16.2二次根式的乘除

合集下载

人教版八年级数学下册_16.2二次根式的乘除

人教版八年级数学下册_16.2二次根式的乘除

特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).

沪科版数学八年级下册16.2《二次根式的运算》教学设计3

沪科版数学八年级下册16.2《二次根式的运算》教学设计3

沪科版数学八年级下册16.2《二次根式的运算》教学设计3一. 教材分析《二次根式的运算》是沪科版数学八年级下册第16.2节的内容,本节内容是在学生已经掌握了二次根式的性质和二次根式的乘除法运算的基础上进行教学的。

本节的主要内容是二次根式的加减法运算和混合运算。

教材通过例题和练习题的形式,引导学生掌握二次根式的加减法运算规则,以及如何将复杂的二次根式进行简化。

二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的基本性质和乘除法运算,但对于二次根式的加减法运算和混合运算,可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过实例去理解二次根式加减法运算的规则,以及如何将复杂的二次根式进行简化。

三. 教学目标1.让学生掌握二次根式的加减法运算规则。

2.让学生能够熟练地进行二次根式的混合运算。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.二次根式的加减法运算规则。

2.复杂二次根式的简化方法。

五. 教学方法采用讲解法、示范法、练习法、小组合作法等教学方法。

通过讲解和示范,让学生理解二次根式加减法运算的规则;通过练习,让学生巩固所学知识;通过小组合作,让学生在讨论中解决问题,提高解决问题的能力。

六. 教学准备1.教学PPT。

2.练习题。

3.粉笔、黑板。

七. 教学过程1.导入(5分钟)教师通过提问方式复习二次根式的性质和乘除法运算,然后引出本节课的内容——二次根式的加减法运算。

2.呈现(15分钟)教师通过PPT呈现二次根式的加减法运算规则,以及复杂二次根式的简化方法。

让学生观察和思考,引导学生在实例中发现规律,总结出运算规则。

3.操练(20分钟)教师布置练习题,让学生独立完成。

教师选取部分学生的作业进行讲解和分析,指出其中的错误,并给出正确的解题方法。

4.巩固(10分钟)教师通过PPT呈现一些典型的例题,让学生独立解答。

教师在旁边指导,帮助学生解决问题。

5.拓展(10分钟)教师引导学生思考:如何将复杂的二次根式进行简化?让学生通过小组合作,共同探讨简化方法。

人教版八年级下册16.2《二次根式的乘除》教案

人教版八年级下册16.2《二次根式的乘除》教案
三、教学难点与重点
1.教学重点
a.掌握二次根式的乘法法则:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$($a \geq 0$,$b \geq 0$)
b.掌握二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$($a \geq 0$,$b > 0$)
五、教学反思
在今天的教学中,我们探讨了二次根式的乘除运算。通过这节课的学习,我发现学生们在理解乘除法则和应用这些法则解决实际问题时,普遍存在一些挑战。首先,学生们在从理论到实际应用的转换上存在一定的难度。他们能够理解乘法法则和除法法则的概念,但在将法则应用到具体题目中时,往往不知道如何下手。
例如,在计算$\sqrt{12} \times \sqrt{18}$时,部分学生未能首先将根式化简,而是直接相乘,导致计算错误。这让我意识到,在讲解乘除法则时,需要更加强调化简的步骤,让学生形成自动化的解题流程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式乘除的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式乘除的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
d.了解二次根式乘除运算在实际问题中的应用。
教学内容涵盖以下例题与练习:
1.计算下列二次根式的乘积:
$\sqrt{3} \times \sqrt{5}$,$2\sqrt{6} \times 3\sqrt{2}$,$5\sqrt{2} \times \sqrt{18}$

16.2 二次根式的乘除

16.2 二次根式的乘除

例 6 计算:(1)-2 15÷3 3×6 5;
(2)
3
·
2

÷

2
1

2
3
;(3)3 2 × -
1
8
15 ÷
1
2
2
.
5
分析(1)利用二次根式的乘除法则计算即可;(2)先根据二次根式
的除法法则计算括号里的,再计算即可;(3)先把乘除法混合运算转
化成乘法运算,再进行乘法运算即可.
22
教材新知精讲
(4)公式里的字母可以是具体的数,也可以是值为非负数的代数
式.
(5)当二次根式前面系数不为 1 时,可以类比单项式与单项式相
乘的法则,先把系数相乘,再把被开方数相乘,即
m ·
n =mn (a≥0,b≥0).
3
教材新知精讲
知识点一
知识点二
知识点三
例 1 计算:(1)
5
×
3
知识点四
知识点五
综合知识拓展
10、阅读一切好书如同和过去最杰出的人谈话。17:50:0617:50:0617:509/12/2021 5:50:06 PM
教材新知精讲
综合知识拓展
11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.9.1217:50:0617:50Sep-2112-Sep-21
平方根的性质结合起来使用.商的算术平方根实质是二次根式除法
法则的逆用.
(5)利用商的算术平方根的性质,可以把被开方数的分母是开得尽
方的数的二次根式进行化简.
15
教材新知精讲
知识点一
知识点二

人教版数学八年级下册16.2二次根式的乘除第一课时优秀教学案例

人教版数学八年级下册16.2二次根式的乘除第一课时优秀教学案例
1.布置具有梯度的作业,让学生巩固本节课所学的知识。如:“请完成以下作业:1.计算2√3 × 3√2;2.计算4√5 ÷ 2√5;3.利用二次根式乘除法解决实际问题。”
2.要求学生认真完成作业,并及时给予反馈,了解学生对知识点的掌握情况。如:“请同学们认真完成作业,明天我们将进行作业讲评。”
五、案例亮点
(二)问题导向
1.设计具有启发性的问题,引导学生思考二次根式乘除法的运算规律,如:“如何将二次根式的乘除法转化为我们已经学过的加减法?”等。
2.引导学生通过问题发现知识点之间的联系,如:提问:“二次根式的乘除法与实数的乘除法有什么异同?”等,让学生在思考中掌握知识。
(三)小组合作
1.组织学生进行小组讨论,分享各自的想法和解决问题的方法,让学生在合作中发现问题、解决问题,培养团队合作精神。
针对这一知识点,我设计了一节以学生为主体、注重实践与思考的优秀教学案例。首先,我会通过复习导入,引导学生回顾已学的二次根式知识,为新课的学习做好铺垫。接着,我将会引导学生通过小组合作、讨论交流的方式,探索二次根式的乘除运算规律,培养学生的主体探究能力和团队合作精神。在探索过程中,我会适时给予学生反馈和指导,帮助他们克服困难,理解并掌握二次根式的乘除运算方论,让学生分享各自对二次根式乘除法的理解和运算方法。如:“你们认为二次根式乘除法应该如何运算?请你们小组讨论一下,并分享给其他小组。”
2.引导学生通过讨论,发现和总结二次根式乘除法的运算规律。如:“通过讨论,我们发现二次根式乘除法可以转化为加减法,只需要将根号内的数相乘(或相除)即可。”
(四)总结归纳
1.教师引导学生总结本节课所学的二次根式乘除法的运算规律。如:“我们可以总结一下,二次根式的乘法可以理解为将根号内的数相乘,除法可以理解为将根号内的数相除。”

16.2二次根式的乘除法(教案)

16.2二次根式的乘除法(教案)
三、教学难点与重点
1.教学重点
本节课的教学重点主要包括以下内容:
a.掌握二次根式乘法的运算法则,特别是\( \sqrt{a} \times \sqrt{b} = \sqrt{ab} \)的形式,以及如何将其他形式的二次根式乘法转化为这一形式;
b.理解并应用二次根式除法的运算法则,特别是\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)和\( \frac{\sqrt{a}}{b} = \frac{\sqrt{a}}{\sqrt{b^2}} \)的形式,以及如何处理分母中含有二次根式的情况;
(3)\( \sqrt{a^2} \times \sqrt{b^2} = |a||b| \)(a、b为任意实数)
2.掌握二次根式除法的运算法则,能够正确计算以下形式的除法:
(1)\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)(a≥0,b>0)
2.培养学生的逻辑思维能力,使其能够理解并运用二次根式乘除法的性质,解决实际问题;
3.培养学生的数学建模能力,通过解决实际情境中的问题,让学生体会数学知识在实际生活中的应用;
4.培养学生的数学抽象能力,让学生从具体的二次根式乘除运算中抽象出一般性规律,形成数学认知结构;
5.培养学生的合作交流意识,鼓励学生在小组讨论和交流中,共同探索二次根式乘除法的运算规律,提高解决问题的能力。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示二次根式乘除法的基本原理,如使用尺子和直角三角形模型来计算对角线长度。

人教版数学八年级下册16.2《二次根式的乘除》教学设计3

人教版数学八年级下册16.2《二次根式的乘除》教学设计3

人教版数学八年级下册16.2《二次根式的乘除》教学设计3一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行学习的。

二次根式的乘除法运算是初中数学中的重要内容,也是后续学习高中数学的基础。

本节内容主要让学生掌握二次根式的乘除法运算规则,理解并掌握二次根式乘除法运算的性质和规律,提高学生的数学运算能力。

二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和加减法运算,但对于二次根式的乘除法运算可能还存在一定的困难。

因此,在教学过程中,需要教师引导学生理解二次根式的乘除法运算规则,通过大量的练习,让学生熟练掌握二次根式的乘除法运算。

三. 教学目标1.让学生掌握二次根式的乘除法运算规则。

2.提高学生的数学运算能力。

3.培养学生的逻辑思维能力。

四. 教学重难点1.二次根式的乘除法运算规则。

2.二次根式的混合运算。

五. 教学方法1.讲解法:教师通过讲解,让学生理解二次根式的乘除法运算规则。

2.练习法:让学生通过大量的练习,熟练掌握二次根式的乘除法运算。

3.小组合作法:让学生通过小组合作,共同探讨二次根式的乘除法运算,培养学生的团队协作能力。

六. 教学准备1.PPT课件:教师需要准备PPT课件,用于展示二次根式的乘除法运算规则。

2.练习题:教师需要准备适量的练习题,用于让学生进行练习。

七. 教学过程1.导入(5分钟)教师通过复习二次根式的性质和加减法运算,引导学生进入二次根式的乘除法运算学习。

2.呈现(10分钟)教师通过PPT课件,呈现二次根式的乘除法运算规则,让学生初步了解二次根式的乘除法运算。

3.操练(10分钟)教师让学生进行二次根式的乘除法运算练习,引导学生掌握二次根式的乘除法运算规则。

4.巩固(10分钟)教师通过讲解和练习,让学生巩固二次根式的乘除法运算规则。

5.拓展(10分钟)教师引导学生进行二次根式的混合运算,提高学生的数学运算能力。

人教版八年级数学下册16.2二次根式的乘除优秀教学案例

人教版八年级数学下册16.2二次根式的乘除优秀教学案例
(二)过程与方法
1.通过探究二次根式的乘除运算,培养学生的逻辑思维能力和运算能力。
2.运用小组合作、讨论交流的方式,培养学生的团队协作能力和沟通能力。
3.引导学生运用数形结合的方法,通过图形直观地理解二次根式的乘除运算。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,激发学生学习数学的内在动力。
针对以上问题,我制定了以下教学策略,以提高学生的学习效果和解决问题的能力。
二、教学目标
(一)知识与技能
1.理解二次根式的乘除法则,能够正确进行二次根式的乘除运算。
2.掌握二次根式的性质和化简方法,能够将二次根式进行化简。
3.能够运用二次根式的乘除运算解决实际问题,提高运用数学知识解决实际问题的能力。
2.二次根式的化简方法:引导学生总结二次根式的化简方法,掌握提取公因数、应用平方差公式等技巧,提高解题效率。
3.实际问题解决:引导学生总结如何运用二次根式的乘除运算解决实际问题,培养学生的应用能力和解决问题的能力。
(五)作业小结
1.布置作业:设计具有针对性和实践性的作业,让学生巩固和应用所学知识,提高学生的实际操作能力。
2.培养学生勇于探索、坚持不懈的学习精神,培养学生的自主学习能力。
3.通过对实际问题的解决,让学生体验到数学与生活的紧密联系,培养学生的应用意识和社会责任感。
作为一名特级教师,我深知教学目标的重要性,它不仅是教学活动的出发点和归宿,也是评价教学效果的重要依据。在教学过程中,我将紧紧围绕以上教学目标,采用多种教学方法和手段,引导学生积极参与,主动探究,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。
人教版八年级数学下册16.2二次根式的乘除优秀教学案例
一、案例背景

16.2二次根式的乘除 (教学课件)- 初中数学人教版八年级下册

16.2二次根式的乘除  (教学课件)-   初中数学人教版八年级下册

解: ( 思考】乘法法则是如何得出的?二次根式的除法该怎样算呢2 除法有没有类似的法则?
学习 目标 3. 理解最简二次根式的概念,能熟练地将二 次根式化为最简二次根式。
2. 会运用除法法则及商的算术平方根进行简 单运算.
1. 掌 握二次根式的除法法则,会用法则进行计算.
探究新知 知识点1
二次根式的除法
探究新知
归纳总结 二次根式的乘法法则的推广: ①多个二次根式相乘时此法则也适用,即
√a·√b .....√n=√ab...n(a≥0,b≥0....n≥0)
②当二次根号外有因数(式)时,可以类比单项式乘单 项式的法则计算,即根号外的因数(式)的积作为根号 外的因数(式),被开方数的积作为被开方数,即
化简:
(1)√ 16×81;(2)√4a²b³(a≥0,b≥0).
解:(1)√ 16×81
(2)√4a²b³
(2 ) 中4 ²ab³ 含有 像 4 a²,b²,, 这
= √16×√81
=√4O√a²O√b³
样开的尽方的因 数或因式,把它
=4×9
=36;
=2OaO√b²Ob
们开方后移到根 号外.
巩固练习
计算:
(1)
(2)

解: (1) (2)
提示:像(2)中除式是分数或分(1)
(2)
(3)

解:(1)
探究新知
考点② 利用二次根式的除法法则计算根号外因数不是1的 二次根式
计算: (1) 解:(1)
假分数,再运用二次根式除法法则进行运算.
巩固练习 计算,看谁算的既对又快.

探究新知
方法点拨
化简二次根式的步骤:
1.把被开方数分解因式(或因数);

《16.2 二次根式的乘除(第1课时)》教学设计

《16.2 二次根式的乘除(第1课时)》教学设计

《16.2 二次根式的乘除(第1课时)》教学设计《16.2 二次根式的乘除(第1课时)》教学设计一、内容和内容解析1.内容二次根式的乘法法则和积的算术平方根的性质,化简二次根式.2.内容解析二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.基于以上分析,确定本节课的教学重点:探究二次根式的乘法法则和积的算术平方根的性质.二、目标和目标解析1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.问题2 教材第6页“探究”栏目,计算结果如何?有何规律?师生活动学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.2.观察比较,理解法则问题3 简单的根式运算.师生活动学生动手操作,教师检验.问题4成立的条件是什么?等式反过来有什么价值?师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质.【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.3.例题示范,学会应用例1 化简:(1); (2).师生活动提问:你是怎么理解例(1)的?如果学生回答不完善,再追问:这个问题中,就直接将结果算成可以吗?你认为本题怎样才达到了化简的效果?师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质将其移出根号外.再提问:你能仿照第(1)题的解答,能自己解决(2)吗?【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.例2 计算:(1); (2); (3)师生活动学生计算,教师检验.(1)在被开方数相乘的时候,就可以考虑因数或因式分解,由直接可得而不必先写成再分解;(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到,然后利用二次根式的乘法法则,变成,由于可以判断,因此直接将x移出根号外.【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.4.巩固概念,学以致用练习:教科书第7页练习第1题. 第10页习题16.2第1题.【设计意图】巩固性练习,同时检验乘法法则的掌握情况.5.归纳小结,反思提高师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能说明二次根式的乘法法则是如何得出的吗?(2)你能说明乘法法则逆用的意义吗?(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.五、目标检测设计1.下列各式中,一定能成立的是( )A.B.C.D.【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.2.化简______________________________。

16.2二次根式的乘除(教案)

16.2二次根式的乘除(教案)
此外,我也在思考如何在课堂上更好地激发学生的兴趣。可能通过引入更多与生活实际相关的例子,让学生感受到二次根式乘除在实际生活中的应用,从而提高他们的学习积极性。
1.加强基础运算的训练,特别是合并同类项和分数除法的复习。
2.提供更具针对性的讨论指导,确保学生能够围绕核心概念展开讨论。
3.增加口语表达和逻辑思维的训练,提高学生的表达能力和思考深度。
4.引入更多生活实例,激发学生的学习兴趣,提高课堂参与度。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除相关的实际问题,如计算不同形状的面积或体积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,使用几何模型来演示如何计算长方体的体积。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
-难点举例:\(\sqrt{18} \times \sqrt{2}\)。难点在于识别\(\sqrt{18}\)可以简化为\(\sqrt{9 \times 2}\),即\(3\sqrt{2}\),然后进行乘法运算。
-熟练运用除法法则时,对根号内分母与分子关系的理解和处理。
-难点举例:\(\frac{\sqrt{54}}{\sqrt{3}}\)。难点在于将\(\sqrt{54}\)简化为\(\sqrt{18}\),然后应用除法法则,得到\(\sqrt{\frac{18}{3}} = \sqrt{6}\)。
-将实际问题转化为二次根式的乘除运算,并正确应用法则。
-难点举例:如果一个长方体的长、宽、高分别是\(2\sqrt{3}\)、\(\sqrt{6}\)和\(\sqrt{2}\),求体积。难点在于建立正确的数学模型,应用乘法法则得到体积为\(2\sqrt{3} \times \sqrt{6} \times \sqrt{2} = 6\sqrt{6}\)。

人教版数学八年级下册16.2二次根式的乘除(教案)

人教版数学八年级下册16.2二次根式的乘除(教案)
2.教学难点
(1)根号内乘除运算的简化:在二次根式乘除运算过程中,学生往往难以把握根号内乘除运算后的简化步骤。
-难点解释:如\(\sqrt{2} \times \sqrt{8} = \sqrt{2 \times 8}\),需简化根号内的结果为\(\sqrt{16}\),进而得到最终答案4。
(2)混合运算中乘除法则的运用:在二次根式乘除混合运算中,学生容易混淆乘除法则,导致计算错误。
-练习:计算\(\sqrt{18} \times \sqrt{2}\)、\(\sqrt{12} \times \sqrt{27}\)等。
2.二次根式的除法法则:理解二次根式除法的运算规律,能够熟练进行除法运算。
-例子:\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(其中\(b \neq 0\),\(a \geq 0\),\(b > 0\))
人教版数学八年级下册16.2二次根式的乘除(教案)
一、教学内容
本节课选自人教版数学八年级下册16.2节,主要内容包括:
1.二次根式的乘法法则:掌握二次根式乘法的运算规律,能够正确进行乘法运算。
-例子:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(其中\(a \geq 0\),\(b \geq 0\))
-练习:计算\(\frac{\sqrt{48}}{\sqrt{3}}\)、\(\frac{\sqrt{54}}{\sqrt{9}}\)等。
3.二次根式的乘除混合运算:学会运用乘除法则,解决二次根式的乘除混合运算问题。
-例子:\(\sqrt{18} \div \sqrt{2} \times \sqrt{12}\)
5.设计不同难度的练习题,帮助学生巩固所学知识,逐步突破难点。

16.2二次根式乘除知识点总结

16.2二次根式乘除知识点总结

16.2二次根式的乘除知识点总结及练习知识清单
知识点一:二次根式的乘法法则
1、二次根式的乘法法则:
即两个二次根式相乘,根指数不变,只把被开方数相乘。

.
知识点二:积的算术平方根的性质
2、积的算术平方根的性质:
即积的算术平方根等于积中各因式的算术平方根的积.。

知识点三:二次根式的除法法则
3、二次根式的除法法则:即两个二次根式相除,根指数不变,把被开方数相除.
知识点四:商的算术平方根的性质
4、商的算术平方根的性质:即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.。

知识点五:最简二次根式
5、最简二次根式定义:当二次根式满足以下两条:
(1)被开方数不含();
(2)被开方数中不含能开得尽方的()或
()。

.。

16.2二次根式的乘除

16.2二次根式的乘除

100
100 100 10
2 75
27
2 75= 52 3= 52=5 27 32 3 32 3
a2 a a 0
2 a a(a 0)
例7设长方形的面积为S,相邻两边长分别为a,b.已知S=2 3,b= 10,求a 解:因为S=ab,所以 a= s = 2 3 = 2 3 10 = 30
b 10 10 10 5
练习:P10 1-3 作业:P10-11 2,3,4,5,8,10,11,12,1能 二次根式乘法、除法法则,积的算术平方根的性质。乘、除法的推广,积 的算术平方根计算时必需要考虑的条件。 过程与方法
让学生在知道法则的前提下,通过具体题目的运算,去更深层次地理解 法则和注意事项
情感态度与价值观 逐步培养学生独立思考问题、分析问题的能力,体会学习过程所带来的乐 趣 重点及难点 重点为对运算法则的理解;难点为运算法则的运用(特别是容易忘记条件) 教学过程
学生独立思考 在1中找到左右两边式子如何计算,以及它们的关系 有1推出2式中的关系
练习:P7 1,2,3 作业:P10-11 1,6,7
课时2 上节课知识的复习
3 36 _____, 36 ______.
49
49
根据自己完成的情况,让学生得出有什么样的结论
例5化简
1
3 ; 解:1 3 = 3 = 3 ;

16.2二次根式的乘除

16.2二次根式的乘除
(2)
(1)
2b 3 3a b
(3)
6 3 2 1
(4)
x
x
2
2 2
6、比较下列各组数的大小:
(1)3 5和2 6
1 1 1 1 (2) 和 3 3 2 7
(3) x 1和 x
2
2
7、计算
二次根式的混合运算顺 序与实数运算类似
1 (1) 0.2 0.125 2
2 1 2 (2) 1 2 1 3 3 5
(3) 2a 8a (a 0)
计算
(1) 2 8
(2) 12 3 3 2 (4) 2 3
(3) 1000 0.1
例题2 化简: (1) 12
( 2)
a (a 0)
3
( 3) 4 a 2 b 3
(a 0, b 0)
变 : 若(3)的条件为 a 0, b 0呢 ?
1.在横线上填写适当的数或式子使等式成立。 ( 2 )= 4 ( 1 )8 •
(2) 2 5• ( 5 )= 10
3 2 (3) a-1 • ( a- 1)= a-1 (4) = 6
2.把下列各式的分母有理化:

3

-8 3 (1) 8
3.化简:
3 2 (2) 27
(3)
5a 10a
(4)
2y 2 4 xy
a b
a b
计算 解:
1
3
8 2a
3 3 15 15 15 3 5 1 解法1.. 5 5 5 25 5 25 5
3 3 5 15 解法2.. 5 5 5 5
在二次根式的运算中, 最后结果一般要求
(1)分母中不含有二次根式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A解B: .
AB2 AC2 BC2 B
C
AB AC2 B 5 10 5(cm)
答:AB长 10 5 cm.
练习2:判断正误
(1) (4)(9) 4 9
(2) 4 12 25 4 12 25
25
25
二次根式的乘法:
a b aba 0,b 0 ab a ba 0,b 0
解:原式 14 7
72 2 72 2 7 2
例3:计算:
(2)3 5 2 10 解:原式 3 2 5 10
6 52 2 6 52 2 30 2
例3:计算:
(3) 3x 解:原式
1 xy 3 3x 1 xy
3
x2 y
x2 y
x y
练习1:如图,在三角形ABC中, ∠C=90°,AC=10cm, BC=20cm.求:A
2 4a 2b3 4 a2 b3 2a b2 b
2a b2 b 2ab b
化简二次根式的步骤:
1.将被开方数尽可能分解成几个平方数.
2.应用 ab a ba 0,b 0
3.将平方项应用 a2 a 化a 简0.
课本练习1.2
ab a ba 0,b 0
例3:计算: (1) 14 7
例1:计算: a b aba 0,b 0
(1) 6
7
(2)
1 2
32
解:
1. 6 7 6 7 42
2. 1 32 1 32 16 4
2
2
例2:化简: ab a ba 0,b 0
(1) 16 81 (2) 4a2b3
解:
1 16 81 16 81 4 9 36
3.请用文字总结你发现的规律。
4 9 49
16 25 16 25
2 3 6
2 5 10
规律: 算术平方根的积等于积的算术平方根
一般地:
a b ab(a≥0,b≥0)
利用下面式子可对二次根式进行化简:
ab a b (a≥0,b≥0)
注:在本章中,如果没有特别说明,所 有的字母都表示正数.
人教版八年级下册
二次根式 a具有哪些性质?
a≥0, ≥a0 (双重非负性)
2 a a (a≥0)
a2 a (a≥0)
1.计算下列各式,你发现什么规律?
(1) 4 9 ,6 4; 9 6 (2)16 25, 20 16。 25 20
2.用你发现的规律填空,并验证。
(1) 2 3 = 6 (2) 2 5 = 10
相关文档
最新文档