最新人教版初中八年级上册数学《共顶点的等腰三角形问题》精品教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共顶点的等腰三角形问题
等腰三角形的两条腰相等,如果两个等腰三角形共顶点且顶角相等,那么 将两条腰分配到不同的两个三角形中会得到全等三角形,会发现某些线段在数 量和位置上有着特殊的关系.
常见的有共顶点的等腰直角三角形和等边三角形,我们一起来探究.
类型一:共顶点的等腰三角形问题
如图,AB=AC,AE=AF,∠BAC=∠EAF=90°,BE、CF交于M,求
证:⑴BE=CF;⑵BE⊥CF;
C
⑴证明:∵∠BAC=∠EAF=90°,
EM 1 A
B∴∠BAC+∠1=∠EAF+∠1 即∠EAB=∠FAC
又∵AB=AC,AE=AF
∴△EAB≌△FAC
F
∴BE=CF
类型一:共顶点的等腰三角形问题
如图,AB=AC,AE=AF,∠BAC=∠EAF=90°,BE、CF交于M,求
如果两个等腰三角形共顶点且顶角相等,那么将两条腰分配到不同的两个 三角形中会得到全等三角形,并且我们会发现:改变两个三角形的相对位置并 不会改变所得的三角形的全等关系.
课后小知识
学习方法指导
同学们,天道酬勤,一个人学习成绩的优劣取决于他的学习 能力,学习能力包括三个要素:
规范的学习行为; 良好的学习习惯; 有效的学习方法。 只要做好以上三点,相信你一定会成为学习的强者。 加油!加油!加油!
类型二:共顶点的等边三角形
如图所示,△ACM和△BCN都为等边三角形,连接AN、BM,求证:
AN=பைடு நூலகம்M.
N M
A
1
2 3
B
C
证明: ∵△ACM和△BCN都为等边三角形, ∴∠1=∠3=60° ∴∠1+∠2=∠3+ ∠2 即∠ACN=∠MCB ∵CA=CM,CB=CN ∴△CAN≌△CMB(SAS) ∴AN=BM
最后祝:您生活愉快,事业节节高。
孔子曰,三人行必有我师焉,术业有专攻,尺有所长,寸有所短,希望你能 提出你的宝贵意见,促进我们共同成长,共同进步。每一个文档都花费了我大量 心血,其目的是在于给您提供一份参考,哪怕只对您有一点点的帮助,也是我最 大的欣慰。如果您觉得有改进之处,请您留言,后期一定会优化。
常言道:人生就是一场修行,生活只是一个状态,学习也只是一个习惯,只 要你我保持积极向上、乐观好学、求实奋进的状态,相信不久的将来我们一定会 取得更大的进步。
课后反思
1、今天的学习结束,你收获了什么? 2、引导学生归纳本课知识重点。 3、同桌之间交流一下学习心得与学习方法。
课后作业
1.完成教科书课后练习中的1、2题。 2.完成练习册本课时的习题作业。
后序
亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。希望我的文档能 够帮助到你,促进我们共同进步。
如图所示,△ACM和△BCN都为等边三角形,连接AN、BM,求证:
AN=BM. 如果改变两个三角形的相对位置,以上结论还成立吗?
N
B
M
A
2 1
3
C
证明: ∵△ACM和△BCN都为等边三角形, ∴∠1=∠3=60° ∴∠1+-∠2=∠3+- ∠2 即∠ACN=∠MCB ∵CA=CM,CB=CN ∴△CAN≌△CMB(SAS) ∴AN=BM
证明:过D作DF⊥BE于F
∵△ABC和△ADE为等腰直
1
角三角形
B
F
2
C3
E
∴AE=ED,∠ACE=∠EFD ∠1=90°-∠2=∠3
D
∴△ACE≌△EFD
∴CE=FD,EF=AC
∵AC=BC ∴BC=EF ∴BC-FC=EF-FC 即BF=CE ∴BF=FD ∴△BFD是等腰直角三角形 ∴∠DBE=45°.
证:⑴BE=CF;⑵求证:BE⊥CF;
C
⑵证明:∵△EAB≌△FAC
45
3
EM 1
2
A
B ∴∠2=∠4 ∵∠2+∠3+∠5=90°
∴∠4+∠5+∠3=∠2+∠5+∠3 =90°
∴BE⊥CF
F
如图,△ABC和△ADE均为等腰直角三角形,∠ACB=∠AED=90°,连接BD
,求证:∠DBE=45°.
A
相关文档
最新文档