c语言二叉树的创建及中序遍历的递归与非递归算法
数据结构c语言课设-二叉树排序

题目:二叉排序树的实现1 内容和要求1)编程实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进展先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。
4)分别用二叉排序树和数组去存储一个班(50 人以上)的成员信息(至少包括学号、姓名、成绩3 项),比照查找效率,并说明在什么情况下二叉排序树效率高,为什么?2 解决方案和关键代码2.1 解决方案:先实现二叉排序树的生成、插入、删除,编写DisplayBST函数把遍历结果用树的形状表示出来。
前中后根遍历需要用到栈的数据构造,分模块编写栈与遍历代码。
要求比照二叉排序树和数组的查找效率,首先建立一个数组存储一个班的成员信息,分别用二叉树和数组查找,利用clock〔〕函数记录查找时间来比照查找效率。
2.2关键代码树的根本构造定义及根本函数typedef struct{KeyType key;} ElemType;typedef struct BiTNode//定义链表{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree, *SElemType;//销毁树int DestroyBiTree(BiTree &T){if (T != NULL)free(T);return 0;}//清空树int ClearBiTree(BiTree &T){if (T != NULL){T->lchild = NULL;T->rchild = NULL;T = NULL;}return 0;}//查找关键字,指针p返回int SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p) {if (!T){p = f;return FALSE;}else if EQ(key, T->data.key){p = T;return TRUE;}else if LT(key, T->data.key)return SearchBST(T->lchild, key, T, p);elsereturn SearchBST(T->rchild, key, T, p);}二叉树的生成、插入,删除生成void CreateBST(BiTree &BT, BiTree p){int i;ElemType k;printf("请输入元素值以创立排序二叉树:\n");scanf_s("%d", &k.key);for (i = 0; k.key != NULL; i++){//判断是否重复if (!SearchBST(BT, k.key, NULL, p)){InsertBST(BT, k);scanf_s("%d", &k.key);}else{printf("输入数据重复!\n");return;}}}插入int InsertBST(BiTree &T, ElemType e){BiTree s, p;if (!SearchBST(T, e.key, NULL, p)){s = (BiTree)malloc(sizeof(BiTNode));s->data = e;s->lchild = s->rchild = NULL;if (!p)T = s;else if LT(e.key, p->data.key)p->lchild = s;elsep->rchild = s;return TRUE;}else return FALSE;}删除//某个节点元素的删除int DeleteEle(BiTree &p){BiTree q, s;if (!p->rchild) //右子树为空{q = p;p = p->lchild;free(q);}else if (!p->lchild) //左子树为空{q = p;p = p->rchild;free(q);}else{q = p;s = p->lchild;while (s->rchild){q = s;s = s->rchild;}p->data = s->data;if (q != p)q->rchild = s->lchild;elseq->lchild = s->lchild;delete s;}return TRUE;}//整棵树的删除int DeleteBST(BiTree &T, KeyType key) //实现二叉排序树的删除操作{if (!T){return FALSE;}else{if (EQ(key, T->data.key)) //是否相等return DeleteEle(T);else if (LT(key, T->data.key)) //是否小于return DeleteBST(T->lchild, key);elsereturn DeleteBST(T->rchild, key);}return 0;}二叉树的前中后根遍历栈的定义typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;int InitStack(SqStack &S) //构造空栈{S.base = (SElemType*)malloc(STACK_INIT_SIZE *sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//InitStackint Push(SqStack &S, SElemType e) //插入元素e为新栈顶{if (S.top - S.base >= S.stacksize){S.base = (SElemType*)realloc(S.base, (S.stacksize + STACKINCREMENT)*sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top++ = e;return OK;}//Pushint Pop(SqStack &S, SElemType &e) //删除栈顶,应用e返回其值{if (S.top == S.base) return ERROR;e = *--S.top;return OK;}//Popint StackEmpty(SqStack S) //判断是否为空栈{if (S.base == S.top) return TRUE;return FALSE;}先根遍历int PreOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);if (!Visit(p->data)) return ERROR;p = p->lchild;}else{Pop(S, p);p = p->rchild;}}return OK;}中根遍历int InOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);p = p->lchild;}else{Pop(S, p);if (!Visit(p->data)) return ERROR;p = p->rchild;}}return OK;}后根遍历int PostOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S, SS;BiTree p;InitStack(S);InitStack(SS);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);Push(SS, p);p = p->rchild;}else{if (!StackEmpty(S)){Pop(S, p);p = p->lchild;}}}while (!StackEmpty(SS)){Pop(SS, p);if (!Visit(p->data)) return ERROR;}return OK;}利用数组存储一个班学生信息ElemType a[] = { 51, "陈继真", 88,82, "黄景元", 89,53, "贾成", 88,44, "呼颜", 90,25, "鲁修德", 88,56, "须成", 88,47, "孙祥", 87, 38, "柏有患", 89, 9, " 革高", 89, 10, "考鬲", 87, 31, "李燧", 86, 12, "夏祥", 89, 53, "余惠", 84, 4, "鲁芝", 90, 75, "黄丙庆", 88, 16, "李应", 89, 87, "杨志", 86, 18, "李逵", 89, 9, "阮小五", 85, 20, "史进", 88, 21, "秦明", 88, 82, "杨雄", 89, 23, "刘唐", 85, 64, "武松", 88, 25, "李俊", 88, 86, "卢俊义", 88, 27, "华荣", 87, 28, "杨胜", 88, 29, "林冲", 89, 70, "李跃", 85, 31, "蓝虎", 90, 32, "宋禄", 84, 73, "鲁智深", 89, 34, "关斌", 90, 55, "龚成", 87, 36, "黄乌", 87, 57, "孔道灵", 87, 38, "张焕", 84, 59, "李信", 88, 30, "徐山", 83, 41, "秦祥", 85, 42, "葛公", 85, 23, "武衍公", 87, 94, "范斌", 83, 45, "黄乌", 60, 67, "叶景昌", 99, 7, "焦龙", 89, 78, "星姚烨", 85, 49, "孙吉", 90, 60, "陈梦庚", 95,};数组查询函数void ArraySearch(ElemType a[], int key, int length){int i;for (i = 0; i <= length; i++){if (key == a[i].key){cout << "学号:" << a[i].key << " 姓名:" << a[i].name << " 成绩:" << a[i].grade << endl;break;}}}二叉树查询函数上文二叉树根本函数中的SearchBST()即为二叉树查询函数。
二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。
二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。
本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。
一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。
下面以使用链表的方式来建立二叉树为例。
1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。
```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。
```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。
1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。
```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。
二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

/*一下总结一些二叉树的常见操作:包括建立二叉树先/中/后序遍历二叉树求二叉树的叶子节点个数求二叉树的单分支节点个数计算二叉树双分支节点个数计算二叉树的高度计算二叉树的所有叶子节点数*/#include<stdio.h> //c语言的头文件#include<stdlib.h>//c语言的头文件stdlib.h千万别写错了#define Maxsize 100/*创建二叉树的节点*/typedef struct BTNode //结构体struct 是关键字不能省略结构体名字可以省略(为无名结构体)//成员类型可以是基本型或者构造形,最后的为结构体变量。
{char data;struct BTNode *lchild,*rchild;}*Bitree;/*使用先序建立二叉树*/Bitree Createtree() //树的建立{char ch;Bitree T;ch=getchar(); //输入一个二叉树数据if(ch==' ') //' '中间有一个空格的。
T=NULL;else{ T=(Bitree)malloc(sizeof(Bitree)); //生成二叉树(分配类型*)malloc(分配元素个数*sizeof(分配类型))T->data=ch;T->lchild=Createtree(); //递归创建左子树T->rchild=Createtree(); //地柜创建右子树}return T;//返回根节点}/*下面先序遍历二叉树*//*void preorder(Bitree T) //先序遍历{if(T){printf("%c-",T->data);preorder(T->lchild);preorder(T->rchild);}} *//*下面先序遍历二叉树非递归算法设计*/void preorder(Bitree T) //先序遍历非递归算法设计{Bitree st[Maxsize];//定义循环队列存放节点的指针Bitree p;int top=-1; //栈置空if(T){top++;st[top]=T; //根节点进栈while(top>-1) //栈不空时循环{p=st[top]; //栈顶指针出栈top--;printf("%c-",p->data );if(p->rchild !=NULL) //右孩子存在进栈{top++;st[top]=p->rchild ;}if(p->lchild !=NULL) //左孩子存在进栈{top++;st[top]=p->lchild ;}}printf("\n");}}/*下面中序遍历二叉树*//*void inorder(Bitree T) //中序遍历{if(T){inorder(T->lchild);printf("%c-",T->data);inorder(T->rchild);}}*//*下面中序遍历二叉树非递归算法设计*/void inorder(Bitree T) //中序遍历{Bitree st[Maxsize]; //定义循环队列,存放节点的指针Bitree p;int top=-1;if(T){p=T;while (top>-1||p!=NULL) //栈不空或者*不空是循环{while(p!=NULL) //扫描*p的所有左孩子并进栈{top++;st[top]=p;p=p->lchild ;}if(top>-1){p=st[top]; //出栈*p节点,它没有右孩子或右孩子已被访问。
二叉树的遍历及常用算法

⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。
二叉树的先序,中序,后序遍历c语言

二叉树的先序,中序,后序遍历c语言
二叉树是常见的数据结构,具有广泛的应用场景,例如搜索树、哈夫曼树等。
其中比较重要的一点就是对二叉树的遍历。
二叉树遍历有三种方式:先序遍历、中序遍历、后序遍历。
接下来,我将通过C语言来详细介绍这三种遍历方式。
一、先序遍历(Preorder Traversal)
先序遍历是指根节点->左子树->右子树的遍历方式。
C语言中的先序遍历算法如下:
```
void preorderTraversal(Node *node) {
if (node != NULL) {
printf("%d ", node->data); // 打印节点值
preorderTraversal(node->left); // 递归遍历左子树
preorderTraversal(node->right); // 递归遍历右子树
}
}
```
先序遍历的实现通过递归调用实现,当节点为空即遍历完成时返回。
总结:
以上三种遍历方式是二叉树遍历中最基本的方法,它们都是基于递归实现的。
通过学习这三种遍历方式,可以更好地理解二叉树的结构特点,提高数据结构算法的学习效果。
c语言二叉树的先序,中序,后序遍历

c语言二叉树的先序,中序,后序遍历1、先序遍历先序遍历可以想象为,一个小人从一棵二叉树根节点为起点,沿着二叉树外沿,逆时针走一圈回到根节点,路上遇到的元素顺序,就是先序遍历的结果先序遍历结果为:A B D H I E J C F K G2、中序遍历中序遍历可以看成,二叉树每个节点,垂直方向投影下来(可以理解为每个节点从最左边开始垂直掉到地上),然后从左往右数,得出的结果便是中序遍历的结果中遍历结果为:H D I B E J A F K C G3、后序遍历后序遍历就像是剪葡萄,我们要把一串葡萄剪成一颗一颗的。
还记得我上面提到先序遍历绕圈的路线么?(不记得翻上面理解)就是围着树的外围绕一圈,如果发现一剪刀就能剪下的葡萄(必须是一颗葡萄)(也就是葡萄要一个一个掉下来,不能一口气掉超过1个这样),就把它剪下来,组成的就是后序遍历了。
后序遍历中,根节点默认最后面后序遍历结果:H I D J E B K F G C A4、口诀先序遍历:先根再左再右中序遍历:先左再根再右后序遍历:先左再右再根这里的根,指的是每个分叉子树(左右子树的根节点)根节点,并不只是最开始头顶的根节点,需要灵活思考理解5、代码展示#include<stdio.h>#include<stdlib.h>typedef struct Tree{int data; // 存放数据域struct Tree *lchild; // 遍历左子树指针struct Tree *rchild; // 遍历右子树指针}Tree,*BitTree;BitTree CreateLink(){int data;int temp;BitTree T;scanf("%d",&data); // 输入数据temp=getchar(); // 吸收空格if(data == -1){ // 输入-1 代表此节点下子树不存数据,也就是不继续递归创建return NULL;}else{T = (BitTree)malloc(sizeof(Tree)); // 分配内存空间T->data = data; // 把当前输入的数据存入当前节点指针的数据域中printf("请输入%d的左子树: ",data);T->lchild = CreateLink(); // 开始递归创建左子树printf("请输入%d的右子树: ",data);T->rchild = CreateLink(); // 开始到上一级节点的右边递归创建左右子树return T; // 返回根节点}}// 先序遍历void ShowXianXu(BitTree T) // 先序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}printf("%d ",T->data);ShowXianXu(T->lchild); // 递归遍历左子树ShowXianXu(T->rchild); // 递归遍历右子树}// 中序遍历void ShowZhongXu(BitTree T) // 先序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}ShowZhongXu(T->lchild); // 递归遍历左子树printf("%d ",T->data);ShowZhongXu(T->rchild); // 递归遍历右子树}// 后序遍历void ShowHouXu(BitTree T) // 后序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}ShowHouXu(T->lchild); // 递归遍历左子树ShowHouXu(T->rchild); // 递归遍历右子树printf("%d ",T->data);}int main(){BitTree S;printf("请输入第一个节点的数据:\n");S = CreateLink(); // 接受创建二叉树完成的根节点printf("先序遍历结果: \n");ShowXianXu(S); // 先序遍历二叉树printf("\n中序遍历结果: \n");ShowZhongXu(S); // 中序遍历二叉树printf("\n后序遍历结果: \n");ShowHouXu(S); // 后序遍历二叉树return 0;}。
中序遍历的非递归算法

中序遍历的非递归算法中序遍历是二叉树遍历的一种方法,它按照左子树、根节点、右子树的顺序访问二叉树的节点。
相比于递归算法,非递归算法使用循环和栈来模拟递归过程,实现中序遍历。
1. 算法介绍中序遍历的非递归算法基于栈数据结构。
具体步骤如下:1.创建一个空栈。
2.初始化当前节点为根节点。
3.当当前节点不为空或者栈不为空时,执行以下操作:–如果当前节点不为空,则将当前节点压入栈,并将当前节点指向其左子节点。
–如果当前节点为空,则从栈中弹出一个节点,并将其输出。
然后将当前节点指向被弹出节点的右子节点。
4.重复步骤3,直到当前节点为空且栈为空。
2. 算法实现下面是使用Python编写的中序遍历的非递归算法实现:class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef inorderTraversal(root):stack = []result = []current = rootwhile current or stack:while current:stack.append(current)current = current.leftcurrent = stack.pop()result.append(current.val)current = current.rightreturn result3. 算法分析时间复杂度中序遍历的非递归算法的时间复杂度为O(n),其中n为二叉树中节点的个数。
这是因为每个节点都会被访问一次。
空间复杂度中序遍历的非递归算法的空间复杂度取决于栈的大小,即最坏情况下需要存储整棵树的节点。
所以空间复杂度为O(n),其中n为二叉树中节点的个数。
4. 示例考虑以下二叉树:1\2/3使用上述算法进行中序遍历,结果为[1, 3, 2]。
数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。
问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。
由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。
处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。
算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。
输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。
对二叉树的一些运算结果以整型输出。
程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。
计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。
对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。
测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。
非递归中序遍历二叉树课件

04 非递归中序遍历 二叉树的复杂度 分析
时间复杂度
最好情况:O(n) 最坏情况:O(n)
平均情况:O(n)
空间复杂度
最好情况:O(1) 最坏情况:O(n)
平均情况:O(n)
05 非递归中序遍历 二叉树的优缺点
优点
01
02
03
空间效率高
非递归算法通常只需要常 数级别的额外空间,相比 之下,递归算法可能需要 更多的堆栈空间。
代码简洁
非递归算法的代码通常更 简洁,更易于理解和维护。
适合处理大型数据
由于非递归算法不需要大 量的堆栈空间,因此更适 合处理大型数据集。
缺点
编程技巧要求高
非递归算法需要更多的编程技巧, 特别是对于那些不熟悉这种技术 的人来说,理解和实现可能会比 较困难。
遍历过程
01
02
03
04
弹出栈顶元素,访问该 节点。
如果该节点右子节点存 在,将右子节点入栈。
如果该节点左子节点存 在,将左子节点入栈。
重复上述步骤,直到栈 为空。
遍历后的结果
01
中序遍历的顺序为:左子树 -> 根节点 -> 右子树。
02
非递归方法利用了栈的性质,实 现了从上到下、从左到右的遍历 顺序。
THANKS
感谢观看
栈为空。
实例二:复杂的二叉树
总结词:进阶应用
详细描述:对于复杂的二叉树,非递归中序遍历需要 更加细致的处理。由于树的形状可能不规则,我们需 要更加灵活地使用栈来处理节点之间的关系。在遍历 过程中,我们需要注意处理各种特殊情况,例如循环 引用、节点值相等的情况,以避免陷入无限循环或访 问错误的节点。此外,我们还需要注意优化算法的时 间复杂度和空间复杂度,以提高遍历的效率和准确性。
二叉树 c语言

二叉树 c语言在计算机科学领域中,树型数据结构是一种非常重要的数据结构,在实际开发中也得到了广泛的应用。
其中,二叉树又是一种非常常见的树型结构。
二叉树在很多情况下都能够提供更好的算法效率,同时也易于理解和实现,因此我们可以通过通过学习和掌握二叉树的特点以及优点,来更好的应用到实际开发中。
一、二叉树的定义二叉树是一种树型结构,树型结构是由节点构成的。
二叉树与一般的树型结构不同,它的每个节点最多只有两个子节点,分别称为左子树和右子树。
它们可以为空或者不为空,其子节点的数量时不固定且没有任何限制的。
二叉树的定义如下:(1)空树是树的一种特殊的状态。
我们可以把它称为二叉树;(2)若不是空树,那么它就是由一个称为根节点(root)的元素和左右两棵分别称为左子树(left subtree)和右子树(right subtree)的二叉树组成。
二、二叉树的特性(1)每个节点最多只有两个子节点,分别称为左子节点和右子节点;(2)左子树和右子树是二叉树;(3)二叉树没有重复的节点。
三、二叉树的应用二叉树是一种非常实用的数据结构,因为它可以模拟很多实际生活中的情况。
例如,我们可以利用二叉树来对某些数据进行分类和排序。
在二叉树的基础上,我们还可以构造二叉堆、哈夫曼树等更高级的数据结构。
除此之外,二叉树还可以应用到程序设计中。
例如,我们可以构造一个二叉树来表示某个程序的控制流,这个程序在执行时可以沿着二叉树的各个节点进行分支和选择,实现不同的功能。
此外,我们还可以利用二叉树来加快某些算法的执行效率,比如二分查找算法等。
四、二叉树的遍历方式对于二叉树的遍历,有三种基本方式,即前序遍历、中序遍历、后序遍历。
它们的遍历顺序不同,因此也得到了不同的称呼。
下面我们来简要介绍一下这三种遍历方式的特点和应用。
(1)前序遍历前序遍历是指首先访问树的根节点,然后按照从左到右的顺序依次遍历左子树和右子树。
前序遍历的应用非常广泛,可以用于生成表达式树、构造二叉树等等。
二叉树的建立和遍历的实验报告

竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告篇一:二叉树遍历实验报告数据结构实验报告报告题目:二叉树的基本操作学生班级:学生姓名:学号:一.实验目的1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。
2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。
二.实验学时:课内实验学时:3学时课外实验学时:6学时三.实验题目1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTreestructnode*lchild,*rchild;}binTnode;元素类型:intcreatebinTree(binTreevoidpreorder(binTreevoidInorder(binTreevoidpostorder(binTreevoidInordern(binTreeintleaf(bi nTreeintpostTreeDepth(binTree2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。
1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构3)实现过程:1、实现非递归中序遍历代码:voidcbiTree::Inordern(binTreeinttop=0;p=T;do{while(p!=nuLL){stack[top]=p;;top=top+1;p=p->lchild;};if(top>0){top=top-1;p=stack[top];printf("%3c",p->data);p=p->rchild;}}while(p!=nuLL||top!=0);}2、求二叉树高度:intcbiTree::postTreeDepth(binTreeif(T!=nuLL){l=postTreeDepth(T->lchild);r=postTreeDepth(T->rchil d);max=l>r?l:r;return(max+1);}elsereturn(0);}实验步骤:1)新建一个基于consoleApplication的工程,工程名称biTreeTest;2)新建一个类cbiTree二叉树类。
c++实现树(二叉树)的建立和遍历算法(一)(前序,中序,后序)

c++实现树(⼆叉树)的建⽴和遍历算法(⼀)(前序,中序,后序)最近学习树的概念,有关⼆叉树的实现算法记录下来。
不过学习之前要了解的预备知识:树的概念;⼆叉树的存储结构;⼆叉树的遍历⽅法。
⼆叉树的存储结构主要了解⼆叉链表结构,也就是⼀个数据域,两个指针域,(分别为指向左右孩⼦的指针),从下⾯程序1,⼆叉树的存储结构可以看出。
⼆叉树的遍历⽅法:主要有前序遍历,中序遍历,后序遍历,层序遍历。
(层序遍历下⼀篇再讲,本篇主要讲的递归法)下篇主要是,之后会有c++模板实现和。
如这样⼀个⼆叉树:它的前序遍历顺序为:ABDGHCEIF(规则是先是根结点,再前序遍历左⼦树,再前序遍历右⼦树)它的中序遍历顺序为:GDHBAEICF(规则是先中序遍历左⼦树,再是根结点,再是中序遍历右⼦树)它的后序遍历顺序为:GHDBIEFCA(规则是先后序遍历左⼦树,再是后序遍历右⼦树,再是根结点)如果不懂的话,可以参看有关数据结构的书籍。
1,⼆叉树的存储结构(⼆叉链表)//⼆叉树的⼆叉链表结构,也就是⼆叉树的存储结构,1个数据域,2个指针域(分别指向左右孩⼦)typedef struct BiTNode{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree;2,⾸先要建⽴⼀个⼆叉树,建⽴⼆叉树必须要了解⼆叉树的遍历⽅法。
//⼆叉树的建⽴,按前序遍历的⽅式建⽴⼆叉树,当然也可以以中序或后序的⽅式建⽴⼆叉树void CreateBiTree(BiTree *T){ElemType ch;cin >> ch;if (ch == '#')*T = NULL; //保证是叶结点else{*T = (BiTree)malloc(sizeof(BiTNode));//if (!*T)//exit(OVERFLOW); //内存分配失败则退出。
C语言实现二叉树的中序遍历(递归)

C语 言 实 现 二 叉 树 的 中 序 遍 历 ( 递 归 )
二叉树的前序遍历、中序遍历、后续遍历 (包括递归、非递归,共六种) 1、中序遍历(递归): #include #include struct BiTNode//定义结构体 { char data; struct BiTNode *lchild,*rchild; }; void later(struct BiTNode *&p) //前序创建树 { char ch; scanf("%c",&ch); if(ch==' ') p=NULL; else { p=(struct BiTNode *)malloc(sizeof(struct BiTNode)); p->data=ch; later(p->lchild); later(p->rchild); } } void print(struct BiTNode *p) //中序遍历(输出二叉树) { if(p!=NULL) { print(p->lchild); printf("%c",p->data); print(p->rchild); } else printf(" ");
创建二叉树的三种算法

创建二叉树的三种算法1.递归算法递归算法是最直观也是最常用的创建二叉树的方法之一、递归算法通过递归地创建左子树和右子树来构建完整的二叉树。
具体步骤如下:-创建一个二叉树结构的定义,包含一个存储数据的变量和左右子节点。
-如果当前节点为空,直接将新节点插入当前位置。
-如果新节点的值小于当前节点的值,递归地将新节点插入当前节点的左子树。
-如果新节点的值大于等于当前节点的值,递归地将新节点插入当前节点的右子树。
递归算法的示例代码如下所示:```pythonclass TreeNode:def __init__(self, val):self.val = valself.left = Noneself.right = Nonedef insert(root, val):if root is None:return TreeNode(val)if val < root.val:root.left = insert(root.left, val)elif val >= root.val:root.right = insert(root.right, val)return root```2.先序遍历算法先序遍历算法通过遍历给定的节点集合,按照先序的顺序将节点逐个插入到二叉树中。
这种算法可以使用栈来实现。
具体步骤如下:-创建一个空栈,同时创建一个新节点的拷贝作为当前节点。
-依次遍历给定的节点集合,如果新节点的值小于当前节点的值,将当前节点的左子节点指向新节点,并将新节点入栈,并将新节点移动到当前节点的左子节点。
-如果新节点的值大于等于当前节点的值,重复上述过程,直到找到一个合适的位置并插入新节点。
-当遍历完所有节点后,返回二叉树的根节点。
先序遍历算法的示例代码如下所示:```pythonclass TreeNode:def __init__(self, val): self.val = valself.left = Noneself.right = Nonedef insert(root, val): if root is None:return TreeNode(val) stack = []cur = rootwhile True:if val < cur.val:if not cur.left:cur.left = TreeNode(val) breakelse:cur = cur.leftelse:if not cur.right:cur.right = TreeNode(val)breakelse:cur = cur.rightreturn root```3.层次遍历算法层次遍历算法通过逐层遍历给定的节点集合,按照从上到下、从左到右的顺序将节点逐个插入到二叉树中。
二叉树的创建与遍历的实验总结

二叉树的创建与遍历的实验总结引言二叉树是一种重要的数据结构,在计算机科学中有着广泛的应用。
了解二叉树的创建和遍历方法对于数据结构的学习和算法的理解至关重要。
本文将对二叉树的创建和遍历进行实验,并总结相应的经验和思考。
二叉树的定义在开始实验之前,我们首先需要了解二叉树的定义和基本概念。
二叉树是一种每个节点最多拥有两个子节点的树形结构。
每个节点包含一个值和指向其左右子节点的指针。
根据节点的位置,可以将二叉树分为左子树和右子树。
创建二叉树二叉树的创建可以采用多种方法,包括手动创建和通过编程实现。
在实验中,我们主要关注通过编程方式实现二叉树的创建。
1. 递归方法递归是一种常用的创建二叉树的方法。
通过递归,我们可以从根节点开始,逐层创建左子树和右子树。
具体步骤如下:1.创建一个空节点作为根节点。
2.递归地创建左子树。
3.递归地创建右子树。
递归方法的代码实现如下所示:class TreeNode:def __init__(self, value):self.value = valueself.left = Noneself.right = Nonedef create_binary_tree(values):if not values:return None# 使用队列辅助创建二叉树queue = []root = TreeNode(values[0])queue.append(root)for i in range(1, len(values)):node = TreeNode(values[i])# 当前节点的左子节点为空,则将新节点作为左子节点if not queue[0].left:queue[0].left = node# 当前节点的右子节点为空,则将新节点作为右子节点elif not queue[0].right:queue[0].right = node# 当前节点的左右子节点已经齐全,可以从队列中删除该节点queue.pop(0)# 将新节点添加到队列中,下一次循环时可以使用该节点queue.append(node)return root2. 非递归方法除了递归方法,我们还可以使用非递归方法创建二叉树。
浅析一种二叉树非递归遍历算法的C语言实现论文.doc

浅析一种二叉树非递归遍历算法的C语言实现论文一种二叉树非递归遍历算法的C语言实现论文导读:本论文是一篇关于一种二叉树非递归遍历算法的C语言实现的优秀论文范文,对正在写有关于递归论文的写有一定的参考和指导作用,摘要:针对二叉树的链式存储结构,分析了二叉树的各种遍历算法,探讨了递归算法的递推消除理由,提出了一种改善的非递归遍历算法并用C语言予以实现。
关键词:二叉树;遍历算法;非递归;C语言实现1009-3044(2014)01-0223-031 概述树形结构是一种非常常见的数据结构,而二叉树又是其中最重要的一种树形结构。
二叉树的遍历是指按照一定的规则和次序将二叉树中的每一个结点都访问一次,既不能重复,也不能漏掉。
一般而言,对二叉树的遍历有前序遍历、中序遍历、后序遍历和按层遍历等几种方式。
在具体的算法设计上,以上遍历方式一般采取递归算法来实现,该文将探讨采用非递归算法来实现二叉树的遍历。
2 二叉树的数据结构描述二叉树作为一种非线性结构,每个结点最多有一个双亲结点和两个子结点。
二叉树可以采用顺序存储结构和链式存储结构。
对于完全二叉树而言,采用顺序存储是非常方便并且节省空间的,但是对于大部分的非完全二叉树而言,采用顺序存储将导致空间浪费严重且结构混乱、效率低下。
因此,更多的时候,大家都更愿意用链式存储结构来表示二叉树,这样结构更加清晰,尤其是对于一种二叉树非递归遍历算法的C语言实现由写论文的好帮手.zbjy.提供,.左右子树的描述和双亲节点的描述更加方便。
该文中拟采用链式结构来表示二叉树。
用链式存储结构来表示二叉树,一个结点至少由3个域组成,即数据域、左子结点域和右子结点域(如图1所示)。
3 二叉树的遍历及递归算法实现3.1 二叉树的遍历二叉树的遍历就是一个不漏的访问树中的每个结点,同时也不能重复。
所谓“访问”,就是指对结点的数据域进行某种操作,比如说读取、删除、更新、求该节点深度等等。
对于二叉树中的任意一个部分,都可以把它看作三部分,根节点、左子树、右子树,我们用D表示访问跟结点,用L表示遍历左子树,用R表示遍历右子树,则共有以下6种遍历方式[1]。
C++二叉树的先序,中序,后序遍历

C++⼆叉树的先序,中序,后序遍历三种遍历⽅式都分为递归与⾮递归的⽅式。
三种遍历⽅式的递归思想相同。
后序遍历⾮递归⽅法分为两种,具体见代码。
构造⽅式:1 #include<iostream>2 #include<stack>3using namespace std;45 typedef struct BiTNode{6char data;7int lvisited,rvisited;//左、右孩⼦是否访问过,1表⽰已访问(此项只在后序⾮递归2算法中需要)8struct BiTNode *lchild,*rchild;9 }BiTNode,*BiTree;1011void InitBiTree(BiTree &T)//构造空⼆叉树12 {13 T=NULL;14 }15void CreateBiTree(BiTree &T)//⽣成⼆叉树16 {17char ch;18 cin>>ch;19if(ch=='0')//0代表空20 T=NULL;21else22 {23 T=(BiTree)malloc(sizeof(BiTNode));//⽣成根结点24if(!T)25 {26 cout<<"⽣成结点错误!"<<endl;27return;28 }29 T->data=ch;30 T->lvisited=0;31 T->rvisited=0;32 CreateBiTree(T->lchild);33 CreateBiTree(T->rchild);34 }35 }三种遍历⽅式代码:1void PreOrder(BiTree T)//先序递归遍历2 {3if(T!=NULL)4 {5 cout<<T->data<<"";6 PreOrder(T->lchild);7 PreOrder(T->rchild);8 }9 }10void SqlPreOrder(BiTree T)//先序⾮递归遍历11 {12 stack<BiTree> s;13 BiTree p=T;14while(p || !s.empty())15 {16if(p)17 {18 cout<<p->data<<"";19 s.push(p);20 p=p->lchild;21 }22else23 {24 p=s.top();25 p=p->rchild;26 s.pop();27 }28 }29 }30313233void InOrder(BiTree T)//中序递归遍历34 {35if(T!=NULL)36 {37 InOrder(T->lchild);38 cout<<T->data<<"";39 InOrder(T->rchild);40 }41 }42void SqInOrder(BiTree T)//中序⾮递归遍历43 {44 stack<BiTree> s;45 BiTree p=T;46while(p || !s.empty())47if(p)48 {49 s.push(p);50 p=p->lchild;51 }52else53 {54 p=s.top();55 cout<<p->data<<"";56 s.pop();57 p=p->rchild;58 }59 }60616263void PostOrder(BiTree T)//后序递归遍历64 {65if(T!=NULL)66 {67 PostOrder(T->lchild);68 PostOrder(T->rchild);69 cout<<T->data<<"";70 }71 }7273//后序⾮递归遍历1思路:因为后序⾮递归遍历⼆叉树的顺序是先访问左⼦树,再访问后⼦树,最后 74//访问根结点。
用C语言编写二叉树的建立与遍历

用C语言编写二叉树的建立与遍历1.对题目要有需求分析在需求分析中,将题目中要求的功能进行叙述分析,并且设计解决此问题的数据存储结构,设计或叙述解决此问题的算法。
给出实现功能的一组或多组测试数据,程序调试后,将按照此测试数据进行测试的结果列出来。
如果程序不能正常运行,写出实现此算法中遇到的问题和改进方法;2.对题目要有相应的源程序源程序要按照写程序的规则来编写。
要结构清晰,重点函数的重点变量,重点功能部分要加上清晰的程序注释。
(注释量占总代码的四分之一)程序能够运行,要有基本的容错功能。
尽量避免出现操作错误时出现死循环;3.最后提供的主程序可以象一个应用系统一样有主窗口,通过主菜单和分级菜单调用课程设计中要求完成的各个功能模块,调用后可以返回到主菜单,继续选择其他功能进行其他功能的选择。
二叉树的建立与遍历[问题描述]建立一棵二叉树,并对其进行遍历(先序、中序、后序),打印输出遍历结果。
[基本要求]从键盘接受输入,以二叉链表作为存储结构,建立二叉树,并对其进行遍历(先序、中序、后序),将遍历结果打印输出。
以下是我的数据结构实验的作业:肯定好用,里面还包括了统计树的深度和叶子数!记住每次做完一个遍历还要重新输入你的树哦!#include "stdio.h"#include "string.h"#define NULL 0typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;BiTree Create(BiTree T){char ch;ch=getchar();if(ch=='#')T=NULL;else{if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))printf("Error!");T->data=ch;T->lchild=Create(T->lchild);T->rchild=Create(T->rchild); }return T;}void Preorder(BiTree T){if(T){printf("%c",T->data); Preorder(T->lchild); Preorder(T->rchild);}}int Sumleaf(BiTree T){int sum=0,m,n;if(T){if((!T->lchild)&&(!T->rchild)) sum++;m=Sumleaf(T->lchild);sum+=m;n=Sumleaf(T->rchild);sum+=n;}return sum;}void zhongxu(BiTree T){if(T){zhongxu(T->lchild);printf("%c",T->data); zhongxu(T->rchild);}}void houxu(BiTree T){if(T){houxu(T->lchild);houxu(T->rchild);printf("%c",T->data);}}int Depth(BiTree T){int dep=0,depl,depr;if(!T) dep=0;else{depl=Depth(T->lchild);depr=Depth(T->rchild);dep=1+(depl>depr?depl:depr);}return dep;}main(){BiTree T;int sum,dep;T=Create(T);Preorder(T);printf("\n");zhongxu(T);printf("\n");houxu(T);printf("\n");sum=Sumleaf(T);printf("%d",sum);dep=Depth(T);printf("\n%d",dep);}在Turbo C的环境下,先按Ctrl+F9运行程序,此时就是建立二叉树的过程,例如输入序列ABC##DE#G##F###(其中的“#”表示空,并且输入过程中不要加回车,因为回车也有对应的ASCII码,是要算字符的,但是输入完之后可以按回车退出),然后再按ALT+F5显示用户界面,这时候就能够看到结果了。
中序遍历二叉树的递归算法c语言代码

中序遍历二叉树的递归算法c语言代码二叉树的中序遍历递归算法是左子树-> 根节点-> 右子树。
以下是C语言代码实现:```c#include <stdio.h>#include <stdlib.h>// 定义二叉树节点结构体struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;};// 定义二叉树中序遍历函数void inorderTraversal(struct TreeNode *root) {if (root == NULL) { // 如果根节点为空,直接返回return;}inorderTraversal(root->left); // 先遍历左子树printf("%d ", root->val); // 输出根节点值inorderTraversal(root->right); // 最后遍历右子树}int main() {// 创建一棵二叉树struct TreeNode *root = (struct TreeNode*)malloc(sizeof(struct TreeNode));struct TreeNode *node1 = (struct TreeNode*)malloc(sizeof(struct TreeNode));struct TreeNode *node2 = (struct TreeNode*)malloc(sizeof(struct TreeNode));struct TreeNode *node3 = (struct TreeNode*)malloc(sizeof(struct TreeNode));struct TreeNode *node4 = (struct TreeNode*)malloc(sizeof(struct TreeNode));struct TreeNode *node5 = (struct TreeNode*)malloc(sizeof(struct TreeNode));struct TreeNode *node6 = (struct TreeNode*)malloc(sizeof(struct TreeNode));struct TreeNode *node7 = (struct TreeNode*)malloc(sizeof(struct TreeNode));struct TreeNode *node8 = (struct TreeNode*)malloc(sizeof(struct TreeNode));struct TreeNode *node9 = (struct TreeNode*)malloc(sizeof(struct TreeNode));node1->val = 1;node1->left = node2;node1->right = node3;node2->val = 2;node2->left = NULL;node2->right = NULL;node3->val = 3;node3->left = node4;node3->right = node5;node4->val = 4;node4->left = NULL;node4->right = NULL;node5->val = 5;node5->left = NULL;node5->right = NULL;root->val = 0; // 设置根节点值为0,这样在遍历时会跳过根节点输出0,避免输出多个根节点值。