谁创立了分形几何学
分形理论(fractal
分形理论(fractal theory)分形理论是当今世界⼗分风靡和活跃的新理论、新学科。
分形的概念是美籍数学家曼德布罗特(B.B.Mandelbort)⾸先提出的。
1967年他在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论⽂。
海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。
我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种⼏乎同样程度的不规则性和复杂性,说明海岸线在形貌上是⾃相似的,也就是局部形态和整体形态的相似。
在没有建筑物或其他东西作为参照物时,在空中拍摄的100公⾥长的海岸线与放⼤了的10公⾥长海岸线的两张照⽚,看上去会⼗分相似。
事实上,具有⾃相似性的形态⼴泛存在于⾃然界中,如:连绵的⼭川、飘浮的云朵、岩⽯的断裂⼝、布朗粒⼦运动的轨迹、树冠、花菜、⼤脑⽪层……曼德布罗特把这些部分与整体以某种⽅式相似的形体称为分形(fractal)。
1975年,他创⽴了分形⼏何学(fractalgeometry)。
在此基础上,形成了研究分形性质及其应⽤的科学,称为分形理论(fractaltheory)。
⼤⾃然的⼏何学的分形(Fractal)理论是现代数学的⼀个新分⽀,但其本质却是⼀种新的世界观和⽅法论。
它与动⼒系统的混沌理论交叉结合,相辅相成。
它承认世界的局部可能在⼀定条件下。
过程中,在某⼀⽅⾯(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因⽽拓展了视野。
⾃相似原则和迭代⽣成原则是分形理论的重要原则。
它表征分形在通常的⼏何变换下具有不变性,即标度⽆关性。
由⾃相似性是从不同尺度的对称出发,也就意味着递归。
分形形体中的⾃相似性可以是完全相同,也可以是统计意义上的相似。
标准的⾃相似分形是数学上的抽象,迭代⽣成⽆限精细的结构,如科契(Koch)雪花曲线、谢尔宾斯基(Sierpinski)地毯曲线等。
分形几何
分形几何作者:来源:《初中生世界·九年级》2014年第08期分形几何学是一门以不规则几何形态为研究对象的几何学. 相对于传统几何学的研究对象为整数维数,如零维的点、一维的线、二维的面、三维的立体乃至四维的时空,分形几何学的研究对象为分数维数,如0.63、1.58、2.72. 因为它的研究对象普遍存在于自然界中,比如云彩、闪电、山脉、树枝、蕨叶以及生物细胞等,因此分形几何学又被称为“大自然的几何学”.康托尔三分集1883年,德国著名数学家康托尔构造了一个奇异的集合:取一条长度为1的直线段,将它三等分,去掉中间一段,将剩下的两段各再三等分,各去掉中间一段,剩下更短的四段各再三等分,这样一直继续操作下去,直至无穷,便可得到康托尔三分集.皮亚诺曲线取一个正方形并把它分成4个相等的小正方形,然后从左上角的正方形开始至左下角的正方形结束,依次将小正方形的中心连接起来;下一步把每个小正方形再分成4个相等的正方形,然后按上述方式把其中心连接起来……如此继续不断作下去,以至无穷,也便形成了一条皮亚诺曲线.一般来说,一维的直线是不可能填满二维的平面的,但是皮亚诺曲线恰恰给出了反例.谢尔宾斯基三角形垫片1915~1916年,波兰数学家谢尔宾斯基构造了这样一种图形:将边长为1的等边三角形均分成四个小等边三角形,去掉中间的一个小等边三角形,再对其余3个小等边三角形进行相同操作,这样操作继续下去直至无穷,所得图形称为谢尔宾斯基三角形垫片. 我们可以发现,剩下的三角形面积在不断操作下趋近于零,但它的周长却趋近于无限大.谢尔宾斯基地毯谢尔宾斯基地毯的构造与谢尔宾斯基三角形相似,区别仅在于谢尔宾斯基地毯是以正方形而非等边三角形为基础的. 将一个实心正方形划分为3×3的9个小正方形,去掉中间的小正方形,再对余下的小正方形重复这一操作便能得到谢尔宾斯基地毯.门杰海绵与谢尔宾斯基金字塔奥地利数学家门杰从三维的单位立方体出发,用与构造谢尔宾斯基地毯类似的方法,构造了门杰海绵(1999年以前,大部分分形著作中,均误称之为谢尔宾斯基海绵);谢尔宾斯基用与构造谢尔宾斯基三角形垫片类似的方法,构造了谢尔宾斯基金字塔. 这是两座宏伟的集合大厦,里面有无数的通道,连接着无数的门窗. 这种“百孔千窗”、“有皮没有肉”的结构的表面积是无穷大,它们是由反复挖去一拨比一拨小的立体所生成,是化学反应中催化剂或阻化剂最理想的结构模型.海岸线有多长1967年,数学家曼德尔布罗在著名的《科学》杂志上发表了一篇奇怪的文章《英国的海岸线有多长》,使人们大吃一惊. 原来海岸线长度不是一个固定不变的数值. 海岸线的长短取决于人们所用的尺. 如果用1千米的尺子测量,小于1千米的弯弯曲曲的海岸线便会被忽略;如果用1米的尺子测量,便会增加许多弯曲的部分,海岸线必然大大增大;如果让蜗牛来测量,海岸线必然大得惊人.曼德尔布罗波兰裔法国数学家曼德尔布罗是分形几何的创始人. 他的科学兴趣极其广泛,具有极强的创造能力和形象思维能力,利用计算机开创了一门崭新的分形几何学.。
分形原理及其应用
分形原理及其应用
分形原理,也称为分形几何原理,是由波兰数学家曼德尔布罗特于1975年首次提出的。
分形原理指的是存在于自然界和人
造物体中的重复模式,这些模式在不同的尺度上都呈现出相似的结构和特征。
换句话说,分形是一种具有自相似性的形态。
分形原理的应用十分广泛,下面列举几个主要领域:
1. 自然科学领域:生物学、地理学、气象学、天文学等都能从分形原理中获得启示。
例如,树叶、花瓣和岩石都具有分形结构,通过分析这些结构可以揭示它们的生长和形成规律。
2. 数学与计算机图形学:分形理论为图形图像的生成、压缩和渲染提供了新的思路和方法。
通过分形原理,可以生成具有逼真效果的山水画、云彩图等。
3. 经济学和金融学:金融市场中的价格变动往往呈现出分形特征,通过分析分形模式可以帮助预测市场走势和制定投资策略。
4. 艺术设计:分形原理在艺术设计中被广泛应用。
通过将分形结构应用到艺术作品中,可以创造出独特而美丽的图案和形态。
5. 计算机网络和通信:分形技术可以用于改进数据传输的效率和可靠性。
通过在网络中应用分形压缩算法,可以减少数据传输的带宽需求,提高网络性能。
综上所述,分形原理作为一种有着广泛应用价值的理论,已经
渗透到了各个学科和领域中,为科学研究和技术创新提供了新的思路和方法。
几何里的艺术家——分形几何
几何里的艺术家——分形几何分形几何是指生物学家、数学家Mandelbrot于20世纪60年代提出的一种新的几何方法。
它主要是以图形展示自然界里颇多的自相似性和重复性,我们在自然界中可以看到很多地方都能体现出分形几何的形态。
目前,分形几何的研究成果已经被广泛运用在计算机图形学、自然科学、金融、物理学等方面,并在各个领域都取得了很好的应用效果。
分形几何不同于常规的几何学,它将几何形态转换为数学符号来分析形态的特征。
分形几何的美感与特性分形几何的美在于它具有迷人的自相似性和重复性,这个特性使得分形几何的形态无论在大小还是在宏观与微观的层次上表现出了一致性。
这种自相似性不但具有几何形态的美感,并且在自然界的很多生物和物体中都可以看到它的存在。
譬如火花、雨滴和云朵都具有分形几何的形态,对此我们可以用数学符号和计算机程序来表达和描述这些自然现象。
在分形几何中,出现的大多数形态都是基于数学方程式的操作得到,这些数学方程式需要通过反复的迭代运算才能得到最终的形态,几何学家调用的工具主要是数学符号和计算机程序。
因此,分形几何不仅展示了具有美感的自相似性和重复性,还向我们展示了无穷的变幻和生命力,在人类的审美中表现出了多姿多彩的美,可以说是几何美学中的一种绚丽多彩的表现形式。
分形几何的计算机图形学应用分形几何在计算机图形学中的应用很广泛,计算机图像能够更加真实地表现物体的特性和微观结构,分形几何的技术能够很好地表现出物体的自相似性和重复性,因此在图像处理和计算机图形学中应用颇多。
其中一个应用场景是在动画电影中,我们常常看到很多自然界中的生物,譬如花朵、藤蔓和蘑菇等生物,它们都具有分形结构,设计师用计算机图形学的方法可以让这些生物呈现出美妙的自然形态。
另外,分形几何还被广泛运用在生成式艺术中,生成式艺术是一种基于数学或人工智能算法的艺术形式,使用分形几何的技术可以生成独特的图案和模型,比如拓扑结构和有机体结构等。
分形几何中的自相似性和重复性不仅提供了美感和独特的艺术表现形式,还为我们提供了一种模拟生命活动的方式,是数学艺术范畴中一个多功能的形式。
数学的分形几何
数学的分形几何分形几何是一门独特而迷人的数学领域,它研究的是自相似的结构和形态。
分形几何的概念由波蒂亚·曼德博(Benoit Mandelbrot)在1975年首次提出,之后得到了广泛应用和发展。
本文将介绍分形几何的基本概念和应用领域,旨在帮助读者更好地了解这一令人着迷的学科。
一、分形几何的基本概念分形(fractal)是一种非几何形状,具有自相似的特点。
简单来说,分形就是在各个尺度上都具有相似性的图形。
与传统的几何图形相比,分形图形更加复杂、细致,其形状常常无法用传统的几何方法进行描述。
分形几何的基本概念包括分形维度、分形特征和分形生成等。
1. 分形维度分形维度是分形几何中的重要概念之一。
传统的几何图形维度一般为整数,如直线的维度为1,平面的维度为2,而分形图形的维度可以是非整数。
分形维度能够描述分形的复杂程度和空间占据情况,是衡量分形图形特性的重要指标。
2. 分形特征分形几何的分形特征是指分形图形所具有的一些独特性质。
其中最著名的就是自相似性,即分形图形在不同尺度上具有相似的形态和结构。
此外,分形图形还具有无限的细节,无论放大多少倍都能够找到相似的结构。
3. 分形生成分形图形的生成是分形几何中的关键问题之一。
分形图形可以通过递归、迭代等方式进行生成,比如著名的分形集合——曼德博集合就是通过迭代运算得到的。
分形生成的过程常常需要计算机的辅助,对于不同的分形形状,生成算法也有所不同。
二、分形几何的应用领域分形几何的独特性质使其在许多领域中得到广泛应用。
以下列举了几个典型的应用领域。
1. 自然科学分形几何在自然科学中有着广泛的应用。
例如,分形理论可以用来研究自然界中的地形、云雾形态等。
通过分形几何的方法,我们能够更好地理解和描述自然界的复杂性,揭示出隐藏在表面之下的规律。
2. 经济金融分形几何在经济金融领域也有着重要的应用。
金融市场的价格走势往往具有分形特征,通过分形几何的方法可以更好地预测未来的市场走势和波动。
分形几何与斐波那契数列的对比
摘 要分形是美籍法国应用数学家蒙德布罗特所提出的,它和英文中的fracture(断裂)和fraction (分数)有一定联系,体现出蒙德布罗特创立这个新的几何思想。
分形几何作为一门新兴的交义学科,正在被越来越多的人所认识和学习。
据美国科学家情报所调查,八十年代,全世界有1257种重要学术刊物所发表的论文中,有37.5%与分形有关。
美国著名的物理学家Wheeler说:“可以相信,明天谁不熟悉分形,谁就不能被认为是科学上的文化人”】16【。
传统的欧式几何主要研究对象是规则图形和光滑曲线,对自然景物的描述却显得无能为力。
而分形几何的创立,就是用来描述那些欧式几何无法描述的几何现象和事物的,被誉为“大自然本身的几何学”,使自然景物的描绘得以实现,这也是分形几何得到高度重视的原因之一。
斐波那契数列产生于一个关于兔子繁殖后代的问题:某人有一对兔子饲养在围墙中,如果它们每个月生一对兔子,且新生的兔子在第二个月后也是每个月生一对兔子,问一年后围墙中共有多少对兔子?斐波那契数列从问世到现在,不断显示出它在数学理论和应用上的重要作用。
如今,斐波那契数列渗透到了数学的各个分支中。
同时,在自然界和现实生活中斐波那契数列也得到了广泛的应用。
如一些花草长出的枝条会出现斐波那契数列现象,大多数植物的花的花瓣数都恰是斐波那契数列等等。
斐波那契数列又被称为是黄金分割数列,而黄金分割本身就是一种分形的例子。
二者都可以解决一些传统数学所不能解决的问题,所不同的是分形几何是通过几何的角度来解决问题,而斐波那契数列则是通过代数的角度来解决实际问题。
作为一门新兴的对现实生活有重要影响的两个定义,研究两者的对比关系,探讨如何更好地运用这两个定义来解决现实中的一些实际问题,具有重要意义。
关键字:斐波那契数列;分形几何;应用;对比ABSTRACTFractal is first put forward by French-American applied mathematicianMandelbrot. It relates to the words “fracture” and “fraction”, reflecting Mandelbrot’s opinion on creating the new definition. As a rising interdiscipline subject, Fractal is being understood and learned by more and more people. According to the survey ofAmerican Scientist Information Institution, in the 1980s, among all the papers published on worldwide 1257 important academic journal, 37.5% is related to Fractal. American famous physicist Wheeler said: “ I am confident that who is unfamiliar with Fractal, who will not be considered as the science intellectual in the future.” Traditional European-style geometry takes norm graph and smooth curve as the main researching object, and seems helpless to natural features. The foundation of Fractal is to describe the phenomenon and features that European-style geometry cannot, and so Fractal is honored as “geometry of the nature”. Being able to describe the nature features is one of the reasons that Fractal is highly valued.Fibonacci Series comes from the problem of rabbits raising: a man has a couple rabbits raised within walls, if they give birth to a couple rabbits each month, and the new born will give birth to a couple rabbits in the next month, after one year, how many rabbits will be there within the walls? From established to today, Fibonacci Series continues to show its importance in mathematical theory and application. Nowadays, Fibonacci Series have permeated to each branches of mathematic. Meanwhile Fibonacci Series extensively applies to nature and real life. For example, flowers and plants’ branches appear Fibonacci Series phenomenon, and most plant’s peal is exactly Fibonacci Series.Fibonacci Series is also named as Golden Section Sequence,and golden section itself is an example of fractal. Both of them can solve some problems that traditional mathematic cannot. The difference between them is that Fractal solve problems according to geometrical perspective, and Fibonacci Series according to algebraic perspective.Two definitions as a new reality have an important influence on the real life, the study of contrast relationship between Fractal and Fibonacci Series and discussion of how to use the two definition to solve problems in real life has great significance.Key words: the Fibonacci series; Fractal geometry; Application; contrast目录1前言 (1)1.1分形几何的由来与发展 (1)1.2斐波那契数列的由来与发展 (2)2分形几何的定义与应用 (4)2.1分形几何的定义 (4)2.2分形几何的应用 (4)2.2.1分形几何的数学实例--康托集合 (4)2.2.2 DNA复制的分形性质 (5)3斐波那契数列的定义与应用 (6)3.1斐波那契数列的定义 (6)3.2斐波那契数列的应用 (6)3.2.1拉姆定理的证明 (6)3.2.2数学游戏(拼图)与斐波那契数列 (8)3.2.3斐波那契数列与象棋马步 (9)4 分形几何与斐波那契数列的关系 (10)4.1分形几何与黄金分割的联系 (10)4.2斐波那契数列与黄金分割 (11)5结论 (13)致谢 (15)参考文献 (16)分形几何与“斐波那契数列”的比较现如今几何分形与斐波那契数列都处在一个新兴的阶段,国内外大多数的研究都只是停留在两个独立的概念上,只是在研究他们分别的性质和应用,比如研究斐波那契数列在股票市场、动物繁殖、排列组合上的应用,研究几何分形在数论、动力系统、物理、复变函数的迭代等方面的应用。
分形理论发展历史及其应用
一、分形理论分形理论的起源与发展1967年美籍数学家曼德布罗特在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。
海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。
我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体态的相似。
事实上,具有自相似性的形态广泛存在于自然界中,如:连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(fractal)。
1975年,他创立了分形几何学。
在此基础上,形成了研究分形性质及其应用的科学,称为分形理论。
分形理论的发展大致可分为三个阶段:第一阶段为1875 年至1925年,在此阶段人们已认识到几类典型的分形集,并且力图对这类集合与经典几何的差别进行描述、分类和刻画。
第二阶段大致为1926年到1975年,人们在分形集的性质研究和维数理论的研究都获得了丰富的成果。
第三阶段为1975年至今,是分形几何在各个领域的应用取得全面发展,并形成独立学科的阶段。
曼德尔布罗特于1977年以《分形:形、机遇和维数》为名发表了他的划时代的专著。
1.3.1 分形的定义目前对分形并没有严格的数学定义,只能给出描述性的定义。
粗略地说,分形是没有特征长度,但具有一定意义下的自相似图形和结构的总称。
英国数学家肯尼斯·法尔科内(Kenneth J.Falconer)在其所著《分形几何的数学基础及应用》一书中认为,对分形的定义即不寻求分形的确切简明的定义,而是寻求分形的特性,按这种观点,称集合F是分形,是指它具有下面典型的性质:a. F具有精细结构b. F是不规则的c. F通常具有自相似形式d. 一般情况下,F在某种方式下定义的分形维数大于它的拓扑维数。
另外,分形是自然形态的几何抽象,如同自然界找不到数学上所说的直线和圆周一样,自然界也不存在“真正的分形”。
分形理论与分形几何在自然科学中的应用
分形理论与分形几何在自然科学中的应用自然界是一个充满着奇妙和神秘的地方。
在大自然中,我们可以发现许多美丽而又复杂的形状,如树枝、云朵、山脉等等。
这些看似无规律的形态背后,隐藏着一个重要的理论——分形理论与分形几何。
分形理论由波兰数学家曼德博特尔(Benoit Mandelbrot)于20世纪70年代提出。
他发现了自然界中的许多现象都具有自相似的特点。
自相似是指一个物体的一部分与整体的形状相似,这种相似性在不同的尺度上都能得到体现。
分形理论的核心思想就是研究这种自相似性,并通过数学模型来描述和解释这些现象。
分形几何是分形理论的一个重要分支,它通过数学方法来研究自然界中的分形结构。
分形几何的研究对象包括分形曲线、分形图形和分形维度等。
分形曲线是指具有无限细节和复杂性的曲线,如科赫曲线和希尔伯特曲线。
分形图形是指具有自相似性的图形,如分形树、分形花朵等。
分形维度是对分形结构复杂性的度量,它可以用来描述一个物体的空间尺度和形态特征。
分形理论与分形几何在自然科学中有着广泛的应用。
首先,它们在地质学中发挥着重要的作用。
地球上的山脉、河流、岩石等都具有分形结构。
通过分形理论和分形几何的研究,我们可以更好地理解地壳运动、地质构造和地球演化等自然现象。
例如,分形理论可以用来解释地震的发生和传播规律,通过分析地震波的分形特征,可以预测地震的强度和发生概率,为地震灾害的防治提供依据。
其次,分形理论和分形几何在生物学中也有着重要的应用。
生物界中存在着许多分形结构,如树枝、血管、叶片等。
通过分形理论的研究,我们可以更好地理解生物体的生长、发育和进化过程。
例如,分形几何可以用来解释植物根系的分形形态,通过分析根系的分形维度,可以揭示出根系的生物力学特性和水分吸收能力,为农业生产和植物育种提供指导。
此外,分形理论和分形几何还在气象学、物理学、经济学等领域中得到了广泛的应用。
在气象学中,分形理论可以用来研究天气系统的自相似性和混沌性质,从而提高天气预报的准确性。
谁创立了分形几何学
谁创立了分形几何学?1973 年,曼德勃罗(B.B.Mandelbrot )在法兰西学院讲课时,首次提出了分维和分形几何的设想。
分形(Fractal )一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。
由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。
分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。
分形几何与传统几何相比有什么特点:⑴从整体上看,分形几何图形是处处不规则的。
例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。
⑵在不同尺度上,图形的规则性又是相同的。
上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。
当然,也有一些分形几何图形,它们并不完全是自相似的。
其中一些是用来描述一般随即现象的,还有一些是用来描述混沌和非线性系统的。
什么是分维?在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。
也可以梢加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的维数。
分形理论把维数视为分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。
为了定量地描述客观事物的“非规则”程度,1919 年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。
分维的概念我们可以从两方面建立起来:一方面,我们首先画一个线段、正方形和立方体,它们的边长都是1。
将它们的边长二等分,此时,原图的线度缩小为原来的1/2 ,而将原图等分为若干个相似的图形。
其线段、正方形、立方体分别被等分为2人1、2人2和2人3个相似的子图形,其中的指数1、2、3,正好等于与图形相应的经验维数。
一般说来,如果某图形是由把原图缩小为1/a 的相似的 b 个图形所组成,有:a A D=b, D=logb/loga的关系成立,则指数 D 称为相似性维数, D 可以是整数,也可以是分数。
分形理论及其发展历程
分形理论及其发展历程李后强汪富泉被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。
它与动力系统的混沌理论交叉结合,相辅相成。
它承认世界的局部可能在一定条件下。
过程中,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。
分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。
1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。
1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。
1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。
这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。
1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。
1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。
1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。
1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。
以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。
二1960年,曼德尔布罗特在研究棉价变化的长期性态时,发现了价格在大小尺度间的对称性。
分形几何及其应用课程简介
《分形几何及其应用》课程简介06191280 分形几何及其应用 3.0Fractal Geometry and its Applications 3.0-0预修课程:实变函数,概率论面向对象:三、四年级本科生分形几何学是由法国数学家B.B.Mandelbrot在20世纪70 年代创立的。
“分形(fractal)”一词,也是由他提出,它来源于拉丁语“fractus”,含有“不规则”或“破碎”之意。
与描述规则形状的欧几里德几何不同,分形几何研究一类非规则的几何对象,并为研究这些对象提供了思想、方法、技巧等。
作为应用,它可以构造从植物到星系的物理结构的精确模型,而这是传统几何无法做到的。
可以说,分形几何是一种“新”的几何语言。
Fractal Geometry was created by French mathematician B.B.Mandelbrot in 1970’s. The term “fractal”, which was also proposed by him, came from the Latin word “fractus”. It means unregular or broken. Different from the Euclidean Geometry which characherizes the regular forms, Fractal Geometry studies classes of unregular geometric objects. It provides some methods, thoughts and techniques for study of these unregular forms. As applications, we can construct concrete models of some plants and the physical structure of stars. Relatively to the traditional geometry, Fractal Geometry is a new kind language of geometry.选用教材或参考书:教材:《分形几何---数学基础与应用》,肯尼思法尔科内著,曾文曲等译(东北大学出版社)参考书:《分形几何---数学基础与应用》,谢和平等编(重庆大学出版社)K.J.Falconer, The Geometry of fractal sets, Cambridge Univ. Press, (1985)《分形与图象压缩》,陈守吉等编(上海科技教育出版社)《分形几何及其应用》教学大纲06191280 分形几何及其应用 3.0Fractal Geometry and its Applications 3.0-0预修课程:实变函数,概率论面向对象:三、四年级本科生一、课程的教学目的和基本要求《分形几何及其应用》课程主要是面向数学系学生开设的一门选修课。
几何里的艺术家——分形几何
几何里的艺术家——分形几何分形几何是一个结合了数学和艺术的领域,它研究的是自相似的图案和结构。
分形的概念最早由法国数学家勒谢德雷于20世纪70年代提出。
他认为自然界中存在着许多看似无规律的现象,如云朵的形状、山脉的轮廓、树的分枝等,但这些现象却具有某种规律性。
通过数学的方法,勒谢德雷研究了这些现象背后的规律,并将其命名为“分形”。
分形几何的一个重要特点就是自相似性。
自相似是指一个物体的一部分与整体非常相似。
树的分枝和整棵树的形状非常相似,云朵的一小块与整个云朵的形状也非常相似。
这种自相似性使得分形图案可以无限地重复下去,越往细节处观察,越能发现新的图案。
分形几何的应用非常广泛。
在科学领域,分形几何可以用来研究各种现象,如地理地貌的形成、动植物的生长规律等。
在工程领域,分形几何可以用来设计更高效的网络、建筑和交通系统等。
在艺术领域,分形几何可以用来创作各种艺术作品,如绘画、雕塑和音乐。
分形几何在艺术创作中的应用非常有意思。
艺术家可以利用分形几何的原理,创造出各种奇妙的图案和结构。
他们可以通过数学软件生成分形图案,然后再加以修改和装饰,使其更具艺术效果。
艺术家还可以利用分形几何的自相似性,创作出逐渐放大或缩小的图案,使观众感受到无限的延伸和变化。
分形几何作品可以以各种形式呈现。
在绘画中,艺术家可以使用分形图案来创造各种纹理和形状。
在雕塑中,艺术家可以使用分形几何的结构来构建复杂的雕塑作品。
在音乐中,艺术家可以利用分形几何的规律来创作出奇妙的音乐作品,如迭代曲线和分形序列。
分形几何是一个充满艺术魅力的领域。
它的研究和应用为我们揭示了自然界和人类社会中的规律和美丽。
分形几何作品以其奇妙和无限的形式给人带来了无尽的想象空间,使我们更好地了解和欣赏世界的复杂性和多样性。
分形几何及其应用
分形几何及其应用【摘要】分形几何作为一门新兴的学科已经开始逐渐发展,分形研究深入到各学科领域。
本文介绍了分形几何在地图学中、天线设计中的一些应用。
【关键词】分形几何;天线;研究分形几何是美籍法国数学家芒德勃罗在20世纪70年代创立的一门数学新分支,它研究的是广泛存在于自然界和人类社会中一类没有特征尺度却有自相似结构的复杂形状和现象,它与欧氏几何不同。
欧氏几何是关于直觉空间形体关系分析的一门学科,它研究的是直线、圆、正方体等规则的几何形体,这些形体都是人为的。
但是,“云彩不是球体、山岭不是锥体、海岸线不是圆周”,自然界的众多形状都是如此的不规则和支离破碎。
对这些形状的认识,欧几里得并未能给后人留下更多的启示,传统的欧氏几何在它们面前显得那样的苍白无力。
对大自然的这种挑战,二千年来,激励着一代又一代的数学家上下求索,探寻从欧氏几何体系中解放出来的道路。
终于在1975年,芒德勃罗发表了被视为分形几何创立标志的专著《分形:形、机遇和维数》。
从此,一门崭新的数学分支——分形几何学跻身于现代数学之林。
一、分形几何学在地图中的应用欧几里得几何在规则、光滑形状(或有序系统)的研究中相当有效。
然而,现实世界中却有许多问题不能用欧氏几何去解决。
英国人L.理查森考察海岸线的长度问题,发现在西班牙、葡萄牙、比利时、荷兰等国出版的百科全书记录的一些海岸长度竟相差20%。
法国数学家蒙德尔罗布采用瑞典数学家柯克发现的“柯克曲线”作为思考海岸线问题的数学模型,通过深入研究并引进了分数维概念,1977年正式将具有分数维的图形称为“分形”,并建立了以这类图形为对象的数学分支——分形几何。
现实空间和地图上有许多类似海岸线那样的不规则曲线,分形几何为这类曲线的度量提供了数学工具。
二、分形几何在天线设计中的应用分形几何两个独特的特征:自相似性(或自仿射性)和空间填充性,结合天线的特征,使得分形几何在天线工程领域中的应用有了突破性的发展。
分形几何理论与应用
分形几何理论与应用分形几何理论是一种独特的数学理论,它研究的不是传统意义上的整数、有理数或代数等,而是那些细致、复杂、无规则的自相似结构。
这个理论的发展和应用可以追溯到上世纪60年代,由波兰数学家曼德博特和法国数学家朱利亚·帕西亚斯开创并推动。
分形几何理论的应用范围广泛,涉及到自然科学、工程技术、艺术设计等领域。
本文将介绍分形几何理论的基本概念、应用案例以及未来的发展趋势。
一、基本概念分形几何理论的核心概念是“分形”。
分形是一种具有自相似性质的几何形状或图形,即整体的某一部分与整体本身具有相似的结构。
分形可以是自然界中的云朵、树叶、山脉等,也可以是数学模型中的图形、曲线等。
分形具有以下基本特征:1. 自相似性:分形的一部分与整体具有相似的结构,无论进行何种放大或缩小,都能保持这种相似性。
2. 细节复杂性:分形结构的细节非常复杂,无法用简单的几何形状或方程进行描述。
3. 尺度无关性:分形的特征在不同尺度上都存在,并且不会随着放大或缩小而改变。
二、应用案例1. 自然科学领域:分形几何理论在自然科学领域的应用广泛。
例如,地理学家可以利用分形理论来研究地貌形态的分布规律,了解山脉、河流等地貌形状的演化过程。
生物学家可以利用分形模型来研究植物、动物体内的血管网络结构。
天文学家可以用分形几何理论解释银河系的分布规律等。
2. 工程技术领域:分形几何理论在工程技术领域的应用也非常广泛。
例如,在传输网络设计中,可以采用分形模型来提高网络的稳定性和可靠性。
在材料科学中,可以利用分形几何理论来研究材料的表面粗糙度和纹理结构,从而优化材料的性能。
在城市规划中,分形理论可以帮助设计人员更好地解决交通流量、建筑物布局等问题。
3. 艺术设计领域:分形几何理论对艺术设计也有很大的启发。
艺术家可以运用分形的特性创作出具有美感和复杂性的艺术作品。
分形图形的迭代、放大和变换等操作可以产生各种独特的视觉效果,被广泛用于绘画、雕塑和数字艺术等领域。
分形理论概述
分形理论概述分形理论是当今世界十分风靡和活跃的新理论、新学科。
分形的概念是美籍数学家曼德布罗特(B.B.Mandelbort)首先提出的。
1967年他在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。
海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。
我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体形态的相似。
在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去会十分相似。
事实上,具有自相似性的形态广泛存在于自然界中,如:连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(fractal)。
1975年,他创立了分形几何学(fractal geometry)。
在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(fractal theory)。
分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。
作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。
分形理论的原则自相似原则和迭代生成原则是分形理论的重要原则。
它表征分形在通常的几何变换下具有不变性,即标度无关性。
由自相似性是从不同尺度的对称出发,也就意味着递归。
分形形体中的自相似性可以是完全相同,也可以是统计意义上的相似。
标准的自相似分形是数学上的抽象,迭代生成无限精细的结构,如科契(Koch)雪花曲线、谢尔宾斯基(Sierpinski)地毯曲线等。
这种有规分形只是少数,绝大部分分形是统计意义上的无规分形。
分形理论发展历史及其应用
、分形理论1.1、引言欧氏几何、三角学、微积分学使我们能够用直线、圆、抛物线等其他简单曲线来建立现实世界中的形状模型。
比如,零维的点、一维的线、二维的面、三维的立体乃至四维的时空等,它们所描述的几何对象是规则和光滑的。
而在自然界中存在着大量的复杂事物:变幻莫测的云彩、雄浑壮阔的地貌、回转曲折的海岸线、动物的神经网络、不断分叉的树枝、纵横交流的血管烧结过程中形成的各种尺寸的聚积团等等。
面对这些事物和现象,传统科学显得束手无策。
因为目前还没有哪一种几何学能更好地描述自然形态,象山、云、火这类的自然形态尚缺少必要的数学模型。
近30 年来,科学家们朦胧地“感觉” 到了另一个几何世界,即关于自然形态的几何学,或者说分形几何学。
这种几何学把自然形态看作是具有无限嵌套层次的逻辑结构,并且在不同尺度之下保持某种相似的属性,例如,一块磁铁中的每一部分都像整体一样具有南北两极,不断分割下去,每一部分都具有和整体磁铁相同的磁场。
这种自相似的层次结构,适当的放大或缩小几何尺寸,整个结构不变。
于是在变换与迭代的过程中得到描述自然形态的有效方法(其中L系统和IFS方法便是典型的代表)。
分形理论是非线性科学的一个重要分支,主要研究的就是自然界和非线性系统中出现的不光滑和不规则的具有自相似性且没有特征长度的形状和现象。
1.2、分形理论的起源与发展1967年美籍数学家曼德布罗特(B.B.Mandelbort)在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。
海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。
我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体态的相似。
在没有建筑物或其他东西作为参照物时,在空中拍摄的 1 00公里长的海岸线与放大了的10 公里长海岸线的两张照片,看上去会十分相似。
分形几何超级介绍
分数维
现在我们从测量的角度引入了维数概念, 将维数从整数扩大到分数。即: 如果某图形是由把原图缩小为1/λ的相似的 k个图形所组成,有:k= λ^D D即维数 D = logk/logλ 其中:( λ 为线度的放大倍数 k为“体积”的放大倍数)
Sierpinski垫圈的分数维
• 如右下角的垫圈 ,它是由原图缩小1/2的相 似的3个图形组成。 • 故其维数为D=log3/log2
分维数的多种定义
• 分数维可用于定量描述分形集的复杂性。 • 分维数已有多种定义。 • 豪斯道夫维数是基于豪斯道夫测度而建立起来的 一种分形维数,它是分形几何的维数理论的基础; • 盒维数或称盒计数维数是一个具有广泛应用的维 数,计算一个分形的盒维数是相对简单的。 • 其他分维数有:柯尔莫哥诺夫熵、熵维数、容量 维数、对数维数和信息维数等。
•
自相似性
一个系统的自相似性是指某种结构或过程的特 征从不同的空间尺度或时间尺度来看都是相似 的,或者某系统或结构的局域性质或局域结构 与整体类似。另外,在整体与整体之间或部分 与部分之间,也会存在自相似性。一般情况下 自相似性有比较复杂的表现形式,而不是局域 放大一定倍数以后简单地和整体完全重合。
分形几何
数理基础试验班 李道坚 范宇航
分形几何的起源
分形几何的概念是美籍法国数学家曼德布罗特 (B.B.Mandelbrot)1975年首先提出的,但最早的工作可 追朔到1875年,德国数学家维尔斯特拉斯构造了处处连续 但处处不可微的函数,集合论创始人康托构造了有许多奇 异性质的三分康托集。1890年,意大利数学家皮亚诺构造 了填充空间的曲线。1904年,瑞典数学家科赫设计出类似 雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾 斯基设计了象地毯和海绵一样的几何图形。这些都是为解 决分析与拓朴学中的问题而提出的反例,但它们正是分形 几何思想的源泉。1975年,他创立了分形几何学。在此 基础上,形成了研究分形性质及其应用的科学,称为分形 理论。
分形几何学的理论及其应用实践
分形几何学的理论及其应用实践第一章分形几何学的基本理论分形几何学是一门新兴的几何学分支,是对自然界中那些复杂的、不规则的形态和现象进行研究的一门学科。
分形几何学的基本理论体系是由美国数学家曼德布洛特提出的,她的著作《分形几何形式的神秘》标志着分形几何学的诞生。
分形几何学的理论体系主要包括分形维、自相似性、分形分析、分形生成和逆向分形等方面内容。
1.1 分形维的概念分形维是分形几何学中的一个核心概念,它引入了一个新的维度概念,能够帮助我们更好的描述分形体的特殊性质。
分形维的定义在于能够使于模型具有自相似性且保持空间特征的维度。
分形维的概念可扩展到N维空间,并可以应用于任意维度的对象。
1.2 自相似性自相似性是指一个物体自身的某些部分具有与整体相似的性质,也可以说其子部分与父部分的形态是相似的。
自相似性是分形理论中的核心概念之一,它充分揭示了自然界的递归性规律,为人们深入了解自然界提供了新的思路和工具。
1.3 分形分析分形分析是指通过对自然现象进行复杂度分析,推导出分形维、自相似性等分形特性的过程。
分形分析常常被用于发现自然现象中隐藏的分形体性质,以便更好地理解它们。
1.4 分形生成分形生成是指通过一些规律性的过程,生成分形体图形的方法。
分形生成的方法很多,其中经典的有细分和迭代两大方法。
1.5 逆向分形逆向分形是指通过对干扰信号的处理,重新构建出原始信号的过程。
逆向分形在数字信号处理中有着广泛的应用。
第二章分形几何学的应用实践分形几何学是一门跨学科的学科,它涉及到物理、生物、化学、计算机科学等多个领域。
在实际应用中,分形几何学具有广泛的应用价值,本章将分别从不同领域对分形几何学的应用进行综述。
2.1 物理领域在物理领域,分形几何学可用于描述自然现象中复杂的分形体性质。
比如,将分形维应用到模拟海岸线和流体力学中,可以用于了解液滴、气泡、云雾等自然现象中的分形性质。
另外,在纳米科技领域,分形几何学也被广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谁创立了分形几何学?1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。
分形(Fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。
由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。
分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。
分形几何与传统几何相比有什么特点:⑴从整体上看,分形几何图形是处处不规则的。
例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。
⑵在不同尺度上,图形的规则性又是相同的。
上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。
当然,也有一些分形几何图形,它们并不完全是自相似的。
其中一些是用来描述一般随即现象的,还有一些是用来描述混沌和非线性系统的。
什么是分维?在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。
也可以梢加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的维数。
分形理论把维数视为分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。
为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。
分维的概念我们可以从两方面建立起来:一方面,我们首先画一个线段、正方形和立方体,它们的边长都是1。
将它们的边长二等分,此时,原图的线度缩小为原来的1/2,而将原图等分为若干个相似的图形。
其线段、正方形、立方体分别被等分为2^1、2^2和2^3个相似的子图形,其中的指数1、2、3,正好等于与图形相应的经验维数。
一般说来,如果某图形是由把原图缩小为1/a的相似的b个图形所组成,有:a^D=b, D=logb/loga的关系成立,则指数D称为相似性维数,D可以是整数,也可以是分数。
另一方面,当我们画一根直线,如果我们用0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是0,因为直线中不包含平面。
那么,用怎样的尺度来量它才会得到有限值哪?看来只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为1(大于0、小于2)。
与此类似,如果我们画一个Koch曲线,其整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是0(此曲线中不包含平面),那么只有找一个与Koch曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于1、小于2,那么只能是小数(即分数)了,所以存在分维。
其实,Koch 曲线的维数是1.2618……。
Fractal(分形)一词的由来据曼德勃罗教授自己说,fractal一词是1975年夏天的一个寂静夜晚,他在冥思苦想之余偶翻他儿子的拉丁文字典时,突然想到的。
此词源于拉丁文形容词fractus,对应的拉丁文动词是frangere(“破碎”、“产生无规碎片”)。
此外与英文的fraction(“碎片”、“分数”)及fragment(“碎片”)具有相同的词根。
在70年代中期以前,曼德勃罗一直使用英文fractional 一词来表示他的分形思想。
因此,取拉丁词之头,撷英文之尾的fractal,本意是不规则的、破碎的、分数的。
曼德勃罗是想用此词来描述自然界中传统欧几里德几何学所不能描述的一大类复杂无规的几何对象。
例如,弯弯曲曲的海岸线、起伏不平的山脉,粗糙不堪的断面,变幻无常的浮云,九曲回肠的河流,纵横交错的血管,令人眼花僚乱的满天繁星等。
它们的特点是,极不规则或极不光滑。
直观而粗略地说,这些对象都是分形。
分形的定义曼德勃罗曾经为分形下过两个定义:(1)满足下式条件Dim(A)>dim(A)的集合A,称为分形集。
其中,Dim(A)为集合A的Hausdoff维数(或分维数),dim(A)为其拓扑维数。
一般说来,Dim(A)不是整数,而是分数。
(2)部分与整体以某种形式相似的形,称为分形。
然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。
实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特性来加以说明。
对分形的定义也可同样的处理。
(i)分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。
(ii)分形集不能用传统的几何语言来描述,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。
(iii)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。
(iv)一般,分形集的“分形维数”,严格大于它相应的拓扑维数。
(v)在大多数令人感兴趣的情形下,分形集由非常简单的方法定义,可能以变换的迭代产生。
为什么要研究分形?首先,分形形态是自然界普遍存在的,研究分形,是探讨自然界的复杂事物的客观规律及其内在联系的需要,分形提供了新的概念和方法。
其次,分形具有广阔的应用前景,在分形的发展过程中,许多传统的科学难题,由于分形的引入而取得显著进展。
分形作为一种新的概念和方法,正在许多领域开展应用探索。
80年代初国外开始的“分形热”经久不息。
美国著名物理学家惠勒说过:今后谁不熟悉分形,谁就不能被称为科学上的文化人。
分形几何是现代数学的一个崭新分支,目前“以其全新姿态和广泛的应用性,以及它带给人们思维的广阔的探索空间成为当今最富有吸引力的科学研究领域之一”,另外,分形内容具备了新世纪课程设计理念所要求的“具有现实性、趣味性、富有挑战性”。
因此新课程标准与时俱进地将其列为渗透“数学文化”的极好素材。
而怎样把分形几何带进中学课堂,以及如何实现与数学课程内容的整合成为当务之急。
文[1]与文[2]已经作了有益的探索和尝试,不过文[1] 提供的让学生去“做”分形几何的方法,操作起来有点困难,“过程”不直观,而文[2]利用《几何画板》却收到了相当理想的效果。
《几何画板》是一款优秀的数理软件,被称为“二十一世纪的动态几何”,其最大特色是动态性,并能在变动状态下保持不变的几何关系。
借助这个操作平台,师生可以在动态过程中,十分直观地看到这个系统中存在的几何现象,发现、探索、研究数学规律,深化数学研究性学习。
本文介绍笔者在课堂上利用《几何画板》研究分形几何的教学实践(本文适用于几何画板4.x版本)。
1 作分形树1.1 构造原理:画树干,再画两个数枝,注意与树干的角度是120°,并且其长度是树干的12,继续在数枝上画小树枝,要求同上,不断重复上述步骤就可得所谓的分形树。
1.2 课件作法:①利用画线段工具(同时按Shift键)画一条水平方向的线段AC,在上面取点B,分别度量线段AC、AB的长度,然后计算|AC||AB|及trunc(|AC||AB|)(其作用是控制迭带深度的参数);②用画线段工具画一条竖直线段DE(同时按Shift键),双击点E标记为旋转中心。
将点D旋转120°得点F,再将点F旋转120°得点G。
分别将点F、G缩放12得到点F′、G′,连结线段EF′、EG′,隐藏点F、G;③选择点D、E和trunc(|AC||AB|)同时按下Shift键,选择菜单“变换”…“带参数的迭代”,在弹出的迭代对话框中依次选择点G′、E,按下“Ctrl+A”, 再依次选择点F′、E,点击“迭代”即可;④这时只要轻轻拖动点B,就会惊奇地发现“长出” 树枝的动态过程, 参数值越大,分形树愈加“枝繁茂盛”。
分形树的示意图如下:1.3 问题探究:(设分形级数为n,初始树高为1)①新的树枝的数量(2 n);②全部树枝的-1);③新的树枝的长度(12 n);④全部树枝的长度(n+1);⑤分形树的结构特征数量(2 n+1(自相似性和不依赖标度性)。
2 作雪花曲线(Kock曲线)2.1 构造原理:作一个等边三角形,三等分每一边,然后在此等边三角形的每一边上向外部作新的等边三角形,使得新的等边三角形的两个顶点正好落在原等边三角形的三等分点上,此时形成一个六角星,再在所得六角星的12条边上分别重复上述步骤,…如此下去所得曲线称为雪花曲线。
2.2 课件作法:①任取两点A、B,双击点A标记为缩放中心,将点B分别以13和23为比例缩放得到点C和D;②双击点C标记为旋转中心,将点D旋转60°得到点E. 然后依次选择点C、D、E,选择菜单“构造”…“三角形内部”命令,构造三角形内部,并设置其颜色为蓝色;③新建一个参数以控制迭带深度,命名为迭带深度,取参数初始值为2;④选择点A、B和迭带深度,同时按住Shift键不放,然后选择菜单“变换”…“带参数的迭代”命令,在弹出的迭代对话框中依次选择点D、B,按下“Ctrl+A”,再依次选择点E、D,重复上述步骤,再依次选择点A、C,建立新的映射,按“迭代”键退出;⑤选择所有对象,然后按工具箱中的“创建新工具…”按钮,在弹出的对话框中将“工具名称”改为“雪花曲线的一边”(定义为其它名称也可),按“确定”退出;⑥双击点B标记为旋转中心,将点A旋转60°得到点F,选择工具箱中的“自定义工具”…“雪花曲线的一边”工具,用鼠标选择点E、A和迭带深度;再用鼠标选择点E、A和迭带深度,单击工具箱中的“选择工具” 按钮。
依次选择点A、B、F,然后选择菜单“构造” …“三角形内部”命令,画出△ABC的内部;⑦隐藏不必要的内容,改变迭带深度中的值可控制“生长”的次数(迭带深度=生长次数-1),同时可直观地看到雪花“加密”的“慢镜”,也能实现“慢镜回放”的效果。
雪花曲线的示意图如下:我们可以用一个正方形将柯赫雪花完全围住,尽管雪花曲线的周长趋向于无穷大,但雪花曲线永远不会超出这个正方形)。
⑥雪花曲线的结构特点(从图中可以看出:“雪花曲线”有许许多多的折点,到处都是尖端,用数学语言来讲,曲线虽然连续,但处处不可微,即没有切线,这是说明“连续并不一定可微”的经典例子)。
3 作谢尔品斯基(Sierpinski)地毯3.1 构造原理:将一个正方形九等分,然后挖去其中间的一个(称为一级正方形);再将剩下的八个小正方形各自九等分后分别挖去其中间的一个小正方形(称为二级正方形);重复上面的步骤…,由此得到的图形(集合)称为谢尔品斯基地毯。
3.2 课件作法:①任意做一正方形ABCD,将各边及对角线三等分;②顺次连结对角线各三等分点,选择菜单“构造”…“四边形内部”命令,选定其颜色为黑色,然后度量其面积,以面积作为控制该正方形内部颜色变换的参数;③新建一个参数以控制迭带深度,命名为迭带深度,取参数初始值为3(不要太大);④选择点A、B及迭带深度,同时按住Shift键不放,分别将点A、B映射到8个小正方形的相应顶点(注:每作完一次深度迭代后就按“Ctrl+A”键以增加新的映射);⑤隐藏不必要的内容,改变迭带深度中的值可控制变换的次数,若拖动点B,则会发现五彩斑斓的谢尔品斯基地毯在变换。