包头市高中物理必修第3册 静电场及其应用试卷检测题(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
包头市高中物理必修第3册 静电场及其应用试卷检测题(1)
一、第九章 静电场及其应用选择题易错题培优(难)
1.如图所示,竖直平面内固定一倾斜的光滑绝缘杆,轻质绝缘弹簧上端固定,下端系带正电的小球A ,球A 套在杆上,杆下端固定带正电的小球B 。
现将球A 从弹簧原长位置由静止释放,运动距离x 0到达最低点,此时未与球B 相碰。
在球A 向下运动过程中,关于球A 的速度v 、加速度a 、球A 和弹簧系统的机械能E 、两球的电势能E p 随运动距离x 的变化图像,可能正确的有( )
A .
B .
C .
D .
【答案】CD 【解析】 【分析】 【详解】
令A 、B 小球分别带电量为1q 、2q ,释放A 球时A 、B 间距为r ,弹簧的劲度系数为K 。
则 A .在小球A 运动到最低点的过程中,受力分析如图所示
加速阶段有
12
2
sin ()kq q ma mg θKx r x =-
--
减速阶段有
12
2
sin ()kq q ma Kx mg θr x =
+--
所以小球先做加速度减小的加速运动,再做加速度增大的减速运动,越向下运动,弹力和电场力越大,所以减速阶段速度减小的更快,速度减为零的时间更短,和加速阶段不对称,A 错误;
B .小球做加速度减小的加速运动时,
122
sin ()kq q K
a g θx m r x m
=-
-- 对a 求导则
1232d d ()kq q a K x m r x m
=-- 则加速阶段,加速度随着运动距离x 的增加而减小,且加速减小得越来越快(即a -x 曲线越来越陡峭)。
同理,减速阶段
122sin ()kq q K
a x g θm r x m =
+--
123
2d d ()kq q a K
x m m r x =-- 在减速阶段加速度运动距离x 的增加而减加而增大,且加速度增加得越来越慢(即a -x 曲线越来越平缓),故B 错误;
C .小球向下运动过程中,由于要克服电场力做功,所以球A 和弹簧系统的机械能E 逐渐减小,越靠近B 小球,电场力越大,机械能减小的越快,所以图像的斜率的绝对值越来越大,C 正确;
D .小球向下运动过程中,电场力做负功,所以电势能逐渐增大,越靠近B 小球,电场力越大,电势能增大的越快,所以图像的斜率越来越大,D 正确。
故选CD 。
2.如图所示,竖直绝缘墙上固定一带电小球A ,将带电小球B 用轻质绝缘丝线悬挂在A 的正上方C 处,图中AC =h 。
当B 静止在与竖直方向夹角θ=30°方向时,A 对B 的静电力为B 所受重力的0.5倍,则下列说法中正确的是(两球均可看作点电荷)( )
A.此时丝线长度为
2 2
L
B.以后由于A漏电,B在竖直平面内缓慢运动,到θ=0°处A的电荷尚未漏完,在整个漏电过程中,丝线上拉力大小保持不变
C.若保持悬点C位置不变,缓慢缩短丝线BC的长度,B球运动轨迹在最初阶段为圆弧
D.若A对B的静电力为B所受重力的3
倍,要使B球依然在θ=30°处静止,则丝线BC
的长度应调整为
3
3
h或
23
3
h
【答案】BCD
【解析】
【分析】
【详解】
A.当A对B的静场力为B所受重力的0.5倍,B静止时丝线BC与竖直方向夹角θ=30°,
处于平衡,根据几何关系可知此时AB与BC互相垂直,此时丝线长度为
3
2
h,选项A错
误;
B.而由三角形相似可知
G F T
h AB BC
==
则在整个漏电过程中,丝线上拉力T大小保持不变,选项B正确;
C.以C点为原点,以CA方向为y轴,垂直CA方向向右为x轴建立坐标系,设B点坐标为(x,y),则由几何关系
cos sin
x hθθ
=⋅
tan
x
y θ=
消掉θ角且整理可得
2
222
(cos)
x y h BC
+==
θ
缓慢缩短丝线BC的长度,最初阶段BC的长度变化较小,B球运动轨迹在最初阶段为圆弧,选项C正确;
D .若A 对B 的静电力为B 所受重力的
3
3
倍,则B 静止在与竖直方向夹角仍为θ=30°时,对B 受力分析,G 、F 与T ,将F 与T 合成,则有
G F AC AB
= 解得
3F AB h h G =
= 根据余弦定理可得
2
2232cos30h h BC BC h =+-⨯⨯︒(
) 解得
BC =
33h 或233
h 选项D 正确。
故选BCD 。
3.某老师用图示装置探究库仑力与电荷量的关系。
A 、B 是可视为点电荷的两带电小球,用绝缘细线将A 悬挂,实验中在改变电荷量时,移动B 并保持A 、B 连线与细线垂直。
用Q 和q 表示A 、B 的电荷量,d 表示A 、B 间的距离,θ(θ不是很小)表示细线与竖直方向的夹角,x 表示A 偏离O 点的水平距离,实验中( )
A .d 可以改变
B .B 的位置在同一圆弧上
C .x 与电荷量乘积Qq 成正比
D .tan θ与A 、B 间库仑力成正比
【答案】BC 【解析】 【分析】 【详解】
A .因实验要探究库仑力与电荷量的关系,故两电荷间距d 应保持不变,选项A 错误;
B .因要保持A 、B 连线与细线垂直且A 、B 距离总保持d 不变,可知B 到O 点的距离不变,故B 的位置在同一圆弧上,选项B 正确;
C .对A 球由平衡知识可知
2
sin qQ x
k
mg mg d L
θ== 可知x 与电荷量乘积Qq 成正比,选项C 正确; D .因为
2tan =qQ
k
d
d L mgx
θ=
由于x 变化,所以不能说tan θ与A 、B
间库仑力成正比,故D 错误。
故选BC 。
4.质量分别为A m 和B m 的两小球带有同种电荷,电荷量分别为A q 和B q ,用绝缘细线悬挂在天花板上。
平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为1θ与
()212θθθ>。
两小球突然失去各自所带电荷后开始摆动,最大速度分别为A v 和B v ,最大
动能分别为kA E 和kB E 。
则( )
A .A m 一定大于
B m B .A q 一定小于B q
C .A v 一定大于B v
D .kA
E 一定大于kB E
【答案】CD 【解析】 【分析】 【详解】
A .对小球A 受力分析,受重力、静电力、拉力,如图所示
根据平衡条件,有
1A tan F m g
θ=
故
A 1tan F
m g θ=
⋅
同理,有
B 2
tan F
m g θ=
⋅
由于12θθ>,故A B m m <,故A 错误;
B .两球间的库仑力是作用力与反作用力,一定相等,与两个球是否带电量相等无关,故B 错误;
C .设悬点到AB 的竖直高度为h ,则摆球A 到最低点时下降的高度
11
1
(1)cos cos h h h h θθ∆=
-=- 小球摆动过程机械能守恒,有
2
12
mg h mv ∆=
解得
v =由于12θθ>,A 球摆到最低点过程,下降的高度A B h h ∆>∆,故A 球的速度较大,故C 正确;
D .小球摆动过程机械能守恒,有
k mg h E ∆=
故
k (1cos )(1cos )tan FL
E mg h mgL θθθ
=∆=-=
- 其中cos L θ相同,根据数学中的半角公式,得到
k 1cos (1cos )cos ()cos tan tan sin 2
FL E FL FL θθ
θθθθθ-=
-==⋅ 其中cos FL θ相同,故θ越大,动能越大,故kA E 一定大于kB E ,故D 正确。
故选CD 。
5.如图所示,a 、b 、c 、d 四个质量均为m 的带电小球恰好构成“三星拱月”之形,其中a 、b 、c 三个完全相同的带电小球在光滑绝缘水平面内的同一圆周上绕O 点做半径为R 的匀速圆周运动,三小球所在位置恰好将圆周等分.小球d 位于O 点正上方h 处,且在外力F 作用下恰处于静止状态,已知a 、b 、c 三小球的电荷量均为q ,d 球的电荷量为6q
,h =
.重力加速度为g ,静电力常量为k ,则( )
A .小球d 一定带正电
B .小球b 2R mR
q k
πC .小球c 2
3kq D .外力F 竖直向上,大小等于2
26kq mg +【答案】CD 【解析】 【详解】
A .a 、b 、c 三小球所带电荷量相同,要使三个做匀速圆周运动,d 球与a 、b 、c 三小球一定是异种电荷,由于a 球的电性未知,所以d 球不一定带正电,故A 错误。
BC .设db 连线与水平方向的夹角为α,则
223cos 3h R α==+ 22
6sin 3
h R α=
=
+ 对b 球,根据牛顿第二定律和向心力得:
()
22222264cos 2cos302cos30q q q k k m R ma h R T R πα︒︒⋅-==+ 解得:
23R
mR
T q k
π=
2
3kq a =则小球c 2
3kq B 错误,C 正确。
D .对d 球,由平衡条件得:
2
226263sin qq kq F k mg mg h R α=+=+
+ 故D 正确。
6.有固定绝缘光滑挡板如图所示,A、B为带电小球(可以近似看成点电荷),当用水平向左的力F作用于B时,A、B均处于静止状态.现若稍改变F的大小,使B向左移动一段小距离(不与挡板接触),当A、B重新处于平衡状态时与之前相比()
A.A、B间距离变小
B.水平推力力F减小
C.系统重力势能增加
D.系统的电势能将减小
【答案】BCD
【解析】
【详解】
A.对A受力分析,如图;由于可知,当B向左移动一段小距离时,斜面对A的支持力减小,库仑力减小,根据库仑定律可知,AB间距离变大,选项A错误;
B.对AB 整体,力F等于斜面对A的支持力N的水平分量,因为N减小,可知F减小,选项B正确;
C.因为AB距离增加,则竖直距离变大,则系统重力势能增加,选项C正确;
D.因为AB距离增加,电场力做正功,则电势能减小,选项D正确;
故选BCD.
7.如图所示,在竖直放置的半径为R的光滑半圆弧绝缘细管的圆心O处固定一点电荷,将质量为m,带电量为+q的小球从圆弧管的水平直径端点A由静止释放,小球沿细管滑到最低点B时,对管壁恰好无压力,已知重力加速度为g,则下列说法正确的是()
A.小球在B2gR
B .小球在B 时的速率小于2gR
C .固定于圆心处的点电荷在AB 弧中点处的电场强度大小为3mg/q
D .小球不能到达C 点(C 点和A 在一条水平线上) 【答案】AC 【解析】
试题分析:由A 到B ,由动能定理得:0
102
mgr mv =
-,解得2v gr =,A 正确,B 错误,在B 点,对小球由牛顿第二定律得:2
qE mg v m r
-=,将B 点的速度带入可得
3mg
E q
=
,C 正确,从A 到C 点过程中电场力做功为零,所以小球能到达C 点,D 错误, 考点:动能定理和牛顿定律综合的问题
点评:小球沿细管滑到最低点B 时,对管壁恰好无压力.并不是电场力等于重力,而是电场力与重力提供向心力去做圆周运动.当是点电荷的电场时,由于电场力与支持力均于速度方向垂直,所以只有重力做功.
8.如图所示:在光滑绝缘水平面上,ABCD 分布在边长为L 的正方形四个顶点。
在A 和D 处分别固定电荷量为Q 的正点电荷,B 处固定电荷量为Q 的负点电荷,O 点为两对角线的交点,静电力常量为k 。
关于三个点电荷形成的静电场,下列说法中正确的是( )
A .O 处电场强度大小为22kQ
L B .C 处电场强度大小为
2
kQ L C .从O 到C 的过程中电场强度大小逐渐增大 D .从O 到C 的过程中电场强度大小先减小后增大 【答案】A 【解析】 【分析】 【详解】
A .A 、D 两点点电荷在O 点的场强相互抵消,故O 点的场强大小等于
B 点的负点电荷Q 在O 点产生的场强,即
2
2
22
()2
O kQ
E k
L L == 故A 正确;
B .A 、D 两点点电荷在
C 处的合场强为
1222C Q kQ
E k
L == 方向OC 方向,B 点的负点电荷Q 在C 点产生的场强为
2222(2)C kQ
E k
L
L ==
方向沿CO 方向,故C 处的场强为
1222
221(2)22C C C kQ kQ kQ
E E E L L L
=-=
-=- 方向沿OC 方向,故B 错误;
CD .从O 到C 的过程中电场强度大小先减小后增大再减小,故CD 错误。
故选A 。
9.如图所示,MON 是固定的光滑绝缘直角杆,MO 沿水平方向,NO 沿竖直方向,
A B 、为两个套在此杆上的带有同种电荷的小球,用水平向右的力F 作用在A 球上,使两球
均处于静止状态,已知A B 、两球连线与水平方向成θ角。
下列说法正确的是( )
A .杆MO 对A 球的弹力大小为tan F θ
B .杆NO 对B 球的弹力大小为sin F θ
C .B 球的重力大小为tan F θ
D .A B 、两球间的库仑力大小为cos F θ 【答案】C 【解析】 【详解】
对A 球受力分析,设A 的质量为m 、拉力F 、支持力N 1,两球间的库仑力大小为F 1,如图,根据平衡条件,有
x方向
F=F1cosθ①
y方向
N1=mg+F1sinθ②
再对B球受力分析,受重力Mg、静电力F1、杆对其向左的支持力,如图,根据平衡条件,有
x方向
F1cosθ=N2③
y方向
F1sinθ=M g ④
有上述四式得到
Mg=F tanθ
1F
F
cosθ
=
N1=mg+Mg
N2=F
可知由于不知道A的质量,所以不能求出A受到的弹力N1。
故ABD错误,C正确;
故选C。
10.如图所示,质量为m的带电小球用绝缘丝线悬挂于P点,另一带正电小球M固定在带电小球的左侧,小球平衡时,绝缘丝线与竖直方向夹角为θ,且两球球心在同一水平线上.关于悬挂小球的电性和所受库仑力的大小,下列判断正确的是( )
A.正电,
mg
tanθ
B.正电,mg tan θ
C.负电,mg tan θD.负电,
mg tanθ
【答案】B
【解析】
【分析】
【详解】
小球 M带正电,两球相斥,故小球带正电;以小球为研究对象,对小球进行受力分析,根据小球处于平衡状态可知,F=mgtgθ,故选B.
【点睛】
对于复合场中的共点力作用下物体的平衡其解决方法和纯力学中共点力作用下物体的平衡适用完全相同的解决方法.
11.如图所示,固定在竖直面内的光滑金属细圆环半径为R,圆环的最高点通过长为L的绝缘细线悬挂质量为m、可视为质点的金属小球,已知圆环所带电荷量均匀分布且带电荷量与小球相同,均为Q(未知),小球在垂直圆环平面的对称轴上处于平衡状态,已知静电力常量为k,重力加速度为g,细线对小球的拉力为F(未知),下列说法正确的是( )
A.Q
3
mgR
kL
,F=mgR
L
B.Q
3
mgL
kR
,F=mgR
L
C.Q
3
mgR
kL
,F=mgL
R
D.Q
3
mgL
kR
,F=mgL
R
【答案】D
【解析】
【详解】
由于圆环不能看成点电荷,采用微元法,小球受到的库仑力为圆环各个点对小球库仑力的合力,以小球为研究对象,进行受力分析,如图所示
则Fsin mg θ=,其中=
R sin L θ,解得mgL F R
= 设圆环各个点对小球的库仑力的合力为F Q ,水平方向上有2
2Q Q Fcos F k cos L
θθ==,解得
3
mgL Q kR =
,故D 项正确,ABC 三项错误.
12.如图所示,真空中有两个点电荷Q 1和Q 2,Q 1=+9q ,Q 2=-q ,分别固定在x 轴上x =0处和x =6cm 处,下列说法正确的是( )
A .在x =3cm 处,电场强度为0
B .在区间上有两处电场强度为0
C .在x >9cm 区域各个位置的电场方向均沿x 轴正方向
D .将试探电荷从x =2cm 移到x =4cm 处,电势能增加 【答案】C 【解析】 【详解】
A .某点的电场强度是正电荷Q 1和负电荷Q 2在该处产生的电场的叠加,是合场强。
根据点电荷的场强公式E =
2
kq
r ,所以要使电场强度为零,那么正电荷Q 1和负电荷Q 2在该处产生的场强必须大小相等、方向相反。
因为它们电性相反,在中间的电场方向都向右。
设距离
Q 2为x 0处的电场强度矢量合为0,则:
12
2200
(6)kQ kQ x x =+ 可得:x 0=3cm ,故A 错误;
B .由选项A 的分析可知,合场强为0的点不会在Q 1的左边,因为Q 1的电荷量大于Q 2,也不会在Q 1Q 2之间,因为它们电性相反,在中间的电场方向都向右。
所以,只能在Q 2右边。
即在x 坐标轴上电场强度为零的点只有一个。
故B 错误; C.设距离Q 2为x 0处的电场强度矢量合为0,则:
122200
(6)kQ kQ x x =+ 可得:x 0=3cm ,结合矢量合成可知,在x >9cm 区域各个位置的电场方向均沿x 轴正方向。
故C 正确;
D.由上分析,可知,在0<x <6cm 的区域,场强沿x 轴正方向,将试探电荷+q 从x =2cm 处移至x =4cm 处,电势能减小。
故D 错误。
13.如图所示,小球A 、B 质量均为m ,初始带电荷量均为+q ,都用长为L 的绝缘细线挂在绝缘的竖直墙上O 点,A 球紧靠绝缘的墙壁且其悬线刚好竖直,球B 悬线偏离竖直方向θ角而静止.如果保持B 球的电荷量不变,使小球A 的电荷量缓慢减小,当两球间距缓慢变为原来的
1
3
时,下列判断正确的是( )
A .小球
B 受到细线的拉力增大 B .小球B 受到细线的拉力变小
C .两球之间的库仑力大小不变
D .小球A 的电荷量减小为原来的
127
【答案】D 【解析】 【详解】
AB.小球B 受力如图所示,两绝缘线的长度都是L ,则△OAB 是等腰三角形,如果保持B 球
的电量不变,使A 球的电量缓慢减小,当两球间距缓慢变为原来的
1
3
时,θ变小,F 减小; 线的拉力T 与重力G 相等,G =T ,即小球B 受到细线的拉力不变;对物体A :
cos()22
A A T G F πθ
=+-
则θ变小,T A 变小;故AB 错误;
CD.小球静止处于平衡状态,当两球间距缓慢变为原来的1/3时,由比例关系可知,库仑力变为原来的1/3,因保持B 球的电量不变,使A 球的电量缓慢减小,由库仑定律
2
A B
Q Q F k
r =
解得:球A 的电量减小为原来的
1
27
,故C 错误,D 正确;
14.如图所示,A 、B 、C 、D 是立方体的四个顶点,在A 、B 、D 三个点各放一点电荷,使C 点处的电场强度为零。
已知A 点处放的是电荷量为Q 的正点电荷,则关于B 、D 两点处的点电荷,下列说法正确的是( )
A .
B 点处的点电荷带正电 B .D 点处的点电荷带正电
C .B 点处的点电荷的电荷量为26
9
D .D 点处的点电荷的电荷量为13
Q
【答案】C 【解析】 【分析】 【详解】
A .A 点处放的是电荷量为Q 的正点电荷,若
B 点处的点电荷带正电,根据场强叠加可知,在D 点无论是放正电还是负电,
C 点的场强都不可能为零,选项A 错误; B .若
D 点处的点电荷带正电,则根据场强叠加可知,在B 点无论是放正电还是负电,C 点的场强都不可能为零,选项B 错误;
CD .设正方体边长为a ,BC 与AC 夹角为θ,由叠加原理可知,在BD 两点只能都带负电时,C 点的合场强才可能为零,则
22cos 32B Q Q
k k a a θ= 22
sin 3D Q Q
k
k a a θ= 其中2cos 3
θ=sin 3θ=解得
26
B Q = 3D Q =
选项C 正确,D 错误。
故选C 。
15.如图所示,质量为m的带电小球A用绝缘细线悬挂于O点,另一个相同的带电小球B 固定于O点的正下方,已知细线长L,O到B点的距离也为L,平衡时,BO与AO间的夹角为45°,已知重力加速度为g,则下列说法正确的是()
A.细线对A球的拉力等于库仑力和重力的合力,因此拉力大于重力
B.两球之间的库仑力大小为22mg
-
C.A球漏了少量电后,细线对A球的拉力减小
D.A球漏了少量电后,B球对A球的库仑力增大
【答案】B
【解析】
【分析】
【详解】
A.小球A的受力分析,如图所示
由于力的三角形与OAB相似,对应边成比例,设AB间距离为x,因此
mg T F
==①
l l x
可得
=
T mg
A错误;
B.根据余弦定理,可得
222o
x l l l
=+-=-
2cos4522
根据①式可得,库仑力大小
=-
22
F mg
B正确;
C.A球漏了少量电后,力的三角形与OAB仍相似,根据①式可知,细线对A球的拉力仍等于mg,C错误;
D.根据相似三角形,可得当x减小时,根据①可知,库仑力也减小,D错误。
故选B。
二、第九章静电场及其应用解答题易错题培优(难)
16.如图,ABD 为竖直平面内的绝缘轨道,其中AB 段是长为 1.25L m =的粗糙水平面,其动摩擦因数为0.1μ=,BD 段为半径R =0.2 m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,电场强度大小3510/E V m =⨯。
一带负电小球,以速度v 0从A 点沿水平轨道向右运动,接着进入半圆轨道后,恰能通过最高点D 点。
已知小球的质量为
22.010m kg -=⨯,所带电荷量52.010q C -=⨯,g 取10 m/s 2(水平轨道足够长,小球可视
为质点,整个运动过程无电荷转移),求:
(1)带电小球在从D 点飞出后,首次在水平轨道上的落点与B 点的距离; (2)小球的初速度v 0。
【答案】(1)0.4m ;(2)2.5m /s 【解析】 【详解】
(1)对小球,在D 点,有:
2D
v mg qE m R
-=
得:
1m/s D v =
从D 点飞出后,做平抛运动,有:
mg qE ma -=
得:
25.0m/s a =
2122
R at =
得:
0.4t s =
0.4m D x v t ==
(2)对小球,从A 点到D 点,有:
22011()2222
D mg q
E L mg R qE R mv mv μ---⋅+⋅=
- 解得:
0 2.5m/s v =
17.如图所示,在光滑绝缘水平面上,质量为m的均匀绝缘棒AB长为L、带有正电,电量为Q且均匀分布.在水平面上O点右侧有匀强电场,场强大小为E,其方向为水平向左,BO距离为x0,若棒在水平向右的大小为QE/4的恒力作用下由静止开始运动.求:
(1)棒的B端进入电场L/8时的加速度大小和方向;
(2)棒在运动过程中的最大动能.
(3)棒的最大电势能.(设O点处电势为零)
【答案】(1)/8
qE m ,向右(2)
()
48
qE L
x+(3)0
(2)
6
qE x L
+
【解析】
【分析】
【详解】
(1)根据牛顿第二定律,得
48
QE L QE
ma
L
-⋅=解得
8
QE
a
m
=,方向向右.
(2)设当棒进入电场x时,其动能达到最大,则此时棒受力平衡,有
4
QE QE
x
L
⋅
=
解得
1
4
x L
=
由动能定理得:
()
00
44
()()
42442448 K o
QE QE
L
QE QE L QE L
E W x x x x x
====
+⨯
∑+-+-+
⨯
(3)棒减速到零时,棒可能全部进入电场,也可能不能全部进入电场,设恰能全部进入电场,
则有:()
42
QE QE
x L L
+-=,
得 x0=L;()
42
QE QEL
L L
ε+
==
当x0<L,棒不能全部进入电场,设进入电场x
根据动能定理得()
00
42
xQE
QE L
x x x
+
+--
=
解之得:
2
8
L L Lx
x
++
=
则2
008 ()4F L L Lx QE W x ε+++==
当x 0>L ,棒能全部进入电场,设进入电场x ()()0
042
QE QE
x x L QE x L +---= 得:023
x L
x += 则()()000242 4436
QE x L x L QE QE x x ε+++⋅=
==
18.如图所示,固定于同一条竖直线上的A 、B 是两个带等量异种电荷的点电荷,电荷量分别为+Q 和-Q ,A 、B 相距为2d 。
MN 是竖直放置的光滑绝缘细杆,另有一个穿过细杆的带电小球p ,质量为m 、电荷量为+q (可视为点电荷,不影响电场的分布。
),现将小球p 从与点电荷A 等高的C 处由静止开始释放,小球p 向下运动到距C 点距离为d 的O 点时,速度为v 。
已知MN 与AB 之间的距离为d ,静电力常量为k ,重力加速度为g 。
求: (1)C 、O 间的电势差U CO ;
(2)O 点处的电场强度E 的大小及小球p 经过O 点时的加速度;
【答案】(1) 222mv mgd q - (2)222kQ d ; 2
22kQq
g md +
【解析】 【详解】
(1)小球p 由C 运动到O 的过程,由动能定理得
2
102
CO mgd qU mv +=
- 所以
222CO
m mgd U q
v -=
(2)小球p 经过O 点时受力如图
由库仑定律得
122
(2)F F d ==
它们的合力为
F =F 1cos 45°+F 2cos 45°=Eq
所以O 点处的电场强度
2
2=
2k Q
E d
由牛顿第二定律得:
mg+qE =ma
所以
2k Qq
a g =
19.万有引力和库仑力有类似的规律,有很多可以类比的地方。
已知引力常量为G ,静电力常量为k 。
(1)用定义静电场强度的方法来定义与质量为M 的质点相距r 处的引力场强度E G 的表达式;
(2)质量为m 、电荷量为e 的电子在库仑力的作用下以速度v 绕位于圆心的原子核做匀速圆周运动,该模型与太阳系内行星绕太阳运转相似,被称为“行星模型”,如图甲。
已知在一段时间内,电子走过的弧长为s ,其速度方向改变的角度为θ(弧度)。
求出原子核的电荷量Q ;
(3)如图乙,用一根蚕丝悬挂一个金属小球,质量为m ,电荷量为﹣q 。
悬点下方固定一个绝缘的电荷量为+Q 的金属大球,蚕丝长为L ,两金属球球心间距离为R 。
小球受到电荷间引力作用在竖直平面内做小幅振动。
不计两球间万有引力,求出小球在库仑力作用下的振动周期。
【答案】(1)质量为M 的质点相距r 处的引力场强度的表达式为
2GM
r
;(2)原子核的电荷量为2mv s
ke
θ;(3)小球在库仑力作用下的振动周期为2Lm R kQq π
【解析】 【详解】
(1)根据电场强度的定义式方法,那么质量为M 的质点相距r 处的引力场强度E G 的表达式:
2G F GM
E m r
=
= (2)根据牛顿第二定律,依据库仑引力提供向心力,则有:
2
2Qe v k m R R
= 由几何关系,得
s
R θ
=
解得:
2mv s
Q ke
θ=
(3)因库仑力:
2Qq F R
=
等效重力加速度:
2
F kQq g m mR '=
= 小球在库仑力作用下的振动周期:
22L Lm T R g kQq
π
π'==
20.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有
一质量为m 可视为质点的带负电小球穿在水平杆上,以方向水平向右、大小等于83
gR 的速度通过A 点,小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若
∠COB =30°,小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83
mg ,从A 至C 小球克服库仑力做的功为
23
2
mgR -,重力加速度为g .求:
(1)小球第一次到达B 点时的动能; (2)小球在C 点受到的库仑力大小;
(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 【答案】(1)56mgR (2)34mg (3)2(833)- 【解析】 【分析】
(1)由动能定理求出小球第一次到达B 点时的动能.
(2)小球第一次过A 点后瞬间,由牛顿第二定律和库仑定律列式.由几何关系得到OC 间的距离,再由库仑定律求小球在C 点受到的库仑力大小.
(3)由动能定理求出小球返回A 点前瞬间的速度,由牛顿运动定律和向心力公式求解小球返回A 点前瞬间对圆弧杆的弹力. 【详解】
(1)小球从A 运动到B ,AB 两点为等势点,所以电场力不做功,由动能定理得:
()
02
11cos602
KB A mgR E mv --=-
代入数据解得:5
6
KB E mgR =
(2)小球第一次过A 时,由牛顿第二定律得:
22A v Qq
N k mg m R R
+-=
由题可知:8
3
N mg =
联立并代入数据解得:
2Qq
k
mg R
= 由几何关系得,OC 间的距离为:
cos303
R r R =
=︒
小球在C 点受到的库仑力大小 :
22Qq Qq
F k
k r ==⎫⎪⎝⎭
库
联立解得3
=
4
F mg 库 (3)从A 到C ,由动能定理得:
2
102
f A W mgR W mv ---=-电
从C 到A ,由动能定理得:
212
f A W mgR W mv +=
'-电
由题可知:W =
电 小球返回A 点时,设细杆对球的弹力方向向上,大小为N ′,由牛顿第二定律得:
22A
v Qq N k mg m
R R
'-'+= 联立以上解得:
(
283
N mg -'=
,
根据牛顿第三定律得,小球返回A
点时,对圆弧杆的弹力大小为(
283
mg -,方向向
下.
21.如图所示,在O 点处放置一个正电荷.在过O 点的竖直平面内的A 点,由静止释放一个带正电的小球,小球的质量为m 、电荷量为q .小球落下的轨迹如图所示,轨迹与以O 为圆心、R 为半径的圆相交于B 、C 两点,O 、C 在同一水平线上,∠BOC=30°,A 距离OC 的竖直高度为h ,已知小球通过B 点的速度为v ,重力加速度为g ,求: (1)小球通过C 点的速度大小;
(2)小球由A 运动到C 的过程中电场力做的功.
【答案】(1) 2c gR =+v v (2) 21()2
W m gR mgh =+-v 【解析】
试题分析:(1)小球下落过程中,受到重力和电场力,由于B 、C 两点处于同一等势面上,故从B 到C 过程电场力做功为零,只有重重力做功,根据动能这定理求解到达C 点的速度;(2)小球从A 至C 的过程中只有重力和电场力做功,根据动能定理即可求解电场力做功.
(1)小球从B 点到C 点的过程中,电场力不做功,而重力做正功 由动能定理得:22
11222
C R mg mv mv ⨯
=- 解得:2C v v gR =+
(2)小球从A 至C 的过程中只有重力和电场力做功 由动能定理得:2
12
C mgh W mv +=电 解得:()
21
2
W m v gR mgh 电=
+- 【试题分析】本题关键是明确几种功能关系的具体形式:总功是动能变化的量度;电场力做功是电势能变化的量度;除重力外其余力做的功是机械能变化的量度.。