A3混沌世界地分形描述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混沌世界的分形描述

混沌是20世纪70年代才发展起来的一门科学理论,十年后即80年代到90年代便掀起了研究热潮,同时受到《自然》、《科学美国人》等著名国际媒体的关注。由此可见,这个新兴理论的特殊魅力。

混沌学隶属于非线性动力学,是非线性科学的主体内容。混沌学中的混沌不同于通俗意义上的混沌,也不同于一般科学中的混沌,而是具有确切意义的科学概念。这里的混沌是指确定性系统的无规行为。对于三百多年牛顿力学中的确定性原则,混沌理论无疑是一次重大的科学革命。

一、混沌的发现

混沌研究的渊源可以上溯到十九世纪末,前后共有一百多年的历史。

最早对混沌研究作出贡献的是俄国女数学家卡瓦列夫斯卡娅(Kovalevskaya),她在1889年给动力学系统稳定性下定义时,提出了度量小偏差增长率平均值的概念,这是朝混沌的独立理论迈出的第一步。此后,俄国数学家李雅普诺夫(Liapunov AM)将上述概念推广为李雅普诺夫指数,进而第一个给出了运动稳定性的定义,奠定了运动稳定性理论和方法。李雅普诺夫指数概念是确定运动稳定性问题的关键,至今仍是判定运动稳定性的基本方法。

哈密顿函数是动力学系统中与总能量有关的状态函数,根据哈密顿函数表示的运动方程,可以把动力学系统划分为可积的和不可积的两类。这种划分使人们逐步认识到,牛顿理论实质上只是关于可积系统的理论,这样的系统具有周期运动和准周期运动的特征,它们在动力学系统中所占比例极小,小到“测度为零”的程度。而一般的动力学系统,包括多体问题都是不可积的,而其典型行为正是混沌。首先发现这种不可积系统动力学行为的是法国数学家庞加莱(H.Poincaré)。他因此而被公认为真正研究混沌的第一位科学家。

庞加莱的发现是在研究天体力学时作出的。天体力学是随着牛顿力学的建立诞生的。微积分为描述行星运行提供了数学工具,借此可以概括运动定律,从某个初始状态出发,确定系统过去和未来的状态。这种模式在刻划天体力学中的二体问题(比如太阳和地球)时,的确非常成功。然而,天文观测发现,太阳系中有些行星的轨道在变化。比如,土星轨道在扩大,木星轨道在缩小。照此下去,

木星岂不冲向太阳,而土星却将飞离太阳系?太阳系是稳定的吗?这在当时无疑是一个引人入胜的实际问题。

1887年,瑞典国王奥斯卡二世(OscarⅡ)悬赏2500克朗,征解这个经魏尔斯特拉斯进一步明确化并呈交给国王的问题。两年后,庞加莱获得了此项大奖,他的获奖论文题目是《论三体问题和动力学方程》。这篇论文发表于1890年,长达270页,分三部分,第一部分确立动力学方程的普遍性质;第二部分把结果应用于牛顿万有引力作用下的任意多体运动问题。

由于太阳系中有许多天体,它的稳定性问题需要研究这些天体在万有引力作用下的运动规律。此即天体力学中的N体问题。19世纪的数学家已经知道,N体问题属于不可积的难题,只能近似求解。庞加莱考虑的是限制性三体问题。所谓限制性三体问题,是当所讨论的3个天体中,有一个天体的质量与其他两个天体的质量相比,小到可以忽略。庞加莱说,这个问题尽管很简单,但不能用一般的分析方法来解决。他着手去寻找小质量体(考虑另外两个大质量体时被忽略掉的那一个天体)的周期运动。这是在论文的第三部分里,庞加莱试图解决微分方程周期解的存在性问题。他在得出形式上的级数解后,没有直接去证明收敛性,却从另外一个角度审视这个问题,意在严格地证明周期解的存在,同时隐含着级数的收敛。他的这种思想是独一无二的,其实用到了拓扑方法,是一种定性而非定量的方法。

系统只要在某个时刻重复先前的特定时刻的状态,运动就一定是周期性的。这由微分方程解的唯一性保证。系统的状态是由相空间中的点的坐标表示的。当系统随时间演化时,这点的运动描出一条曲线。要使状态再次回复,这条曲线必须围成一个环。“曲线何时成为闭合的环?”这问题与环的形状、大小、位置统统无关,它取决于一点在此刻的位置与它在一个周期后的位置之间的关系的拓扑性质。

正是在这种拓扑思想的指导下,庞加莱发明了一种像病理切片一样的“庞加莱截面”:抛开相空间的轨道曲线,只记录每次穿过截面时截点的变换情况,从而推知系统的运动特征。如果系统作简单的周期运动,那么轨道每次由同一处穿过截面,截面上只有一个不动点。如果运动是非周期的,截面上将有无穷多个无规则的点。庞加莱还为动力系统理论贡献了一系列的概念和方法,如动力系统、奇异点、极限环、同宿的概念和摄动方法等。他是微分方程定性理论的奠基人之一,他创立的组合拓扑学是当今研究混沌学必不可少的工具。

庞加莱证明,三体问题一方面有周期解,另一方面某些周期是不稳定的。他在详细研究周期轨道附近流的结构时,发现在所谓的双曲点附近存在着无限复杂精细的“栅栏结构”。他描述说:“当人们试图画出这两条曲线和它们的无穷次相交(每一次相交都对应于一个双渐近解)构成的图形时,这些相交形成一种网、丝网或无限密集的网状结构;这两条曲线从不会自相交叉,但为了无穷多次穿过丝网的网节,它们必须以一种很复杂的方式折叠回自身之上。这一图形的复杂性令人震惊,我甚至不想画出来。没有什么能给我们一个三体问题复杂性的更好的概念”。庞加莱的发现表明,即使像限制性三体这样简单的系统,也会产生极其复杂的行为,确定性动力学方程的某些解有不可预见性,这其实就是我们今天所说的混沌。

庞加莱没有解决太阳系的稳定性问题。但却回答了一个影响深远的普遍性问题:怎样研究复杂动力学系统中的稳定性问题。他因此成为通过数学推理发现混沌的第一个人。

庞加莱并没解决N体问题,这个问题的解决依赖于KAM定理。1954年,前苏联学者柯尔莫果洛夫(Kolmogorov A)在阿姆斯特丹的国际数学家大会上,宣读了《在具有小改变量的哈密顿函数中条件周期运动的保持性》。在这篇划时代的科学论文中,他提出了一个重要定理。后来他的学生阿诺德(V.I.Arnold)及瑞士数学家莫泽(J.Moser)分别给出了定理的严格证明。因此,这个定理称为KAM定理。柯尔莫果洛夫研究了解析哈密顿系统的椭圆周期轨道的分类,发现了一个充分接近可积系统的不可积系统,对此系统若把不可积当作可积哈密顿函数的扰动来处理,则在小扰动条件下,系统运动图象与可积系统基本一致;当扰动足够大时,系统图象就发生了性质改变,成了混沌系统。这是19世纪以来,人们用微扰方法处理不可积系统,所取得的最成功的结果,具有极为重要的理论意义。它说明了不可积系统的混沌运动的发生机制。KAM定理被国际混沌学界公认为这一新学科的第一开端。

美国气象学家洛仑兹(E.N.Lorenz)在天气预报中的发现是混沌认识过程中的一个里程碑。

洛仑兹本来是学数学的,1938年大学毕业后,由于第二次世界大战,使他成了一名气象学家。战后他继续从事气象研究,在麻省理工学院他操作着一台当时比较的先进工具——计算机进行天气模拟。在二十世纪五、六十年代,人们普遍认为气象系统虽然非常复杂,但仍是遵循牛顿定律的确定性对象,只要计算机

相关文档
最新文档