贵阳市第三中学校2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵阳市第三中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. sin (﹣510°)=( )
A .
B .
C .﹣
D .﹣
2. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0) D .(0,1)
3. 若⎩⎨
⎧≥<+=-)2(,2)
2(),2()(x x x f x f x
则)1(f 的值为( ) A .8 B .8
1 C .
2 D .21
4. 设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P ∩(∁U Q )=( ) A .{1,2,3,4,6} B .{1,2,3,4,5} C .{1,2,5} D .{1,2}
5. “x 2﹣4x <0”的一个充分不必要条件为( ) A .0<x <4 B .0<x <2 C .x >0 D .x <4
6. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin
2
,则该数列的前10项和为( )
A .89
B .76
C .77
D .35
7. 已知点P 是双曲线C :22
221(0,0)x y a b a b
-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且
12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率
是( )
A.5
B.2 D.2
【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力. 8. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )
A .x ﹣y+1=0,2x ﹣y=0
B .x ﹣y ﹣1=0,x ﹣2y=0
C .x+y+1=0,2x+y=0
D .x ﹣y+1=0,x+2y=0
9. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( ) A .(0,1) B .(e ﹣1,1) C .(0,e ﹣1) D .(1,e )
10.已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( ) A .∅ B .{1,4}
C .M
D .{2,7}
11.已知函数f (x )满足f (x )=f (π﹣x ),且当x ∈(﹣,
)时,f (x )=e x
+sinx ,则( )
A .
B .
C .
D .
12.已知点M 的球坐标为(1,,),则它的直角坐标为( )
A .(1,


B .(,
,)
C .(,,)
D .(
,,

二、填空题
13.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .
14.已知A (1,0),
P ,Q 是单位圆上的两动点且满足,则
+
的最大值为 .
15.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .
16.已知tan()3αβ+=,tan()24
π
α+
=,那么tan β= .
17.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.
①若AC=BD ,则四边形EFGH 是 ; ②若AC ⊥BD ,则四边形EFGH 是 .
18.设集合 {
}{
}
22
|27150,|0A x x x B x x ax b =+-<=++≤,满足
A
B =∅,{}|52A B x x =-<≤,求实数a =__________.
三、解答题
19.已知条件4
:11
p x ≤--,条件22:q x x a a +<-,且p 是的一个必要不充分条件,求实数 的取值范围.
20.计算: (1)8
+(﹣)0﹣

(2)lg25+lg2﹣log 29×log 32.
21.在四棱锥E ﹣ABCD 中,底面ABCD 是边长为1的正方形,AC 与BD 交于点O ,EC ⊥底面ABCD ,F 为BE 的中点.
(Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:BD ⊥AE .
22.已知过点P(0,2)的直线l与抛物线C:y2=4x交于A、B两点,O为坐标原点.(1)若以AB为直径的圆经过原点O,求直线l的方程;
(2)若线段AB的中垂线交x轴于点Q,求△POQ面积的取值范围.
23.由四个不同的数字1,2,4,x组成无重复数字的三位数.
(1)若x=5,其中能被5整除的共有多少个?
(2)若x=9,其中能被3整除的共有多少个?
(3)若x=0,其中的偶数共有多少个?
(4)若所有这些三位数的各位数字之和是252,求x.
24.在平面直角坐标系中,已知M(﹣a,0),N(a,0),其中a∈R,若直线l上有且只有一点P,使得|PM|+|PN|=10,则称直线l为“黄金直线”,点P为“黄金点”.由此定义可判断以下说法中正确的是
①当a=7时,坐标平面内不存在黄金直线;
②当a=5时,坐标平面内有无数条黄金直线;
③当a=3时,黄金点的轨迹是个椭圆;
④当a=0时,坐标平面内有且只有1条黄金直线.
贵阳市第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】C
【解析】解:sin (﹣510°)=sin (﹣150°)=﹣sin150°=﹣sin30°=﹣, 故选:C .
2. 【答案】C
【解析】解:由函数f (x )=3x +x 可知函数f (x )在R 上单调递增,
又f (﹣1)=﹣1<0,f (0)=30
+0=1>0,
∴f (﹣1)f (0)<0,
可知:函数f (x )的零点所在的区间是(﹣1,0). 故选:C .
【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.
3. 【答案】B 【解析】
试题分析:()()3
1
1328
f f -===
,故选B 。

考点:分段函数。

4. 【答案】D
【解析】解:∵U={1,2,3,4,5,6},Q={3,4,5}, ∴∁U Q={1,2,6},又P={1,2,3,4}, ∴P ∩(C U Q )={1,2}
故选D .
5. 【答案】B
【解析】解:不等式x 2
﹣4x <0整理,得x (x ﹣4)<0 ∴不等式的解集为A={x|0<x <4},
因此,不等式x 2
﹣4x <0成立的一个充分不必要条件,
对应的x 范围应该是集合A 的真子集.
写出一个使不等式x 2
﹣4x <0成立的充分不必要条件可以是:0<x <2,
故选:B .
6.【答案】C
【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.
一般地,当n=2k﹣1(k∈N*)时,a2k+1=[1+cos2]a2k﹣1+sin2=a2k﹣1+1,即a2k+1﹣a2k﹣1=1.所以数列{a2k﹣1}是首项为1、公差为1的等差数列,因此a2k﹣1=k.
当n=2k(k∈N*)时,a2k+2=(1+cos2)a2k+sin2=2a2k.
所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k.
该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77
故选:C.
7.【答案】A.
【解析】
8.【答案】C
【解析】解:圆x2
+y2﹣2x+4y=0化为:圆(x﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l将圆
x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,
∴直线l的方程是:y+2=﹣(x﹣1),2x+y=0,即x+y+1=0,2x+y=0.
故选:C.
【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.
9.【答案】D
【解析】解:由题意知:f(x)﹣lnx为常数,令f(x)﹣lnx=k(常数),则f(x)=lnx+k.
由f[f(x)﹣lnx]=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,
所以f(x)=lnx+e,
f′(x)=,x>0.
∴f(x)﹣f′(x)=lnx﹣+e,
令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)
可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,
g(1)=﹣1,g(e)=1﹣>0,
∴x0∈(1,e),g(x0)=0,
∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.
【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.
10.【答案】D
【解析】解:∵M∪N=M,∴N⊆M,
∴集合N不可能是{2,7},
故选:D
【点评】本题主要考查集合的关系的判断,比较基础.
11.【答案】D
【解析】解:由f(x)=f(π﹣x)知,
∴f()=f(π﹣)=f(),
∵当x∈(﹣,)时,f(x)=e x+sinx为增函数
∵<<<,
∴f()<f()<f(),
∴f()<f()<f(),
故选:D
12.【答案】B
【解析】解:设点M的直角坐标为(x,y,z),
∵点M的球坐标为(1,,),
∴x=sin cos=,y=sin sin=,z=cos=
∴M的直角坐标为(,,).
故选:B.
【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,φ为从正z轴来看自x轴按逆时针方向转到OM 所转过的角,这里M为点P在xOy面上的投影.这样的三个数r,φ,θ叫做点P的球面坐标,显然,这里r,φ,θ的变化范围为r∈[0,+∞),φ∈[0,2π],θ∈[0,π],
二、填空题
13.【答案】[﹣1,﹣).
【解析】解:作出y=|x﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k∈[﹣
1,﹣).
故答案为:[﹣1,﹣).
【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.
14.【答案】.
【解析】解:设=,则==,的方向任意.
∴+==1××≤,因此最大值为.
故答案为:.
【点评】本题考查了数量积运算性质,考查了推理能力与计算能力,属于中档题.
15.【答案】 9 .
【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22, 所以总城市数为11÷0.22=50,
平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18, 所以平均气温不低于25.5℃的城市个数为50×0.18=9. 故答案为:9
16.【答案】43
【解析】
试题分析:由1tan tan()24
1tan π
ααα++
=
=-得1tan 3α=, tan tan[()]βαβα=+-tan()tan 1tan()tan αβα
αβα
+-=++
1
34313133-
=
=+⨯
. 考点:两角和与差的正切公式. 17.【答案】 菱形 ; 矩形 .
【解析】解:如图所示:①∵EF ∥AC ,GH ∥AC 且
EF=AC ,
GH=AC
∴四边形EFGH 是平行四边形
又∵AC=BD ∴EF=FG
∴四边形EFGH 是菱形.
②由①知四边形EFGH 是平行四边形 又∵AC ⊥BD ,
∴EF ⊥FG
∴四边形EFGH 是矩形. 故答案为:菱形,矩形
【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.
18.【答案】7
,32
a b =-= 【解析】

点:一元二次不等式的解法;集合的运算.
【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键.
三、解答题
19.【答案】[]1,2-. 【解析】
试题分析:先化简条件p 得31x -≤<,分三种情况化简条件,由p 是的一个必要不充分条件,可分三种情况列不等组,分别求解后求并集即可求得符合题意的实数的取值范围. 试题解析:由
4
11
x ≤--得:31p x -≤<,由22x x a a +<-得()()10x a x a +--<⎡⎤⎣⎦,当12a =时,:q ∅;
当12a <
时,():1,q a a --;当1
2a >时,():,1q a a -- 由题意得,p 是的一个必要不充分条件,
当12a =时,满足条件;当12a <时,()[)1,3,1a a --⊆-得11,2a ⎡⎫∈-⎪⎢⎣⎭,
当12a >时,()[),13,1a a --⊆-得1,22a ⎛⎤
∈ ⎥⎝⎦
综上,[]1,2a ∈-.
考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.
【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断p 是的什么条件,需要从两方面分析:一是由条件p 能否推得条件,二是由条件能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的. 20.【答案】 【解析】解:(1)8+(﹣)0﹣
=2﹣1+1﹣(3﹣e ) =e ﹣.
(2)lg25+lg2﹣log 29×log 32 =
=
=1﹣2=﹣1.…(6分)
【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.
21.【答案】
【解析】
【分析】(Ⅰ)连接FO ,则OF 为△BDE 的中位线,从而DE ∥OF ,由此能证明DE ∥平面ACF . (Ⅱ)推导出BD ⊥AC ,EC ⊥BD ,从而BD ⊥平面ACE ,由此能证明BD ⊥AE .
【解答】证明:(Ⅰ)连接FO ,∵底面ABCD 是正方形,且O 为对角线AC 和BD 交点, ∴O 为BD 的中点, 又∵F 为BE 中点,
∴OF 为△BDE 的中位线,即DE ∥OF , 又OF ⊂平面ACF ,DE ⊄平面ACF , ∴DE ∥平面ACF .
(Ⅱ)∵底面ABCD为正方形,∴BD⊥AC,
∵EC⊥平面ABCD,∴EC⊥BD,
∴BD⊥平面ACE,∴BD⊥AE.
22.【答案】
【解析】解:(1)设直线AB的方程为y=kx+2(k≠0),设A(x1,y1),B(x2,y2),
由,得k2x2+(4k﹣4)x+4=0,
则由△=(4k﹣4)2﹣16k2=﹣32k+16>0,得k<,
=,,
所以y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=,
因为以AB为直径的圆经过原点O,
所以∠AOB=90°,
即,
所以,
解得k=﹣,
即所求直线l的方程为y=﹣.
(2)设线段AB的中点坐标为(x0,y0),
则由(1)得,,
所以线段AB的中垂线方程为,
令y=0,得==,
又由(1)知k<,且k≠0,得或,
所以,
所以=,
所以△POQ面积的取值范围为(2,+∞).
【点评】本题考查直线l的方程的求法和求△POQ面积的取值范围.考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
23.【答案】
【解析】
【专题】计算题;排列组合.
【分析】(1)若x=5,根据题意,要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,由排列数公式计算可得答案;
(2)若x=9,根据题意,要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,分“取出的三个数字为1、2、9”与“取出的三个数字为2、4、9”两种情况讨论,由分类计数原理计算可得答案;
(3)若x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为0或2或4,分“末位是0”与“末位是2或4”两种情况讨论,由分类计数原理计算可得答案;
(4)分析易得x=0时不能满足题意,进而讨论x≠0时,先求出4个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了18次,则有252=18×(1+2+4+x),解可得x的值.
【解答】解:(1)若x=5,则四个数字为1,2,4,5;
又由要求的三位数能被5整除,则5必须在末尾,
在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,
即能被5整除的三位数共有6个;
(2)若x=9,则四个数字为1,2,4,9;
又由要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,
取出的三个数字为1、2、9时,有A33=6种情况,
取出的三个数字为2、4、9时,有A33=6种情况,
则此时一共有6+6=12个能被3整除的三位数;
(3)若x=0,则四个数字为1,2,4,0;
又由要求的三位数是偶数,则这个三位数的末位数字为0或2或4,
当末位是0时,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,
当末位是2或4时,有A21×A21×A21=8种情况,
此时三位偶数一共有6+8=14个,
(4)若x=0,可以组成C31×C31×C21=3×3×2=18个三位数,即1、2、4、0四个数字最多出现18次,
则所有这些三位数的各位数字之和最大为(1+2+4)×18=126,不合题意,
故x=0不成立;
当x≠0时,可以组成无重复三位数共有C41×C31×C21=4×3×2=24种,共用了24×3=72个数字,
则每个数字用了=18次,
则有252=18×(1+2+4+x),解可得x=7.
【点评】本题考查排列知识,解题的关键是正确分类,合理运用排列知识求解,第(4)问注意分x为0与否两种情况讨论.
24.【答案】
①②③
【解析】解:①当a=7时,|PM|+|PN|≥|MN|=14>10,因此坐标平面内不存在黄金直线;
②当a=5时,|PM|+|PN|=10=|MN|,因此线段MN上的点都满足上式,因此坐标平面内有无数条黄金直线,正确;
③当a=3时,|PM|+|PN|=10>6=|MN|,黄金点的轨迹是个椭圆,正确;
④当a=0时,点M与N重合为(0,0),|PM|+|PN|=10=2|PM|,点P在以原点为圆心、5为半径的圆上,因此坐标平面内有且无数条黄金直线.
故答案为:①②③.
【点评】本题考查了新定义“黄金直线”、“黄金点”、椭圆的定义、圆的定义等基础知识,考查了推理能力与计算能力,属于中档题.。

相关文档
最新文档