
B .﹣﹣i
C . +i
D .
﹣
+i
8. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是(
)
m n
+A .10 B .11 C .12 D .13
【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.9. 设数列{a n }的前n 项和为S n ,若S n =n 2+2n (n ∈N *),则+
+…
+
=(
)
A .
B .
C .
D .
10.不等式
≤0的解集是(
)
A .(﹣∞,﹣1)∪(﹣1,2)
B .[﹣1,2]
C .(﹣∞,﹣1)∪[2,+∞)
D .(﹣1,2]
11.已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为(
)
A .8
B .5
C .9
D .27
12.若变量x ,y 满足:
,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )
A .﹣2<t <
﹣B .﹣2<t ≤
﹣C .﹣2≤t ≤
﹣D .﹣2≤t <
﹣
二、填空题
13.已知实数,满足,目标函数的最大值为4,则______.
x y 2330220y x y x y ≤⎧⎪
--≤⎨⎪+-≥⎩
3z x y a =++a =【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.
14.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .
15.若log 2(2m ﹣3)=0,则e lnm ﹣1= .
16.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22
a c
b d -+-的最小值为 ▲ .17.某工厂的某种型号的机器的使用年限x 和所支出的维修费用y (万元)的统计资料如表:x 681012y 2356根据上表数据可得y 与x 之间的线性回归方程=0.7x+
,据此模型估计,该机器使用年限为14年时的维修
费用约为 万元.
18.在矩形ABCD 中,=(1,﹣3),
,则实数k= .
三、解答题
19.已知函数y=f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过(4,2)点.
(Ⅰ)求函数f (x )的解析式;
(Ⅱ)若f (x ﹣1)>f (5﹣x ),求x 的取值范围.
20.(本小题满分14分)
设函数,(其中,).
2
()1cos f x ax bx x =++-0,2
x π⎡⎤∈⎢⎥⎣⎦
a b R ∈(1)若,,求的单调区间;0a =1
2
b =-
()f x (2)若,讨论函数在上零点的个数.
0b =()f x 0,2π⎡⎤
⎢⎥⎣⎦
【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.
21.计算:(1)8+(﹣
)0﹣
;
(2)
lg25+lg2﹣log 29×log 32.
22.设f (x )=ax 2﹣(a+1)x+1(1)解关于x 的不等式f (x )>0;
(2)若对任意的a ∈[﹣1,1],不等式f (x )>0恒成立,求x 的取值范围.
23.(本小题满分12分)
设函数()()2741201x x f x a a a --=->≠且.
(1)当a =
时,求不等式()0f x <的解集;(2)当[]01x ∈,
时,()0f x <恒成立,求实数的取值范围.
24.已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=﹣.(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;
(2)求f(x)在区间[π,]上的最大值和最小值.
古蔺县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1. 【答案】D
【解析】解:经过2个小时,总共分裂了=6次,
则经过2小时,这种细菌能由1个繁殖到26=64个.
故选:D .
【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题.
2. 【答案】A
【解析】解:设倾斜角为α,∵直线的斜率为
,
∴tan α=
,
∵0°<α<180°,∴α=30°故选A .
【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.
3. 【答案】D
【解析】由切线性质知,所以,则由,得,
PQ CQ ⊥2
2
2
PQ PC QC =-PQ PO =,化简得,即点的轨迹方程,故选D ,
2222(3)(4)4x y x y -++-=+68210x y --=P 4. 【答案】D 【解析】解:由题意设=2x ,则2x+x=2a ,
解得x=
,故|
|=
,|
|=
,
当P 与两焦点F 1,F 2能构成三角形时,由余弦定理可得
4c 2=
+
﹣2×
×
×cos ∠F 1PF 2,
由cos ∠F 1PF 2∈(﹣1,1)可得4c 2=﹣
cos ∠F 1PF 2∈(,
),
即
<4c 2<
,∴
<
<1,即
<e 2<1,∴
<e <1;
当P 与两焦点F 1,F 2共线时,可得a+c=2(a ﹣c ),解得e==
;
综上可得此椭圆的离心率的取值范围为[
,1)
故选:D
【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.
5. 【答案】B
【解析】解:∵f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,∴f (﹣2)﹣g (﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f (2)+g (2)=f (﹣2)﹣g (﹣2)=﹣16.故选:B .
【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.
6. 【答案】C
【解析】解:当a=1时,不满足退出循环的条件,故a=5,当a=5时,不满足退出循环的条件,故a=9,当a=9时,不满足退出循环的条件,故a=13,当a=13时,满足退出循环的条件,故输出的结果为13,故选:C
【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.
7. 【答案】C 【解析】解:∵z==
,
∴=.
故选:C .
【点评】本题考查了复数代数形式的乘除运算,是基础题.
8. 【答案】C
【解析】由题意,得甲组中,解得.乙组中,
78888486929095
887
m +++++++=3m =888992<<所以,所以,故选C .
9n =12m n +=9. 【答案】D
【解析】解:∵S n =n 2+2n (n ∈N *),∴当n=1时,a 1=S 1=3;当n ≥2时,a n =S n ﹣S n ﹣1=(n 2+2n )﹣[(n ﹣1)2+2(n ﹣1)]=2n+1.
∴
=
=
,
∴++…+=++…+
=
=﹣.
故选:D.
【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
10.【答案】D
【解析】解:依题意,不等式化为,
解得﹣1<x≤2,
故选D
【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.
11.【答案】C
【解析】解:令log2(x2+1)=0,得x=0,
令log2(x2+1)=1,得x2+1=2,x=±1,
令log2(x2+1)=2,得x2+1=4,x=.
则满足值域为{0,1,2}的定义域有:
{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},
{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},
{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.
则满足这样条件的函数的个数为9.
故选:C.
【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.
12.【答案】C
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,
由,得,即(t+1)x+(t+2)y+t=0过定点M(﹣2,1),
则由图象知A,B两点在直线两侧和在直线上即可,
即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0,
即(3t+4)(2t+4)≤0,
解得﹣2≤t ≤﹣,
即实数t 的取值范围为是[﹣2,﹣],故选:C .
【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.
二、填空题
13.【答案】3
-【解析】作出可行域如图所示:作直线:,再作一组平行于的直线:,当直线
0l 30x y +=0l l 3x y z a +=-经过点时,取得最大值,∴,所以,故
l 5(,2)3M 3z a x y -=+max 5
()3273
z a -=⨯+=max 74z a =+=.
3a =-
14.【答案】 6 .
【解析】解:第一次循环:S=0+=,i=1+1=2;
第二次循环:S=+
=,i=2+1=3;
第三次循环:S=+=,i=3+1=4;
第四次循环:S=+=,i=4+1=5;
第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;
∴判断框中的条件为i<6?
故答案为:6.
【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题
15.【答案】 .
【解析】解:∵log2(2m﹣3)=0,
∴2m﹣3=1,解得m=2,
∴e lnm﹣1=e ln2÷e=.
故答案为:.
【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用.
16.【答案】5
【解析】
考
点:利用导数求最值
【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.
17.【答案】 7.5
【解析】解:∵由表格可知=9,=4,
∴这组数据的样本中心点是(9,4),
根据样本中心点在线性回归直线=0.7x+上,
∴4=0.7×9+,
∴=﹣2.3,
∴这组数据对应的线性回归方程是=0.7x﹣2.3,
∵x=14,
∴=7.5,
故答案为:7.5
【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.
18.【答案】 4 .
【解析】解:如图所示,
在矩形ABCD中,=(1,﹣3),,
∴=﹣=(k﹣1,﹣2+3)=(k﹣1,1),
∴•=1×(k﹣1)+(﹣3)×1=0,
解得k=4.
故答案为:4.
【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目.
三、解答题
19.【答案】
【解析】解:(Ⅰ)∵g(x)=log a x(a>0,且a≠1)的图象过点(4,2),
∴log a4=2,a=2,则g(x)=log2x.…
∵函数y=f(x)的图象与g(X)的图象关于x轴对称,
∴.…
(Ⅱ)∵f(x﹣1)>f(5﹣x),
∴,即
,解得1<x <3,所以x 的取值范围为(1,3)…
【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.
20.【答案】
【解析】(1)∵,,0a =12b =-
∴,,.(2分)1()1cos 2f x x x =-+-1()sin 2f x x '=-+0,2x π⎡⎤∈⎢⎥⎣⎦
令,得.()0f x '=6x π=当时,,当时,,06x π<<()0f x '<62
x ππ<<()0f x '>所以的单调增区间是,单调减区间是.(5分)()f x ,62ππ⎡⎤⎢⎥⎣⎦0,6π⎡⎤⎢⎥⎣⎦
若
,则,又,由零点存在定理,,使112a -<<-π(102f a π'=π+<()(0)0f f θ''>=00,2θπ⎛⎫∃∈ ⎪⎝⎭
,所以在上单调增,在上单调减.0()0f θ'=()f x 0(0,)θ0,2θπ⎛⎫ ⎪⎝⎭
又,.(0)0f =2
()124
f a ππ=+故当时,,此时在上有两个零点;2142a -<≤-π2()1024f a ππ=+≤()f x 0,2π⎡⎤⎢⎥⎣⎦
当时,,此时在上只有一个零点.241a -<<-ππ2(1024f a ππ=+>()f x 0,2π⎡⎤⎢⎥⎣⎦
21.【答案】
【解析】解:(1)8+(﹣)0﹣
=2﹣1+1﹣(3﹣e)
=e﹣.
(2)lg25+lg2﹣log29×log32
=
=
=1﹣2=﹣1.…(6分)
【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.
22.【答案】
【解析】解:(1)f(x)>0,即为ax2﹣(a+1)x+1>0,
即有(ax﹣1)(x﹣1)>0,
当a=0时,即有1﹣x>0,解得x<1;
当a<0时,即有(x﹣1)(x﹣)<0,
由1>可得<x<1;
当a=1时,(x﹣1)2>0,即有x∈R,x≠1;
当a>1时,1>,可得x>1或x<;
当0<a<1时,1<,可得x<1或x>.
综上可得,a=0时,解集为{x|x<1};
a <0时,解集为{x|<x <1};
a=1时,解集为{x|x ∈R ,x ≠1};
a >1时,解集为{x|x >1或x <};
0<a <1时,解集为{x|x <1或x >}.
(2)对任意的a ∈[﹣1,1],不等式f (x )>0恒成立,
即为ax 2﹣(a+1)x+1>0,
即a (x 2﹣1)﹣x+1>0,对任意的a ∈[﹣1,1]恒成立.
设g (a )=a (x 2﹣1)﹣x+1,a ∈[﹣1,1].
则g (﹣1)>0,且g (1)>0,
即﹣(x 2﹣1)﹣x+1>0,且(x 2﹣1)﹣x+1>0,
即(x ﹣1)(x+2)<0,且x (x ﹣1)>0,
解得﹣2<x <1,且x >1或x <0.
可得﹣2<x <0.
故x 的取值范围是(﹣2,0).
23.【答案】(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎭
,,.【解析】
试题分析:(1)由于122a -==⇒()141272
22x x ---<⇒()127412x x -<--⇒158
x <⇒原不等式的解集为158⎛⎫-∞ ⎪⎝
⎭,;(2)由()()274144227lg 241lg lg lg 0128x x a a x x a x a --<⇒-<-⇒+<A .设()44lg lg 128a g x x a =+A ,
原命题转化为()()1012800
g a g <⎧⎪⇒<⎨<⎪⎩⇒又0a >且1a ≠⇒()11128a ⎫∈⎪⎪⎭ ,,.
考
点:1、函数与不等式;2、对数与指数运算.
【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为()127412x x -<--,解得158
x <;第二小题利用数学结合思
想和转化思想,将原命题转化为()()1012800
g a g <⎧⎪⇒<⎨<⎪⎩ ,进而求得:()11128a ⎫∈⎪⎪⎭ ,,.24.【答案】
【解析】解:(1)∵=(
sinx ,cosx ),=(sinx ,sinx ),
∴f (x )=﹣=sin 2x+sinxcosx ﹣=(1﹣cos2x )+sin2x ﹣=﹣cos2x+sin2x ﹣=sin (2x ﹣),∴函数的周期为T=
=π,
由2k π﹣≤2x ﹣≤2k π+(k ∈Z )解得k π﹣
≤x ≤k π+,
∴f (x )的单调递增区间为[k π﹣,k π+
],(k ∈Z );
(2)由(1)知f (x )=sin (2x ﹣),
当x∈[π,]时,2x﹣∈[,],
∴﹣≤sin(2x﹣)≤1,
故f(x)在区间[π,]上的最大值和最小值分别为1和﹣.
【点评】本题考查向量的数量积的运算,三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题.。