安徽蒙城县第一中学下册机械能守恒定律单元达标训练题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、第八章机械能守恒定律易错题培优(难)
1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为
0.2
μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到
v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。

下列说法正确的是()
A.小物块0
到4s内做匀加速直线运动,后做匀减速直线运动直至静止
B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止
C.物块在传送带上留下划痕长度为12m
D.整个过程中小物块和传送带间因摩擦产生的热量为80J
【答案】ACD
【解析】
【分析】
【详解】
物块和传送带的运动过程如图所示。

AB.由于物块的加速度
a1=µg=2m/s2
小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间1
2
v
t
a
==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s
物块的位移
x1=
1
2
a1t12=9m
传送带的位移
x2=
1
2
a2t12=18m
两者相对位移为
121
x x x
∆=-=9m
此后传送带减速,但物块仍加速,B错误;
当物块与传送带共速时,由匀变速直线运动规律得
12- a2t2=6+ a1t2
解得t 2
=1s
因此物块匀加速所用的时间为
t 1+ t 2=4s
两者相对位移为2x ∆= 3m ,所以A 正确。

C .物块开始减速的速度为
v 3=6+ a 1t 2=8 m/s
物块减速至静止所用时间为
331
v t a =
=4s 传送带减速至静止所用时间为 342v t a =
=2s 该过程物块的位移为
x 3=
12a 1t 32=16m 传送带的位移为
x 2=
12
a 2t 42=8m 两者相对位移为 3x ∆=8m
回滑不会增加划痕长度,所以划痕长为
12x x x ∆=∆+∆=9m+3m=12m
C 正确;
D .全程相对路程为
L =123x x x ∆+∆+∆=9m+3m+8m=20m
Q =µmgL =80J
D 正确;
故选ACD 。

2.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为210m/s 。

下列说法正确的是( )
A .物块在传送带上运动的时间为2s
B .物块在传送带上运动的时间为4s
C .整个运动过程中由于摩擦产生的热量为16J
D .整个运动过程中由于摩擦产生的热量为28J
【答案】BD
【解析】
【分析】
【详解】
AB .滑块先向右匀减速,根据牛顿第二定律有
mg ma μ=
解得
22m/s a g μ==
根据运动学公式有
010v at =-
解得
13s t =
匀减速运动的位移
01063m 9m 8m 22
v x t L +==⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移
22
12m 1m 222
v x a ===⨯ 用时
22s 1s 2
v t a === 向左运动时最后3m 做匀速直线运动,有 233=
s 1s 3x t v == 即滑块在传送带上运动的总时间为
1234s t t t t =++=
物块滑离传送带时的速率为2m/s 。

选项A 错误,B 正确;
C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为
110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()
选项C 错误;
D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为
114m l vt ==
物体向左加速过程,传送带运动距离为
222m l vt ==

121[]Q fS mg l x l x μ==++-()()
代入数据解得
28J Q =
选项D 正确。

故选BD 。

3.某实验研究小组为探究物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,使某一物体每次以不变的初速率v 0沿足够长的斜面向上运动,如图甲所示,调节斜面与水平面的夹角θ,实验测得x 与θ的关系如图乙所示,取g =10m/s 2。

则由图可知( )
A .物体的初速率v 0=3m/s
B .物体与斜面间的动摩擦因数µ=0.8
C .图乙中x min =0.36m
D .取初始位置所在水平面为重力势能参考平面,当θ=37°,物体上滑过程中动能与重力势能相等时,物体上滑的位移为0.1875m
【答案】AC
【解析】
【分析】
【详解】
A .当2π
θ=时,物体做竖直上抛运动,不受摩擦力作用,根据
202v gh =
可得
03m/s v =
A 正确;
B .当0θ=时,物体沿水平面做减速运动,根据动能定理
2012
mv mgx μ=
代入数据解得 =0.75μ
B 错误;
C .根据动能定理
201cos sin 2
mv mgx mgx μθθ=+ 整理得
920(0.75cos sin )x θθ=
+ 因此位移最小值 min 20.36m 200.751x =
=+
C 正确;
D .动能与重力势能相等的位置 o 2o o 01sin 37(sin 37cos37)2
mgx mv mgx mgx μ=
-+ 整理得 0.25m x =
D 错误。

故选AC 。

4.如图所示,竖直平面内固定两根足够长的细杆L 1、L 2,两杆分离不接触,且两杆间的距离忽略不计.两个小球a 、b (视为质点)质量均为m ,a 球套在竖直杆L 1上,b 杆套在水平杆L 2上,a 、b 通过铰链用长度为L 的刚性轻杆连接,将a 球从图示位置由静止释放(轻杆与L 2杆夹角为45°),不计一切摩擦,已知重力加速度为g .在此后的运动过程中,下列说法中正确的是
A .a 球和b 球所组成的系统机械能守恒
B .b 球的速度为零时,a 球的加速度大小一定等于g
C .b 22gL +()
D .a 2gL
【答案】AC
【解析】 【详解】 A .a 球和b 球组成的系统没有外力做功,只有a 球和b 球的动能和重力势能相互转换,因此a 球和b 球的机械能守恒,故A 正确;
B .当再次回到初始位置向下加速时,b 球此时刻速度为零,但a 球的加速度小于g ,故B 错误;
C .当杆L 和杆L 1平行成竖直状态,球a 运动到最下方,球b 运动到L 1和L 2交点的位置的时候球b 的速度达到最大,此时由运动的关联可知a 球的速度为0,因此由系统机械能守恒有:
2212b mg L L mv ⎛⎫+= ⎪ ⎪⎝⎭
得:
()2+2b v gL =
故C 正确; D .当轻杆L 向下运动到杆L 1和杆L 2的交点的位置时,此时杆L 和杆L 2平行,由运动的关联可知此时b 球的速度为零,有系统机械能守恒有:
2212
a mg L mv ⋅= 得:
2a v gL =
此时a 球具有向下的加速度g ,因此此时a 球的速度不是最大,a 球将继续向下运动到加
速度为0时速度达到最大,故D 错误.
5.如图所示,ABC 为一弹性轻绳,一端固定于A 点,一端连接质量为m 的小球,小球穿在竖直的杆上。

轻杆OB 一端固定在墙上,一端为定滑轮。

若绳自然长度等于AB ,初始时ABC 在一条水平线上,小球从C 点由静止释放滑到E 点时速度恰好为零。

已知C 、E 两点间距离为h ,D 为CE 的中点,小球在C 点时弹性绳的拉力为2
mg ,小球与杆之间的动摩擦因数为0.5,弹性绳始终处在弹性限度内。

下列说法正确的是( )
A .小球在D 点时速度最大
B .若在E 点给小球一个向上的速度v ,小球恰好能回到
C 点,则2v gh =
C .小球在C
D 阶段损失的机械能等于小球在D
E 阶段损失的机械能
D .若O 点没有固定,杆OB 在绳的作用下以O 为轴转动,在绳与B 点分离之前,B 的线速度等于小球的速度沿绳方向分量 【答案】AD
【解析】
【详解】
A .设当小球运动到某点P 时,弹性绳的伸长量是BP x ,小球受到如图所示的四个力作用:
其中
T BP F kx =
将T F 正交分解,则
N T sin sin 2BP BC mg F F kx kx θθ⋅====
f N 14
F F mg μ==
T F 的竖直分量 T T cos cos y BP CP F F kx kx θθ===
据牛顿第二定律得
f T y m
g F F ma --=
解得
T 3344y CP F kx a g g m m
=-=- 即小球的加速度先随下降的距离增大而减小到零,再随下降的距离增大而反向增大,据运动的对称性(竖直方向可以看作单程的弹簧振子模型)可知,小球运动到CE 的中点D 时,加速度为零,速度最大,A 正确;
B .对小球从
C 运动到E 的过程,应用动能定理得 T F 0104mgh W mgh ⎛⎫-+-=- ⎪⎝⎭
若在E 点给小球一个向上的速度v ,小球恰能从E 点回到C 点,应用动能定理得
T 2F 11()042mgh W mgh mv ⎛⎫-++-=- ⎪⎝⎭
联立解得
T F 34
W mgh =,v gh = B 错误; C .除重力之外的合力做功等于小球机械能的变化,小球在CD 段所受绳子拉力竖直分量较小,则小球在CD 段时摩擦力和弹力做的负功比小球在DE 段时摩擦力和弹力做的负功少,小球在CD 阶段损失的机械能小于小球在DE 阶段损失的机械能,C 错误; D .绳与B 点分离之前B 点做圆周运动,线速度(始终垂直于杆)大小等于小球的速度沿绳方向的分量,D 正确。

故选AD 。

6.如图所示,轻质弹簧一端固定在水平面上O 点的转轴上,另一端与一质量为m 、套在粗糙固定直杆A 处的小球(可视为质点)相连,直杆的倾角为30°,OA =OC ,B 为AC 的中点,OB 等于弹簧原长.小球从A 处由静止开始下滑,初始加速度大小为a A ,第一次经过B 处的速度为v ,运动到C 处速度为0,后又以大小为a C 的初始加速度由静止开始向上滑行.设最大静摩擦力等于滑动摩擦力.下列说法正确的是
A .小球可以返回到出发点A 处
B .弹簧具有的最大弹性势能为2
2
mv C .撤去弹簧,小球可以静止在直杆上任意位置
D .a A -a C =g
【答案】BD
【解析】
【分析】
【详解】
AB.设小球从A 运动到B 的过程克服摩擦力做功为f W ,AB 间的竖直高度为h ,小球的质量
为m ,弹簧具有的最大弹性势能为
p E .根据能量守恒定律,对于小球A 到B 的过程有: 212
p f mgh E mv W +=+ A 到C 的过程有:
22p f p mgh E W E +=+
解得:
212
f p W mgh E mv ==, 小球从C 点向上运动时,假设能返回到A 点,由能量守恒定律得:
22p f p E W mgh E =++
该式违反了能量守恒定律,可知小球不能返回到出发点A 处.故A 错误,B 正确.
C.设从A 运动到C 摩擦力的平均值为f ,AB =s ,由:
f W mgh =
得:
sin 30f s mgs =
解得:
sin 30f mg =
在B 点,摩擦力cos30f mg μ=,由于弹簧对小球有拉力(除B 点外),小球对杆的压
力大于cos30mg μ,所以:
cos30f mg μ>
可得:
sin 30cos30mg mg μ>
因此撤去弹簧,小球不能在直杆上处于静止.故C 错误.
D.根据牛顿第二定律得,在A 点有:
cos30sin 30A F mg f ma +-=
在C 点有:
cos30sin 30C F f mg ma --=
两式相减得:
A C a a g -=
故D 正确.
7.如图所示,固定在竖直平面内的圆管形轨道的外轨光滑,内轨粗糙。

一小球从轨道的最低点以初速度v 0向右运动,球的直径略小于圆管的直径,球运动的轨道半径为R ,空气阻力不计,重力加速度大小为g ,下列说法一定正确的是 ( )
A .若05v gR <
B .若02v gR <,小球不可能到达圆周最高点
C .若0v <,小球运动过程中机械能守恒
D .若0v >
【答案】BC
【解析】
【分析】
【详解】
AD. 小球如果不挤压内轨,则小球到达最高点速度最小时,小球的重力提供向心力,由牛顿第二定律,在最高点,有
2
v mg m R
= 由于小球不挤压内轨,则小球在整个运动过程中不受摩擦力作用,只有重力做功,机械能守恒,从最低点到最高点过程中,由机械能守恒定律,有
22011222
mv mv mg R =+⋅ 解得
0v =
若小球速度0v <
是最终在圆心下方做往复运动,故A 错误;若小球速度0v >轨,小球运动过程中机械能守恒,故D 错误;
B. 如果轨道内轨光滑,小球在运动过程中不受摩擦力,小球在运动过程中机械能守恒,如果小球运动到最高点时速度为0,由机械能守恒定律,有
20122
mv mg R =⋅ 解得
0v =
现在内轨粗糙,如果小球速度0v <小球在到达最高点前速度已为零,小球不可能到达圆周最高点,故B 正确;
C.若小球上升到与圆心等高处时速度为零,此时小球只与外轨作用,不受摩擦力,只有重力做功,由机械能守恒定律,有
2012
mv mgR = 解得
0v
若0v <C 正确。

故选BC 。

8.如图所示,劲度数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变.用水平力F 缓慢推动物体,在弹性限度内弹簧长度被压缩了0x ,此时物体静止.撤去F 后,物体开始向左运动,运动的最大距离为40x .物体与水平面间的动摩擦因数为μ,重力加速度为g .则( )
A .撤去F 后,物体先做匀加速运动,再做匀减速运动
B .撤去F 后,物体刚运动时的加速度大小为0
kx g m
μ- C .物体做匀减速运动的时间为0
2
x g
μD .物体开始向左运动到速度最大的过程中克服摩擦力做的功为0()mg
mg x k
μμ-
【答案】BD 【解析】 【分析】 【详解】
A .撤去F 后,物体水平方向上受到弹簧的弹力和滑动摩擦力,滑动摩擦力不变,而弹簧的弹力随着压缩量的减小而减小,弹力先大于滑动摩擦力,后小于滑动摩擦力,则物体向左先做加速运动后做减速运动,随着弹力的减小,合外力先减小后增大,则加速度先减小后增大,故物体先做变加速运动,再做变减速运动,最后物体离开弹簧后做匀减速运动,A 错误;
B .刚开始时,由牛顿第二定律有:
0kx mg ma μ-=
解得:0
kx a g m
μ=- B 正确;
C .由题意知,物体离开弹簧后通过的最大距离为3x 0,由牛顿第二定律得:
1a g μ=
将此运动看成向右的初速度为零的匀加速运动,则:
20112
3x a t =
联立解得:0
6x t g
μ=
C 错误;
D .当弹簧的弹力与滑动摩擦力大小相等、方向相反时,速度速度最大时合力为零,则有
F mg kx μ==
解得mg
x k
μ=
,所以物体开始向左运动到速度最大的过程中克服摩擦力做的功为:
()f 00(mg W mg x x mg x k μμμ=⎛
⎫=- ⎪⎝
⎭- D 正确。

故选BD 。

9.如图所示,物块套在固定竖直杆上,用轻绳连接后跨过定滑轮与小球相连。

开始时物块与定滑轮等高。

已知物块的质量13m kg =,球的质量25m kg =,杆与滑轮间的距离d =2m ,重力加速度g =10m/s 2,轻绳和杆足够长,不计一切摩擦,不计空气阻力。

现将物块由静止释放,在物块向下运动的过程中( )
A .物块运动的最大速度为
53
m /s B .小球运动的最大速度为
33
m /s C .物块下降的最大距离为3m D .小球上升的最大距离为2.25m
【答案】AD 【解析】 【分析】 【详解】
AB .当物块所受的合外力为0时,物块运动的速度最大,此时,小球所受合外力也为0,则有绳的张力为小球的重力,有
250N T m g ==
对物块作受力分析,由受力平衡可知
1cos T m g θ=
对物块速度v 沿绳子的方向和垂直绳的方向分解,则沿绳方向的分速度即为小球的速度,设为v 1,则有
1cos v v θ=
对物块和小球组成的系统,由机械能守恒定律可知
221212111
()tan sin 22
d d m g
m g d m v m v θθ=-++ 代入数据可得
v =
,1v = 故A 正确,B 错误;
CD .设物块下落的最大高度为h ,此时小球上升的最大距离为h 1,则有
1h d =
对物块和小球组成的系统,由机械能守恒定律可得
121m gh m gh =
联立解得
3.75m h =,1 2.25m h =
故C 错误,D 正确。

故选AD 。

【点睛】
物块与小球具有速度关联,注意物块沿绳方向的分速度大小等于小球的速度大小。

10.某汽车质量为5t ,发动机的额定功率为60kW ,汽车在运动中所受阻力的大小恒为车重的0.l 倍。

若汽车以0.5m/s 2的加速度由静止开始匀加速启动,经过24s ,汽车达到最大速度。

取重力加速度g =10m/s 2,在这个过程中,下列说法正确的是( ) A .汽车的最大速度为12m/s B .汽车匀加速的时间为24s C .汽车启动过程中的位移为120m D .4s 末汽车发动机的输出功率为60kW 【答案】AC 【解析】 【分析】 【详解】
A .当阻力与牵引力平衡时,汽车速度达到最大值,由汽车的功率和速度关系可得
max P Fv fv ==
解得
3max
36010m/s 12m/s 0.10.151010
P P v f mg ⨯====⨯⨯⨯ 故A 正确;
B .汽车以0.5m/s 2的加速度运动时,当汽车的功率达到额定功率时,汽车达到了匀加速运动
阶段的最大速度, 由汽车的功率和速度关系可得
m P F v '=
由牛顿第二定律,可得此时汽车的牵引力为
-0.1F mg ma '=
由以上方程可得
8m/s m v = 37.510N F '=⨯
这一过程能维持的时间
18s 16s 0.5
m v t a =
== 故B 错误;
C .匀加速过程中汽车通过的位移为
22111
0.516m=64m 22
x at =
=⨯⨯ 启动过程中,由动能定理得
2
11max 1()2
F x P t t kmgx mv '+--=
解得,汽车启动过程中的位移为
x =120m
故C 正确;
D .由B 项分析可知,4s 末汽车还在做匀加速运动,实际功率小于额定功率,所以4s 末汽车发动机的输出功率小于60kW ,故D 错误; 故选AC 。

11.如图,水平传送带长为L =4m ,在电动机的带动下以速度v =2m/s 始终保持匀速运动,把质量为m =10kg 的货物放到左端A 点,货物与皮带间的动摩擦因数为μ=0.4,当货物从A 点运动到B 点的过程中,下列说法正确的是(g 取10m/s 2)( )
A .货物一直做匀加速运动
B .货物运动到B 点时的速度大小为2m/s
C .货物与传送带因摩擦而产生的热量为10J
D .电动机因货物多输出的机械能为40J 【答案】BD 【解析】 【分析】
AB .货物在传送带上的加速度
24m/s a g μ==
货物加速到2m/s 所需的时间为
2
s 0.5s 4
v t a =
== 货物加速到2m/s 时的位移为
2211
40.50.5m 22
x at ==⨯⨯=
因为x L <,货物与传送带速度相等后,随传送带一起匀速向右运动,所以货物先加速,后匀速,货物运动到B 点时的速度大小为2m/s ,故A 错误,B 正确; C .在货物加速的0.5s 内,传送带的位移为
120.5m 1m x vt ==⨯=
它们之间的相对位移为
10.5m s x x =-=
所以货物与传送带因摩擦而产生的热量为
0.410100.5J=20J Q mgs μ==⨯⨯⨯
故C 错误;
D .电动机因货物多输出的机械能为物体动能的增加量和系统因摩擦产生的热量,故
2211
102J 20J 40J 22
E mv Q =+=⨯⨯+=
故D 正确。

故选BD 。

12.如图所示,一小球用不可伸长的细绳(长度为l )连接悬于O 点,小球被刚性小锤打击,打击后迅速离开,两次打击才能达到最高点,且球总在圆弧上运动.两次打击均在最低点A 完成,打击的时间极短.若锤第一次对球做功为1W ,锤第二次对球做功为2W ,则
12:W W 最大值为( ).
A .1∶2
B .1∶3
C .2∶3
D .3∶2
【答案】C 【解析】
要使摆球不脱离轨道,则有两种可能,一是摆到和圆心等高处,二是能做完整的圆周运动。

所以第一次敲击后小球摆到摆到和圆心等高处,如果第一次敲击超过了半径R 的高度 那么球就不可能是贴着圆形轨道返回。

第一次敲击后小球到达最高点做完整的圆周运动。

【详解】
要使12:W W 有最大值,则应在1W 最大而2W 最小时。

要使1W 最大,应该是第一次打击后,小球恰能运动到和圆心等高处,所以有
1W mgl =
要使2W 最小,则两次打击后,小球恰能能做完整的圆周运动,在最高点有
2
v mg m l
=
解得v gl =
在最高点具有的机械能2215
222
E mgl mv mgl =+= 所以2123
-2
W gl W E m == 因此12:=2:3W W 故选C 。

【点睛】
抓住球总在圆弧上运动,即摆球不脱离轨道的两种可能,一是摆到和圆心等高处,二是能做完整的圆周运动,这是解决此问题的关键。

13.如图所示,细线上挂着小球,用水平恒力F 将小球从竖直位置P 拉到位置Q ,小球在Q 点垂直绳方向所受的合力恰好为零,此时细绳与竖直方向的夹角为θ,则( )
A .恒力做功等于小球重力势能的增量
B .小球将静止在Q 点
C .细线对小球做的功为零
D .若在Q 点将外力F 撤去,小球来回摆动的角度将等于θ 【答案】C 【解析】
小球在Q点所受的合力恰好为零,由此可分析恒力F和重力的关系,再根据动能定理可分析小球的运动情况。

【详解】
A.小球在Q点垂直绳方向所受的合力恰好为零,由图可知恒力F和重力G的关系为
tan
F Gθ
=
从竖直位置P 拉到位置Q过程中位移为s,恒力F做功
c
tan tan
os cos
22
F
W Gs
G s
θθ
θθ
重力G做功的大小
sin
2
G
W Gh Gs
θ
90
θ<︒所以
2
2
2
tan cos tan2
1
sin
22
tan1tan
F
G
G
W
W G
s
s
θ
θθ
θθθ
即有
F G
W W
而小球重力势能的增量等于重力G做功的大小,因此恒力做功大于小球重力势能的增量,选项A错误;
B.因为F G
W W,根据动能定理可知小球到达Q点时动能不为零,小球具有一定速度,不会静止在Q点,选项B错误;
C.因为小球的轨迹是圆弧,其速度方向始终与细线垂直,因此细线的拉力始终与速度垂直,对小球做的功为零,选项C正确;
D.因为小球在Q点速度不为零,若在Q点将外力F撤去,小球还会向上运动一段距离,到最高点后再回落。

之后的摆动过程中只有重力做功,机械能守恒,因此小球来回摆动的角度将大于θ,选项D错误。

故选C。

【点睛】
抓住小球在Q点所受的合力恰好为零是分析问题的关键。

14.如图所示,一竖直轻质弹簧固定在水平地面上,其上端放有一质量为m 的小球,小球可视为质点且和弹簧不拴接。

现把小球往下按至A 位置,迅速松手后,弹簧把小球弹起,小球上升至最高位置C ,图中经过位置B 时弹簧正好处于自由状态。

已知B 、A 的高度差为1h ,C 、B 的高度差为2h ,重力加速度为g ,空气阻力忽略不计。

下列说法正确的是( )
A .从A 位置上升到
B 位置的过程中,小球的动能一直增大 B .从A 位置上升到
C 位置的过程中,小球的机械能守恒 C .小球在A 位置时,弹簧的弹性势能等于()12mg h h +
D .小球在A 位置时,弹簧的弹性势能小于()12mg h h + 【答案】C 【解析】 【分析】 【详解】
A .小球从A 位置上升到
B 位置的过程中,先加速,当弹簧的弹力k x mg ∆=时,合力为零,加速度减小到零,速度达到最大;之后小球继续上升,弹簧的弹力小于重力,小球做减速运动,故小球从A 上升到B 的过程中,动能先增大后减小,选项A 错误; B .从A 运动到B 的过程中,弹簧对小球做正功,小球的机械能增加。

从B 运动到
C 的过程中,只受重力,机械能守恒,选项B 错误;
CD 、根据系统的机械能守恒可知小球在A 位置时,弹簧的弹性势能等于小球由A 到C 位置时增加的重力势能,为
21p E mg h h =+()
选项C 正确,D 错误。

故选C 。

15.如图所示,长为L 的长木板水平放置,在木板的A 端放置一个质量为m 的小物块,现缓慢地抬高A 端,使木板以左端为固定轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v ,则在整个过程中( )
A .支持力对物块做功为sin mgL α
B .重力对小物块做功为-sin mgL α
C .滑动摩擦力对小物块做的功
2
1sin 2
mv mgL α+ D .小物块的机械能减小了sin mgL α 【答案】A 【解析】 【分析】 【详解】
A .在缓慢抬高木板A 端的过程中,只有重力和支持力对小物块做功,根据动能定理得
sin 0N W mgL α-=
得到支持力对小物块做的功为
=sin N W mgL α
A 正确;
B .对整体过程研究,重力对小物块做功为零,B 错误;
C .小物块沿板下滑过程中,小物块重力和滑动摩擦力做功,根据动能定理得
2
1sin 02
f mgL W mv α+=
- 得到滑动摩擦力对小物块做的功为
21
=sin 2
f W mv mgL α-
C 错误;
D .在整个过程中小物块的机械能是增加的,增加量等于小物块动能的增加量即为212
mv ,D 错误。

故选A 。

相关文档
最新文档