基于动态图神经常微分方程的地铁短时客流预测方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于动态图神经常微分方程的地铁短时客流预测方法
彭颢;贺玉龙;宋太龙;武继壮
【期刊名称】《交通信息与安全》
【年(卷),期】2024(42)1
【摘要】随着城市轨道交通的快速发展,客流量的准确预测对于改善运营服务至关重要。
为了解决当前地铁客流预测存在的时空特性挖掘不充分等问题,进一步提高预测的精度与效率,研究了基于动态图神经常微分方程模型(multivariate time series with dynamic graph neural ordinary differential equations,MTGODE)的地铁短时客流预测方法。
该方法通彭颢1贺玉过学习地铁站点间的动态关联强度构建动态拓扑图结构,基于学习得到的动态图进行连续图传播以传递时空信息、挖掘客流的依赖关系,并采用残差卷积提取多时间尺度下的周期性模式,实现了对站点间时空动态的连续表征,克服了传统图卷积网络模型难以刻画动态空间依赖的局限性。
此外,为了充分挖掘不同站点间客流分布的时空规律,综合利用北京地铁自动售检票系统(auto fare collection,AFC)刷卡数据、天气数据、空气质量数据以及车站周边用地属性数据构建多源融合的客流预测模型。
通过选取地铁北京站和积水潭站-东直门站的历史数据开展进站客流和OD客流预测实验,结果表明:与多个基准模型相比,该模型在平均绝对误差、均方根误差和平均百分比误差这3个指标中均取得了更优的预测效果,相较最优基准模型扩散卷积循环神经网络(diffusion convolutional recurrent neural network,DCRNN)分别降低了
9.93%,12.30%,9.23%,对地铁客流时空分布的拟合程度更好,模型具有更好的预测精度、稳定性和拟合能力。
【总页数】11页(P150-160)
【作者】彭颢;贺玉龙;宋太龙;武继壮
【作者单位】北京工业大学交通工程北京市重点实验室;山东省交通科学研究院;山东省路域安全与应急保障交通运输行业重点实验室
【正文语种】中文
【中图分类】U121
【相关文献】
1.基于EMD优化NAR动态神经网络的地铁客流量短时预测模型
2.基于深度神经网络的短时地铁客流预测
3.基于改进Logistic-SSA-BP神经网络的地铁短时客流预测研究
4.基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型
5.地铁短时客流预测改进LSTM方法
因版权原因,仅展示原文概要,查看原文内容请购买。