高中物理必修第3册 静电场及其应用测试卷练习卷(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理必修第3册静电场及其应用测试卷练习卷(Word版含解析)
一、第九章静电场及其应用选择题易错题培优(难)
1.如图所示,y轴上固定有两个电荷量相等的带正电的点电荷,且关于坐标原点O对称。
某同学利用电场的叠加原理分析在两电荷连线的中垂线(x轴)上必定有两个场强最强的点A、'A,该同学在得到老师的肯定后又在此基础上作了下面的推论,你认为其中正确的是()
A.若两个点电荷的位置不变,但电荷量加倍,则x轴上场强最大的点仍然在A、'A两位置
B.如图(1),若保持两个点电荷的距离不变、并绕原点O旋转90°后对称的固定在z轴上,则x轴上场强最大的点仍然在A、'A两位置
C.如图(2),若在yoz平面内固定一个均匀带正电圆环,圆环的圆心在原点O。
直径与(1)图两点电荷距离相等,则x轴上场强最大的点仍然在A、'A两位置
D.如图(3),若在yoz平面内固定一个均匀带正电薄圆板,圆板的圆心在原点O,直径与(1)图两点电荷距离相等,则x轴上场强最大的点仍然在A、'A两位置
【答案】ABC
【解析】
【分析】
【详解】
A.可以将每个点电荷(2q)看作放在同一位置的两个相同的点电荷(q),既然上下两个点电荷(q)的电场在x轴上场强最大的点仍然在A、A'两位置,两组点电荷叠加起来的合电场在x轴上场强最大的点当然还是在A、A'两位置,选项A正确;
B.由对称性可知,保持两个点电荷的距离不变、并绕原点O旋转90°后对称的固定在z轴上,则x轴上场强最大的点仍然在A、'A两位置,选项B正确;
C.由AB可知,在yOz平面内将两点电荷绕O点旋转到任意位置,或者将两点电荷电荷量任意增加同等倍数,在x轴上场强最大的点都在A、A'两位置,那么把带电圆环等分成一些小段,则关于O点对称的任意两小段的合电场在x轴上场强最大的点仍然还在A、A'两位置,所有这些小段对称叠加的结果,合电场在x轴上场强最大的点当然还在A、A'两位置,选项C正确;
D.如同C选项,将薄圆板相对O点对称的分割成一些小块,除了最外一圈上关于O点对称的小段间距还是和原来一样外,靠内的对称小块间距都小于原来的值,这些对称小块的合电场在x轴上场强最大的点就不再在A、A'两位置,则整个圆板的合电场在x轴上场强最大的点当然也就不再在A、A'两位置,选项D错误。
故选ABC。
2.如图所示,空间有竖直方向的匀强电场,一带正电的小球质量为m ,在竖直平面内沿与水平方向成30º角的虚线以速度v 0斜向上做匀速运动.当小球经过O 点时突然将电场方向旋转一定的角度,电场强度大小不变,小球仍沿虚线方向做直线运动,选O 点电势为零,重力加速度为g ,则
A .原电场方向竖直向下
B .改变后的电场方向垂直于ON
C .电场方向改变后,小球的加速度大小为g
D .电场方向改变后,小球的最大电势能为2
04
mv
【答案】CD 【解析】 【分析】 【详解】
开始时,小球沿虚线做匀速运动,可知小球受向下的重力和向上的电场力平衡Eq=mg ,小球带正电,则电场竖直向上,选项A 错误;改变电场方向后,小球仍沿虚线做直线运动,可知电场力与重力的合力沿着NO 方向,因Eq=mg ,可知电场力与重力关于ON 对称,电场方向与NO 成600,选项B 错误;电场方向改变后,电场力与重力夹角为1200,故合力大小为mg ,小球的加速度大小为g ,选项C 正确;电场方向改变后,小球能沿ON 运动的距离为
202m v x g = ,则克服电场力做功为:22
0011cos 60224
m v W Eq x mg mv g ==⨯= ,故小球的
电势能最大值为
2
014
mv ,选项D 正确;故选CD.
3.如图甲所示,两点电荷放在x 轴上的M 、N 两点,电荷量均为Q ,MN 间距2L ,两点电荷连线中垂线上各点电场强度y E 随y 变化的关系如图乙所示,设沿y 轴正方向为电场强度的正方向,中垂线上有一点()
0,3P L ,则以下说法正确的是 ( )
A .M 、N 两点上的两等量点电荷是异种电荷,M 为正电荷,N 为负电荷
B .将一试探电荷-q 沿y 轴负方向由P 移动到O ,试探电荷的电势能一直减少
C .一试探电荷-q 从P 点静止释放,在y 轴上做加速度先变小后变大的往复运动
D .在P 点给一试探电荷-q 合适的速度,使其在垂直x 轴平面内以O 点为圆心做匀速圆周运动,所需向心力为3Qq
k 【答案】BD 【解析】 【详解】
A .如果M 、N 两点上的两等量点电荷是异种电荷,则其中垂线是为等势线,故A 错误;
B .等量同种电荷连线中垂线上,从P 到O 电势升高,负电荷的电势能减小,故B 正确;
C .等量同种电荷连线中垂线上,从P 到O 电场线方向向上,试探电荷受的电场力沿y 轴向下,在y 轴上O 点下方,电场线方向沿y 轴向下,试探电荷受的电场力沿y 轴向上,由图乙可知,y 轴上电场强度最大点的位移在P 点的下方,所以试探电荷沿y 轴先做加速度增大,后做加速度减小的加速运动,在y 轴上O 点下方,做加速度先增大后减小的减速运动,故C 错误;
D .等量正电荷中垂面上电场方向背离圆心O ,所以负试探电荷受电场力作用以O 为圆心做匀速圆周运动,如图,由几何关系可知,P 到M 的距离为2L ,图中60θ︒=,由叠加原理可得,P 点的场强为
232sin 2
sin 60(2)P M kQ kQ E E L θ︒
=== 所以电场力即为向心力为
2
34Qq
F k
L = 故D 正确。
4.如图所示,粗糙程度均匀的绝缘空心斜面ABC 放置在水平面上,角CAB = 30°,斜面内部O 点(与斜面无任何连接)固定有一正点电荷,一带负电的小物体(可视为质点)可以分别静止在M 、N 点和MN 的中点P 上,OM =ON , OM //AB 则下列判断正确的是( )
A .小物体静止在三处静止时所受力个数一定都是4个.
B .小物体静止在P 点时受到的摩擦力最大
C .小物体静止在P 点时受到的支持力最大,静止在M ,N 点时受到的支持力相等
D .当小物体静止在M 点时,地面给斜面的摩擦力水平向左 【答案】CD 【解析】 【详解】
对小物体分别在三处静止时所受力分析如图:
A.结合平衡条件,由图,小物体在P 、N 两点时一定受四个力的作用,故A 错误;
B.小物体静止在P 点时,摩擦力
f =m
g sin30°
静止在N 点时
sin30cos30f mg F '=︒+'︒
静止在M 点时
sin30cos30f mg F "=︒-'︒
可见静止在N 点时所受摩擦力最大,故B 错误;
C.小物体静止在P 点时,设库仑力为F ,受到的支持力
N =mg cos30°+F
在M 、N 点时:
cos30sin30N mg F '=︒+'︒
由库仑定律知F F >',故N N >',即小物体静止在P 点时受到的支持力最大,静止在M 、N 点时受到的支持力相等,故C 正确;
D.以小物体和斜面整体为研究对象,当小物体静止在M 点时,斜面内部O 点正电荷对其库仑力斜向右,即有向右的分力,则斜面有向右运动的趋势,受水平向左的摩擦力,故D 正确。
5.如图所示,某电场的电场线分布关于 y 轴(沿竖直方向)对称,O 、M 、N 是 y 轴上的三 个点,且 OM=MN 。
P 点在 y 轴右侧,MP ⊥ON 。
则
A.M 点场强大于 N 点场强
B.M 点电势与 P 点的电势相等
C.将正电荷由 O 点移动到 P 点,电场力做负功
D.在 O 点静止释放一带正电粒子,该粒子将沿 y 轴正方向做直线运动
【答案】AD
【解析】
【详解】
A、从图像上可以看出,M点的电场线比N点的电场线密集,所以M 点场强大于 N 点场强,故A对;
B、沿着电场线电势在降低,由于电场不是匀强电场,所以M和P点不在同一条等势线上,所以M 点电势与 P 点的电势不相等,故B错;
C、结合图像可知:O点的电势高于P点的电势,正电荷从高电势运动到低电势,电场力做正功,故C错;
D、在 O 点静止释放一带正电粒子,根据电场线的分布可知,正电荷一直受到向上的电场力,力与速度在一条直线上,故粒子做直线运动,故D对;
故选AD
6.如图所示,竖直墙面与水平地面均光滑且绝缘,两个带有同种电荷的小球A、B分别处于竖直墙面和水平地面上,且处于同一竖直平面内,若用图示方向的水平推力F作用于小球B,则两球静止于图示位置,如果将小球B向左推动少许,待两球重新达到平衡时,则两个小球的受力情况与原来相比()
A.竖直墙面对小球A的弹力减小
B.地面对小球B的弹力一定不变
C.推力F将增大
D.两个小球之间的距离增大
【答案】ABD
【解析】
【分析】
【详解】
整体法可知地面对小球B的弹力一定不变,B正确;假设A球不动,由于A、B两球间距
变小,库仑力增大,A球上升,库仑力与竖直方向夹角变小,而其竖直分量不变,故库仑
力变小A、B两球间距变大,D正确;但水平分量减小,竖直墙面对小球A的弹力减小,
推力F将减小,故A正确,C错误。
故选ABD。
7.如图所示,轻质弹簧一端系在墙上,另一端系在三根长度相同的轻绳上,轻绳的下端各
系质量与电荷量均相同的带正电小球,且三个小球均处于静止状态,已知重力加速度为
g。
四种情形下每个小球受到的电场力大小与轻绳长度、小球质量、小球电荷量的关系如表
所示,以下说法正确的是()
情形轻绳长度小球质量小球电荷量小球受到的电场力大小
1L m①
3
3 mg
22L m②
3
3 mg
3L2m③23
3
mg
4L m④3mg
A2倍
B2倍
C.④中电荷量为③中电荷量的32
2
倍
D.情形④下弹簧的伸长量最大
【答案】C
【解析】
【分析】
【详解】
由于三个小球质量和电荷量均相等,由对称性可知,三个小球必构成等边三角形,且每个小球受到的电场力相等,设绳的拉力为T,与竖直方向夹角为 ,两小球之间的距离为r、
一个小球受到另外两个小球的电场力的合力为F ,对其中一个小球受力分析可得
sin T mg θ=
2
2cos kq T θF r
==
解得
22tan kq mg
F r θ
==
由几何关系可知,
tan θ=
=整理得
22kq F r == A .对比①和②可知,并应用上式可得
211213kq F r ===
22222kq F r ===
解得
12
r
L =
2r =
故电荷量之间的关系为
112212
q r q r == 故A 错误; B
.由③可知,
23323kq F r ===
解得
32
r L =
故
33
22
2
2
2
q r
q r
==
故B错误;
C.由④可知
2
44
4222
44
3
3
kq
F mg
r L r
===
-
解得
4
3
2
r L
=
故
44
33
332
22
q r
q r
==
故C正确;
D.以三个小球为整体可知,小球受到的弹力应该等于其重力,故小球质量越大,弹簧弹力越大,故情形③下弹簧的伸长量最大,故D错误;
故选C。
8.如图所示,A、B、C为放置在光滑水平面上的三个带电小球(可视为点电荷),其中B 与C之间用长为L的绝缘轻质细杆相连,现把A、B、C按一定的位置摆放,可使三个小球都保持静止状态。
已知小球B的带电量为-q,小球C的带电量为+4q,则以下判断正确的是()
A.小球A的带电量可以为任何值
B.轻质细杆一定处于被拉伸状态
C.小球A与B之间的距离一定为
4
L
D.若将A向右平移一小段距离,释放后A一定向左运动
【答案】A
【解析】
【分析】
【详解】
AC.小球A受力平衡,设小球AB之间的距离为x,根据平衡条件有
()
A A
2
2
4
q q q q
k k
x L x
⋅
=
+
解得
x L
=
所以小球A 的电荷量可以为任意值,可以带正电,也可以带负电,A 正确,C 错误; B .对小球B ,小球A 和小球C 对其静电力的合力为
A 22
4q q q q
F k
k x L ⋅=- 由于不知道小球A 的带电量,所以无法确定小球A 和小球C 对小球B 的静电力的合力是否为零,故无法判断轻杆是否被拉伸,B 错误;
D .小球A 在原来的位置是平衡的,若将A 向右平移一小段距离,小球B 和小球C 对其的静电力均增加,且小球B 对其的静电力增加的更快,但由于小球A 的电性不确定,所以释放后A 的运动方向也不确定,D 错误。
故选A 。
9.如图所示,固定在竖直面内的光滑金属细圆环半径为R ,圆环的最高点通过长为L 的绝缘细线悬挂质量为m 、可视为质点的金属小球,已知圆环所带电荷量均匀分布且带电荷量与小球相同,均为Q (未知),小球在垂直圆环平面的对称轴上处于平衡状态,已知静电力常量为k ,重力加速度为g ,细线对小球的拉力为F (未知),下列说法正确的是( )
A .Q =3
mgR kL
,F =mgR L B .Q =3
mgL kR
,F =mgR L
C .Q =3
mgR kL ,F =mgL R D .Q =3
mgL kR
,F =mgL R 【答案】D 【解析】 【详解】
由于圆环不能看成点电荷,采用微元法,小球受到的库仑力为圆环各个点对小球库仑力的合力,以小球为研究对象,进行受力分析,如图所示
则Fsin mg θ=,其中=
R sin L θ,解得mgL F R
= 设圆环各个点对小球的库仑力的合力为F Q ,水平方向上有2
2Q Q Fcos F k cos L
θθ==,解得
3
mgL Q kR =
,故D 项正确,ABC 三项错误.
10.如图所示,真空中有两个点电荷Q 1和Q 2,Q 1=+9q ,Q 2=-q ,分别固定在x 轴上x =0处和x =6cm 处,下列说法正确的是( )
A .在x =3cm 处,电场强度为0
B .在区间上有两处电场强度为0
C .在x >9cm 区域各个位置的电场方向均沿x 轴正方向
D .将试探电荷从x =2cm 移到x =4cm 处,电势能增加 【答案】C 【解析】 【详解】
A .某点的电场强度是正电荷Q 1和负电荷Q 2在该处产生的电场的叠加,是合场强。
根据点电荷的场强公式E =
2
kq
r ,所以要使电场强度为零,那么正电荷Q 1和负电荷Q 2在该处产生的场强必须大小相等、方向相反。
因为它们电性相反,在中间的电场方向都向右。
设距离
Q 2为x 0处的电场强度矢量合为0,则:
12
2200
(6)kQ kQ x x =+ 可得:x 0=3cm ,故A 错误;
B .由选项A 的分析可知,合场强为0的点不会在Q 1的左边,因为Q 1的电荷量大于Q 2,也不会在Q 1Q 2之间,因为它们电性相反,在中间的电场方向都向右。
所以,只能在Q 2右边。
即在x 坐标轴上电场强度为零的点只有一个。
故B 错误; C.设距离Q 2为x 0处的电场强度矢量合为0,则:
122200
(6)kQ kQ x x =+ 可得:x 0=3cm ,结合矢量合成可知,在x >9cm 区域各个位置的电场方向均沿x 轴正方向。
故C 正确;
D.由上分析,可知,在0<x <6cm 的区域,场强沿x 轴正方向,将试探电荷+q 从x =2cm 处移至x =4cm 处,电势能减小。
故D 错误。
11.如图所示,小球A 、B 质量均为m ,初始带电荷量均为+q ,都用长为L 的绝缘细线挂在绝缘的竖直墙上O 点,A 球紧靠绝缘的墙壁且其悬线刚好竖直,球B 悬线偏离竖直方向
θ角而静止.如果保持B 球的电荷量不变,使小球A 的电荷量缓慢减小,当两球间距缓慢变为原来的
1
3
时,下列判断正确的是( )
A .小球
B 受到细线的拉力增大 B .小球B 受到细线的拉力变小
C .两球之间的库仑力大小不变
D .小球A 的电荷量减小为原来的
127
【答案】D 【解析】 【详解】
AB.小球B 受力如图所示,两绝缘线的长度都是L ,则△OAB 是等腰三角形,如果保持B 球
的电量不变,使A 球的电量缓慢减小,当两球间距缓慢变为原来的
1
3
时,θ变小,F 减小; 线的拉力T 与重力G 相等,G =T ,即小球B 受到细线的拉力不变;对物体A :
cos()22
A A T G F πθ
=+-
则θ变小,T A 变小;故AB 错误;
CD.小球静止处于平衡状态,当两球间距缓慢变为原来的1/3时,由比例关系可知,库仑力变为原来的1/3,因保持B 球的电量不变,使A 球的电量缓慢减小,由库仑定律
2
A B
Q Q F k
r = 解得:球A 的电量减小为原来的
1
27
,故C 错误,D 正确;
12.一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳分为左右两部分,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称,已知一均匀带电球壳内部任一点的电场强度为零;取无穷远处电势为零,点电荷q 在距离其为r 处
的电势为
φ=k
q
r
(q 的正负对应φ的正负)。
假设左侧部分在M 点的电场强度为E 1,电势为φ1;右侧部分在M 点的电场强度为E 2,电势为φ2;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4.下列说法正确的是( )
A .若左右两部分的表面积相等,有12E E >,12ϕϕ>
B .若左右两部分的表面积相等,有12E E <,12ϕϕ<
C .不论左右两部分的表面积是否相等,总有12E E >,34E E =
D .只有左右两部分的表面积相等,才有12
E E >,34E E = 【答案】C 【解析】 【详解】
A 、设想将右侧半球补充完整,右侧半球在M 点的电场强度向右,因完整均匀带电球壳内部任一点的电场强度为零,可推知左侧半球在M 点的电场强度方向向左,根据对称性和矢量叠加原则可知,E 1方向水平向左,E 2方向水平向右,左侧部分在M 点产生的场强比右侧电荷在M 点产生的场强大,E 1>E 2,根据几何关系可知,分割后的右侧部分各点到M 点的距离均大于左侧部分各点到M 点的距离,根据k q
r
ϕ=,且球面带负电,q 为负,得:φ1<φ2,故AB 错误;
C 、E 1>E 2与左右两个部分的表面积是否相等无关,完整的均匀带电球壳内部任一点的电场强度为零,根据对称性可知,左右半球壳在M 、N 点的电场强度大小都相等,故左半球壳在M 、N 点的电场强度大小相等,方向相同,故C 正确,
D 错误。
13.如图所示,光滑绝缘水平面上有三个带电质点A 、B 、C,A 和C 围绕B 做匀速圆周运动,B 恰能保持静止,其中A 、C 和B 的距离分别是L 1、L 2.仅考虑三质点间的库仑力,则A 和C 的
A .线速度之比为2
1
L L
B .加速度之比为2
12L L ⎛⎫
⎪⎝⎭
C .电荷量之比
1
2L L D .质量之比
2
1
L L
【答案】D 【解析】 【分析】 【详解】
A .A 和C 围绕
B 做匀速圆周运动,B 恰能保持静止,则AB
C 三者要保持相对静止,所以AC 角速度相等,则线速度之比为
1
2
A B v L v L = 选项A 错误;
C .根据B 恰能保持静止可得
2212
C B A B q q q q k
k L L = 解得
21
22
A C q L q L = 选项C 错误;
A 围绕
B 做匀速圆周运动,根据A 受到的合力提供向心力,
()2
122112A C A B A A A q q q q k
k m m L L L L a ω-==+ C 围绕B 做匀速圆周运动,有
()
2
222212C B A C B C B q q q q k
k m m L L a L L ω-=+= 因为2212
C B A B
q q q q k
k L L =,所以有 A B B A a m m a =
12A C m L m L =
解得
2
1A C m L m L = 1
2
A B A B m L m L a a == 选项B 错误,D 正确。
故选D 。
14.如图,质量分别为 m A 和 m B 的两小球带有同种电荷,电荷量分别为 q A 和 q B ,用绝缘细线悬挂在天花板上.平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为 θ1 与 θ2(θ1>θ2).两小球突然失去各自所带电荷后开始摆动,最大速度分别 v A 和
v B ,最大动能分别为 E kA 和 E kB .则( )
A .m A :m
B =tan θ1: tan θ2 B .q A :q B =1: 1
C .1
2
:tan
tan 2
2A B v v θθ=
D .1
2
:tan :tan
2
2
kA kB E E θθ=
【答案】D 【解析】 【分析】 【详解】
A .对A 球进行受力分析可知,A 所受到的库仑力大小为
A 1tan F m g θ=
同理B 受到的库仑力为
B 2tan F m g θ=
两球间的库仑力大小相等方向相反,因此
A B 21:tan :tan m m θθ=①
A 错误;
B .两个小球间的库仑力总是大小相等,与两小球带电量大小无关,因此无法求出两球电量间的关系,B 错误;
CD .由于两球处于同一高度,则
1122cos cos =l l h θθ=②
又由于两球下摆的过程中,机械能守恒,则
2
k 1(1cos )2
mgl E mv θ-==
③ 由②③联立可得
11
2
2
1
1cos 1
1cos v v θθ-=-由①②③联立利用三角函数关系可得
1
kA
2
kB
tan
2
tan
2
E
E
θ
θ
=
C错误,D正确。
故选D。
15.已知均匀带电球壳内部电场强度处处为零,电势处处相等.如图所示,正电荷均匀分布在半球面上,Ox为通过半球顶点与球心O的轴线.A、B为轴上的点,且OA=OB.C、D 为直径上的两点,且OC=OD.则下列判断正确的是( )
A.A点的电势与B点的电势相等
B.C点的电场强度与D点的电场强度不相同
C.A点的电场强度与B点的电场强度相同
D.在A点由静止开始释放重力不计的带正电粒子,该粒子将沿AB做匀加速直线运动【答案】C
【解析】
【分析】
【详解】
试题分析:由题意可知半球面右边的电场线是水平向右的,沿电场线方向电势逐渐降低,A点电势高于B点电势,A错误;有对称性原理及电场叠加可知C点和D点场强一样;B 错误;B错误;均匀带电半球相当于一个均匀带正电的球和半个均匀带负电的球,这个半球放在图的另一边.然后看AB两点,可以看到,AB两点在在上述涉及到的正电半球和负电半球中的相同的位置上.而由题目给出的条件,正电球在AB两点产生的电场为零.所以,A点正电半球产生的电场强度相当于负电半球产生的电场强度,而与B点的环境比较,唯一的区别是电荷符号相反,从而电场大小相同,只有可能有方向的区别,而分析可知,方向是相同的,故电场强度相等,C正确;电场线方向水平向右,所以在A点释放静止带正电的微粒(重力不计),微粒将作加速运动,距离远后电场力减小,所以是变加速运动,D错误;
二、第九章静电场及其应用解答题易错题培优(难)
16.在如图所示的竖直平面内,物体A和带正电的物体B用跨过定滑轮的绝缘轻绳连接,分别静止于倾角θ=37°的光滑斜面上的M点和粗糙绝缘水平面上,轻绳与对应平面平
行.劲度系数k=5 N/m的轻弹簧一端固定在O点,一端用另一轻绳穿过固定的光滑小环D与A相连,弹簧处于原长,轻绳恰好拉直,DM垂直于斜面.水平面处于场强E=
5×104N/C、方向水平向右的匀强电场中.已知A、B的质量分别为m A=0.1 kg和m B=0.2 kg,B所带电荷量q=+4×10-6 C.设两物体均视为质点,不计滑轮质量和摩擦,绳不可伸长,弹簧始终在弹性限度内,B电荷量不变.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.
(1)求B所受静摩擦力的大小;
(2)现对A施加沿斜面向下的拉力F,使A以加速度a=0.6 m/s2开始做匀加速直线运动.A 从M到N的过程中,B的电势能增加了ΔE p=0.06 J.已知DN沿竖直方向,B与水平面间的动摩擦因数μ=0.4.求A到达N点时拉力F的瞬时功率.
【答案】(1)f=0.4N (2)2.1336W
【解析】
试题分析:(1)根据题意,静止时,对两物体受力分析如图所示:
由平衡条件所得:
对A有:m A gsin θ=F T①
对B有:qE+f0=F T②
代入数据得f0=0.4 N ③
(2)根据题意,A到N点时,对两物体受力分析如图所示:
由牛顿第二定律得:
对A有:F+m A gsin θ-F′T-F k sin θ=m A a ④
对B有:F′T-qE-f=m B a ⑤
其中f=μm B g ⑥
F k=kx ⑦
由电场力做功与电势能的关系得ΔE p=qEd ⑧
由几何关系得x=-⑨
A由M到N,由v-v=2ax得A运动到N的速度v=⑩
拉力F 在N 点的瞬时功率P =Fv ⑪ 由以上各式,代入数据P =0.528 W ⑫
考点:受力平衡 、牛顿第二定律、能量转化与守恒定律、功率
【名师点睛】静止时,两物体受力平衡,列方程求解.A 从M 到N 的过程中做匀加速直线运动,根据牛顿第二定律,可列出力的关系方程.根据能量转化与守恒定律可列出电场力做功与电势能变化的关系方程.根据匀加速直线运动速度位移公式,求出运动到N 的速度,最后由功率公式求出功率.
17.如图所示,ABCD 竖直放置的光滑绝缘细管道,其中AB 部分是半径为R 的1/4圆弧形管道,BCD 部分是固定的水平管道,两部分管道恰好相切于B .水平面内的M 、N 、B 三点连线构成边长为L 等边三角形,MN 连线过C 点且垂直于BCD .两个带等量异种电荷的点电荷分别固定在M 、N 两点,电荷量分别为+Q 和-Q.现把质量为m 、电荷量为+q 的小球(小球直径略小于管道内径,小球可视为点电荷),由管道的A 处静止释放,已知静电力常量为k,重力加速度为g.求:
(1)小球运动到B 处时受到电场力的大小; (2)小球运动到C 处时的速度大小;
(3)小球运动到圆弧最低点B 处时,小球对管道压力的大小.
【答案】(1)2qQ k L (22gR (32
2229qQ k m g L ⎛⎫+ ⎪⎝⎭
【解析】 【分析】 【详解】
(1)设小球在圆弧形管道最低点B 处分别受到+Q 和-Q 的库仑力分别为F 1和F 2.则
122
qQ F F k
L ==① 小球沿水平方向受到的电场力为F 1和F 2的合力F ,由平行四边形定则得F=2F 1cos60° ② 联立①②得2qQ
F k
L
=③ (2)管道所在的竖直平面是+Q 和-Q 形成的合电场的一个等势面,小球在管道中运动时,小球受到的电场力和管道对它的弹力都不做功,只有重力对小球做功,小球的机械能守恒,有mgR =
1
2
mv C 2−0 ④ 解得2C v gR =
(3)设在B 点管道对小球沿竖直方向的压力的分力为N By ,在竖直方向对小球应用牛顿第
二定律得2
B By v N mg m R
-=⑥ v B =v C ⑦
联立⑤⑥⑦解得N By =3mg⑧
设在B 点管道对小球在水平方向的压力的分力为N Bx ,则2Bx qQ
N F k
L
==⑨ 圆弧形管道最低点B 处对小球的压力大小为22
222
2
9()?B Bx BY qQ N N N m g k
L
++==.⑩ 由牛顿第三定律可得小球对圆弧管道最低点B 的压力大小为
222
2
9()?B B qQ N N m g k
L '+==
18.如图所示,水平地面上方分布着水平向右的匀强电场,一“L ”形的光滑绝缘硬质管竖直固定在匀强电场中,管的水平部分长L 1=0.2m ,管的水平部分离水平地面的距离为h =5.0m ,竖直部分长为L 2=0.1m .一带正电的小球从管口A 由静止释放,小球与管间摩擦不计且小球通过管的弯曲部分(长度极短可不计)时没有能量损失,小球受到的电场力大小为重力的一半.(g =10m/s 2)求:
(1)小球运动到管口B 时的速度v B 大小; (2)小球着地点与管口B 的水平距离s . 【答案】(1)2.0m/s ;(2)4.5m . 【解析】 【分析】 【详解】
(1)在小球从A 运动到B 的过程中,对小球由动能定理得:
1
2
mv B 2-0=mgL 2+F 电L 1 ① 由于小球在电场中受到的静电力大小为重力的一半,即
F 电=
1
2
mg ② 代入数据得:
v B =2.0m/s ; ③
小球运动到管口B 时的速度大小为2.0m/s ;
(2)小球离开B 点后,设水平方向的加速度为a ,位移为s ,在空中运动的时间为t ,水平
方向有:
a =g /2 ④ s =v 0t +
12
at 2
⑤ 竖直方向有:
h =
12
gt 2
⑥ 由③~⑥式,并代入数据可得:
s =4.5m
19.如图所示,均可视为质点的三个物体A 、B 、C 在倾角为30°的光滑绝缘斜面上,A 绝缘,A 与B 紧靠在一起,C 紧靠在固定挡板上,质量分别为m A =0.43kg ,m B =0.20kg ,m C =0.50kg ,其中A 不带电,B 、C 的电荷量分别为q B =+2×10-5C 、q C =+7×10-5C 且保持不变,开始时三个物体均能保持静止。
现给A 施加一平行于斜面向上的力F ,使A 做加速度a=2.0m/s 2的匀加速直线运动,经过时间t ,力F 变为恒力,已知静电力常量为k=9.0×109N·m 2/C 2,g 取10m/s 2。
求: (1)开始时BC 间的距离L ; (2)F 从变力到恒力需要的时间t 。
【答案】(1)2.0m ;(2)1.0s 【解析】 【分析】 【详解】
(1)A 、B 、C 静止时,以AB 为研究对象,受力分析有
2
sin30o B C
A B q q m m g k
L +=() 代入数据解得
L =2.0m
(2)AB 分离时两者之间弹力恰好为零,此后F 变为恒力,对B 用牛顿第二定律得
2sin30B B B C
m g m a q q k
l
︒=- 解得
3.0m l =
由匀加速运动规律得
212
l L at -=。