实验8-序列信号发生器

合集下载

序列信号发生器的分析与研究

序列信号发生器的分析与研究

序列信号发生器的分析与研究摘要信号发生器用来产生频率为20Hz~200kHz的正弦信号(低频)。

除具有电压输出外,有的还有功率输出。

所以用途十分广泛,可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。

另外,在校准电子电压表时,它可提供交流信号电压。

在数字信号的传输和数字系统的测试中,有时需要用到一组特定的串行数字信号,我们通常把这种串行数字信号叫做序列信号。

而产生序列信号的电路则称为序列信号发生器。

本文主要是通过序列信号发生器的原理、产生方式和分类,以及对电路进行设计仿真等几方面阐述了序列信号发生器分析与研究关键词:序列信号发生器电路仿真移位寄存器目录1、绪论·····················- 1 -1.1、信号发生器的简介:················- 1 -1.1.1、信号发生器简介:················· - 1 -1.1.2、信号发生器的工作原理:·············· - 1 -1.1.3、信号发生器的结构················· - 1 -1.1.4、信号发生器的分类················· - 2 -1.1.5、信号发生器的应用:················ - 2 -2、序列发生器的分析:················- 4 -2.1、序列信号发生器的介绍···············- 4 -2.2、序列信号发生器的工作原理:············- 4 -2.3、序列信号发生器的分类:··············- 4 -2.3.1、移位型序列信号发生器··············· - 4 -2.3.2、计数型序列信号发生器··············· - 5 -3、序列信号发生器的设计···············- 7 -3.1、序列信号发生器的设计:··············- 7 -3.2、序列信号发生器的实现步骤·············- 7 -3.3、器件及相关介绍:················- 13 -3.3.1、所用器件:···················- 13 -3.3.2、所用器件的介绍:················- 13 -4、结论····················- 21 -致谢·····················- 22 -参考资料···················- 23 -1、绪论1.1、信号发生器的简介:1.1.1、信号发生器简介:凡是产生测试信号的仪器,统称为信号源,也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。

序列信号发生器

序列信号发生器

序列信号发⽣器辽宁⼯业⼤学数字系统综合实验课程设计(论⽂)题⽬:序列发⽣器设计院(系):电⼦与信息⼯程学院专业班级:通信091学号:学⽣姓名:指导教师:教师职称:起⽌时间:2011.12.12—2011.12.26课程设计(论⽂)任务及评语⽬录第1章序列信号发⽣器的原理介绍 (1)1.1序列信号发⽣器的原理介绍 (1)1.2 计数器介绍 (1)1.3 数据选择器介绍 (1)第2章序列发⽣器的设计与仿真 (2)2.1实验要求 (2)2.2 利⽤74160及74151芯⽚设计序列发⽣器 (2)2.3设计步骤 (4)2.4设计逻辑图 (5)2.5编译并仿真 (6)第3章实验箱连接图 (6)第4章实验总结 (7)4.1实验设计分析 (7)4.2总结 (7)参考⽂献 (8)第1章序列信号发⽣器的原理介绍1.1序列信号发⽣器的原理介绍在数字电路设计中,有些时候需⽤⼀组⾮常特殊的数字信号。

⼀般情况下我们就将这种特殊的串⾏数字信号叫做序列信号。

⽣成这样的⼀组特定序列信号的电路叫做序列信号发⽣器。

序列信号发⽣器的设计⽅法有多种:(1)使⽤环形计数器设计“1000…0”型序列信号发⽣器;(2)使⽤扭环计数器设计“11…100…0”型序列发⽣器;(3)任意类型的序列发⽣器a.使⽤D触发器设计序列发⽣器b.使⽤计数器和多路复⽤器设计序列发⽣器c.⽤移位寄存器和反馈组合电路(分⽴门电路,译码器,多路复⽤器)设计1.2 计数器介绍在设计数字电路时⽤的⽐较多时序电路可能就是计数器。

它不仅可以⽤于对时钟脉冲计数,也可以⽤于分频、节拍脉冲以及脉冲序列还有就是进⾏数字运算。

总之⽤法⾮常的⼴泛,计数器的种类⾮常繁多。

计数器可以分为同步计数器和异步计数器这样2种。

在同步计数器中,当时钟脉冲输⼊时触发器翻转是同步发⽣的。

然⽽在异步计数器中,触发器的翻转有先后顺序,不是在同⼀时间发⽣的。

另外计数器还有三种。

随着计数脉冲的不断输⼊⽽作增加计数的叫做加法计数器,做减少计数的叫做减法计数器,可以增加也可以减少的叫做可逆计数器。

序列信号发生器课件

序列信号发生器课件

数字电路与系统东南大学信息科学与工程学院第七章常用时序逻辑电路模块及应用寄存器和移位寄存器计数器序列信号发生器◆在数字系统测试和数字信号传输时,会用到一些串行的周期性数字信号,这种串行的周期性数字信号称为序列信号;◆序列信号是在时钟脉冲作用下产生的一串周期性的二进制信号;◆在序列信号的一个周期中,包含的二进制数据位数称为序列长度;◆能产生序列信号的电路称为序列信号发生器;◆序列信号发生器的设计分为两种情况:给定序列信号设计电路;给定序列长度设计电路;给定序列信号设计电路:◆对于给定的序列信号,设计发生器电路一般有两种结构:⏹计数型序列信号发生器;⏹移存型序列信号发生器;(1)计数型序列信号发生器◆计数型序列信号发生器的结构如图:◆计数型序列信号发生器特点是:所产生的序列信号的长度等于计数器的模值,并可根据需要产生一个或多个序列信号;计数型序列信号发生器的设计方法:◆首先构成与序列长度P相同的一个模P计数器;◆选择适当的数据选择器,把要产生的序列按规定的顺序加在数据选择器的数据输入端;◆地址输入端与计数器的输出端适当地连接在一起;◆还可以把输出序列作为计数器的输出,也就是在计数器的基础上增加一个输出函数,输出所需要的序列;例:计数器74161和数据选择器构成一个01100011序列发生器;◆由于序列长度P=8,74161构成模8计数器;◆数据选择器产生序列;◆如图:逻辑图:◆用74161及门电路构成的01010序列信号发生器及状态表◆在这里,Z的输出没有采用最简表达式Q0,是因为如果采用Q0,就会存在100变为101短暂的时刻在输出上出现毛刺(为什么?)(2)移存型序列信号发生器◆移存型序列信号发生器结构如图;◆它是以移位寄存器作为存储器件,移位寄存器的级数n应该满足2n大于等于序列长度;例:用移位寄存器构成的“00010111”序列信号发生器,该序列是左边0先输出,1最后输出。

◆序列信号长度为8,至少应该使用3位移位寄存器;◆我们把移位寄存器的工作状态列出来:序列发生器的状态转移表:例:用移位寄存器构成的“000101”序列信号发生器;◆给定的序列长度为6,因此,移位寄存器的位数应该大于等于3;◆如果选3,列状态转移表如右图所示:◆可以看出,当状态为010时,有两种转移:101和100;◆因此,必须增加移位寄存器的位数,取4;◆状态转移为:◆状态转移表◆逻辑图已知序列长度设计序列信号发生器:◆M序列码发生器是一种反馈移位型结构的电路,它由n位移位寄存器加异或反馈网络组成,其序列长度M=2n-1;◆只有一个多余状态,即全0状态,所以称为最长线性序列码发生器;◆由于其结构已定型,且反馈函数和连接形式都有一定的规律,因此利用查表的方式就可以设计出M序列码发生器电路;◆部分M序列码的反馈函数F和移位寄存器位数n的对应见下页表;◆给定一个序列信号长度M,根据M=2n-1求出n;相应的反馈函数F;◆M序列的反馈函数表:例:采用双向移位寄存器74194设计产生M=7的M序列码◆根据M=2n-1,确定n=3;◆再查表可得反馈函数F=Q2⊕Q3;◆在74194中是Q1⊕Q2逻辑图为:逻辑图修改为:7.3 序列信号发生器②利用全0 状态重新置数,从而实现自启动:◆设计M序列码发生器的关键在于查表获得反馈函数,在设计的时候需要注意全0项的处理;◆加全0 校正项和利用全0 状态置数可以保证电路的自启动性。

设计序列信号发生器

设计序列信号发生器

数码电子学实验设计序列信号发生器报告人:XXX一.具体要求要求用D触发器和门电路设计一个产生1101001序列(序列左边先输出)的序列发生器。

二.实验目的1.熟悉原理图输出法;2.了解可编程器件的实际应用。

三.实验准备1.详解D 触发器 ①电路组成为了避免同步RS 触发器同时出现R 和S 都为1的情况,可在R 和S 之间接入非门G1,如图1所示,这种单输入的触发器称为D 触发器。

图2为其逻辑符号。

D 为信号输入端。

图1:D 触发器逻辑图 图2:D 触发器逻辑符号②逻辑功能在CP=0时,G2,G3被封锁,都输出1,触发器保持原状态不变,不受D 端输入信号的控制。

在CP=1时,G2,G3解除封锁,可接收D 端输入的信号。

如1=D 时,0=D ,触发器翻到1状态,即Q n+1=1,如0=D 时,1=D ,触发器翻到0状态,即Q n+1=0,由此可列出表1所示同步D 触发器的特性表。

表1:同步D 触发器特性表D Q n Q n+1 说明0 0 0 输出状态和D 相同 0 1 0 输出状态和D 相同 1 0 1 输出状态和D 相同 111输出状态和D 相同由上述分析可知,同步D 触发器的逻辑功能如下:当CP 由0变为1后,触发器的状态翻到和D 的状态相同; 当CP 由1变为0后,触发器保持原状态不变。

③D 触发器的名词来源D 触发器不会发生RS 触发器不确定的情形(S=1,R=1),也不会发生JK 触发器的追跑情况(J=1,K=1),那么为什么成为D 触发器呢?因为输出Q 等于输入D ,但是要经过一个CLOCK触发之后才产生,在时间上意味着有延迟时间的作用,所以称为D 型(Delay )触发器。

2.确定移位寄存器的级数n (即需要用多少个寄存器来寄存状态)我们知道,一个D 触发器可以寄存“0”和“1”两种状态,若序列周期为P ,则信号发生器的级数n 应满足2≤P n 。

在本例中,要产生1101001这个序列,3=n 。

信号发生器实验实训报告

信号发生器实验实训报告

一、实验目的1. 熟悉信号发生器的基本原理和组成。

2. 掌握信号发生器的操作方法和使用技巧。

3. 学习通过信号发生器进行信号测试和调试的方法。

4. 培养实验操作能力和分析问题、解决问题的能力。

二、实验原理信号发生器是一种能够产生各种波形信号的电子设备,广泛应用于科研、生产和教学等领域。

本实验所使用的信号发生器为函数信号发生器,可以产生正弦波、方波、三角波等基本波形信号。

三、实验设备1. 信号发生器一台2. 示波器一台3. 测试电缆若干4. 负载电阻若干四、实验内容1. 信号发生器的基本操作(1)打开信号发生器,调整频率、幅度和波形等参数。

(2)观察信号发生器输出波形,确认波形是否正常。

(3)调整输出幅度,使其符合实验要求。

2. 正弦波信号的测试(1)将信号发生器设置为正弦波,调整频率和幅度。

(2)使用示波器观察输出波形,确认波形为正弦波。

(3)测试输出波形的频率、幅度和相位,记录数据。

3. 方波信号的测试(1)将信号发生器设置为方波,调整频率和幅度。

(2)使用示波器观察输出波形,确认波形为方波。

(3)测试输出波形的频率、幅度和占空比,记录数据。

4. 三角波信号的测试(1)将信号发生器设置为三角波,调整频率和幅度。

(2)使用示波器观察输出波形,确认波形为三角波。

(3)测试输出波形的频率、幅度和上升时间、下降时间,记录数据。

5. 信号发生器的应用(1)利用信号发生器产生各种波形信号,进行电路测试和调试。

(2)使用信号发生器进行信号调制和解调实验。

(3)利用信号发生器进行信号分析实验。

五、实验结果与分析1. 正弦波信号测试结果频率:1kHz幅度:2Vpp相位:0°2. 方波信号测试结果频率:1kHz幅度:2Vpp占空比:50%3. 三角波信号测试结果频率:1kHz幅度:2Vpp上升时间:50μs下降时间:50μs实验结果表明,信号发生器能够产生各种波形信号,且波形质量符合实验要求。

六、实验总结1. 通过本次实验,我们熟悉了信号发生器的基本原理和组成,掌握了信号发生器的操作方法和使用技巧。

序列信号发生器的设计方法及应用实例

序列信号发生器的设计方法及应用实例

序列信号发生器的设计方法及应用实例在现代通信系统中,序列信号发生器是一个非常重要的设备,它能够产生各种类型的信号序列,如随机序列、伪随机序列、码片序列等。

这些信号序列在数字通信系统、脉冲调制系统以及其他通信系统中起着至关重要的作用。

在本文中,我将深入探讨序列信号发生器的设计方法及其应用实例,并共享一些个人观点和理解。

1. 序列信号发生器的基本原理序列信号发生器是一种能够产生特定类型的信号序列的设备。

其基本原理是利用特定的算法和逻辑电路来产生所需的信号序列。

在设计序列信号发生器时,首先需要确定所需的信号类型,如随机序列、伪随机序列或者其他类型的序列。

然后根据所选的信号类型,选择合适的算法和电路来实现信号的生成。

最常见的序列信号发生器包括线性反馈移位寄存器(LFSR)、差分方程序列发生器等。

2. 序列信号发生器的设计方法在设计序列信号发生器时,需要考虑信号的周期、自相关性、互相关性等性能指标。

一般来说,设计序列信号发生器的方法可以分为以下几个步骤:(1)确定信号类型:首先需要确定所需的信号类型,如随机序列、伪随机序列或者其他类型的序列。

(2)选择算法和电路:根据所选的信号类型,选择合适的算法和电路来实现信号的生成。

常用的算法包括线性反馈移位寄存器、差分方程序列发生器等。

(3)优化性能指标:优化信号的周期、自相关性、互相关性等性能指标,以确保生成的序列满足系统的要求。

(4)验证和测试:设计完成后,需要对信号发生器进行验证和测试,确保其生成的信号符合设计要求。

3. 序列信号发生器的应用实例序列信号发生器在数字通信系统、脉冲调制系统以及其他通信系统中有着广泛的应用。

以下是一些典型的应用实例:(1)伪随机噪声序列发生器:在数字通信系统中,伪随机噪声序列被广泛用于信道编码、扩频通信以及通信安全等领域。

(2)码片序列发生器:在脉冲调制系统中,码片序列被用于直序扩频通信系统中的扩频码生成。

(3)随机序列发生器:在通信加密领域,随机序列被用于数据加密和解密。

东南大学数字电路实验考试——序列信号发生器(答案)

东南大学数字电路实验考试——序列信号发生器(答案)

序列信号发生器
一、设计一个双序列信号发生器,同时输出的两个序列分别如下:
Y1:110101 (高位先出)
Y2:010110 (高位先出)
要求:
1. 简单写出设计过程,画出原理图(30分),有合理设计过程,且原理图正
确得30分,若使能端电平接错或者不接,扣5分.
2. 根据设计搭试电路(15分)
3. 静态验证结果并用双踪示波器观察并分别输入时钟和Y1、Y2输出的波
形。

(由老师检查,只能够正确实现模6计数器给15分,完全实现25分)(25分)
4. 在答卷上绘出输入时钟和Y1、Y2输出的波形。

(波形应注意相位对齐,
并至少画满一个周期,方波的边沿一定要画出)(10分)
相位对齐6分(每个波形3分),至少画满一个周期3分,方波边沿画出1分。

二、简答:
函数发生器的V oltage Out端口输出的方波能否作为TTL电路的输入信号,为什么?(20分)
答:直接输出不能,因为V oltage Out端口输出的方波是一个交流信号,其VH 和VL等于(1/2)VPP。

若想作为TTL电路的输入信号,则其VPP至少要为6V以上,否则不能满足TTL电平的要求;或者,若是VPP大于3V,则叠加上(1/2)VPP的直流电平后就可以作为TTL电路的输入信号了。

实验八 序列信号发生器

实验八 序列信号发生器

实验八 序列信号发生器一. 实验目的1. 熟悉序列信号发生器的工作原理。

2. 学习序列信号发生器的设计方法。

二. 实验器材74LS161 四位十进制加法计数器 74LS00 四2输入与非门 74LS152 8选1数据选择器 发光二极管若干三. 实验原理在数字信号的传输和数字系统的测试中,有时需要用到一组特定的串行数字信号。

通常把这种串行数字信号叫做序列信号。

产生序列信号的电路成为序列信号发生器。

序列信号的构成方式有多种,比较简单的方式是用计数器和数据选择器组成。

例如,产生一个8位的序列信号00010111(时间顺序由左到右)既可以用一个八进制计数器和一个8选1数据选择器组成。

如图所示,其中八进制计数器取自74LS161(4位二进制计数器)的低三位,8选1数据选择器采用74LS152。

当CP 信号连续不断地加到计数器上,C B A Q Q Q 的状态(也为74LS152的地址输入代码)按图中所示的顺序不断循环,07D D 的状态取反后就循环不断地依次出现在Y 输出端。

C B A Q Q Q由图得到Y 的状态00010111→→→→→→→0S 1S 2S 3S 4S 5S 6S 7S若要修改序列信号,只要修改加到的高. 低电平即可,而不需要更改电路结构。

因此,这种序列信号发生器电路即灵活又方便。

四. 实验内容1 设计一个七位巴克码(0100111)的产生电路,画出电路的时序图。

2 设计灯光控制逻辑电路。

要求红、绿、黄三种颜色的灯在时钟信号作用下按表规定的顺序转换状态。

表中的1表示“亮”,0表示“灭”。

3 用74LS160和74LS138产生序列信号电路图如下:。

信号发生器实验报告

信号发生器实验报告

线性电子电路实验信号发生器专业:班级:姓名:学号:实验原理:一、方案比较网上方案:参考电路:方案比较:与网上方案相比,提供的参考电路有如下几个优点:①比较简单方便,比较两张电路图,可以明显看出参考电路比较简洁,所用的原件比较少,不容易出错,便于检查,而且比较便宜。

②网上方案所用的是ua747和ua741是通用的运放器,精度不高,性能不是很好。

而参考电路用的是TL084精度高,输入电阻很大,并且运行速度很快。

③网上方案用到了选择开关来选择接入的电路,使实验变得不方便。

而参考电路属于全自动,并不需要更多操作。

④网上方案在三角波——正弦波转换电路利用了场效应管3DJ13A而参考电路只用了TL084和电阻、电容,是一种技术上的进步。

二、电路图:参数设计:R1=10K R2=22K R3=1K R4=2K R5=1K R6=1K R7=10K R8=2K R9=10K R P1=10K R P2=10K C1=10nF C2=10nF 稳压管三、电路仿真结果方波:三角波及正弦波:四、硬件实物图五、调试结果:频率大约在500Hz~5KHz六、实验总结本次实验,参考了老师给的参考资料和网上资料,使用了Multisim仿真软件进行仿真,仿真出来的结果非常符合要求,非常理想。

但是在实物焊接后,因元器件和人工的原因,出现了误差,比较容易出现失真,误差比较大。

七、体会和建议1、要熟练掌握仿真软件的使用和对电路图的理解,这样才能比较容易的理解这个实验,不容易出现失误。

2、仿真结果没有出现理想的波形图,要检查电路,对电路的节点也要检测。

要有耐心。

3、电路排线要尽可能的少,这样对于后续的电路检测有很大的帮助。

信号发生器实验步骤

信号发生器实验步骤

信号发生器实验步骤引言信号发生器是一种用于产生各种不同类型的电信号的仪器,广泛应用于科研、教学和工程领域。

本实验将介绍如何使用信号发生器,并通过具体的实验步骤来展示其功能和应用。

实验目的1.了解信号发生器的基本原理和工作方式;2.掌握信号发生器的操作方法;3.学习使用信号发生器产生不同类型的信号。

实验仪器与材料•信号发生器•示波器•连接线实验步骤第一步:准备工作1.确保实验仪器和材料完好无损;2.将示波器与信号发生器连接,确保连接线插头正确连接到相应的接口上。

第二步:打开信号发生器1.按下信号发生器的电源按钮,打开仪器;2.等待一段时间,直到仪器启动完成。

第三步:设置基本参数1.使用旋钮或触摸屏设置输出频率。

根据实际需求,选择所需的频率范围,并输入相应数值;2.设置输出幅度,即信号的振幅。

根据实验要求,选择适当的幅度范围,并输入相应数值。

第四步:选择输出信号类型1.通过菜单或按钮选择所需的信号类型。

常见的信号类型包括正弦波、方波、三角波等;2.如果需要,根据实验要求进一步调整信号的参数,如占空比、频率调制等。

第五步:输出信号1.确认设置无误后,按下输出按钮,开始产生信号;2.使用示波器检测输出信号。

将示波器探头连接到信号发生器的输出端口,并调整示波器的垂直和水平刻度,以便观察到完整的信号波形。

第六步:观察和分析1.在示波器屏幕上观察到输出信号的波形;2.分析波形特征,如频率、幅度、周期等,并记录相关数据;3.如有需要,可以对产生的信号进行进一步处理和分析。

第七步:实验结束1.关闭输出按钮,停止产生信号;2.关闭信号发生器电源。

实验注意事项1.在操作过程中要小心谨慎,避免对仪器造成损坏;2.在调整参数时,要注意逐步调整,避免突然改变参数值导致异常情况;3.注意保持实验环境的安全和整洁,避免杂散信号的干扰。

实验扩展1.尝试使用不同的信号类型,并观察其波形特征的变化;2.探索信号发生器的其他功能和应用,如频率调制、相位调制等;3.尝试连接信号发生器到其他实验设备,如滤波器、放大器等,观察信号在不同设备中的响应。

电工电子实验序列信号发生器

电工电子实验序列信号发生器

4 行为仿真
上页 目录
下页
4 行为仿真
上页 目录
下页
4 行为仿真
上页 目录
下页
4 行为仿真
参照P153页加入激励代码,保存。进行语法检查。
上页 目录
下页
4 行为仿真
上页 目录
下页
5 设计综合
上页 目录
下页
6 设计实现
上页 目录
下页
6 设计实现
上页目录 XC3S50AN芯片管脚与实验箱插座对应关系 下页
上页 目录
下页
1 启动工程设计向导
上页 目录
下页
1 启动工程设计向导
上页 目录
下页
2 新建顶层文件为原理图的工程
上页 目录
下页
2 新建顶层文件为原理图的工程
上页 目录
下页
放置器件符号: 计数器
3 新建原理图文件
上页 目录
下页
放置器件符号: 多路复用器
3 新建原理图文件
上页 目录
下页
放置器件符号: 电源
可编程器件XC3S50AN实验板:
使用前用短接线将实验箱插座“20”脚插孔和实验箱 “GND”相连接,“40”脚插孔和实验箱“+5V”相连接。 Xilinx XC3S50芯片管教与实验箱插座对应关系表如附表1-1 所示。
打斜纹的管脚请勿使用
可接CLK信号
并口线必须在关闭电源的情况下插拔!!!
上页 目录
下页
接+5V
可编程器件XC3S50AN小板
21~39号插 孔(I/O)
与计算机的接 口
复杂可编程逻辑器 件XC3S50AN
接GND
3~19号插孔 (I/O)

序列信号发生器VHDL设计实验报告

序列信号发生器VHDL设计实验报告

实验三序列信号发生器VHDL设计一、实验目的1、设计一个序列信号发生器,可以在时钟的作用下周期性的产生1110010序列信号2、学习时序电路的设计方法;3、掌握产生周期性信号电路的设计方法;4、掌握同步和异步概念;5、掌握仿真的目的和作用;二、实验环境QuartusII 、PC机、GW-PK2 EDA实验箱三、实验原理给出原理图,说明行为描述方式设计序列信号发生器的原理。

可以产生周期信号的序列信号发生器由计数器和译码器构成。

若想产生1110010序列信号,则需要三位二进制计数器,从000记到110,当时钟是上升沿时,若当前记到110,则将计数清为000,再从头开始,否则计数加1,译码器将每个三位二进制数转换为一位序列信号,计数器和译码器分别由两个进程实现。

四、实验内容及要求利用QuartusII完成序列信号发生器的VHDL设计及仿真测试,给出仿真波形,进行引脚锁定,并在实验箱上进行硬件验证。

五、实验步骤(1)用文本方式输入设计文件并存盘①创建工程,利用“New Preject Wizard”创建此设计工程。

选择菜单“File” “New Preject Wizard”,点击Next,即可弹出工程设置对话框点击此框最上一栏右侧的按钮“…”,设置工程路径,找到文件夹D:\Quartus8\vhdl_code\three,填写工程名和顶层文件名称后,点击Next按钮进行下一步。

②添加设计源程序。

如果已有源程序,可以在此加入到工程中,如果没有点击Next进行下一步。

③选择目标芯片。

首先在“Family”栏选芯片系列,在此选“ACEX1K”系列,选择此系列的具体芯片:EP1K30TC144-3。

④选择仿真器和综合器类型。

点击上图的Next按钮,这时弹出的窗口是选择仿真器和综合器类型的,如果都是选默认的“NONE”,表示都选QuartusII中自带的仿真器和综合器,因此,在此都选默认项“NONE”。

⑤结束设置。

信号发生器实验报告

信号发生器实验报告

信号发生器实验报告
本实验使用的是13种基本的信号发生器,各种信号的发生方式、它的特点、参数和其特定应用场合都进行了详细的介绍。

实验分为三部分:实验前准备、实验操作和实验总结与讨论。

实验前准备时,开展了仪器以及各种试验电路的检查,确保相关仪器以及试验电路的准确性,为接下来实验提供了必要的条件和确保。

接下来进行实验操作时,首先熟悉了相关操作步骤和各个参数的功能,然后尝试了各种基本的信号发生模式,熟悉了各种信号的构成及其特点,以及它们的具体应用,并根据实验条件,对其进行了变换和测量,以明确信号变换和测量时各参数变化的影响,探讨出最符合要求的参数组合。

最后,在实验总结中首先汇总了上述实验的总结,可以得出以下结论:将所需的参数调整至最优的组合会使得所发生的信号能够满足实际需求、尽可能减少相关误差,以获得有效的测量结果。

此外,应对各种不同应用场景的参数的组合也要适当变化,以达到最佳效果。

最后,本实验可以说收获颇丰,熟悉了13种基本信号发生器的参数选择及其特点,从而掌握了一般信号发生器的操作流程,进而将所学到的知识运用到实际工程中,从而取得更好的效果。

序列信号发生器设计

序列信号发生器设计

单击此处可添加副标题
如何确定存储器的地址和写入数据: 将码组变换电路的输入数据作为存储器的地址数据(低四位); 输出数据作为该地址对应的存储单元的写入数据(低四位)。 例如:集成计数器方案中,存储器的地址数据为: 0000H~0007H(连续),相应的写入数据为: 03、02、06、04、0C、08、09(16进制数)。 集成移位寄存器方案中,存储器的地址数据为: 0000H~000FH(不连续,只用其中8个),相应的写入数据为: 03、xx、02、xx 、xx、 xx、06、09、 xx、 xx 、xx、08、xx、 0C、04(16进制数)。
下面以四相八拍工作方式为例,说明其设计思路,即如何产生四相八拍方式的状态转换图。
基本设计思路 四相步进电机有四相八拍和四相四拍两种工作方式。按照如下状态转换图的顺序工作:
多路序列信号输出,
设计的原理框图:
01
八状态转换产生电路
02
03
0010~001F
09 08 xx 0C xx xx xx 04 01 xx xx xx 03 xx 02 06
四相四拍/正转
0020~002F
01 02 xx 04 xx xx xx 08 08xx xx xx 04 xx 02 01
四相四拍/反转
0030~003F
08 04 xx 02 xx xx xx 01 01xx xx xx 02 xx 04 08
8个状态
四相四拍/正转
全0
1
1
8个状态
四相四拍/反转
由此决定四种不同工作方式对应的存储器地址数据
步数控制设计:
步进电机的正转和反转:
工作方式
地址范围
写入数据
四相八拍/正转

实验8 RLC正弦稳态电路的研究

实验8 RLC正弦稳态电路的研究

实验八 RLC 正弦稳态电路的研究一、实验目的(1) 通过对RLC 串联电路频率特性的测量与分析,加深对频率特性曲线的理解。

(2) 进一步理解串联谐振的特点及改变频率特性的方法。

二、实验仪器(1) 函数信号发生器 (2) 双踪示波器 (3) 实验箱 三、实验原理和电路含有电感、电容和电阻元件的有源网络,在电源的某些工作频率上,会出现元件两端电压和电流相位相同的情况,称电路发生谐振。

能发生谐振的电路,称为谐振电路。

(1) RLC 串联电路中幅频特性和相频特性在RLC 串联电路中,若施加正弦交流电压,则电路中的电流和各元件上的电压将随电源频率的不同而改变,电流和电源电压间、各元件上的电压和电源电压间的相位差也随电源频率的不同而变化。

前者的函数关系称为幅频特性,后者的函数关系称为相频特性,即RLC 电路的稳态特性。

电路图8-1:图8-1 RLC 串联谐振电路(2) RLC 串联电路的基本计算 由基本计算公式:1(2)2R U R z U R j fL fCππ==+-串联谐振条件: 122fL fC ππ=,即f =LCf o π21= 。

0f 为谐振频率,且仅与C 、L 有关。

此时输出电压RU 值最大。

有: RMU U = 随着输入频率相对谐振频率0f 的增加或减小,输出电压U R 都会减小,但幅度下降到最大值的21(即:0.707U RM )时,会对应两个输入频率:H f 和L f ,我们分别称之为通频带的上限截止频率和下限截止频率。

122122H L R f L R f L ππ⎛ = ⎝⎛ =- ⎝通频带为 W H L B f f =-在谐振频率处的输入电压U 相位和电流相位(即电阻R 上的电压RU 相位)差为 11220o fL fCtg Rππφ--==在上下限截止频率处12()2fL R fCππ-=±,所以相位差为: 4545H L φφ=-︒=+︒这说明当频率高于0f 时,RLC 串联回路中电感的感抗起主导作用,所以相位滞后于输入电压相位;当频率低于0f 时,RLC 串联回路中电容的容抗起主导作用,所以相位超前于输入电压相位。

数电实验报告序列信号发生器的设计与实现

数电实验报告序列信号发生器的设计与实现

北京邮电大学数字电路与逻辑设计实验报告姓名:李金隆学号: 09210947--15班级: 2009211204学院: 电子工程学院2011年5月1日一、实验名称:序列信号发生器的设计与实现二、实验任务要求:1、用VHDL语言设计实现一个信号发生器,产生的序列码为01100111,仿真验证其波形,并下载到实验板测试。

2、用VHDL语言设计实验一个序列长度为7的M序列发生器,仿真验证其功能,并下载到实验班测试。

三、设计思路与过程1、序列信号发生器序列信号发生器的端口由一个时钟输入和两个输出,信号序列输出q_out和时钟输出clk_outt组成。

程序由两个进程构成,第一个进程p1描述状态逻辑,使用if语句实现自启动;第二个进程p2描述输出逻辑,用case语句完成其功能。

根据题目要求,在第1、4、5位置上输出为“0”,在其他位置上输出为“1”,每8位实现一次循环。

在实验过程中,首先在建立Quartus II软件中建立工程,然后再工程中建立VHDL文件,输入程序代码后保存调试,编译成功后,建立Vector Waveform文件进行仿真,仿真完毕后,在程序中引入分频器,编译,锁定引脚后,下载到实验板验证其功能。

在实验板上用一个开关代表clear清零,两个LED一个显示输出序列,一个显示时钟序列clk_outt。

2、M_序列信号发生器M_序列信号发生器的端口由一个时钟输入clk和两个信号输出,时钟输出clk_outt和序列信号输出q_out组成,进程p1描述状态逻辑,用if语句完成循环。

实验过程与实验1类似。

四、VHDL程序源代码1、序列信号发生器library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity xinhao ISport(clk:in std_logic;clear:in std_logic;q_out:out std_logic;clk_outt:out std_logic);--用户定义的输入输出及类型end xinhao;architecture a of xinhao iscomponent div50mport(clk_in:in std_logic;clk_out:out std_logic);--用户定义分频器的输入输出及类型end component;signal tmp: integer range 0 to 7;signal clock: std_logic;--用户定义的信号及其类型beginu1: div50m port map(clk_in=>clk,clk_out=>clock);--分频器的引入p1:process(clock)--第一个进程p1描述状态逻辑beginif clock'event and clock='1' thenif tmp=7 thentmp<=0;elsetmp<=tmp+1;end if;end if;end process p1;p2: process(clear,tmp)—第二个进程描述输出逻辑beginif clear='0' thenq_out<='0';elsecase tmp iswhen 0|3|4 =>q_out<='0';when others =>q_out<='1';end case;end if;end process p2;clk_outt<=clk;end a;2、M序列信号发生器library IEEE;USE IEEE. std_logic_1164.all;entity m_xulie isport (clk:in std_logic;q_out:out std_logic;clk_outt:out std_logic);--用户定义的输出输入及类型end m_xulie;architecture a of m_xulie iscomponent div50mport(clk_in:in std_logic;clk_out:out std_logic);--用户定义分频器的输入的输出及类型end component;signal tmp:std_logic_vector (2 downto 0);signal clock: std_logic;beginu1: div50m port map(clk_in=>clk,clk_out=>clock);--分频器的引入 p1:process(clk)—第一个进程P1描述状态逻辑beginif tmp= "000" then tmp <="001"; elsif clk'event and clk ='1' then tmp(0)<=tmp(0) xor tmp(2);tmp(1)<=tmp(0);tmp(2)<=tmp(1);end if;end process p1;q_out<=tmp(2);--数列信号的输出clk_outt<=clk;end a;五、RTL电路图1、序列信号发生器2、M_序列信号发生器六、仿真波形及其分析1、序列信号发生器从波形仿真图中可以看出,在时钟信号的上升沿,输出信号序列开始按01100111变化,当clear清零时,序列输出q_out也为“0”,时钟输出clk_outt相对于时钟输入clk有一定的时间延迟。

信号发生器实验报告

信号发生器实验报告

信号发生器实验报告摘要:本实验旨在通过使用信号发生器,对不同频率和幅度的信号进行产生和测量,探索信号发生器的基本原理和应用。

通过实验可以进一步理解信号发生器的工作原理以及频率和幅度的关系,并掌握信号发生器的操作方法。

1.引言2.原理3.实验步骤3.1准备工作:将信号发生器连接到电源,打开电源开关,并等待设备启动。

3.2选择频率:根据需要选择一个特定的频率,调整频率控制旋钮,并观察频率显示器上的数值变化。

3.3设置幅度:根据需要选择一个特定的幅度,调整幅度控制旋钮,并观察幅度显示器上的数值变化。

3.4选择波形:根据需要选择合适的波形,如正弦波、方波、三角波等,调整波形控制旋钮,并观察波形。

3.5连接测量仪器:将信号输出端口连接到示波器或其他测量仪器上。

根据需要选择不同的接口和线缆。

3.6测量信号参数:根据需要使用示波器或其他测量仪器,测量并记录信号的频率、幅度等参数。

4.实验结果通过实验,我们成功地产生了不同频率和幅度的信号,并使用示波器对其进行了测量。

根据测量数据,我们制作了频率-幅度图和波形图,对信号的特性进行了分析和比较。

5.讨论与分析在实验中,我们观察到信号发生器能够准确地产生所需的信号,并且改变频率和幅度时,输出信号的特性也相应改变。

通过对信号的测量,我们验证了信号发生器的性能和准确性。

6.实验总结通过本次实验,我们学习和掌握了信号发生器的基本原理和应用。

实验中我们成功地产生了不同频率和幅度的信号,并对其进行了测量和分析。

通过这些实验,我们进一步加深了对信号发生器的理解和应用能力。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验8-序列信号发生器
实验8 序列信号发生器
实验目的:
1.熟悉掌握EDA软件工具Multisim 的仿真测试应用。

2.熟悉序列信号发生器的工作原理。

3.学习序列信号发生器的设计方法。

实验仪器设备与主要器件:
实验箱一个;双踪示波器一台;稳压电源一台;函数发生器一台。

4位十进制加法计数器74LS160;4位二进制加法计数器74LS161。

8选1数据选择器74LS251、74LS152、74LS151。

实验内容:
1.用计数器74LS160设计一个7位巴克码(0100111)的产生电路,画出电路时序图。

用示波器观察电路输出的波形。

实验原理:
①先设计计数器。

由于序列长度为7,所以选用74LS160设计一个八进制计数器。

QB•。

现采用置零法,有效状态为0000~0110,所以LOAD=QC
②然后设计组合输出电路。

令计数器计数过程中每一状态的输出符合给定序列要求,用8选一数据选择器74LS251.实现逻辑函数,且数据选择器的数据输入端D0 D1 D2 D3 D4 D5 D6 D7
0 1 0 0 1 1 1 *
实验分析:如电路图所示,将计数器的输出QCQBQA作用于数据选择器的地址输入端,于是,每计一个数,数据选择器就输出一个预先置好的数据。

当CP信号持续不断地加到计数器上,QCQBQA的状态(也即74LS251的地址输入代码)按0000~0110的顺序不断循环,对应的输出也不断地循环:0100111
实验结果与现象:
2.设计灯光控制逻辑电路。

要求红、绿、黄三种颜色的灯在时钟信号作用下按表2—8—2
CP顺序红绿黄
0 0 0 0
1 1 0 0
2 0 1 0
3 0 0 1
4 1 1 1
5 0 0 1
6 0 1 0
7 1 0 0
8 0 0 0
实验原理:
①先设计计数器。

从表2—8—2可以看出三个序列信号的序列长度为8,所以选用74LS160设计一个八进制计数器。

现采用置零法,有效状态为0000~0111,所以LOAD=QC
•。

QA•
QB
②然后设计组合输出电路。

该电路需产生三个序列信号,所以需要三个数据选择器74LS251。

令计数器计数过程中每一状态的输出符合给定序列要求,用8选一数据选择器74LS251.实现逻辑函数,且数据选择器的数据输入端所置数为:
D0 D1 D2 D3 D4 D5 D6 D7
0 1 0 0 1 0 0 1
D0 D1 D2 D3 D4 D5 D6 D7
0 0 1 0 1 0 1 0
D0 D1 D2 D3 D4 D5 D6 D7
0 0 0 1 1 1 0 0
实验电路:
实验结果与现象:
小灯泡的发光情况与表2-8-2 灯的顺序转换状态一模一样;
三个序列信号的波形图如下所示:
3.用移位寄存器74LS194设计产生移位序列信号为10110的序列信号发生器。

用发光管显示输出序列信号。

画出时序电路图并用示波器观察时序波形。

实验原理:
功能 R D S1 S0 CP
DIL DIR D0 D1 D2 D3 Q0 Q1 Q2 Q3
清除 0 * * * * * * * * * 0 0 0 0 保持 1 0 0 ↑ *
*
* * * * Q0 Q1 Q2 Q3
预置 1 1 1 ↑ * * D0 D1 D2 D3 D0 D1 D2 D3 左移 1 1 0 ↑ DIL * *
* * * Q1Q2 Q3DIL 右移 1
1

*
DIR *
*
*
*
DIRQ0Q1 Q2
所要产生的序列信号为10110,所以可利用Q3输出序列信号,如下图所示,已知Q3,再根据74LS194的功能可以依次确定DIL 以及Q3Q2Q1Q0的状态,可N Q0 Q1 Q2 Q3 DIL 0 1 1 0 1 0 1 1 0 1 0 1 2 0 1 0 1 1 3 1 0 1 1 0 4 0 1 1 0 1 画卡诺图求出DIL 与Q3Q2Q1Q0之间的关系: DIL=03Q Q +=03Q Q • 实验电路:
实验结果与现象:。

相关文档
最新文档