平面基本性质与推论

合集下载

高三数学一轮复习1·平面基本性质与推论

高三数学一轮复习1·平面基本性质与推论
提示:“有”表示图形存在,“只有一个”
表示图形唯一.
② 基 本 性 质 2 的 作 用 : 作 用 一 是 ____________ , 作 用 二 是 ____________________________.
确定平面
(3)关于基本性质3
可用其证明点、线共面问题
①基本性质3的三种数学语言表述: 文字语言表述:如果不重合的两个平面有一个公共点 ,那么它们 _____________________________ _________.
②基本性质3的作用: 其一它是判定两个平面是否相交的依据,只要两个平面有一个公共点,就可以判定这两 个平面必相交于过这点的一条直线,其二它可以判定点在直线上,点是某两个平面的公 共点,线是这两个平面的公共交线,则这点在交线上. 2.平面基本性质的推论 推论1:经过一条直线和这条直线外的______,有且只有一个平面. 推论2:经过____________直线,有且只有一个平面.
A∈l,B∈l,A∈α,∈α⇒l⊂α
不在同一条直线上的三点
符号语言表述:_____________________________ _______________________________________.
A,B,C三点不共线⇒有且只
有一个平面α,使A∈α,B∈α,C∈α
思考感悟
1.如何理解“有且只有一个”?
平面的基本性质与推论
学习目标
1. 理解平面的概念,掌握平面的性质并会确定平 面. 2 .理解直线与直线、直线与平面、平面与平面 的位置关系,会利用定理判定它们之间的关系. 3.会进行文字语言、图形语言、符号语言之间 的转化并能进行一些简单问题的证明.
课前自主学案
1.2.1课堂互动Fra bibliotek练知能优化训练

1.2.1平面的基本性质与推论ppt课件

1.2.1平面的基本性质与推论ppt课件


a与A共属于平面α且平面α唯一 .
(2)推论2 文字语言 :经过两条相交直线,有且只有一 个平面. 图形语言: a是任意一条直线 符号语言: b是任意一条直线 a∩b=A a,b共面于平面α,且α是唯一的 .
(2)推论3 文字语言 :经过两条平行直线,有且只有一 个平面. 图形语言: a , b 是两条直线 符号语言: a//b
异面直线的画法: 通常用一个或两个平面来衬托, 异面直 线不同在任何一个平面的特点.
A


b
a
b
B
l


a
小组讨论以下问题:
6.空间中两两相交的三条直线一定确定一个平面; 7.空间中两两平行的三条直线一定确定一个平面; 8.分别在两个平面内的直线一定是异面直线;
把长方体的棱看作直线,试指出这些 练习:
(3)平面α与平面β相交于直线l,记作 α∩β=l; (4)直线l和m相交于点A,记作l∩m={A}, 简记为l∩m=A.
例1.如图,平面ABEF记作α,平面 ABCD记作β,根据图形填写: (1)A∈α,B ∈α,E ∈ α, C α,D α; (2)A∈β,B ∈β,C ∈ β, D ∈ β,E β,F β; (3)α∩β= AB ;

a,b共面于平面α,且α是惟一的 .
练习:A组4
思考与讨论:
已知两条直线相交,过其中任意一条 直线上的点作另一条直线的平行线,这些 平行线是否都共面?为什么?
A
a
B
b
l
空间中两直线的三种位置关系
(1)相交
m l
(2)平行
m
(3)异面直线
m
P
l
l
P
只有一个公共点 没有公共点

1.1.2平面基本性质与推论2

1.1.2平面基本性质与推论2

课题1.2.1平面的基本性质与推论课型主备人李冬旭上课教师李冬旭上课时间学习目标1、了解平面的基本性质与推论,并能运用这些公理及推论去解决有关问题,会用集合语言来描述点、直线和平面之间的关系以及图形的性质。

2、以所学过的作为推理依据的一些公理和定理为基础,通过直观感知,操作确认,思辨论证,归纳出空间中线、面平行的有关判定定理和性质定理。

能运用已获得的结论证明一些空间位置关系的简单命题。

教学重点平面的基本性质与推论以及它们的应用;线线平行及平行线的传递性和面面平行的定义与判定教学难点自然语言与数学图形语言和符号语言间的相互转化与应用;如何由平行公理以及其他基本性质推出空间线、线,线、面和面、面平行的判定和性质定理,并掌握这些定理的应用。

教师准备教学过程时间分配集备修正(二)平面中的平行关系1. 平行直线(1)空间两条直线的位置关系①相交:在同一平面内,有且只有一个公共点;②平行:在同一平面内,没有公共点。

(2)初中几何中的平行公理:过直线外一点有且只有一条直线和这条直线平行。

【说明】此结论在空间中仍成立.(3)公理4(空间平行线的传递性):平行于同一条直线的两条直线互相平行.即:如果直线a // b,c // b,那么a // c。

【说明】此公理是判定两直线平行的重要方法:寻找第三条直线分别与前两条直线平行。

2. 等角定理等角定理:如果一个角的两边和另一个角的两边分别对应平行,并且方向相同,那么这两个角相等。

推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。

需要说明的是:对于等角定理中的条件:“方向相同”。

1’5x5’(1)若仅将它改成“方向相反”,则这两个角也相等。

(2)若仅将它改成“一边方向相同,而另一边方向相反”,则这两个角互补。

此定理及推论是证明角相等问题的常用方法。

3. 空间图形的平移如果空间图形F的所有点都沿同一方向移动相同的距离到F'的位置,则说图形F在空间做了一次平移。

平面的基本性质及推论

平面的基本性质及推论

4个
(2)共点的三条直线可以确定几个平面? 1个或3个
D1
C1
O
A1
B1
D A
C B
D A
C B
D1 A1
C1 B1
小结
1、平面的基本性质:三公理三推论 2、公理化方法:从一些原始概念(基 本概念)和一些不加证明的原始命题 (公理)出发,运用逻辑推理,推导 出其他命题和定理的方法叫公理化方 法。
观察下列问题,你能得到什么结论?
B
桌面α
A
公理1:如果一条直线上两点在一个平面内,那么这条 直线上的所有的点都在这个平面内(即直线在平面内)。
Байду номын сангаас符 符号号语表言:示:
Al, B l,且A , B l
α
A
B
公理1的作用:
一 是可以用来判定一条直线是否在平面内,即 要判定直线在平面内,只需确定直线上两个 点在平面内即可;
符号语言:
P P
l且P
l
公理3的作用:
一 是判定两个平面相交,即如果两个平面有一个 公共点,那么这两个平面相交;
二 是判定点在直线上,即点若是某两个平面的公 共点,那么这点就在这两个平面的交线上.
三.两平面两个公共点的连线就是它们的交线
β
α
(×)
(×) (×)
(×) (×)
2、(1)不共面的四点可以确定几个平面?
一.平面的概念及特征:
平面没有大小、厚薄和宽窄,平面在空间是无限延伸的。
二.平面的表示:
几何画法:通常用平行四边形来表示平面.
D
C
α A
符号表示:
B
α
平面ABCD 平面AC
三.用数学符号来表示点、线、面之间的位置关系:

高中数学的必修二数学平面的基本性质知识点

高中数学的必修二数学平面的基本性质知识点

高中数学的必修二数学平面的基本性质知识点平面的基本性质教学目标1、知识与能力:(1)巩固平面的基本性质即四条推断出公理和三条推论.(2)能使用公理和推论进行解题.2、过程与方法:(1)体验在空间确定一个平面的过程与方法;(2)掌握利用平面的基本性质证明三点共线、三线共点、多线共面的方法。

3、情感成见与价值观:培养学生认真观察的态度,慎密思考的习惯,提高学生审美能力和空间想象的能力。

教学重点平面的三条基本性质即三条推论.教学难点准确运用三条公理和推论解题.教学过程一、问题情境问题1:空间共点的三条直线二维能确定几个平面?空间互相对角线平行的三条直线呢?问题2:如何判断办公桌的四条腿内则的底端是否在一个平面内?二、温故知新公理1一处如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2如果两个平面有两个一个公共设施点,那么它们还有其它公用点,这些公共点的集合是经过这个公共给定点的一条直线.公理3经过不在同一条直线上的三点,有且只有一个平面.推论1经过一条直线和这条直线外的一点,有且只有一个平面.推论2经过两条直角直线,有且只有一个平面.推论3经过两条平行平行线,有且只有一个平面.公理4(平行公理)平行于同一条直线的两条直线互相平行.把作出以上各公理及推论进行对比:三、数学运用基础训练:(1)已知:;求证:直线AD、BD、CD共面.证明:——公理3推论1——公理1同理可证,,直线AD、BD、CD共面【解题反思1】1。

逻辑要严谨2.书写要规范3.证明共面的步骤:(1)确定平面——公理3及其3个推论(2)证线“归”面(线在面内如:)——公理1(3)作出结论。

变式1、如果直线两两交汇,那么这三条直线是否共面?(口答)变式2、已知空间不共面的二点,过其中任意三点可以三维空间确定一个平面,由这四个一两个点能确知几个平面?变式3、四条线段顺次首尾连接,所得的图形一定是平面曲面图形吗?(口答)(2)已知直线满足:;求证:直线证明:——公理3推论3——公理1直线共面提高训练:已知,求证:四条直线在同一平面内.思路分析:考虑由直线a,b确定一个平面,再证明直线c,l在此平面上,但十分困难。

平面的基本性质:三个公理,三个推论.

平面的基本性质:三个公理,三个推论.

资源信息表14.1 (2)平面及其基本性质——三个公理三个推论一、教学内容分析本节的重点和难点是三个公理三个推论.三个公理和三个推论是立体几何的基础,公理1确定直线在平面上;公理2明确两平面相交于一直线;公理3及三个推论给出了确定平面的条件.这些是后面学习空间直线与平面位置关系的基础.所以让学生透彻理解这些公理和性质,把现实中的具体空间问题抽象出来,初步认识直线与平面、平面与平面之间的关系并体会立体几何的基本思想,从而培养学生的空间想象能力,有利于学生更快更好的学习立体几何.二、教学目标设计理解平面的基本性质,能用三个公理三个推论解决简单的空间线面问题;了解一些简单的证明.培养空间想象能力,提高学习数学的自觉性和兴趣.三、教学重点及难点三个公理,三个推论.四、教学过程设计一、讲授新课(一)公理1如果直线l上有两个点在平面α上,那么直线l在平面α上.(直线在平面上)用集合语言表述:,,,A l B l A B l ααα⊂∈∈∈∈⇒≠ (二)公理2如果不同的两个平面α、β有一个公共点A ,那么α、β的交集是过点A 的直线l .(平面与平面相交)用集合语言表述:l A l A ∈=⋂⇒⋂∈且βαβα (三)公理3和三个推论公理3:不在同一直线上的三点确定一个平面.(确定平面)这里“确定”的含义是“有且仅有”用集合语言表述:A ,B ,C 不共线=>A ,B ,C 确定一个平面 推论1:一条直线和直线外的一点确定一个平面. 证明:设A 是直线l 外的一点,在直线l 上任取两点B 和C ,由公理3可知A ,B 和C 三点能确定平面α.又因为点,B C α∈,所以由公理1可知B ,C 所在直线l α⊂≠,即平面α是由直线l 和点 A 确定的平面.用集合语言表述:,A l A l α∉⇒确定平面 推论2:两条相交的直线确定一个平面. 用集合语言表述:,a b A a b α⋂=⇒确定平面 推论3:两条平行的直线确定一个平面. 用集合语言表述://,a b a b α⇒确定平面 (四)例题解析例1如图,正方体1111ABCD A BC D -中,E ,F 分别是111,B C BB 的中点,问:直线EF 和BC 是否相交?如果相交,交点在那个平面内?解:111111E B C E B C EF B C F B B F B C ∈⇒∈⎫⇒⊂⎬∈⇒∈⎭≠平面平面平面 又1BC B C ⊂≠平面,则直线EF 和BC 共面; 1111//EF BC BC B C EF BC EF B C E ⎫⎪⇒⎬⎪⋂=⎭与共面与相交 设直线EF 和BC 相交于点p ,则p 在直线BC 上,即点P 在平面ABCD 上.1D 1C 1B 1A DCBA FE[说明]利用公理1确定直线在平面内.例2 如图,若,,,a b c a b P αβαχβχ⋂=⋂=⋂=⋂=,求证:直线C 必过点P.解:a P b P P c P c c αββαχβχχβχβχ⋂=⎫⎫∈⎧⎪⎪⋂=⇒⇒∈⋂⎬⎨⎪⇒∈∈⎬⎩⎪⋂=⎭⎪⎪⋂=⎭[结论]三个平面两两相交得到三条交线,若其中两条交于一点,另一条必过此公共点.例3 空间三个点能确定几个平面?空间四个点能确定几个平面?解:三点共线有无数多个平面;三点不共线可以确定一个平面.所以三点可以确定一个或无数个平面.四点共线有无数个平面;有三点共线可确定一个平面;任意三点不共线能确定1个或3个平面.所以四点可以确定1个或3个或无数个平面.[说明]公理3的简单应用.例4空间三条直线相交于一点,可以确定几个平面?空间四条直线相交于一点,可以确定几个平面? 解:三条直线相交于一点可以确定1个或3个平面; 四条直线相交于一点可以确定1个、4个或6个平面. [说明]推论2的简单应用.例5 如图,AB//CD ,,AB E CD F αα⋂=⋂=,求作BC 与平面α的交点.解:连接EF 和BC ,交点即为所求BC 与平面 的交点.(公理3和公理2)[说明]推论3的简单应用.三、课堂小结1.公理1:确定直线在平面内;2.公理2:平面与平面相交于一直线;3.公理3和三个推论确定平面的条件;四、课后作业练习14.1(1)2 练习14.1(2)1,2,3五、教学设计说明本章呈现了几何研究的范围从平面扩展到空间时的基本方法.把几何研究的范围从平面扩展到空间后,增加了新的对象——平面.空间几何学是平面几何学的推广,平面几何中研究点与点、点与直线、直线与直线三种位置关系;空间几何中则增加了点与平面、直线与平面、平面与平面三中位置关系.本节的主要内容是让学生理解三个公理和三个推论,运用这些公理和推论进行一些简单的证明.αFBCDEA公理是人们在长期的生活实践的观察和检验中发现的.可以联系生活中的情景来学习三个公理,从而帮助学生学习,加深他们对公理的理解.三个公理和三个推论是空间几何学习的基础,有了这个基础,才能进一步研究空间中点与面、线与面、面与面的位置关系和度量问题.。

第一章1.2.1平面的基本性质与推论教案学生版

第一章1.2.1平面的基本性质与推论教案学生版

§1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论【学习要求】1.理解平面的基本性质与推论.2.能运用平面的基本性质及推论去解决有关问题.3.会用集合语言来描述点、直线和平面之间的关系以及图形的性质.【学法指导】通过桌面、黑板、地面等有形的实物,对平面有个感性认识,进而抽象出平面的概念及平面的基本性质及推论,感受我们所处的世界是一个三维空间,进而增强学习的兴趣,培养空间想象能力.填一填:知识要点、记下疑难点1.连接两点的线中,线段最短;过两点有一条,并且只有一条直线.2.平面基本性质1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.这时我们说,直线在平面内或平面经过直线 .3.基本性质2:经过不在同一条直线上的三点,有且只有一个平面.或简单说成:不共线的三点确定一个平面.4.基本性质3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.5.基本性质的推论:推论1 :经过一条直线和直线外的一点,有且只有一个平面;推论2 :经过两条相交直线,有且只有一个平面;推论3 :经过两条平行直线,有且只有一个平面.6.异面直线:既不相交也不平行的直线叫做异面直线.与一平面相交于一点的直线与这个平面内不经过交点的直线是异面直线.研一研:问题探究、课堂更高效[问题情境]在《西游记》中,如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心”.结果孙悟空真没有跑出如来佛的手掌心,如果把孙悟空看作是一个点,他的运动成为一条线,大家说如来佛的手掌像什么?探究点一平面的基本性质问题1在初中我们学习的点与直线的基本性质有哪些?问题2生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?那么,平面的含义是什么呢?问题3实际生活中,我们有这样的经验:把一根直尺边缘上的任意两点放到桌面上,可以看到,直尺的整个边缘就落在了桌面上.从经验中我们能得到什么结论呢?问题4直线和平面都可以看成点的集体,那么点、直线、平面的位置关系怎样用集合的符号表示?问题5如何用符号语言表示基本性质1?基本性质1有怎样的用途?问题6生活中经常看到用三角架支撑照相机;测量员用三角架支撑测量用的平板仪;有的自行车后轮旁只安装一只撑脚.上述事实和类似经验可以归纳出平面怎样的性质?问题7如何用符号语言表示基本性质2?基本性质2有怎样的用途?问题8基本性质2中“有且只有一个”的含义是什么?问题9如图所示,直线BC外一点A和直线BC能确定一个平面吗?为什么?问题10如图所示,两条相交直线能不能确定一个平面?为什么?问题11如图所示,两条平行直线能不能确定一个平面?为什么?问题12回顾第1.1节的内容,我们已经看到各种棱柱、棱锥的每两个相交的面之间的交线都是直线段,由此你能总结出怎样的结论?问题13在画两个平面相交时,如果其中一个平面被另一个平面遮住,应该怎样处理才有立体感?探究点二空间中两直线的位置关系问题1空间中的几个点或几条直线,如果都在同一平面内,我们就说它们共面.如果两条直线共面,那么两条直线有怎样的位置关系?问题2如图,直线AB与平面α相交于点B,点A在α外,那么直线l与直线AB能不能在同一个平面内?为什么?直线l与直线AB的位置关系是怎样的?小结:我们把这类既不相交又不平行的直线叫做异面直线.例1如图中的△ABC,若AB、BC 在平面α内,判断AC 是否在平面α内?小结:要判断或证明直线在平面内,只需要直线上的两点在平面内即可.跟踪训练1求证:两两平行的三条直线如果都与另一条直线相交,那么这四条直线共面.已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:直线a、b、c和l共面.例2如图,正方体AC1中,对角线A1C和平面BDC1交于O,AC与BD交于点M,求证:点C1、O、M共线.小结:证明点共线问题常用方法:(1)先找出两个平面,再证明这三个点都是这两个平面的公共点,根据基本性质3从而判定他们都在交线上;(2)选择两点确定一条直线,再证另一点在这条直线上.跟踪训练2空间四边形ABCD中,E、F、G、H分别是AB、AD、BC、CD上的点,已知EF和GH相交于点M,求证:点B、D、M共线.练一练:当堂检测、目标达成落实处1.若点M在直线b上,b在平面β内,则M、b、β之间的关系可记作()A.M∈b∈β B.M∈b⊂βC.M⊂b⊂β D.M⊂b∈β2.空间中可以确定一个平面的条件是()A.两条直线B.一点和一直线C.一个三角形D.三个点3.“a、b为异面直线”是指:①a∩b=∅,且a b;②a⊂面α,b⊂面β,且a∩b=∅;③a⊂面α,b⊂面β,且α∩β=∅;④a⊂面α,b⊄面α;⑤不存在面α,使a⊂面α,b⊂面α成立.上述结论中,正确的是()A.①④⑤正确B.①③④正确C.仅②④正确D.仅①⑤正确课堂小结:1.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点.或先由某两点作一直线,再证明其他点也在这条直线上.2.证明点线共面的方法:先由有关元素确定一个基本平面,再证其他的点(或线)在这个平面内;或先由部分点线确定平面,再由其他点线确定平面,然后证明这些平面重合.注意对诸如“两平行直线确定一个平面”等依据的证明、记忆与运用.3.证明几线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线。

数学高中必修知识点总结(实用11篇)

数学高中必修知识点总结(实用11篇)

数学高中必修知识点总结(实用11篇)数学高中必修知识点总结第1篇一、平面的基本性质与推论1、平面的基本性质:公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;公理2过不在一条直线上的三点,有且只有一个平面;公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

2、空间点、直线、平面之间的位置关系:直线与直线-平行、相交、异面;直线与平面-平行、相交、直线属于该平面(线在面内,最易忽视);平面与平面-平行、相交。

3、异面直线:平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);所成的角范围(0,90】度(平移法,作平行线相交得到夹角或其补角);两条直线不是异面直线,则两条直线平行或相交(反证);异面直线不同在任何一个平面内。

求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角二、空间中的平行关系1、直线与平面平行(核心)定义:直线和平面没有公共点判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行2、平面与平面平行定义:两个平面没有公共点判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线三、空间中的垂直关系1、直线与平面垂直定义:直线与平面内任意一条直线都垂直判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直性质:垂直于同一直线的两平面平行推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度2、平面与平面垂直定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)判定:一个平面过另一个平面的垂线,则这两个平面垂直性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直数学高中必修知识点总结第2篇一.随机事件的概率及概率的意义1、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A 是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

1.2.1 平面的基本性质与推论

1.2.1 平面的基本性质与推论

张喜林制1.2.1 平面的基本性质与推论教材知识检索考点知识清单1.点与直线的基本性质连接两点的线中, 最短;过两点有 ,并且只有 . 2.平面的基本性质公理1:如果一条直线上的 在一个平面内,那么这条直线上的 ,这时我们就说:直线在 或 .公理2:经过 的三点,有且只有一个 即 的三点确定 .公理3:如果不重合的两个平面有一个公共点,那么它们有 条过 的公共直线. 3.平面基本性质的推论推论1:经过一条直线和____,有且只有____推论 2:经过两条____,有且只有____ . 推论3:经过两条____,有且只有____.要点核心解读1.平面的基本性质 (1)公理l①三种语言表述文字语言:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内, 图形语言:如图1-2 -1-1. 符号语言:⇒∈∈∈∈ααB A l B l A ,,,.α⊂l②公理1的条件是“线上有两点在平面内”,结论是“线上的所有点都在平面内”,这个结论阐述两个观点,一是整条直线在平面内,二是直线上的所有点在平面内. ③作用:判定直线是否在平面内,判定点是否在平面内. (2)公理2①三种语言表述文字语言:经过不在同一条直线上的三点,有且只有一个平面.图形语言:如图1-2 -1-2.符号语言:A ,B ,C 三点不共线等有且仅有一个平面α,使.,,ααα∈∈∈C B A②公理2的条件是“过不在同一直线上的三点”,结论是“有且仅有一个平面”,要注意“不在同一条直线上”这一附加条件,舍之则结论不成立.结论中“有且仅有”即“存在且唯一”,又可称之为“确定”平面.③公理2的三个推论推论1:经过一条直线和直线外的一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面.④公理2及三个推论的作用:其一是确定平面,其二可用来证明点、线共面的问题,其三是用来作为计算平面个数的依据. (3)公理3①三种语言表述文字语言:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线. 图形语言:如图1-2 -1-3.符号语言:.l P l P ∈=⇒∈且βαβα②公理3的条件是“两面共一点”,结论是“两面共一线,且过这一点,线唯一”.③作用:其一是判定两个平面是否相交,其二是判定点在直线上,可用来证明多点共线或多线共点问题2.平面基本性质的理解及应用 平面基本性质的三条公理及推论,是我们学习和研究立体几何问题的重要基础,根据平面的基本性质,常将空间图形转化为平面图形解决,这是解答立体几何问题的重要思想方法.(1)公理1是判定直线是否在平面内的依据,运用公理1可判定直线是否在某一平面内.(2)公理2以及推论是确定平面的依据,确定一个平面,包括两层意思:①存在一个平面;②只有一个平面.公理2及其三个推论是四个等价命题.(3)公理3是确定两个平面相交于一条直线的依据,运用公理3可判定多点共线或点在线上.(4)证明空间三点共线的问题.通常证明这些点都在两个平面的交线上,即先确定出某两点在某两个平面的交线上,再证明第三点既在第一个平面内又在第二个平面内,当然必在两个平面的交线上.(5)证明空间三线共点的问题可把其中一条作为分别过其余两条的两个平面的交线,然后存证另两条直线的交点在此直线上.(6)证明空间几点共面的问题,可先取三点(不共线的三点)确定一个平面,再证其他各点都在这个平面内.(7)证明空间几条直线共面的问题,可先取两条(相交或平行)直线确定一个平面,再证其余直线在这个平面内,或者从这些直线中取任意两条确定若干个平面,再一一确定这些平面重合.典例分类剖析考点1 判断命题的正误 命题规律判断对给出的公理及推论的理解或不同表述是否正确. [例1] (1)下列命题中不正确的是( ).A.若一条直线上有一点在平面外,则直线上有无穷多个点在平面外B .若,,,ABC B A ∈∈∈αα则α∈C C .若,,,,B b l A a lb a ==⊂⊂ αα则α⊂lD .若一条直线上有两点在已知平面外,则直线上的所有点都在平面外(2)直线⊂a 平面α,直线⊂b 平面b N a M ∈∈,,α且,l M ∈,l N ∈则( ).α⊂l A . α⊂/l B . M l C =α. N l D =α . [试解] .(做后再看答案,发挥母题功能)[解析] (1)根据公理l ,直线在平面内的条件是直线上有两个点在平面内即可,因此选D .,,,,,,)2(ααα∈∴⊂⊂∈∈N M b a b N a M 而M .N 确定直线L .根据公理1可知,α⊂l 故选A .[答案](1)D(2)A母题迁移 1.下列命题:(1)空间不同的3点确定一个平面; (2)有3个公共点的两个平面必重合;(3)空间两两相交的三条直线确定一个平面; (4)三角形是平面图形;(5)平行四边形、梯形、四边形都是平面图形; (6)垂直于同一直线的两直线平行;(7)-条直线和两平行线中的一条相交,也必和另一条相交; (8)两组对边相等的四边形是平行四边形, 其中正确的命题是 . 考点2 平面个数的确定 命题规律由给定的条件,借助公理确定平面的个数. [例2] (1)不共面的四点可以确定几个平面?(2)三条直线两两平行但不共面,它们可以确定几个平面? (3)共点的三条直线可以确定几个平面? (4)空间三点可以确定几个平面?[答案] (1)不共面的四点可以确定四个平面.(2)三条直线两两平行但不共面,它们可以确定三个平面. (3)共点的三条直线可以确定一个或三个平面.(4)若空间三点不共线,由公理2,则可以确定一个平面;若空间三点共线,则过三点的平面有无数多个,但这三点都不能确定其中的任何一个平面,此时有0个平面.故空间三点可以确定一个或0个平面. [点拨] (1)判定平面的个数问题关键是要紧紧地抓住已知条件,做到不重不漏.平面的个数问题主要是根据已知条件和公理2及其三个推论来判定.(2)题中“确定”即“有且只有”.“有”是说平面存在,“只有”是说平面的唯一性.(3)解此类问题要注意理解“确定”的含义,否则(4)中就会错答为“可确定一个或无数个平面”. 母题迁移 2.四条直线两两平行,任意三条不共面,过其中的任意两条作一个平面,共可以作平面____个.考点3 线共点问题命题规律 证明满足某些条件的几条直线交于一点.[例3] 如图1-2 -1-5所示,空间四边形ABCD 中,E 、F 、G 分别在AB 、BC 、CD 上,且满足===GD CG FB CF EB AE :,1:2::,1:3过E 、F 、G 的平面交AD 于H(1)求AH :HD ;(2)求证:EH 、FC 、BD 三线共点.[答案] (1) ,//,2AC EF FBCFEB AE ∴== //EF ∴平面ACD .而⊂EF 平面EFCR ,平面 EFGH平面,GH ACD =.3.//,//,//==∴∴∴GDCGHD AH GH AC AC nEF GH EF,//)2(GH EF 且,41,31==AC GH AC EF ∴=/∴,GH EF 四边形EFGH 为梯形.令,P FG EH= 则⊂∈∈EH FG P EH P 又,,平面ABD ,⊂FG 平面BCD ,平面 ABD 平面,BD BCD =BD FG EH BD P 、、∴∈∴⋅三线共点.[点拨] 证明线共点的问题实质上是证明点在线上的问题,其基本理论是把直线看作两平面的交线,点看作是两平面的公共点,由公理3得证.母题迁移 3.三个平面两两相交得到三条交线,如果其中有两条相交于一点,那么第三条也经过这个点.考点4 点共线问题命题规律 证明满足某些条件的几个点在一条直线上.[例4] 正方体1111D C B A ABCD -中,对角线C A 1与平面1BDC 交于点O ,AC 、BD 交于点M ,求证:点M O C 、、1共线.[解析] 要证若干点共线的问题,只需证这些点同在两个相交平面内即可.[答案] 如图1-2-1-6所示,C C A A C C A A 1111//、⇒确定平面,1C A的交线上与平面在平面平面直线平面平面平面D BC C A O D BC D BC C A O C A 111111111⇒⎪⎪⎭⎪⎪⎬⎫∈⇒=∈⇒⎭⎬⎫∈⊂O O C A O C A C A ,D BC C A 111111M C O M C C A D BC O ∈⇒⎭⎬⎫=平面平面的交线上与平面在平面即M C O 、、1三点共线.[点拨] 证明点共线的问题,一般转化为证明这些点是某两个平面的公共点.这样就可根据公理3证明这些点都在这两个平面的公共直线上, 母题迁移 4.已知△ABC 在平面α外,直线,P AB =α 直线,R AC =α 直线,Q BC =α 如图1 -2-1 -7.求证:P 、Q 、R 三点共线. 考点5点、线共面问置命题规律证明满足某些条件的若干个点或直线在题同一平面内.[例5] 如图1-2 -1-8所示,M 、N 、P 、Q 分别是正方体////D C B A ABCD -中棱///CC D C BC AB 、、、的中点.求证:M 、N 、P 、Q 四点共面.[解析] 要证这四点共面,方法较多,但注意到本题中点P 、Q 、N 、M 的特殊性及对正方体的理解和认识,可证直线PQ 和MN 相交或M P// NQ.[答案] 证法一:如图l-2-1-8所示,连接MN 并延长交DC 的延长线于O ,则≅∆MBN ,OCN ∆.BM CO =∴连接PQ 并延长交DC 的延长线于,/O 则,//CQ O Q PC ∆≅∆/////,,.O O CO CO PC MB PC CO 、又∴=∴==∴ 重合,∴ PQ 、MN 相交且确定一个平面,故M 、N 、P 、Q 四点共面.证法二:∴,///PC MB 四边形P MBC /为平行四边形.⋅∴∴NQ MP BC NQ BC MP //,//.////∴ MP 与NQ 确定一个平面, 故M 、N 、P 、Q 四点共面.[点拨] 一般地,证明若干个点共面,可证明这些点所在的直线相交,或先证明其中的三点共面,再证明其他的点也在这个平面内,这往往就要用到有关的定理或推论, 母题迁移 5.求证:两两相交且不共点的四条直线共面.学业水平测试1.下列叙述中正确的是( ).A .因为,,αα∈∈Q P 所以α∈PQB .因为,,βα∈∈Q P 所以PQ =βαC .因为,,,ABD AB C AB ∈∈⊂α所以α∈CD D .因为,,βα⊂⊂AB AB 所以)()(βαβα∈-∈∏B A2.下列命题中是真命题的是( ). A .空间不同的三点确定一个平面B .有三个内角是直角的空间四边形是矩形C .三条直线中任意两条均相交,则这三条直线确定一个平面D .顺次连接空间四边形各边的中点所得的四边形其对角线必共面3.在空间,若四点中的任意三点不共线,则此四点不共面.此结论( ). A .正确 B .不正确 C .无法判断 D .缺少条件 4.已知点A ,直线a ,平面α;,αα∉⇒⊂/∈A a a A ①;,αα∈⇒∈∈A a a A ②⊂∉a a A ,③;αα∉⇒A .,αα⊂⇒⊂∈A a a A ④以上命题正确的个数为 .5.下列命题:①空间3点确定一个平面;②有3个公共点的两个平面必重合;③空间两两相交的三条直线确定一个平面;④三角形是平面图形;⑤平行四边形、梯形、四边形都是平面图形;⑥垂直于同一直线的两直线平行;⑦一条直线和两平行线中的一条相交,也必和另一条相交;⑧两组对边相等的四边形是平行四边形,其中正确的命题是 . 6.有空间不同的五个点.(1)若有某四点共面,则这五点最多可确定多少个平面?(2)若任意四点都在同一平面内,则这五点共能确定多少个平面?并证明你的结论,高考能力测试(测试时间:45分钟测试满分:100分) 一、选择题(6分x 7 = 42分)1.空间四点A 、B 、C 、D 共面而不共线,那么四点中( ). A .必有三点共线 B .必有三点不共线 C .至少有三点共线 D .不可能有三点共线 2.如图1-2-1-11所示,平面,l =βα 点、A ,α∈B 点β∈C 且,,R l AB l C =∉ 设过A 、B 、C 三点的平面为γ,则γβ是( ).A .直线ACB .直线BC C .直线CRD .以上均不正确3.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( ). A.5部分 B.6部分 C.7部分 D.8部分 4.在空间内,可以确定一个平面的条件是( ).A .两两相交的三条直线B .三条直线,其中的一条与另外两条直线分别相交C .三个点D .三条直线,它们两两相交,但不交于同一点5.如图1-2 -1-12所示,正方体-ABCD 1111D C B A 中,P 、Q 、R 分别是11C B AD AB 、、的中点.那么,正方体过P 、Q 、R 的截面图形是( ).A .三角形B .四边形C .五边形D .六边形6.不共面的四个定点到平面α的距离都相等,这样的平面a 共有( ). A .3个 B .4个 C .6个 D .7个7.三条直线两两相交,由这三条直线所确定的平面个数是( ). A .1 B .2 C .3 D .1或3二、填空题(5分x4 =20分)8.如果一条直线与一个平面有一个公共点,则这条直线可能有 个点在这个平面内. 9.有下面几个命题:①如果一条线段的中点在一个平面内,那么它的两个端点也在这个平面内;②两组对边分别相等的四边形是平行四边形;③两组对边分别平行的四边形是平行四边形;④四边形有三条边在同一个平面内,则第四条边也在这个平面内;⑤点A 在平面α外,点A 和平面a 内的任何一条直线都不共面. 其中正确命题的序号是 .(把你认为正确的序号都填上) 10.如图1-2 -1 -13所示,正方体-ABCD 1111D C B A 中,E 、F 分别为1CC 和1AA 的中点,画出平面F BED 1与平面ABCD 的交线的作法为11.如图1-2 -1-14所示,E 、F 分别是正方体的面11A ADD 和面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的投影可能是 (要求:把图1-2 -1 -15中可能的图的序号都填上)三、解答题(共38分)12.(8分)如图1-2-1-16所示,在正方体1111D C B A ABCD -中,E 为AB 的中点,F 为1AA 的中点.求证:DA F D CE 、、1A 三线交于一点.13.(10分)如图1-2-1 -17所示,在棱长为1的正方体1111D C B A ABCD -中,M 为AB 的中点,N 为1BB的中点,D 为平面11B BCC 的中心.(1)过O 作一直线与AN 交于P ,与CM 交于Q (只写作法,不必证明);(2)求PQ 的长.14.(10分)如图1-2-1-18所示,正方体1111D C B A ABCD -中,E 、F 分别是1111.B C C D 的中点。

高中人教B版辽宁数学必修1 第6章 6.2.1 平面的基本性质与推论

高中人教B版辽宁数学必修1 第6章 6.2.1 平面的基本性质与推论

6.2 点、线、面之间的位置关系 6.2.1 平面的基本性质与推论1.平面的基本性质及推论经过不在同一条直线上的三点,推论1 经过一条直线和直线外的一点,有且只有一个平面(图①). 推论2 经过两条相交直线,有且只有一个平面(图②). 推论3 经过两条平行直线,有且只有一个平面(图③).2.异面直线(1)定义:把既不相交又不平行的直线叫做异面直线.(2)画法:(通常用平面衬托)3.空间两条直线的位置关系思考:不在同一平面的两条直线是异面直线,对吗?[提示]不对,是不同在任何一个平面内.1.如图所示的平行四边形MNPQ表示的平面不能记为()A.平面MNB.平面NQPC.平面αD.平面MNPQA[MN是平行四边形MNPQ的一条边,不是对角线,所以不能记作平面MN.]2.能确定一个平面的条件是()A.空间三个点B.一个点和一条直线C.无数个点D.两条相交直线D[不在同一条直线上的三个点可确定一个平面,A,B,C条件不能保证有不在同一条直线上的三个点,故不正确.]3.根据图,填入相应的符号:A________平面ABC,A________平面BCD,BD________平面ABC,平面ABC∩平面ACD=________.[答案]∈∉⊄AC画出相应的图形:(1)A∈α,B∉α;(2)l⊂α,m⊄α,m∩α=A,A∉l;(3)P∈l,P∉α,Q∈l,Q∈α.[解](1)点A在平面α内,点B不在平面α内.(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上.(3)直线l经过平面α外一点P和平面α内一点Q.图形分别如图①②③所示.①②③1.用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.2.要注意符号语言的意义.如点与直线的位置关系只能用“∈”或“∉”表示,直线与平面的位置关系只能用“⊂”或“⊄”表示.3.由符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.1.如图,根据图形用符号表示下列点、直线、平面之间的关系.(1)点P与直线AB;(2)点C与直线AB;(3)点M与平面AC;(4)点A1与平面AC;(5)直线AB与直线BC;(6)直线AB与平面AC;(7)平面A1B与平面AC.[解](1)点P∈直线AB;(2)点C∉直线AB;(3)点M∈平面AC;(4)点A1∉平面AC;(5)直线AB∩直线BC=点B;(6)直线AB⊂平面AC;(7)平面A1B∩平面AC=直线AB.【例2】面内.[思路探究]四条直线两两相交且不共点,可能有两种情况:一是有三条直线共点;二是任意三条直线都不共点,故要分两种情况.[解]已知:a,b,c,d四条直线两两相交,且不共点,求证:a,b,c,d 四线共面.证明:(1)若a,b,c三线共点于O,如图所示,∵O∉d,∴经过d与点O有且只有一个平面α.∵A,B,C分别是d与a,b,c的交点,∴A,B,C三点在平面α内.由公理1知a,b,c都在平面α内,故a,b,c,d共面.(2)若a,b,c,d无三线共点,如图所示,∵a∩b=A,∴经过a,b有且仅有一个平面α,∴B,C∈α.由公理1知c⊂α.同理,d⊂α,从而有a,b,c,d共面.综上所述,四条直线两两相交,且不共点,这四条直线在同一平面内.证明点线共面常用的方法(1)纳入法:先由部分直线确定一个平面,再证明其他直线也在这个平面内.(2)重合法:先说明一些直线在一个平面内,另一些直线在另一个平面内,再证明两个平面重合.2.一条直线与三条平行直线都相交,求证:这四条直线共面.[解]已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:直线a,b,c,l共面.证明:法一:∵a∥b,∴a,b确定一个平面α,∵l∩a=A,l∩b=B,∴A∈α,B∈α,故l⊂α.又∵a∥c,∴a,c确定一个平面β.同理可证l⊂β,∴α∩β=a且α∩β=l.∵过两条相交直线a,l有且只有一个平面,故α与β重合,即直线a,b,c,l共面.法二:由法一得a,b,l共面α,也就是说b在a,l确定的平面α内.同理可证c在a,l确定的平面α内.∵过a和l只能确定一个平面,∴a,b,c,l共面.【例1111①直线A1B与直线D1C的位置关系是________;②直线A1B与直线B1C的位置关系是________;③直线D1D与直线D1C的位置关系是________;④直线AB与直线B1C的位置关系是________.[思路探究]判断两直线的位置关系,主要依据定义判断.①平行②异面③相交④异面[根据题目条件知直线A1B与直线D1C 在平面A1BCD1中,且没有交点,则两直线“平行”,所以①应该填“平行”;点A1、B、B1在一个平面A1BB1内,而C不在平面A1BB1内,则直线A1B与直线B1C“异面”.同理,直线AB与直线B1C“异面”.所以②④都应该填“异面”;直线D1D与直线D1C相交于D1点,所以③应该填“相交”.]1.判定两条直线平行与相交可用平面几何的方法去判断.2.判定两条直线是异面直线有定义法和排除法,由于使用定义判断不方便,故常用排除法,即说明这两条直线不平行、不相交,则它们异面.3.若a、b是异面直线,b、c是异面直线,则()A.a∥c B.a、c是异面直线C.a、c相交D.a、c平行或相交或异面D[若a、b是异面直线,b、c是异面直线,那么a、c可以平行,可以相交,可以异面.][1.如图,在正方体ABCD-A1B1C1D1中,设A1C∩平面ABC1D1=E.能否判断点E在平面A1BCD1内?[提示]如图,连接BD1,∵A1C∩平面ABC1D1=E,∴E∈A1C,E∈平面ABC1D1.∵A1C⊂平面A1BCD1,∴E∈平面A1BCD1.2.上述问题中,你能证明B,E,D1三点共线吗?[提示]由于平面A1BCD1与平面ABC1D1交于直线BD1,又E∈BD1,根据公理3可知B,E,D1三点共线.【例4】如图,在正方体ABCD-A1B1C1D1中,点M,N,E,F分别是棱CD,AB,DD1,AA1上的点,若MN与EF交于点Q,求证:D,A,Q三点共线.[解]因为MN∩EF=Q,所以Q∈直线MN,Q∈直线EF,又因为M∈直线CD,N∈直线AB,CD⊂平面ABCD,AB⊂平面ABCD.所以M,N∈平面ABCD,所以MN⊂平面ABCD.所以Q∈平面ABCD.同理,可得EF⊂平面ADD1A1.所以Q∈平面ADD1A1.又因为平面ABCD∩平面ADD1A1=AD,所以Q∈直线AD,即D,A,Q三点共线.点共线与线共点的证明方法(1)点共线:证明多点共线通常利用公理3,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在其上.(2)三线共点:证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上,此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证点重合,从而得三线共点.4.如图所示,A,B,C,D为不共面的四点,E,F,G,H分别在线段AB,BC,CD,DA上.(1)如果EH∩FG=P,那么点P在直线________上.(2)如果EF∩GH=Q,那么点Q在直线________上.(1)B D(2)AC[(1)若EH∩FG=P,那么点P∈平面ABD,P∈平面BCD,而平面ABD∩平面BCD=BD,所以P∈BD.(2)若EF∩GH=Q,则点Q∈平面ABC,Q∈平面ACD,而平面ABC∩平面ACD=AC,所以Q∈AC.]1.思考辨析(1)三点可以确定一个平面.()(2)一条直线和一个点可以确定一个平面.()(3)四边形是平面图形.()(4)两条相交直线可以确定一个平面.()[解析](1)错误.不共线的三点可以确定一个平面.(2)错误.一条直线和直线外一个点可以确定一个平面.(3)错误.四边形不一定是平面图形.(4)正确.两条相交直线可以确定一个平面.[答案](1)×(2)×(3)×(4)√2.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是()A.平行或异面B.相交或异面C.异面D.相交B[如图,在长方体ABCD-A1B1C1D1中,AA1与BC是异面直线,又AA1∥BB1,AA1∥DD1,显然BB1∩BC=B,DD1与BC是异面直线,故选B.]3.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则直线AB∩β=________.C[∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.]4.如图,三个平面α,β,γ两两相交于三条直线,即α∩β=c,β∩γ=a,γ∩α=b,若直线a和b不平行.求证:a,b,c三条直线必过同一点.[证明]∵α∩γ=b,β∩γ=a,∴a⊂γ,b⊂γ.由于直线a和b不平行,∴a、b必相交.设a∩b=P,如图,则P∈a,P∈b.∵a⊂β,b⊂α,∴P∈β,P∈α.又α∩β=c,∴P∈c,即交线c经过点P.∴a,b,c三条直线相交于同一点.。

平面的基本性质和推论

平面的基本性质和推论
1.2.1平面旳基本性质 与推论
一、复习回忆
点A在直线l上 点A在直线l外 点A在平面 内 点A在平面 外
直线l在平面 内
直线l在平面 外
A

l
A●
l
A ●
●A
l
l
l
Al Al
A A
l
l
二.引领探究
文字语言:公理1 假如一条直线上有两点在一种平面内,
那么这条直线上全部旳点都在这个平面内.
图像语言:
4条直线相交于一点时:
(1)、4条直线 全共面时
(2)、有3条直线 共面时
(3)、每2条直线 都拟定一平面时
三条直线相交于一点,用其中旳两条 拟定平面,能够拟定1、4、6个。
四.课堂小结
• 三点共线问题:公共点在公共直线上 • 共面问题:找平行直线或相交直线 • 三线共点问题:先证两条直线交于一点,然后证交
M
当堂检测
(3)三条直线相交于一点,用其中旳两条拟定 一种平面,能够拟定旳平面数是_______;
(4)四条直线过同一点,过每两条直线作一种 平面,则能够作_____________个不同旳 平面 .
3条直线相交于一点时:
(1)、3条直线共面时 (2)、每2条直线拟定一平面时
三条直线相交于一点,用其中旳两条拟定 平面,能够拟定1、3个。
使A , B , C
作用:拟定平面旳根据.
A•
B
C


公理2旳推论
推论1 经过一条直线和直线外旳 一点,有且只有一种平面 .
•A
C•
B•
•A


B
C
推论2 经过两条相交直线, 有且只有一种平面.

直线与平面的关系

直线与平面的关系

一、平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈L ,B ∈L=>L α A ∈α,B ∈α公理1作用:判断直线是否在平面内公理2:过不在一条直线上的三点,有且只有一个平面。

推论1: 经过一条直线及直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理2作用:确定一个平面的依据。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L公理3作用:判定两个平面是否相交的依据 二、空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 异面直线:不在同一个平面内的两条直线。

异面直线既不相交也不平行。

异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过这点的直线是异面直线。

这个定理是判定空间两条直线是异面直线的理论依据。

LA· αCB ·A· αP ·αLβ共面直线5 注意点:(1)直线所成的角θ∈(0, ]。

(2)条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;(3)直线互相垂直,有共面垂直与异面垂直两种情形;(4)计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

三、空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2直线、平面平行的判定及其性质线面平行的判定定理1、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

2020届高考数学(文)一轮复习讲义 第8章 8.3 平面的基本性质与推论

2020届高考数学(文)一轮复习讲义 第8章  8.3 平面的基本性质与推论

§8.3平面的基本性质与推论1.平面的基本性质及推论(1)平面的基本性质基本性质1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内. 基本性质2:经过不在同一直线上的三点,有且只有一个平面.基本性质3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.(2)平面基本性质的推论推论1:经过一条直线和直线外的一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 2.直线与直线的位置关系(1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:既不平行又不相交的直线(2)判断两直线异面:与一平面相交于一点的直线与这个平面内不经过交点的直线是异面直线. 3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况. 4.平面与平面的位置关系有平行、相交两种情况.概念方法微思考分别在两个不同平面内的两条直线为异面直线吗?提示不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)如果两个平面有三个公共点,则这两个平面重合.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.(×)题组二教材改编2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30°B.45°C.60°D.90°答案 C解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.3.如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.答案(1)AC=BD(2)AC=BD且AC⊥BD解析 (1)∵四边形EFGH 为菱形, ∴EF =EH ,∴AC =BD .(2)∵四边形EFGH 为正方形,∴EF =EH 且EF ⊥EH , ∵EF ∥AC ,EH ∥BD ,且EF =12AC ,EH =12BD ,∴AC =BD 且AC ⊥BD . 题组三 易错自纠4.α是一个平面,m ,n 是两条直线,A 是一个点,若m ⊄α,n ⊂α,且A ∈m ,A ∈α,则m ,n 的位置关系不可能是( ) A .垂直 B .相交 C .异面 D .平行答案 D解析 依题意,m ∩α=A ,n ⊂α,∴m 与n 可能异面、相交(垂直是相交的特例),一定不平行.5.如图,α∩β=l ,A ,B ∈α,C ∈β,且C ∉l ,直线AB ∩l =M ,过A ,B ,C 三点的平面记作γ,则γ与β的交线必通过( )A .点AB .点BC .点C 但不过点MD .点C 和点M 答案 D解析 ∵AB ⊂γ,M ∈AB ,∴M ∈γ. 又α∩β=l ,M ∈l ,∴M ∈β.根据公理3可知,M 在γ与β的交线上.同理可知,点C也在γ与β的交线上.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.答案 3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH 相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用例1 如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内;②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1 如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线.证明(1)∵E,F分别为AB,AD的中点,∴EF∥BD.∵在△BCD中,BGGC=DHHC=12,∴GH∥BD,∴EF∥GH.∴E,F,G,H四点共面.(2)∵EG∩FH=P,P∈EG,EG⊂平面ABC,∴P∈平面ABC.同理P∈平面ADC.∴P为平面ABC与平面ADC的公共点.又平面ABC∩平面ADC=AC,∴P∈AC,∴P,A,C三点共线.题型二判断空间两直线的位置关系例2 (1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案 D解析由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.故选D.(2)如图,在正方体ABCD-A1B1C1D1中,点E,F分别在A1D,AC上,且A1E=2ED,CF =2F A,则EF与BD1的位置关系是()A.相交但不垂直B.相交且垂直C.异面D.平行答案 D解析连接D1E并延长,与AD交于点M,由A1E=2ED,可得M为AD的中点,连接BF并延长,交AD于点N,因为CF=2F A,可得N为AD的中点,所以M,N重合,所以EF和BD1共面,且MEED1=12,MFBF=12,所以MEED1=MFBF,所以EF∥BD1.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.异面直线可采用直接法或反证法;平行直线可利用三角形(梯形)中位线的性质及线面平行与面面平行的性质定理;垂直关系往往利用线面垂直或面面垂直的性质来解决.跟踪训练2 (1)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________.(注:把你认为正确的结论序号都填上)答案③④解析因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故①错;取DD1中点E,连接AE,则BN∥AE,但AE与AM相交,故②错;因为B1与BN都在平面BCC1B1内,M在平面BCC1B1外,BN 不过点B1,所以BN与MB1是异面直线,故③正确;同理④正确,故填③④.题型三求两条异面直线所成的角例3 (2019·盘锦模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD—A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为()A.15B.25 C.35 D.45答案 D解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=45,即异面直线A 1B 与AD 1所成角的余弦值为45.引申探究将上例条件“AA 1=2AB =2”改为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,试求AA 1AB的值.解 设AA 1AB =t (t >0),则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1,∴cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910. ∴t =3,即AA 1AB=3.思维升华 用平移法求异面直线所成的角的三个步骤 (1)一作:根据定义作平行线,作出异面直线所成的角; (2)二证:证明作出的角是异面直线所成的角; (3)三求:解三角形,求出所作的角.跟踪训练3 (2018·全国Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( ) A.22 B.32 C.52 D.72答案 C解析 如图,因为AB ∥CD , 所以AE 与CD 所成角为∠EAB .在Rt △ABE 中,设AB =2, 则BE =5,则tan ∠EAB =BE AB =52,所以异面直线AE 与CD 所成角的正切值为52.立体几何中的线面位置关系直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题.例 如图所示,四边形ABEF 和ABCD 都是梯形,BC ∥AD 且BC =12AD ,BE ∥F A 且BE =12F A ,G ,H 分别为F A ,FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么? (1)证明 由已知FG =GA ,FH =HD , 可得GH ∥AD 且GH =12AD .又BC ∥AD 且BC =12AD ,∴GH ∥BC 且GH =BC , ∴四边形BCHG 为平行四边形.(2)解 ∵BE ∥AF 且BE =12AF ,G 为F A 的中点,∴BE ∥FG 且BE =FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG ∥CH .∴EF ∥CH ,∴EF 与CH 共面. 又D ∈FH ,∴C ,D ,F ,E 四点共面.素养提升 平面几何和立体几何在点线面的位置关系中有很多的不同,借助确定的几何模型,利用直观想象讨论点线面关系在平面和空间中的差异.1.四条线段顺次首尾相连,它们最多可确定的平面个数为()A.4 B.3C.2 D.1答案 A解析首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.a,b,c是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c答案 C解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.3.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线ABC.直线CDD.直线BC答案 C解析由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.4.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面答案 A解析连接A1C1,AC,则A1C1∥AC,∴A1,C1,A,C四点共面,∴A1C⊂平面ACC1A1,∵M∈A1C,∴M∈平面ACC1A1,又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理A,O在平面ACC1A1与平面AB1D1的交线上.∴A,M,O三点共线.5.(2017·全国Ⅱ)已知直三棱柱ABCA1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.32 B.155 C.105 D.33答案 C解析将直三棱柱ABC-A1B1C1补形为直四棱柱ABCD-A1B1C1D1,如图①所示,连接AD1,B1D1,BD.图①由题意知∠ABC =120°,AB =2,BC =CC 1=1, 所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=AB 2+AD 2-2×AB ×AD ×cos ∠DAB =22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1= 3. 又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.6.正方体AC 1中,与面ABCD 的对角线AC 异面的棱有________条. 答案 6解析 如图,在正方体AC 1中,与面ABCD 的对角线AC 异面的棱有BB 1,DD 1,A 1B 1,A 1D 1,D 1C 1,B 1C 1,共6条.7.(2019·东北三省三校模拟)若直线l ⊥平面β,平面α⊥平面β,则直线l 与平面α的位置关系为________. 答案 l ∥α或l ⊂α解析 ∵直线l ⊥平面β,平面α⊥平面β, ∴直线l ∥平面α,或者直线l ⊂平面α.8.在三棱锥S -ABC 中,G 1,G 2分别是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是________. 答案 平行解析 如图所示,连接SG 1并延长交AB 于M ,连接SG 2并延长交AC 于N ,连接MN .由题意知SM 为△SAB 的中线,且SG 1=23SM ,SN 为△SAC 的中线,且SG 2=23SN ,∴在△SMN 中,SG 1SM =SG 2SN,∴G1G2∥MN,易知MN是△ABC的中位线,∴MN∥BC,∴G1G2∥BC.9.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案 2解析取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为 2.10.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析还原成正四面体A-DEF,其中H与N重合,A,B,C三点重合.易知GH与EF异面,BD与MN异面.连接GM,∵△GMH为等边三角形,∴GH与MN成60°角,易证DE⊥AF,又MN∥AF,∴MN⊥DE.因此正确命题的序号是②③④.11.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.(1)证明假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是△BCD所在平面外的一点相矛盾.故直线EF与BD是异面直线.(2)解取CD的中点G,连接EG,FG,则AC∥FG,EG∥BD,所以相交直线EF与EG所成的角,即为异面直线EF与BD所成的角.又因为AC ⊥BD ,则FG ⊥EG . 在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°, 即异面直线EF 与BD 所成的角为45°.12.如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解 (1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·P A =13×23×2=433. (2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2, cos ∠ADE =AD 2+DE 2-AE 22×AD ×DE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.13.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) A.32 B.22 C.33 D.13答案 A解析 如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m , 又∵平面ABCD ∥平面A 1B 1C 1D 1, 平面CB 1D 1∩平面A 1B 1C 1D 1 =B 1D 1,∴B 1D 1∥m 1, ∴B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小. 又∵B 1C =B 1D 1=CD 1(均为面对角线), ∴∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A. 14.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°;③EF 与MN 是异面直线;④MN ∥CD .以上四个命题中,正确命题的序号是________.答案①③解析如图,①AB⊥EF,正确;②显然AB∥CM,所以不正确;③EF与MN是异面直线,所以正确;④MN与CD异面,并且垂直,所以不正确,则正确的是①③.15.如图,正方形ACDE与等腰直角三角形ACB所在的平面互相垂直,且AC=BC=4,∠ACB =90°,F,G分别是线段AE,BC的中点,则AD与GF所成的角的余弦值为________.答案36解析 取DE 的中点H ,连接HF ,GH .由题设,HF ∥AD 且HF =12AD ,∴∠GFH 为异面直线AD 与GF 所成的角(或其补角). 在△GHF 中,可求HF =22, GF =GH =26,∴cos ∠GFH =HF 2+GF 2-GH 22×HF ×GF=(22)2+(26)2-(26)22×22×26=36.16.如图所示,三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解 (1)方法一 如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为EC ⊥AC ,OM ,EC ⊂平面ACC 1A 1, 所以OM ∥EC .又因为EC =2FB =2,EC ∥FB , 所以OM ∥FB 且OM =12EC =FB ,所以四边形OMBF 为矩形,BM ∥OF . 因为OF ⊂平面AEF ,BM ⊄平面AEF , 故BM ∥平面AEF ,此时点M 为AC 的中点.方法二 如图所示,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ .因为EC =2FB =2,所以PE ∥BF 且PE =BF ,所以PB ∥EF ,PQ ∥AE ,又AE ,EF ⊂平面AEF ,PQ ,PB ⊄平面AEF ,所以PQ ∥平面AFE ,PB ∥平面AEF ,因为PB ∩PQ =P ,PB ,PQ ⊂平面PBQ ,所以平面PBQ ∥平面AEF .又因为BQ ⊂平面PBQ ,所以BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角. 易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155, 所以BM 与EF 所成的角的余弦值为155.。

平面基本性质与推论

平面基本性质与推论

符号语言表述:X ■「二1 J匚二二]''■二人二匚厂r②内容剖析:公理1的内容反映了直线与平面的位置关系,条件“线上两点在平面内”是公理的必须条件,结论“线上所有点都在面内”。

这个结论阐述两个观点,一是整个直线在平面内,二是直线上所有点都在平面内。

③公理<1)的作用:既可判定直线是否在平面内,点是否在平面内,又可用直线检验平面。

<2)关于公理2①公理2的三种数学语言表述:文字语言表述:过不在同一直线上的三点,有且只有一个平面。

图形语言表述:如图2所示符号语言表述:A B C三点不共线;有且只有一个平面a,使②内容剖析:公理2的条件是“过不在同一直线上的三点”,结论是“有且只有一个平面”。

条件中的“三点”是条件的骨干,不会被忽视,但“不在同一直线上”这一附加条件则易被遗忘,如舍之,结论就不成立了,因此绝对不能遗忘.同时还应认识到经过一点、两点或在同一直线上的三点可有无数个平面;过不在同一直线上的四点,不一定有平面,因此要充分重视“不在同一直线上的三点”这一条件的重要性。

公理2中的“有且只有一个”含义要准确理解。

这里的“有”是说图形存在。

“只有一个”是说图形惟一,本公理强调的是存在和惟一两个方面。

因此“有且只有一个”必须完整的使用,不能仅用“只有一个”来替代“有且只有一个”,否则就没有表达存在性。

“确定一个平面”中的“确定”是“有且只有”的同义词,也是指存在性和惟一性这两方面的,这个术语今后也会常常出现,要理解好。

③公理2的作用:作用一是确定平面;作用二是可用其证明点、线共面问题。

<3)关于公理3①公理3的三种数学语言表述:文字语言表述:如果不重合的两个平面有一个公共点,那么它们有且只有一条过该点的公共直线。

图形语言表述:如图3所示符号语言表述:[上■- - < r-i. -i-■:-②公理3的剖析:公理3的内容反映了平面与平面的位置关系。

公理2的条件简言之是“两面共一点”,结论是“两面共一线,且过这一点,线惟一”。

1.2.1平面的基本性质与推论

1.2.1平面的基本性质与推论
1.2.1平面的基本性质与推论 平面的基本性质与推论
中国人民大学附属中学
一.平面的基本性质: 平面的基本性质: 1.公理1: .公理 : ①文字语言:如果一条直线上的两点在 文字语言: 一个平面内, 一个平面内,那么这条直线上的所有点 都在这个平面内 ; ②图形语言: 图形语言: ③符号语言:A∈l;B∈l,A∈α,B∈α 符号语言: ∈ ; ∈ , ∈ , ∈
⇒ AB ⊂ α.
练习: 练习:
(2) l ⊂ α, A∈l ⇒ )
A∈α (1) ) ⇒ AB ⊂α 。 B∈α
A∈α

公理1的作用有两个:(1)作为判断和证 公理 的作用有两个:( )作为判断和证 的作用有两个:( 明直线是否在平面内的依据, 明直线是否在平面内的依据,即只需要看 的依据 直线上是否有两个点在平面内就可以了; 直线上是否有两个点在平面内就可以了;
可以用来检验某一个面是否为 (2)公理 可以用来检验某一个面是否为 )公理1可以用来 平面,检验的方法为: 平面,检验的方法为:把一条直线在面内 旋转,固定两个点在面内后, 旋转,固定两个点在面内后,如果其他点 也在面内,则该面为平面。 也在面内,则该面为平面。
2.公理2: .公理 : 文字语言:经过不在同一条直线 不在同一条直线上的三 ①文字语言:经过不在同一条直线上的三 有且只有一个平面, 点,有且只有一个平面,也可以说成不共 线的三点确定一个平面。 确定一个平面 线的三点确定一个平面。 ②图形语言: 图形语言: 三点不共线, ③符号语言:A、B、C三点不共线,有且 符号语言: 、 、 三点不共线 只有一个平面α,使得A∈ , ∈ , 只有一个平面 ,使得 ∈α,B∈α, C∈α. ∈
(2)推论 : )推论3: 经过两条平行直线, 文字语言 :经过两条平行直线,有且只有一 经过两条平行直线 个平面. 个平面 图形语言: 图形语言: a,b是两条直线 是两条直线 符号语言: 符号语言: a//b a,b共面于平面 ,且α是惟一的 . , 共面于平面 共面于平面α, 是惟一的

2.1.2平面的基本性质

2.1.2平面的基本性质

文字语言: 文字语言: 公理2:过不在同一直线上的三点, 公理 过不在同一直线上的三点, 过不在同一直线上的三点 有且只有一个平面. 有且只有一个平面 图形语言: 图形语言: A 符号语言: 符号语言: B C 公理 2mpeg.avi
A, B,C三 不 线 有 只 一 平 α 点 共 ⇒ 且 有 个 面 A 使 ∈α, B∈α,C∈α 公理2是确定一个平面的依据 是确定一个平面的依据. 公理 是确定一个平面的依据
⇒l ⊂α A ∈α , B ∈α
公理1是判定直线是否在平面内的依据 公理 是判定直线是否在平面内的依据. 是判定直线是否在平面内的依据
观察下图,你能得到什么结论 观察下图,你能得到什么结论?
B A C A
B C
公理2:过不在同一直线上的三点, 公理 过不在同一直线上的三点,有且只有 过不在同一直线上的三点 一个平面. 一个平面
D)
3.填空题 填空题: 填空题 三条直线相交于一点, 三条直线相交于一点,用其中的两条确 定平面,可以确定的平面数是 定平面,可以确定的平面数是_______; 四条直线过同一点, 四条直线过同一点,过每两条直线作一 个平面,则可以作 个平面,则可以作_____________个不同 个不同 的平面 .
文字语言: 文字语言: 公理3:如果两个不重合的平面有一个公共点 如果两个不重合的平面有一个公共点, 公理 如果两个不重合的平面有一个公共点, 那么这两个平面有且只有一条过该点的公共 直线. 直线 图形语言: 图形语言: 符号语言: 符号语言:
β
α
P
l 公理 3 β ⇒ P ∈l
观察下图,你能得到什么结论 观察下图,你能得到什么结论? 天花板α 天花板α 墙面γ 墙面β

高一数学平面的基本性质及推论

高一数学平面的基本性质及推论
A
α
B
C
共面
证明: 证明: ∵ A、B、C三点不在一条直线上 、 、 三点不在一条直线上 公理3) 公理 ∴过A、B、C三点可以确定平面 α (公理 、 、 三点可以确定平面 公理1) 公理 ∈ ∵ A∈α , B∈α ∴AB ⊂ α (公理 ∈ 同理 BC ⊂ α , AC ⊂ α ∴AB、AC、BC共面 、 、 共面
如果两个平面有一条公共直线, 如果两个平面有一条公共直线,则称这两个平 交线。 面相交,这条公共直线叫做这两个平面的交线 面相交,这条公共直线叫做这两个平面的交线。
公理2的作用有二:
判定两个平面相交, 一 是判定两个平面相交,即如果两个平面有一个 公共点,那么这两个平面相交; 公共点,那么这两个平面相交; 判定点在直线上, 二 是判定点在直线上,即点若是某两个平面的公 共点,那么这点就在这两个平面的交线上. 共点,那么这点就在这两个平面的交线上. 三.两平面两个公共点的连线就是它们的交线 两平面两个公共点的连线就是它们的交线
四.用数学符号来表示点、线、面之间的 用数学符号来表示点、 位置关系: 位置关系:
(1)点与直线的位置关系: (1)点与直线的位置关系: 点与直线的位置关系 记为: 点A在直线a上: 记为:A∈a 在直线a 记为: 点B不在直线a上: 记为:B∈a 不在直线a (2)点与平面的位置关系: (2)点与平面的位置关系: 点与平面的位置关系 记为: 点A在平面α内: 记为:A∈α 在平面α 记为 点B不在平面α上记为:B∈ α 不在平面α 记为: :
β
A
直线a // b ⇒ 有且只有一个平面β, 使得a ⊂ β,b ⊂ β .
思考1:不共面的四点可以确定多少个平面? 思考2:四条相交于同一点的直线a,b,c,d并且任意三 条都不在同一平面内,有它们中的两条来确定平面, 可以确定多少个平面?

高考一轮复习第七章 第三节 平面的基本性质及两直线的位置关系

高考一轮复习第七章  第三节  平面的基本性质及两直线的位置关系

返回
怎 么 考 1.从高考内容上来看,多以空间几何体为载体考查点、线面 间的位置关系及异面直线问题.
2.高考中各种题型均有涉及,难度中、低档.
返回
返回
一、平面的基本性质及推论 1.平面的基本性质: 基本性质1:如果一条直线上的 两点在一个平面内,那么 这条直线上的所有点都在这个平面内. 基本性质2:经过 不在同一直线上 的三点,有且只有一个平 面.
(1)求AH∶HD;
(2)求证:EH、FG、BD三线共点.
返回
AE CF 解:(1)∵EB=FB=2,∴EF∥AC. ∴EF∥平面 ACD. 而 EF⊂平面 EFGH,且平面 EFGH∩平面 ACD=GH, ∴EF∥GH.而 EF∥AC.∴AC∥GH. AH CG ∴HD=GD=3,即 AH∶HD=3∶1.
返回
EF 1 GH 1 (2)证明:∵EF∥GH,且AC= , AC = , 3 4 ∴EF≠GH.∴四边形 EFGH 为梯形. 令 EH∩FG=P,则 P∈EH,而 EH⊂平面 ABD,P∈ FG,FG⊂平面 BCD,平面 ABD∩平面 BCD=BD, ∴P∈BD.∴EH、FG、BD 三线共点.
返回
[高手点拨] 找与三条异面直线都相交的直线,可以转化成在一
个平面内作与三条直线都相交的直线,因而可考虑过一
条直线及另外一条直线上的一点作平面,进而研究公共 交线问题,本题解法较多,但关键在于构造平面,要求 考生具有较强的空间想象能力.
返回
点击此图进入
返回
1 1 是直角梯形,∠BAD=∠FAB=90° ,BC 綊 AD,BE 綊 2 2 FA,G、H 分别为 FA、FD 的中点.
返回
(1)证明:四边形BCHG是平行四边形; (2)C、D、F、E四点是否共面?为什么?

最新 公开课课件 1.2.1《平面的基本性质与推论》ppt课件

最新 公开课课件 1.2.1《平面的基本性质与推论》ppt课件

直线外 2.推论1 经过一条直线和 ________的一点, 有且只有一个平面. 相交 推论2 经过两条 ________直线有且仅有一 个平面. 平行 判定直线在平面内的依据 推论3 经过两条 ________直线有且仅有一 个平面. 确定平面的依据 判定两平面相交的依据,也是证明点共 3.公理1的作用是 __________________________, 线或线共点的依据 公理2及它的三个推论的作用是 ____________________. 公理3的作用是
二、共面直线与异面直线 平行 相交 或者 1.两条直线共面,那么它们 ________ 相交 平行 ________ . 2.既不________又不________的两条直 线叫做异面直线. 不经过交点 3.判定两条直线为异面直线的一种方法:与 一平面相交于一点的直线与这个平面内 ____________的直线是异面直线.
一、平面的基本性质 两点 ________在一 1.公理1 如果一条直线上的 个平面内,那么这条直线上的所有点都在这个 平面内. 这时我们说,直线在平面内或平面经过直线. 不在同一条直线上 不共线 公理2 经过_________________ 的三个点, 一个 有且只有一个平面,也可简单地说成, ________的三点确定一个平面. 公理3 如果不重合的两个平面有________ 公共点,那么它们有且只有一条经过这个公共 点的公共直线.
4.平面α∩平面β=l,点A、B∈α,点C∈平 面β且C∉l,AB∩l=R.设过A、B、C三点的平 面为平面γ,则β∩γ=________. [答案] CR
[ 解析] 根据题意画出图形.如图所示.因 为点 C∈β,且点 C∈γ,所以 C∈β∩γ.因为点 R ∈AB,所以点 R∈γ.又 R∈β,所以 R∈β∩γ, 从而 β∩γ=CR.

26 平面的基本性质

26 平面的基本性质

§5.1 平面基本性质与推论NO.26 【基础知识梳理】1. 平面的性质及推论⑴判断直线在平面的依据公理1:如果一条直线上的_____点在一个平面内,那么这条直线上的所有点都在这个平面内.这时我们说,直线在平面内或平面经过直线.用符号表示为:________________________.⑵确定平面的条件公理2:经过______________________的三点,有且只有一个平面.也可以简单地说成,_____的三点确定一个平面. 用符号表示为:________________________.推论1:经过一条直线和直线____一点,有且只有一个平面. 用符号表示为:___________.推论2:经过两条_______直线,有且只有一个平面. 用符号表示为:___________.推论3:经过两条_______直线,有且只有一个平面. 用符号表示为:___________.⑶判断两个平面有交线及交线位置的依据公理 3. 如果不重合的两个平面有一个公共点,那么它们_____________________过这个点的公共直线. 用符号表示为:______________________________.2. 点、线、面之间关系的符号表示:点A在直线a上,记作________________,点A不在直线a上,记作:______________;点A在平面α内,记作________________, 点A不在α内,记作________________;直线l在平面α内,记作________________, 直线l不在α内,记作________________.【基础知识检测】1. 若点M在直线b上,b在平面β内,则M、b、β之间的关系可表示为()A. M∈b∈βB. M∈b⊆βC. M⊆b⊆βD. M⊆b∈β2. 下列命题:⑴空间不同的三点确定一个平面;⑵有三个公共点的两个平面必重合;⑶空间两两相交的三条直线确定一个平面;⑷三角形是平面图形;⑸平行四边形、梯形都是平面图形;⑹垂直于同一直线的两直线平行;⑺一条直线和两条平行线中的一条相交,也必和另一条相交;⑻两组对边相等的四边形是平行四边形.其中正确的命题是_______.3. 直线AB,AD⊆α,直线CB,CD⊆β,E∈BC,F∈AB,G∈CD,H∈DA,若直线EG⋂直线FH=M,则点M必在直线__________上.【典型例题探究】题型1. (点线共面问题)两两相交且不共点的三条直线必共面.变式训练:空间不共点且两两相交的四条直线在同一平面内.题型2. (三点共线、三线共点问题)已知△ABC 在平面α外,它的三边所在直线分别交α于P 、Q 、R ,求证:P 、Q 、R 三点共线.变式训练:已知在空间四边形ABCD 中,E 、H 分别是边AB 、AD 的中点,F 、G 分别是BC 、CD 上的点,且32GD CG CB CF ==,求证:三条直线EF 、GH 、AC 交于一点.题型3 (平面基本性质的应用)如图正方体的棱长为4,M 、N 分别是A 1B 1和CC 1的中点. 画出过点D 、M 、N 的平面与平面BB 1C 1C 及平面AA 1B 1B 的两条交线.变式训练:正方体ABCD —A 1 B 1 C 1 D 1中,P 、Q 、R 、分别是AB 、AD 、B 1 C 1的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推论3:经过两条平行直线,有且只有一个平面。
请同学们想一想:
三个推论的图形语言如何表示呢?
三个推论的符号语言如何表述呢?
三个推论有何作用呢?
推论2的证明
推论2:经过两条相交直线,有且只有一个平面。
已知:直线
求证:经过直线a、b有且只有一个平面α。
【证明】<1)如图4所示,在直线a,b上分别取不同于点A的点C、B,得不在同一直线上的三点A、B、C,过这三个点有且只有一个平面α<公理2)。
③公理3的作用:
其一它是判定两个平面是否相交的依据,只要两个平面有一个公共点,就可以判定这两个平面必相交于过这点的一条直线;其二它可以判定点在直线上,点是某两个平面的公共点,线是这两个平面的公共交线,则这点在交线上。
2.平面的基本性质的推论
推论1:经过一条直线和这条直线外的一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
公理2中的“有且只有一个”含义要准确理解。这里的“有”是说图形存在。“只有一个”是说图形惟一,本公理强调的是存在和惟一两个方面。因此“有且只有一个”必须完整的使用,不能仅用“只有一个”来替代“有且只有一个”,否则就没有表达存在性。“确定一个平面”中的“确定”是“有且只有”的同义词,也是指存在性和惟一性这两方面的,这个术语今后也会常常出现,要理解好。
<2)证明直线共面的方法:先证明其中两条直线确定一个平面,再证明其余直线都在这个平面内。
<3)证明点在直线上的方法:首先确定这条直线是哪两个平面的交线,然后证明这个点是这两个平面的公共点。
1’
5x5’
9’
6’
3’
作业
步步高
课后习题
板书
设计
1.平面的基本性质
图形语言例题练习小结
符号语言
注意事项
课后反思
课题
1.2.1平面的基本性质与推论
课型
主备人
李冬旭
上课教师
李冬旭
上课时间
学习
目标
1、了解平面的基本性质与推论,并能运用这些公理及推论去解决有关问题,会用集合语言来描述点、直线和平面之间的关系以及图形的性质。
2、以所学过的作为推理依据的一些公理和定理为基础,通过直观感知,操作确认,思辨论证,归纳出空间中线、面平行的有关判定定理和性质定理。能运用已获得的结论证明一些空间位置关系的简单命题。
③公理2的作用:
作用一是确定平面;
作用二是可用其证明点、线共面问题。
<3)关于公理3
①公理3的三种数学语言表述:
文字语言表述:如果不重合的两个平面有一个公共点,那么它们有且只有一条过该点的公共直线。
图形语言表述:如图3所示。
图3
符号语言表述:
②公理3的剖析:
公理3的内容反映了平面与平面的位置关系。公理2的条件简言之是“两面共一点”,结论是“两面共一线,且过这一点,线惟一”。对于本公理应强调对于不重合的两个平面,只要它们有公共点,它们就是相交的位置关系,交集是一条直线。
1.平面的基本性质
<1)关于公理1
①三种数学语言表述:
文字语言表述:如果一条直线上的两点在一个平面内,那么这条直线所示
图1
符号语言表述:
②内容剖析:
公理1的内容反映了直线与平面的位置关系,条件“线上两点在平面内”是公理的必须条件,结论“线上所有点都在面内”。这个结论阐述两个观点,一是整个直线在平面内,二是直线上所有点都在平面内。
<1)点与平面的位置关系:点A在平面α内,记作A∈α;点A不在α内,记作 ;
<2)直线与平面的位置关系:直线m在平面α内,记作 。直线m不在平面α内,记作 ;
<3)平面α与平面β相交于直线a,记作 ;
<4)直线m和n相交于点A,记作 。
4.几种常见题型的解法
<1)证明直线在平面内的方法:证明直线上有两点在平面内。
③公理<1)的作用:既可判定直线是否在平面内,点是否在平面内,又可用直线检验平面。
<2)关于公理2
①公理2的三种数学语言表述:
文字语言表述:过不在同一直线上的三点,有且只有一个平面。
图形语言表述:如图2所示
图2
符号语言表述:A、B、C三点不共线 有且只有一个平面α,使 .
②内容剖析:
公理2的条件是“过不在同一直线上的三点”,结论是“有且只有一个平面”。条件中的“三点”是条件的骨干,不会被忽视,但“不在同一直线上”这一附加条件则易被遗忘,如舍之,结论就不成立了,因此绝对不能遗忘.同时还应认识到经过一点、两点或在同一直线上的三点可有无数个平面;过不在同一直线上的四点,不一定有平面,因此要充分重视“不在同一直线上的三点”这一条件的重要性。
学习本节课要注意正确的作图,恰当的作图有利于培养我们的空间想象能力.在平面几何中,辅助线一般要画成虚线,而立体几何中则不同,一般是将看不见的线画成虚线,与它是否是辅助线无关,这一点同学们一定要注意。在平时的训练中要养成多动手、勤画图的习惯,必须熟练掌握空间图形的直观图的画法—斜二测画法。
要注意重视几何语言的训练和书写,尽可能熟记有关公理及推论的几何语言的叙述。
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
图4
又 <公理1)
平面α是过相交直线a,b的平面。
<2)如果过直线a和b还有另一平面β,那么A,B,C三点也一定都在平面β内,这样过不在一条直线上的三点A,B,C就有两个平面α、β了,这与公理3矛盾。所以过直线a,b的平面只有一个。
综上知,过直线a、b有且只有一个平面。
3.用集合语言来描述点、直线和平面之间的关系以及图形的性质
教案
重点
平面的基本性质与推论以及它们的应用;线线平行及平行线的传递性和面面平行的定义与判定
教案
难点
自然语言与数学图形语言和符号语言间的相互转化与应用;如何由平行公理以及其他基本性质推出空间线、线,线、面和面、面平行的判定和性质定理,并掌握这些定理的应用。
教师
准备
教案过程
时间分配
集备修正
<一)平面的基本性质与推论
相关文档
最新文档