2017年浙江省宁波市中考数学试卷(含答案)

合集下载

2017年浙江省宁波市中考数学试卷

2017年浙江省宁波市中考数学试卷

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前浙江省宁波市2017年初中毕业生学业考试数 学(总分150分,考试时间120分钟)一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1.12,0,2这四个数中,为无理数的是 ( )AB .12C .0D .2- 2.下列计算正确的是( )A .235a a aB .2(2)4a aC .235a a aD .235()a a3.2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为( )A .60.4510吨B .54.510吨C .44510吨D .44.510吨4.,则x 的取值范围是( ) A .3xB .3x >C .3x ≤D .3x ≥5.如图所示的几何体的俯视图为( )ABCD6.一个不透明的布袋里装有5个红球、2个白球、3个黄球,它们除颜色外其余相同.从袋中任意摸出1个球,是黄球的概率为( )A .12 B .15C .310D .7107.已知直线m n ∥,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n .若120∠=︒,则2∠的度数为( )A .20B .30C .45D .508.若一组数据2,3,x ,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .79.如图,在Rt ABC △中,90A ∠=︒,22BC.以BC 的中点O 为圆心的圆分别与AB ,AC 相切于D ,E 两点,则DE 的长为( ) A .π4 B .π2C .πD .2π10.抛物线2222yx x m (m 是常数)的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限11.如图,四边形ABCD 是边长为6的正方形,点E 在边AB 上,4BE ,过点E 作EF BC ∥,分别交BD ,CD 于G ,F 两点.若M ,N 分别是DG ,CE 的中点,则MN 的长为 ( )A .3 B. CD .412.一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中,若知道九个小矩形中n 个小矩形的周长,就一定能算出这个大矩形的面积,则n 的最小值是 ( ) A .3 B .4 C .5 D .6 二、填空题(每小4题,共24分)13.实数8的立方根是 .14.分式方程21332x x 的解是 .15.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第⑦个图案有 个黑色棋子.16.如图,一名滑雪运动员沿着倾斜角为34的斜坡,从A 滑行至B .已知500AB 米,则这名滑雪运动员的高度下降了 米(参考数据:sin340.56≈,cos340.83≈,tan340.67≈).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)17.已知,ABC △的三个顶点为(1,1)A ,(1,3)B ,(3,3)C ,将ABC △向右平移(0)m m >个单位后,ABC △某一边的中点恰好落在反比例函数3y x的图象上,则m 的值为 .18.如图,在菱形纸片ABCD 中,2AB ,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos EFG ∠的值为 . 三、解答题(本大题有8小题,共78分)19.(本题6分)先化简,再求值:(2)(2)(1)(5)x x x x ,其中32x.20.(本题8分)在44的方格纸中,ABC △的三个顶点都在格点上.(1)在图1中画出与ABC △成轴对称且与ABC △有公共边的格点三角形(画出一个即可).(2)将图2中的ABC △绕着点C 按顺时针方向旋转90,画出经旋转后的三角形.21.(本题8分)大黄鱼是中国特有的地方性鱼种类,有“国鱼”之称.由于过去滥捕等多种因素,大黄鱼资源已基本枯竭.目前,我市已培育出十余种大黄鱼品种.某鱼苗人工养殖基地对其中的四个品种“宁港”“御龙”“甬岱”“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广.通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量.(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图. (3)你认为应选哪一品种进行推广?请说明理由.22.(本题10分)如图,正比例函数13y x 的图象与反比例函数2ky x的图象交于A ,B 两点,点C 在x 轴负半轴上,AC AO ,ACO △的面积为12. (1)求k 的值.(2)根据图象,当12y y >时,写出x 的取值范围.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)23.(本题10分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行.本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1 500元. (1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于 5 400万元,则至少销售甲种商品多少万件?24.(本题10分)在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD 的四边BA 、CB 、DC 、AD 分别延长至E 、F 、G 、H ,使得AE CG ,BF DH ,连接EF ,FG ,GH ,HE . (1)求证:四边形EFGH 为平行四边形.(2)若矩形ABCD 是边长为1的正方形,且45FEB ∠=︒,tan 2AEH ∠=,求AE 的长.25.(本题12分)如图,抛物线21144yx x c 与x 轴的负半轴交于点A ,与y 轴交于点B ,连结AB .点156,2C 在抛物线上,直线AC 与y 轴交于点D . (1)求c 的值及直线AC 的函数表达式.(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连结PQ 与直线AC 交于点M ,连结MO 并延长交AB 于点N ,若M 为PQ 的中点. ①求证:APM AON △∽△;②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).26.(本题14分)有两个内角分别是它们对角的一半的四边形叫做半对角四边形. (1)如图1,在半对角四边形ABCD 中,12B D ∠=∠,12C A ∠=∠,求B ∠与C ∠的度数之和.(2)如图2,锐角ABC △内接于O ,若边AB 上存在一点D ,使得BD BO .OBA ∠的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,2AFE EAF ∠=∠.(3)如图3,在(2)的条件下,过点D 作DG OB 于点H ,交BC 于点G .当DH BG时,求BGH△与ABC△的面积之比.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

2017浙江宁波中考试卷解析

2017浙江宁波中考试卷解析

宁波市2017年初中毕业生学业考试数学试题卷Ⅰ一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2017浙江宁波,1,4分)12,0,-2这四个数中,为无理数的是( )A B .12C .0D .2- 答案:A ,解析:∵无理数是无限不循环小数,而0、21、﹣2都属于有理数,3为无限不循环小数,∴3为无理数 .故选A .2.(2017浙江宁波,2,4分)下列计算正确的是( )A .235a a a +=B .()224a a =C .a 2⋅a 3=a 5D .()325a a =答案:C ,解析:A 中,a 2与a 3不是同类项,不可以合并,错误;B 中,(2a )2=4a 2,错误;C 中,a 2﹒a 3=a 5,正确;D 中,(a 2)3=a 6,错误.故选C .3.(2017浙江宁波,3,4分)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为( )A .0.45×106吨B .4.5×105吨C .45×104吨D .4.5×104吨 答案:B ,解析:45万吨=450000吨=4.5×105吨.故选B .4.(2017浙江宁波,4,4分)x 的取值范围是( )A .x≠3B .3x >C .x≤3D .x≥3答案:D ,解析:根据二次根式的双重非负性,要使二次根式3-x 有意义,则x -3≥0,解得x ≥3.故选D .5.(2017浙江宁波,5,4分)如图所示的几何体的俯视图为( )答案:D ,解析:根据三视图的概念,俯视图是从物体的上面向下面看所得的视图,从上往下看,只有D 正确.故选D .6.(2017浙江宁波,6,4分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A .12 B .15C .310D .710 答案:C ,解析:根据概率计算公式,全部情况有10个小球,符合条件的情况黄球有3个,故从袋中任意摸出1个球,是黄球的概率为:103.故选C . 7.(2017浙江宁波,7,4分)已知直线m n ∥,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC =∠°),其中A ,B 两点分别落在直线m ,n 上,若120=∠°,则2∠的度数为( )A .20°B .30°C .45°D .50°答案:D ,解析:∵m ∥n ,∴∠2=∠1+∠ABC .∵∠1=20°,∠ABC =30°,∴∠2=20°+30°=50°.故选D .8.(2017浙江宁波,8,4分)若一组数据2,3,x ,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .7 答案:C ,解析:由数据2,3,x ,5,7的众数为7,可知x =7.把这组数据从小到大的顺序排列为:2,3,5,7,7.位于中间的数为5,故中位数为5.故选C .9.(2017浙江宁波,9,4分)如图,在Rt △ABC 中,90A =∠°,BC =,以BC 的中点O 为圆心分别与AB ,AC 相切于D ,E 两点,则DE 的长为( )A .4πB .2πC .πD .2π答案:B ,解析:连接OE ,OD .AB ,AC 分别切⊙O 于点D ,E ,∴∠OED =∠ODA =90°,又∵∠A =90°,∴四边形OEAD 为矩形.∵OD =OE ,∴四边形OEAD 为正方形.∴∠EOD =90°,OE ∥AB ,OD ∥AC .∵O 为BC 的中点,∴OE 、OD 为△ABC 的中位线,∴OE =21AB ,OD =21AC ,∵OD =OE ,∴AB =AC .∴∠B =∠C =45°.∴AB =BCsin 45°=22×22=2,∴OE =OD =1.∴⌒DE 的长为:180190 π=2π.故选B .10.(2017浙江宁波,10,4分)抛物线2222y x x m =-++(m 是常数)的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:A ,解析:二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为:)44,2(2a b ac a b --,∵-ab 2=-22--=1>0,a b ac 442-=44)2(42-+m =2m +1>0,故此抛物线的顶点在第一象限.故选A .11.(2017浙江宁波,11,4分)如图,四边形ABCD 是边长为6的正方形,点E 在边AB 上,4BE =,过点E 作EF BC ∥,分别交BD ,CD 于G ,F 两点,若M ,N 分别是DG ,CE 的中点,则MN 的长为( )A .3B .CD .4答案:C ,解析:过点M 作MK ⊥CD 交CD 于K ,过点N 作NH ⊥BC 交BC 于点H ,交KM 的延长线于点Q .易知MK ∥BC ,QH ∥CD ,∴四边形QHCK 为矩形,∴∠Q =90°. ∵四边形ABCD 为正方形,∴∠BDC =∠BDA =45°,AD ∥BC .∴DF =GF =AE =AB -BE =6-4=2.∵EF ∥BC ,∴MK ∥EF .∵M 为DG 的中点,∴MK =21GF =1.KF =21DF =1.∵QH ∥AB ,点N 为CE 的中点,∴HC =21BC =3,NH =21BE =2.∴QM =HC -MK =3-1=2.QN =CK -NH =4+1-2=3.在Rt △QNM 中,MN =13322222=+=+QN QM .故选C .12.(2017浙江宁波,12,4分)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中,若知道九个小矩形中n 个小矩形的周长,就一定能算出这个大矩形的面积,则n 的最小值是( )A .3B .4C .5D .6答案:A ,解析:如图所示,设矩形②的边长为m ,矩形③的边长为a ,b ,矩形④的边长为b ,c ,则大矩形的面积为:(a +b +m )(b +c +m ),a +b =矩形③周长的一半,b +c =矩形④周长的一半,故欲求大矩形的面积最少需知道矩形②,③,④的周长.故n =3.故选A .卷Ⅱ二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(2017浙江宁波,13,5分)实数8-的立方根是 .答案:-2,解析: ∵(-2)3=-8,∴-8的立方根是-2.故填-2.14.(2017浙江宁波,14,5分)分式方程21332x x +=-的解是 . 答案:x =1,解析:去分母,得2(2x +1)=3(3-x ),去括号,得4x +2=9-3x ,移项并合并同类项,得7x =7,系数化为1,得x =1.经检验x =1是分式方程的根. 故填x =1.15.(2017浙江宁波,15,5分)如图,用同样大小的黑色棋子按如图所示的规律摆放: 则第⑦个图案有 个黑色棋子.答案:19,解析:第①个图形中共有1个黑色棋子;第2个图形中共有(1+3)个黑色棋子,第3个图形中共有(1+2×3)个黑色棋子,第4个图形中共有(1+3×3)个黑色棋子,……,按此规律可知,第n 个图形共有[3(n -1)+1]=(3n -2)个黑色棋子,所以第⑦个图形中黑色棋子的个数为3×7-2=19.故填19.16.(2017浙江宁波,16,5分)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知500AB =米,则这名滑雪运动员的高度下降了 米.(参考数据:sin 340.56°≈,cos340.83°≈,tan 340.67°≈)答案:280,解析:在Rt △ABC 中,sinB =AB AC ≈0.56,解得AC =ABsin 34°=500×0.56=280.17.(2017浙江宁波,17,5分)已知ABC △的三个顶点为()1,1A -,()1,3B -,()3,3C --,将ABC △向右平移()0m m >个单位后,ABC △某一边的中点恰好落在反比例函数3y x =的图象上,则m 的值为 .17.答案:0.5或4,解析:如图:根据中点坐标公式可知AB 的中点D 的坐标为(-1,1),AC 的中点E 的坐标为(-2,-2),BC 的中点坐标为(-2,1).分三种情况:当点D 平移后落在反比例函数3y x的图象上时,点D 平移后的坐标为(-1+m ,1),代入反比例函数3y x =中,得311m =-+,解得m =4;当点E 平移后落在反比例函数3y x=的图象上时,点E 平移后的坐标为(-2+m ,-2),代入反比例函数3y x =中,得322m=--+,解得m =0.5;当点F 平移后落在反比例函数3y x=的图象上时,点F 平移后的坐标为(-2+m ,0),∵反比例函数的解析式k y x =(k ≠0)中,x ≠0,y ≠0,这种情况不存在.故填0.5或4.18.(2017浙江宁波,18,5分)如图,在菱形纸片ABCD 中,2AB =,60A =∠°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos EFG ∠的值为 .18.答案:721,解析:连接BE ,过点E 作EH ⊥AD 交AD 的延长线于点H ,过G 作GM ⊥AB 于点M .∵四边形ABCD 为菱形,∴AB =BC =CD =AD =2,∠C =∠A =60°,AB ∥CD ,∴△BCD 为等边三角形,∵点E 为CD 的中点,∴CE =DE =21CD =1,∠BEC =90°,∴BE =BCsin 60°=2×23=3. ∵AB ∥CD ,∴∠EBF =∠BEC =90°,设AF =EF =x ,∴BF =2-x ,在Rt △BEF 中,BE 2+BF 2=EF 2,∴(3)2+(2-x )2=x 2,解得x =47.即BF =47.在Rt △DEH 中,∵∠EDH =60°,DE =1,∴DH =21,HE =23,设AG =EG =a ,GH =2-a +21=a -25,在Rt △HEG 中,EG 2=EH 2+GH 2,即222)25()23(a a -+=,解得a =57.即AG =57.在Rt △AGM 中,∵∠A =60°,∴AM =21AG =107,GM =AGsin 60°=1037. ∴FM =AF -AM =47-107=2021.在RtFGM 中,FG =2222)2021()1037(+=+GM FM =20217 ∴cos ∠GFM =202172021=FG FM =721.∵∠GFM =∠EFG ,∴cos ∠EFG =721.三、解答题 (本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(2017浙江宁波,19,6分)先化简,再求值:()()()()2215x x x x +-+-+,其中32x =. 思路分析:先根据平方差公式、多项式与多项式乘法进行化简,然后代入求值即可. 解:原式=4-x 2+x 2+4x -5=4x -1当x =23时,原式=4×23-1=5. 20.(2017浙江宁波,20,8分)在44´的方格纸中,ABC △的三个顶点都在格点上.(1)在图1中画出与ABC △成轴对称且与ABC △有公共边的格点三角形(画出一个即可);(2)将图2中的ABC △绕着点C 按顺时针方向旋转90°,画出经旋转后的三角形.思路分析:根据图形平移和旋转的性质进行作图.(1)可以AC 所在直线为对称轴,也可以BC 所在直线为对称轴进行作图.解:(1)画出其中一种情况即可:(2)如图所示:21.(2017浙江宁波,21,8分)大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量;(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由.思路分析:(1)利用扇形统计图计算出“宁港”品种鱼苗所占的百分比,然后利用总量乘所占百分比即可.(2)用总量ד甬岱”品种鱼苗的百分比×成活率即可求出实验中“甬岱”品种鱼苗的成活数,并据此不全条形统计图.(3)通过计算成活率并进行比较得出结论.解:(1)300×(1-30%-25%-25%)=60(尾).答:实验中“宁港”品种鱼苗有60尾.(2)300×30%×80%=72(尾).答:实验中“甬岱”品种鱼苗的成活了72尾.补全条形统计图:(3)“宁港”品种鱼苗的成活率为6051×100%=85%. “御龙”品种鱼苗的成活率为7556×100%=74.6%. “象山港”品种鱼苗的成活率为7560×100%=80%. 答:“宁港”品种鱼苗的成活率最高,应选“宁港”品种鱼苗进行推广.22.(2017浙江宁波,22,8分)如图,正比例函数13y x =-的图象与反比例函数2k y x=的图象交于A 、B 两点.点C 在x 轴负半轴上,AC AO =,ACO △的面积为12.(1)求k 的值;(2)根据图象,当12y y >时,写出x 的取值范围.思路分析:(1)过点A 作AD ⊥x 轴,因为AC =AO ,所以△ACO 的面积=2△ADO 的面积.根据反比例函数中k 的几何意义确定k 的值.(2)几何函数图象直接写出x 的取值范围即可.解:(1)如图所示,过点A 作AD ⊥x 轴于点D ,∵AC =AO ,∴CD =OD ,∴S △ACO =2S △ADO =12.即k =-12.(2)x <-2或0<x <2.23.(2017浙江宁波,23,10分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件? 思路分析:(1)根据2件甲种商品的销售收入=3件乙种商品的销售收入,3件甲种商品的销售收入-2件乙种商品的销售收入=1500元,列出二元一次方程组,进行求解即可.(2)根据甲、乙两种商品的销售总收入≥5400万元,列出不等式进行求解.解:(1)设甲种商品销售单价x 元,乙种商品的销售单价y 元,根据题意得⎩⎨⎧=-=1500233x 2y x y ,解得:⎩⎨⎧==600900y x . 答:甲种商品销售单价900元,乙种商品的销售单价600元.(2)设销售甲种商品a 万件,则销售乙种商品(8-a )万件,根据题意,得900a +600(8-a)≥5400,解得:a≥2.答:至少销售甲种产品2万件.24.(2017浙江宁波,24,10分)在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD 的四边BA 、CB 、DC 、AD 分别延长至E 、F 、G 、H ,使得AE CG =,BF DH =,连接EF ,FG ,GH ,HE .(1) 求证:四边形EFGH 为平行四边形;(2) 若矩形ABCD 是边长为1的正方形,且45FEB =∠°,tan 2AEH =∠,求AE 的长. 思路分析:(1)根据矩形的对边相等,四个角都是直角,AE =CG ,BF =DH ,可以得出△BEF ≌△DGH ,△CFG ≌△AHE ,得出EF =GH ,EH =FG ,所以四边形EFGH 为平行四边形.(2)利用矩形的对边相等,45FEB =∠°,用与AE 相关的代数式表示AH ,然后利用tan 2AEH =∠即可求出AE 的长.解:(1)在矩形ABCD 中,AD =BC ,∠BAD =∠BCD =90°,又∵BF =DH ,∴AD +DH =BC +BF ,即AH =CF .又∵AE =CG ,∴△AHE ≌△CFG ,∴EH =GF ,同理 EF =HG ,∴四边形EFGH 为平行四边形.(2)在正方形ABCD 中,AB =AD =1.。

2017年浙江省宁波市中考数学试卷

2017年浙江省宁波市中考数学试卷

2017年浙江省宁波市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.,0,−2这四个数中,为无理数的是()1. 在√3,12A.√3B.1C.0D.−22【答案】A【考点】无理数的判定【解析】分别根据无理数、有理数的定义即可判定选择项.【解答】1,0,−2是有理数,2√3是无理数,2. 下列计算正确的是( )A.a2+a3=a5B.(2a)2=4aC.a2⋅a3=a5D.(a2)3=a5【答案】C【考点】同底数幂的乘法幂的乘方与积的乘方合并同类项【解析】根据积的乘方等于乘方的积,同底数幂的乘法底数不变指数相加,可得答案.【解答】解:A,不是同底数幂的乘法指数不能相加,故A不符合题意;B,(2a)2=4a2,积的乘方等于乘方的积,故B不符合题意;C,a2⋅a3=a2+3=a5,同底数幂的乘法底数不变指数相加,故C符合题意;D,(a2)3=a2×3=a6,幂的乘方底数不变指数相乘,故D不符合题意.故选C.3. 2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮--“泰欧”轮,其中45万吨用科学记数法表示为()A.0.45×106吨B.4.5×105吨C.45×104吨D.4.5×104吨【答案】B【考点】科学记数法--表示较大的数科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】将45万用科学记数法表示为:4.5×105.4. 要使二次根式√x−3有意义,则x的取值范围是()A.x≠3B.x>3C.x≤3D.x≥3【答案】D【考点】二次根式有意义的条件【解析】二次根式有意义时,被开方数是非负数.【解答】依题意得:x−3≥0,解得x≥3.5. 如图所示的几何体的俯视图为()A. B. C. D.【答案】D【考点】简单几何体的三视图【解析】根据从上边看得到的图形是俯视图,可得答案.【解答】从上边看外边是正六边形,里面是圆,6. 一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.1 2B.15C.310D.710【答案】C【考点】概率公式【解析】让黄球的个数除以球的总个数即为所求的概率.【解答】37. 已知直线m // n,将一块含30∘角的直角三角板ABC按如图方式放置(∠ABC=30∘),其中A,B两点分别落在直线m,n上,若∠1=20∘,则∠2的度数为()A.20∘B.30∘C.45∘D.50∘【答案】D【考点】平行线的性质【解析】根据平行线的性质即可得到结论.【解答】∵直线m // n,∴∠2=∠ABC+∠1=30∘+20∘=50∘,8. 若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为()A.2B.3C.5D.7【答案】C【考点】中位数众数【解析】根据众数的定义可得x的值,再依据中位数的定义即可得答案.【解答】∵数据2,3,x,5,7的众数为7,∴x=7,则这组数据为2、3、5、7、7,∴中位数为5,9. 如图,在Rt△ABC中,∠A=90∘,BC=2√2,以BC的中点O为圆心⊙O分别与AB,AC相切于D,E两点,则DÊ的长为()A.π4B.π2C.πD.2π【答案】B【考点】弧长的计算连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45∘,从而可知半径r的值,最后利用弧长公式即可求出答案.【解答】连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=12AC,∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45∘,∵BC=2√2∴由勾股定理可知AB=2,∴r=1,∴DÊ=90π×1180=π210. 抛物线y=x2−2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【考点】二次函数的性质【解析】先根据抛物线的顶点式求出抛物线y=x2−2x+m2+2(m是常数)的顶点坐标,再根据各象限内点的坐标特点进行解答.【解答】∵y=x2−2x+m2+2=(x−1)2+(m2+1),∴顶点坐标为:(1, m2+1),∵1>0,m2+1>0,∴顶点在第一象限.11. 如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF // BC,分别交BD,CD于G,F两点.若M,N分别是DG,CE的中点,则MN的长为()C【考点】全等三角形的性质与判定等腰直角三角形正方形的性质【解析】解法一:作辅助线,构建矩形MHPK和直角三角形NMH,利用平行线分线段成比例定理或中位线定理得:MK=FK=1,NP=3,PF=2,利用勾股定理可得MN的长;解法二:作辅助线,构建全等三角形,证明△EMF≅△CMD,则EM=CM,利用勾股定理得:BD=√62+62=6√2,EC=√42+62=2√13,可得△EBG是等腰直角三角形,分别求EM=CM的长,利用勾股定理的逆定理可得△EMC是等腰直角三角形,根据直角三角形斜边中线的性质得MN的长.【解答】解法一:如图1,过M作MK⊥CD于K,过N作NP⊥CD于P,过M作MH⊥PN于H,则MK // EF // NP,∵∠MKP=∠MHP=∠HPK=90∘,∴四边形MHPK是矩形,∴MK=PH,MH=KP,∵NP // EF,N是EC的中点,∴CPPF =CNEN=1,NPEF=CNEC=12,∴PF=12FC=12BE=2,NP=12EF=3,同理得:FK=DK=1,∵四边形ABCD为正方形,∴∠BDC=45∘,∴△MKD是等腰直角三角形,∴MK=DK=1,NH=NP−HP=3−1=2,∴MH=2+1=3,在Rt△MNH中,由勾股定理得:MN=√NH2+MH2=√22+32=√13;解法二:如图2,连接FM、EM、CM,∵四边形ABCD为正方形,∴∠ABC=∠BCD=∠ADC=90∘,BC=CD,∵EF // BC,∴∠GFD=∠BCD=90∘,EF=BC,∴EF=BC=DC,∵∠BDC=12∠ADC=45∘,∴△GFD是等腰直角三角形,∵M是DG的中点,∴FM=DM=MG,FM⊥DG,∴∠GFM=∠CDM=45∘,∴△EMF≅△CMD,∴EM=CM,过M作MH⊥CD于H,EC=√42+62=2√13,∵∠EBG=45∘,∴△EBG是等腰直角三角形,∴EG=BE=4,∴BG=4√2,∴DM=√2∴MH=DH=1,∴CH=6−1=5,∴CM=EM=√12+52=√26,∵CE2=EM2+CM2,∴∠EMC=90∘,∵N是EC的中点,∴MN=12EC=√13;故选C.方法三:连EM,延长EM于H,使EM=MH,连DH,CH,可证△EGM≅HDM,再证△EBC≅△HDC,利用中位线可证MN=12EC=12×2√13=√13.故选:C.12. 一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是()A.3B.4C.5D.6【答案】A【考点】推理与论证【解析】根据题意结合正方形的性质得出只有表示出矩形的各边长才可以求出面积,进而得出符合题意的答案.的周长为:4x,(1)的周长为2y,(2)的周长为2b,即可得出(3)的边长以及(4)和(5)的邻边和,设(6)的周长为:4a,则(7)的边长为a,可得(8)和(9)中都有一条边为a,则(10)和(11)的另一条边长分别为:y−a,b−a,故大矩形的边长分别为:b−a+x+a=b+x,y−a+x+a=y+x,故大矩形的面积为:(b+x)(y+x),其中b,x,y都为已知数,故n的最小值是3.故选:A.二、填空题(每题4分,满分24分,将答案填在答题纸上)实数−8的立方根是________.【答案】−2【考点】立方根的性质【解析】利用立方根的定义即可求解.【解答】∵(−2)3=−8,∴−8的立方根是−2.分式方程2x+13−x =32的解是________=1.【答案】x【考点】解分式方程【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】去分母得:4x+2=9−3x,解得:x=1,经检验x=1是分式方程的解,如图,用同样大小的黑色棋子按如图所示的规律摆放:则第⑦个图案有________个黑色棋子.【答案】19规律型:图形的变化类规律型:点的坐标规律型:数字的变化类【解析】根据图中所给的黑色棋子的颗数,找出其中的规律,根据规律列出式子,即可求出答案.【解答】第一个图需棋子1,第二个图需棋子1+3,第三个图需棋子1+3×2,第四个图需棋子1+3×3,…第n个图需棋子1+3(n−1)=3n−2枚.所以第⑦个图形有19颗黑色棋子.如图,一名滑雪运动员沿着倾斜角为34∘的斜坡从A滑行至B. 已知AB=500米,则这名滑雪运动员下降的垂直高度为________米.(参考数据:sin34∘≈0.56,cos34∘≈0.83,tan34∘≈0.67)【答案】280【考点】解直角三角形的应用-坡度坡角问题【解析】如图在Rt△ABC中,AC=AB⋅sin34∘=500×0.56≈280m,可知这名滑雪运动员的高度下降了280m.【解答】解:如图在Rt△ABC中,AC=AB⋅sin34∘=500×0.56≈280m,∴这名滑雪运动员下降的垂直高度为280m.故答案为:280.已知△ABC的三个顶点为A(−1, −1),B(−1, 3),C(−3, −3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y=3的图象上,则m的x值为________1.2【答案】4或反比例函数图象上点的坐标特征坐标与图形变化-平移【解析】求得三角形三边中点的坐标,然后根据平移规律可得AB边的中点(−1, 1),BC边的中点(−2, 0),AC边的中点(−2, −2),然后分两种情况进行讨论:一是AB边的中点在反比例函数y=3x 的图象上,二是AC边的中点在反比例函数y=3x的图象上,进而算出m的值.【解答】∵△ABC的三个顶点为A(−1, −1),B(−1, 3),C(−3, −3),∴AB边的中点(−1, 1),BC边的中点(−2, 0),AC边的中点(−2, −2),∵将△ABC向右平移m(m>0)个单位后,∴AB边的中点平移后的坐标为(−1+m, 1),AC边的中点平移后的坐标为(−2+m, −2).∵△ABC某一边的中点恰好落在反比例函数y=3x的图象上,∴−1+m=3或−2×(−2+m)=3.∴m=4或m=12.如图,在菱形纸片ABCD中,AB=2,∠A=60∘,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为________.【答案】√217【考点】解直角三角形菱形的性质勾股定理翻折变换(折叠问题)【解析】作EH⊥AD于H,连接BE、BD,连接AE交FG于O,如图,利用菱形的性质得△BDC为等边三角形,∠ADC=120∘,再在在Rt△BCE中计算出BE=√3CE=√3,接着证明BE⊥AB,设AF=x,利用折叠的性质得到EF=AF,FG垂直平分AE,∠EFG=∠AFG,所以在Rt△BEF中利用勾股定理得(2−x)2+(√3)2=x2,解得x=74,接下来计算出AE,从而得到OA的长,然后在Rt△AOF中利用勾股定理计算出OF,再利用余弦的定义求解.【解答】解:作EH⊥AD于H,连接BE,BD,连接AE交FG于O,如图,∵ 四边形ABCD 为菱形,∠A =60∘,∴ △BDC 为等边三角形,∠ADC =120∘.∵ E 点为CD 的中点,∴ CE =DE =1,BE ⊥CD ,在Rt △BCE 中,BE =√3CE =√3,∵ AB // CD ,∴ BE ⊥AB .设AF =x ,∵ 菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,∴ EF =AF =x ,FG 垂直平分AE ,∠EFG =∠AFO ,在Rt △BEF 中,(2−x)2+(√3)2=x 2,解得x =74,在Rt △DEH 中,DH =12DE =12,HE =√3DH =√32, 在Rt △AEH 中,AE =(2+12)+(√32)=√7, ∴ AO =√72. 在Rt △AOF 中,OF =(74)(√72)=√214, ∴ cos ∠AFO =√21474=√217,即cos ∠EFG =√217. 故答案为:√217. 三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.)先化简,再求值:(2+x)(2−x)+(x −1)(x +5),其中x =32. 【答案】原式=4−x 2+x 2+4x −5=4x −1,当x =32时,原式=6−1=5. 【考点】整式的混合运算—化简求值【解析】原式利用平方差公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.【解答】原式=4−x 2+x 2+4x −5=4x −1,当x =32时,原式=6−1=5.在4×4的方格纸中,△ABC 的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90∘,画出经旋转后的三角形.【答案】解:(1)如图所示.(2)如图即为所求,【考点】作图-旋转变换作图-轴对称变换【解析】(1)根据成轴对称图形的概念,分别以边AC、BC所在的直线为对称轴作出图形即可;(2)根据网格结构找出点A、B绕着点C按顺时针方向旋转90∘后的对应点的位置,再与点C顺次连接即可.【解答】解:(1)如图所示.(2)如图即为所求,大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量;(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由.【答案】解:(1)根据题意得:300×(1−30%−25%−25%)=60(尾),则实验中“宁港”品种鱼尾有60尾;(2)根据题意得:300×30%×80%=72(尾),则实验中“甬岱”品种鱼苗有72尾成活,补全条形统计图:×100%=85%;(3)“宁港”品种鱼苗的成活率为5160×100%=74.6%;“御龙”品种鱼苗的成活率为5675×100%=80%,“象山港”品种鱼苗的成活率为6075则“宁港”品种鱼苗的成活率最高,应选“宁港”品种进行推广.【考点】条形统计图扇形统计图【解析】(1)求出“宁港”品种鱼苗的百分比,乘以300即可得到结果;(2)求出“甬岱”品种鱼苗的成活数,补全条形统计图即可;(3)求出三种鱼苗成活率,比较即可得到结果.【解答】解:(1)根据题意得:300×(1−30%−25%−25%)=60(尾),则实验中“宁港”品种鱼尾有60尾;(2)根据题意得:300×30%×80%=72(尾),则实验中“甬岱”品种鱼苗有72尾成活,补全条形统计图:×100%=85%;(3)“宁港”品种鱼苗的成活率为5160×100%=74.6%;“御龙”品种鱼苗的成活率为5675×100%=80%,“象山港”品种鱼苗的成活率为6075则“宁港”品种鱼苗的成活率最高,应选“宁港”品种进行推广.如图,正比例函数y1=−3x的图象与反比例函数y2=k的图象相交于A,B两点,点Cx在x轴负半轴上,且AC=AO,△ACO的面积为12.(1)求k的值;(2)当y1>y2时,写出自变量x的取值范围.【答案】解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,∴S△ADO=S△ACD=6,∴k=−12.(2)由{y 1=−3x ,y 2=−12x可得A(−2,6),B(2,−6).由图象可知:当y 1>y 2时,x 的取值范围为x <−2或0<x <2.【考点】函数的综合性问题【解析】本题考查了反比例函数与一次函数的交点问题.本题考查了反比例函数与一次函数的交点问题.【解答】解:(1)如图,过点A 作AD ⊥OC ,∵ AC =AO ,∴ CD =DO ,∴ S △ADO =S △ACD =6,∴ k =−12.(2)由{y 1=−3x ,y 2=−12x可得A(−2,6),B(2,−6).由图象可知:当y 1>y 2时,x 的取值范围为x <−2或0<x <2.2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?【答案】解:(1)设甲种商品的销售单价x 元,乙种商品的销售单价y 元,依题意有{2x=3y,3x−2y=1500,解得{x=900,y=600.答:甲种商品的销售单价900元,乙种商品的销售单价600元;(2)设销售甲种商品a万件,依题意有900a+600(8−a)≥5400,解得a≥2.答:至少销售甲种商品2万件.【考点】二元一次方程组的应用——销售问题一元一次不等式的实际应用【解析】(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①2件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比2件乙种商品的销售收入多1500元,列出方程组求解即可;(2)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.【解答】解:(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有{2x=3y,3x−2y=1500,解得{x=900,y=600.答:甲种商品的销售单价900元,乙种商品的销售单价600元;(2)设销售甲种商品a万件,依题意有900a+600(8−a)≥5400,解得a≥2.答:至少销售甲种商品2万件.在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45∘,tan∠AEH=2,求AE的长.【答案】证明:∵四边形ABCD是矩形,∴AD=BC,∠BAD=∠BCD=90∘,∵BF=DH,∴AH=CF,在Rt△AEH中,EH=√AE2+AH2,在Rt△CFG中,FG=√CG2+CF2,∵AE=CG,∴EH=FG,同理:EF=HG,∴四边形EFGH为平行四边形;在正方形ABCD中,AB=AD=1,设AE=x,则BE=x+1,在Rt△BEF中,∠BEF=45∘,∴BE=BF,∵BF=DH,∴DH=BE=x+1,∴AH=AD+DH=x+2,在Rtt△AEH中,tan∠AEH=2,∴AH=2AE,∴2+x=2x,解得:x=2,∴AE=2.【考点】勾股定理的证明平行四边形的性质与判定矩形的性质解直角三角形【解析】(1)由矩形的性质得出AD=BC,∠BAD=∠BCD=90∘,证出AH=CF,在Rt△AEH 和Rt△CFG中,由勾股定理求出EH=FG,同理:EF=HG,即可得出四边形EFGH为平行四边形;(2)在正方形ABCD中,AB=AD=1,设AE=x,则BE=x+1,在Rt△BEF中,∠BEF=45∘,得出BE=BF,求出DH=BE=x+1,得出AH=AD+DH=x+2,在Rt△AEH中,由三角函数得出方程,解方程即可.【解答】证明:∵四边形ABCD是矩形,∴AD=BC,∠BAD=∠BCD=90∘,∵BF=DH,∴AH=CF,在Rt△AEH中,EH=2+AH2,在Rt△CFG中,FG=√CG2+CF2,∵AE=CG,∴EH=FG,同理:EF=HG,∴四边形EFGH为平行四边形;在正方形ABCD中,AB=AD=1,设AE=x,则BE=x+1,在Rt△BEF中,∠BEF=45∘,∴BE=BF,∵BF=DH,∴DH=BE=x+1,∴AH=AD+DH=x+2,在Rtt△AEH中,tan∠AEH=2,∴AH=2AE,∴2+x=2x,解得:x=2,∴AE=2.如图,抛物线y=14x2+14x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6, 152)在抛物线上,直线AC与y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO 并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).【答案】把C点坐标代入抛物线解析式可得152=9+32+c,解得c=−3,∴抛物线解析式为y=14x2+14x−3,令y=0可得14x2+14x−3=0,解得x=−4或x=3,∴A(−4, 0),设直线AC的函数表达式为y=kx+b(k≠0),把A、C坐标代入可得{0=−4k+b152=6k+b,解得{k=34b=3,∴直线AC的函数表达式为y=34x+3;①∵在Rt△AOB中,tan∠OAB=OBOA =34,在RtAOD中,tan∠OAD=ODOA=34,∴∠OAB=∠OAD,∵在Rt△POQ中,M为PQ的中点,∴OM=MP,∴∠MOP=∠MPO,且∠MOP=∠AON,∴∠APM=∠AON,∴△APM∽△AON;②如图,过点M作ME⊥x轴于点E,则OE=EP,∵点M的横坐标为m,∴AE=m+4,AP=2m+4,∵tan∠OAD=34,∴cos∠EAM=cos∠OAD=45,∴AEAM =45,∴AM=54AE=5(m+4)4,∵△APM∽△AON,∴AMAN =APAO,即5(m+4)4AN=2m+44,∴AN=5m+202m+4.【考点】二次函数综合题【解析】(1)把C点坐标代入抛物线解析式可求得c的值,令y=0可求得A点坐标,利用待定系数法可求得直线AC的函数表达式;(2)①在Rt△AOB和Rt△AOD中可求得∠OAB=∠OAD,在Rt△OPQ中可求得MP=MO,可求得∠MPO=∠MOP=∠AON,则可证得△APM∽△AON;②过M作ME⊥x轴于点E,用m可表示出AE和AP,进一步可表示出AM,利用△APM∽△AON可表示出AN.【解答】把C点坐标代入抛物线解析式可得152=9+32+c,解得c=−3,∴抛物线解析式为y=14x2+14x−3,令y=0可得14x2+14x−3=0,解得x=−4或x=3,∴A(−4, 0),设直线AC的函数表达式为y=kx+b(k≠0),把A、C坐标代入可得{0=−4k+b152=6k+b,解得{k=34b=3,∴直线AC的函数表达式为y=34x+3;①∵在Rt△AOB中,tan∠OAB=OBOA =34,在RtAOD中,tan∠OAD=ODOA=34,∴∠OAB=∠OAD,∵在Rt△POQ中,M为PQ的中点,∴OM=MP,∴∠MOP=∠MPO,且∠MOP=∠AON,∴∠APM=∠AON,∴△APM∽△AON;②如图,过点M作ME⊥x轴于点E,则OE=EP,∵点M的横坐标为m,∴AE=m+4,AP=2m+4,∵tan∠OAD=34,∴cos∠EAM=cos∠OAD=45,∴AEAM =45,∴AM=54AE=5(m+4)4,∵△APM∽△AON,∴AMAN =APAO,即5(m+4)4AN=2m+44,∴AN=5m+202m+4.有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=12∠D,∠C=12∠A,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF 是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,当DH=BG 时,求△BGH与△ABC的面积之比.【答案】在半对角四边形ABCD中,∠B=12∠D,∠C=12∠A,∵∠A+∠B+∠C+∠D=360∘,∴3∠B+3∠C=360∘,∴∠B+∠C=120∘,即∠B与∠C的度数和为120∘;证明:∵在△BED和△BEO中{BD=BO ∠EBD=∠EBO BE=BE∴△BED≅△BEO,∴∠BDE=∠BOE,∵∠BCF=12∠BOE,∴∠BCF=12∠BDE,连接OC,设∠EAF=α,则∠AFE=2∠EAF=2α,∴∠EFC=180∘−∠AFE=180∘−2α,∵OA=OC,∴∠OAC=∠OCA=α,∴∠AOC=180∘−∠OAC−∠OCA=180∘−2α,∴∠ABC=12∠AOC=12∠EFC,∴四边形DBCF是半对角四边形;过点O作OM⊥BC于M,∵四边形DBCF是半对角四边形,∴∠ABC+∠ACB=120∘,∴∠BAC=60∘,∴∠BOC=2∠BAC=120∘,∵OB=OC,∴∠OBC=∠OCB=30∘,∴BC=2BM=√3BO=√3BD,∵DG⊥OB,∴∠HGB=∠BAC=60∘,∵∠DBG=∠CBA,∴△DBG∽△CBA,∴△DBG的面积△ABC的面积=(BDBC)2=13,∵DH=BG,BG=2HG,∴DG=3HG,∴△BHG的面积△BDG的面积=13,∴△BHG的面积△ABC的面积=19.【考点】圆的综合题【解析】(1)根据题意得出∠B=12∠D,∠C=12∠A,代入∠A+∠B+∠C+∠D=360∘求出即可;(2)求出△BED≅△BEO,根据全等得出∠BDE=∠BOE,连接OC,设∠EAF=α,则∠AFE=2∠EAF=2α,求出∠EFC=180∘−2α,∠AOC=180∘−2α,即可得出等答案;(3)过点O作OM⊥BC于M,求出∠ABC+∠ACB=120∘,求出∠OBC=∠OCB=30∘,根据直角三角形的性质得出BC=2BM=√3BO=√3BD,求出△DBG∽△CBA,根据相似三角形的性质得出即可.【解答】在半对角四边形ABCD中,∠B=12∠D,∠C=12∠A,∵∠A+∠B+∠C+∠D=360∘,∴3∠B+3∠C=360∘,∴∠B+∠C=120∘,即∠B与∠C的度数和为120∘;证明:∵在△BED和△BEO中{BD=BO ∠EBD=∠EBO BE=BE∴△BED≅△BEO,∴∠BDE=∠BOE,∵∠BCF=12∠BOE,∴∠BCF=12∠BDE,连接OC,设∠EAF=α,则∠AFE=2∠EAF=2α,∴∠EFC=180∘−∠AFE=180∘−2α,∵OA=OC,∴∠OAC=∠OCA=α,∴∠AOC=180∘−∠OAC−∠OCA=180∘−2α,∴∠ABC=12∠AOC=12∠EFC,∴四边形DBCF是半对角四边形;过点O作OM⊥BC于M,∵四边形DBCF是半对角四边形,∴∠ABC+∠ACB=120∘,∴∠BAC=60∘,∴∠BOC=2∠BAC=120∘,∵OB=OC,∴∠OBC=∠OCB=30∘,∴BC=2BM=√3BO=√3BD,∵DG⊥OB,∴∠HGB=∠BAC=60∘,∵∠DBG=∠CBA,∴△DBG∽△CBA,∴△DBG的面积△ABC的面积=(BDBC)2=13,∵DH=BG,BG=2HG,∴DG=3HG,∴△BHG的面积△BDG的面积=13,∴△BHG的面积△ABC的面积=19.。

浙江省宁波市2017年中考数学真题试题(含解析)

浙江省宁波市2017年中考数学真题试题(含解析)

浙江省宁波市2017年中考数学真题试题试题卷Ⅰ一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12,0,2-这四个数中,为无理数的是( )B.12C.0D.2-【答案】A. 【解析】12,0,2- 故选A. 考点:无理数.2.下列计算正确的是( ) A.235a a a +=B.()224a a =C.235a a a ?D.()325a a =【答案】C.考点:1.合并同类项;2.积的乘方与幂的乘方;3.同度数幂的乘法.3.2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为( ) A.60.4510´吨 B.54.510´吨 C.44510´吨 D.44.510´吨【答案】B. 【解析】试题解析:45万吨=450000吨=4.5×105吨.故选B.考点:科学记数法----表示较大的数.4.x的取值范围是( )A.3x¹ B.3x> C.3x£ D.3x³【答案】D考点:二次根式有意义的条件.5.如图所示的几何体的俯视图为( )【答案】D【解析】试题解析:从上往下看,易得一个正六边形和圆.故选D.考点:三视图.6.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A.12B.15C.310D.710【答案】C.【解析】试题解析:∵布袋里装有5个红球, 2个白球,3个黄球,∴从袋中摸出一个球是黄球的概率是:3 10.故选C.考点:概率.7.已知直线m n∠°),其中A,B两点分ABC=∥,将一块含30°角的直角三角板ABC按如图方式放置(30别落在直线m,n上,若120∠°,则2=∠的度数为( )A.20°B.30°C.45°D.50°【答案】D.∵∠1=20°,∠3=30°∴∠2=50°故选D.考点:平行线的性质.8.若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为( )A.2B.3C.5D.7【答案】C.【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C.考点:众数;中位数.9.如图,在Rt ABC △中,90A =∠°,BC =,以BC 的中点O 为圆心分别与AB ,AC 相切于D ,E 两点,则 DE的长为( )A.4p B.2p C.p D.2p【答案】B.∵O 是BC 的中点∴点E ,点D 分别是AC ,AB 的中点 ∴OE=12AB ,OD= 12AC ∵OE=OD ∴AC=AB∵BC=2由勾股定理得AB=2 ∴OE=1DE的弧长=901180π⨯⨯=2π.故选B.考点:1.三角形的中位线;2.弧长的计算.10.抛物线22=-++(m是常数)的顶点在( )22y x x mA.第一象限B.第二象限C.第三象限D.第四象限【答案】A考点:二次函数的图象.11.如图,四边形ABCD是边长为6的正方形,点E在边AB上,4∥,分别交BD,BE=,过点E作EF BCCD于G,F两点,若M,N分别是DG,CE的中点,则MN的长为( )A.3B. D.4【答案】C.【解析】试题解析:如图,过N作PQ∥BC,交AB,CD于P,Q,过M作MR∥CD,交EF于J,PQ于H,交BC于R在正方形ABCD中,BC=CD=6∴∵BE=EG=4∴∴∵M是DG的中点∴MJ=12DF=1,JF=1考点:1.正方形的性质;2.三角形的中位线;3.勾股定理.12.一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中,若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是( )A.3B.4C.5D.6【答案】A.【解析】试题分析:根据题意可知,最少知道3个小矩形的周长即可求得大矩形的面积.考点:矩形的性质.试题卷Ⅱ二、填空题(每题5分,满分20分,将答案填在答题纸上)13.实数8-的立方根是.【答案】-2考点:立方根14.分式方程21332xx+=-的解是.【答案】x=1【解析】试题分析:去分母得:4x+2=9-3x解得:x=1经检验:x=1是原方程的解.考点:解分式方程.15.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第⑦个图案有个黑色棋子.【答案】19.【解析】试题分析:第一个图需棋子1个,1=1+3×0第二个图需棋子4个,4=1+3×1第三个图需棋子7个,7=1+3×2第四个图需棋子10个,10=1+3×3⋯第七个图需棋子19个,19=1+3×6考点:数与形结合的规律.16.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知500AB=米,则这名滑雪运动员的高度下降了 米.(参考数据:sin 340.56°≈,cos340.83°≈,tan 340.67°≈)【答案】280.考点:解直角三角形的应用.17.已知ABC △的三个顶点为()1,1A -,()1,3B -,()3,3C --,将ABC △向右平移()0m m >个单位后,ABC △某一边的中点恰好落在反比例函数3y x=的图象上,则m 的值为 .【答案】m=4或m=0.5. 【解析】试题分析:∵()1,1A -,()1,3B -,()3,3C --∴AB 边中点坐标为(-1,-1),AC 边中点坐标为(-2,-2),BC 边的中点坐标为(-2,0)(不符合题意,舍去)∵中点向右平移m 个单位∴点(-1,-1)平移后的坐标为(-1+m ,-1), 点(-2,-2)平移后的坐标为(-2+m ,-2). ∵平移后恰好落在反比例函数y =3x的图象上, ∴-1×(-1+m )=3或-2×(-2+m )=3. ∴m=4或m=0.5.考点:1.反比例函数图象上点的坐标特征;2.坐标与图形变化-平移.18. 如图,在边长为2的菱形ABCD 中,∠A=60°,点M 是AD 边的中点,连接MC ,将菱形ABCD 翻折,使点A 落在线段CM 上的点E 处,折痕交AB 于点N ,则线段EC 的长为 ..∴∠FMD=30°, ∴FD=12MD=12,∴FM=DM×cos30°=2,∴EC=MC .考点:1.折叠问题;2.菱形的性质.三、解答题 (本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.先化简,再求值:()()()()2215x x x x +-+-+,其中32x =.【答案】5. 【解析】试题分析:利用平方差公式和多项式乘以多项式进行化简,然后把x=32代入化简结果中即可求解.考点:1.平方差公式;3.多项式乘以多项式;3.代数式求值.20.在44△的三个顶点都在格点上.´的方格纸中,ABC(1)在图1中画出与ABC△有公共边的格点三角形(画出一个即可);△成轴对称且与ABC(2)将图2中的ABC△绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.【答案】(1)作图见解析;(2)作图见解析.【解析】试题分析:根据题意画出图形即可.试题解析:(1)如图所示:或(2)如图所示:考点:1.轴对称图形;2.旋转.21.大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量;(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由.【答案】(1)60尾.(2)72尾;补图见解析;(3)选“宁港”品种进行推广.试题解析:(1)300×(1-30%-25%-25%)=60(尾)答:实验中“宁港”品种鱼苗有60尾.(2)300×30%×80%=72(尾)答:实验中“甬岱”品种鱼苗有72尾成活.补全条形统计图如图所示:考点:1.条形统计图;2.扇形统计图.22.如图,正比例函数13y x =-的图象与反比例函数2ky x=的图象交于A 、B 两点.点C 在x 轴负半轴上,AC AO =,ACO △的面积为12.(1)求k 的值;(2)根据图象,当12y y >时,写出x 的取值范围.【答案】(1)-12;(2)x<-2或0<x<2. 【解析】试题分析:(1)过点A作AD⊥OC,根据ΔACO的面积为12,可求k的值;(2)联立方程组,求解得到交点坐标,从而可求出x的取值范围.试题分析:(1)如图,过点A作AD⊥OC于点D,又∵AC =AOCD=DO∴SΔADO=12SΔACO=6∴k=-12考点:反比例函数与一次函数的交点问题.23.2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?【答案】(1)甲种商品的销售单价是900元,乙种商品的单价为600元;(2)2.【解析】(2)设销售甲产品a万件,则销售乙产品(8-a)万件.根据题意得:900a+600(8-a)≥5400解得:a≥2答:至少销售甲产品2万件.考点:1.二元一次方程组的应用;2.一元一次不等式的应用.24.在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE CG=,BF DH=,连接EF,FG,GH,HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且45∠,求AE的长.FEB=AEH=∠°,tan2【答案】(1)证明见解析;(2)2【解析】试题分析:(1)易证AH=CF,结合已知条件由勾股定理可得EH=FG,同理可得EF=GH,从而得证.(2)设AE=x,则BE=x+1,由45∠可求出结果.AEH=FEB=∠°可得DH=x+1,AH=x+2,由tan2试题分析:(1)在矩形ABCD 中,AD=BC ,∠BAD=∠BCD=90° 又∵BF=DH ∴AD+DH=BC+BF 即AH=CF在Rt ΔAEH 中,在Rt ΔCFG 中,∵AE=CG ∴EH=FG 同理得:EF=HG∴四边形EFGH 为平行四边形.∴AH=AD+DH=x+2 ∵tan 2AEH =∠ ∴AH=2AE ∴2+x=2x ∴x=2 即AE=2考点:1.矩形的性质;2.平行四边形的判定;3.正方形的性质;4.解直角三角形.25.如图,抛物线21144y x x c =++与x 轴的负半轴交于点A ,与y 轴交于点B ,连结AB ,点156,2C 骣琪琪桫在抛物线上,直线AC 与y 轴交于点D . (1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连结PQ 与直线AC 交于点M ,连结MO 并延长交AB 于点N ,若M 为PQ 的中点. ①求证:APM AON △∽△;②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).【答案】(1)c=-3; 直线AC 的表达式为:y=34x+3;(2)①证明见解析;②52024m m ++②过M 点作ME ⊥x 轴,垂足为E ,分别用含有m 的代数式表示出AE 和AM 的长,然后利用APM AON △∽△即可求解.试题分析:(1)把点C(6,152)代入21144y x x c =++解得:c=-3∴211344y x x =+-当y=0时,2113=044x x +-解得:x 1=-4,x 2=3 ∴A (-4,0)设直线AC 的表达式为:y=kx+b(k ≠0)把A(-4,0),C(6,152)代入得0=-4+b15=6+2kk b⎧⎪⎨⎪⎩解得:k=34,b=3∴直线AC的表达式为:y=34x+3(2)①在RtΔAOB中,tan∠OAB=34 OBOA=在RtΔAOD中,tan∠OAD=34 ODOA=∴∠OAB=∠OAD②如图,过点M作ME⊥x轴于点E又∵OM=MP∴OE=EP∵点M 横坐标为m ∴AE=m+4 AP=2m+4∵ΔAPM ∽ΔAON ∴AM APAN AO= ∴AN=52024AM AO m AP m +=+ 考点:二次函数综合题.26.有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD 中,12B D =∠∠,12C A =∠∠,求B ∠与C ∠的度数之和;(2)如图2,锐角ABC △内接于O ⊙,若边AB 上存在一点D ,使得BD BO =,OBA ∠的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,2AFE EAF =∠∠.求证:四边形DBCF 是半对角四边形;(3)如图3,在(2)的条件下,过点D 作DG OB ^于点H ,交BC 于点G ,当DH BG =时,求BGH △与ABC △的面积之比.【答案】(1)120°;(2)证明见解析;(3)19. 【解析】试题分析:(1)根据四边形内角和等于360°结合已知条件即可求解. (2)先证明ΔBDE ≌ΔBOE,即可证明∠BCE=12∠BDF,连接OC,可证明∠AOC=∠DFC,从而可证四边形DBCF 是半对角四边形;(3)关键是证明ΔDBG ∽ΔCBA,得出ΔDBG 和ΔABC 的面积比,再找出ΔBHG 和ΔBDG 的面积比,进而求得结论.(2)在ΔBED 和ΔBEO 中BD BO EBD EBO BE BE ⎧=⎪∠=∠⎨⎪=⎩∴ΔBED ≌ΔBEO ∴∠BDE=∠BOE 又∵∠BCF=12∠BOE ∴∠BCF=12∠BDE 如图,连接OC设∠EAF=a ,则∠AFE=2∠EAF=2a∴∠EFC=180°-∠AFE=180°-2a ∵OA=OC ∴∠OAC=∠OCA=a∴∠AOC=180°-∠OAC-∠OCA=180°-2a ∴∠ABC=12∠AOC=12∠EFC ∴四边形DBCF 是半对角四边形.∴∠BAC=60° ∴∠BOC=2∠BAC=120° ∵OB=OC∴∠OBC=∠OCB=30°∴∵DG ⊥OB∴∠HGB=∠BAC=60° ∵∠DBG=∠CBA ∴ ΔDBG ∽ΔCBA ∴2的面积1=()的面积3DBG BD ABC BC∵DH=BG ,BG=2HG∴DG=3HG∴的面积1的面积3 BHGBDG=∴的面积1的面积9 BHGABC=考点:1.四边形内角和;2.圆周角定理;3.相似三角形的判定与性质.。

2017年浙江省宁波市中考数学试卷

2017年浙江省宁波市中考数学试卷

绝密★启用前-------------浙江省宁波市 2017 年初中毕业生学业考试在----------------数 学( 总分 150 分 , 考试时间 120 分钟 )--------------------分 , 共 48 分 , 在每题给出的四个选项中 , 只有一项切合题目要求 ) _此 一、选择题 ( 每题 4 _1_ 1. 在 3 , , 0, - 2这四个数中 , 为无理数的是__2___ ()___1_A .3C. 0D . 2_B ._ -------------------- 2__ 卷 2. 以下计算正确的选项是号 _生 _( )考 __2352_B . (2 a) = 4a_A . a + a = a_ 235_2 35__C. a a = aD . (a ) = a__ _ --------------------_ _宁波舟山港 45 万吨原油码头初次挂靠全世界最大油轮—— “泰欧”_ _ 3.2017 年 2月 13日,_上_ 轮 , 此中 45 万吨用科学记数法表示为__ ____()___ _65_ _A . 0.45 ′10吨′10吨_ ___44__C. 45′10 吨′10吨名 __ --------------------_x - 3 存心义 , 则 x 的取值范围是姓 _ 答 4. 要使二次根式__( )__ _A . x 1 3B . x >3C. x ≤3D . x ≥ 3___5. 如下图的几何体的俯视图为___ ( )__--------------------__题__校 学 业 毕A B CD-------------------- 无6. 一个不透明的布袋里装有 5 个红球、 2 个白球、 3 个黄球 , 它们除颜色外其他相同 . 从袋中随意摸出 1 个球 , 是黄球的概率为()--------------------第 1页(共 8页)效数学试卷A .1B .1C.3D.72 5 10107. 已知直线 m ∥ n , 将一块含 30°角的直角三角板 ABC 按如图方式搁置 (ABC 30 ), 此中 A , B 两点分别落在直线m , n . 若1 20 , 则2 的度数为()A. 20°B. 30°C. 45°D. 50°8. 若一组数据 2, 3, x , 5, 7 的众数为 7, 则这组数据的中位数为 ()9. 如图 , 在 Rt △ ABC 中 ,A 90 , BC = 2 2 . 以 BC 的中点 O 为圆心的圆分别与 AB ,AC 相切于 D , E 两点, 则 DE 的长为( )A . πB . πC. πD. 2π4 22 210. 抛物线 y = x - 2 x + m + 2 ( m 是常数 ) 的极点在()A . 第一象限 B. 第二象限C. 第三象限D. 第四象限11. 如图 , 四边形 ABCD 是边长为 6 的正方形 , 点 E 在边 AB 上, BE=4, 过点 E 作EF ∥BC,分别交 BD , CD 于G, F 两点.若M , N 分别是 DG, CE 的中点 ,则MN 的长为 ()B. 2 3C. 1312. 一个大矩形按如图方式切割成九个小矩形 , 且只有标号为①和②的两个小矩形为正方形 , 在知足条件的全部切割中 , 若知道九个小矩形中 n 个小矩形的周长 , 就必定能算出这个大矩形的面积 , 则 n 的最小值是()A . 3B . 4C. 5D . 6二、填空题 (每小 4 题,共 24 分 )13.实数 -8 的立方根是.数学试卷第 2页(共 8页)14. 分式方程2x +13的解是. 可 ).3 - x = ( 2) 将图 2 中的 △ ABC 绕着点 C 按顺时针方向旋转90 , 画出经旋转后的三角形 .215. 如图 , 用相同大小的黑色棋子按如下图的规律摆放: 则第⑦个图案有 个黑色棋子 .16. 如图 , 一名滑雪运动员沿着倾斜角为34°的斜坡 , 从 A 滑行至 B . 已知 AB = 500 米 , 则这名滑雪运动员的高度降落了 米 ( 参照数据: sin34°≈ 0.56 , cos34°≈ 0.83 ,tan34°≈ 0.67 ).17. 已知 , △ABC 的 三 个顶 点为 A(- 1,- 1), B(- 1,3) , C(- 3,- 3), 将 △ABC 向右平移m(m > 0) 个单位后 , △ ABC 某一边的中点恰巧落在反比率函数y = 3的图象上 , 则 mx的值为 .18. 如图 , 在菱形纸片 ABCD 中, AB=2, A60 , 将菱形纸片翻折 ,使点 A 落在 CD 的中点 E 处, 折痕为 FG,点F ,G 分别在边AB , AD 上 , 则 cos EFG 的值为 .三、解答题 ( 本大题有 8 小题 , 共 78 分)3 19.( 此题 6 分 ) 先化简 , 再求值: (2 + x)(2 - x) + ( x - 1)( x + 5) , 此中 x =.220.( 此题 8 分 ) 在 4′4 的方格纸中 , △ABC 的三个极点都在格点上 .( 1) 在图 1 中画出与 △ ABC 成轴对称且与 △ABC 有公共边的格点三角形( 画出一个即数学试卷第3页(共 8页)21.( 此题 8 分 ) 大黄鱼是中国独有的地方性鱼种类 , 有“国鱼”之称 . 因为过去滥捕等多种要素 , 大黄鱼资源已基本枯竭 . 当前 , 我市已培养出十余种大黄鱼品种 . 某鱼苗人工养殖基地对此中的四个品种“宁港”“御龙”“甬岱”“象山港”共 300 尾鱼苗进行成活实验 , 从中选出成活率最高的品种进行推行 . 经过实验得悉“甬岱”品种鱼苗成活率为 80% , 并把实验数据绘制成以下两幅统计图( 部分信息未给出 ) :( 1) 务实验中“宁港”品种鱼苗的数目.( 2) 务实验中“甬岱”品种鱼苗的成活数, 并补全条形统计图 .( 3) 你以为应选哪一品种进行推行?请说明原因.22.( 此题 10 分 ) 如图 , 正比率函数 y 1 = - 3x 的图象与反比率函数y 2 = k的图象交于 A , B两点 , 点 C 在 x 轴负半轴上 , AC = AO , △ ACO 的面积为 12.x( 1) 求 k 的值 .( 2) 依据图象 , 当 y 1> y 2 时 , 写出 x 的取值范围 .数学试卷 第 4页(共 8页)-------------在----------------_ -------------------- 此_____________ --------------------__卷23.( 此题 10 分 ) 2017 年 5 月 14 日至 15 日 , “一带一路”国际合作顶峰论坛在北京举行.号_ 本届论坛时期 , 中国同30 多个国家签订经贸合作协议. 某厂准备生产甲、乙两种商品生_考_ _ 共 8 万件销往“一带一路”沿线国家和地域. 已知 2 件甲种商品与 3 件乙种商品的销___ 售收入相同 , 3 件甲种商品比 2 件乙种商品的销售收入多 1 500 元.__ _ _ ( 1) 甲种商品与乙种商品的销售单价各多少元?_ __ _ -------------------- 5 400 万元 , 则起码销售甲种商品多少万_ _ ( 2) 若甲、乙两种商品的销售总收入不低于_ 上_ 件?__ ___ __ __ __ __ __ __ _名_ _ --------------------姓_ _答____ _________ --------------------__ 题_24.( 此题 10 分 ) 在一次课题学习中, 老师让同学们合作编题. 某学习小组受赵爽弦图的启_校发 , 编写了下边这道题, 请你来解一解:学业毕--------------------无如图,将矩形 ABCD的四边BA、CB、 DC、AD分别延伸至E、F、G、H ,使得AE=CG, BF=DH,连结EF, FG,GH , HE.--------------------第 5页(共 8页)效数学试卷( 1) 求证:四边形 EFGH 为平行四边形 .( 2) 若矩形 ABCD 是边长为 1 的正方形 , 且FEB 45 , tan AEH 2,求 AE的长. 25.( 此题 12 分 ) 如图 , 抛物线 y = 1 x2 + 1 x + c 与x轴的负半轴交于点 A ,与 y 轴交于点 B ,4 4骣15连结 AB .点C琪6,在抛物线上,直线AC与y轴交于点 D .琪桫 2( 1) 求c的值及直线AC 的函数表达式.( 2) 点P在x轴正半轴上, 点 Q 在y轴正半轴上 , 连结 PQ 与直线 AC 交于点M , 连结 MO 并延伸交AB于点 N, 若M为 PQ的中点 .①求证:△ APM ∽△ AON ;②设点M的横坐标为 m ,求AN的长(用含 m 的代数式表示).26.( 此题 14 分) 有两个内角分别是它们对角的一半的四边形叫做半对角四边形.( 1)1 1B 与C 的度数如图 1, 在半对角四边形 ABCD 中 , BD , C A ,求2 2之和 .( 2) 如图 2, 锐角△ABC内接于 O , 若边AB上存在一点D , 使得 BD = BO . OBA 的均分线交 OA 于点E , 连结DE并延伸交 AC 于点F , AFE 2 EAF .( 3) 如图 3,在(2)的条件下 ,过点D作DG ^ OB于点H ,交BC于点 G.当 DH =BG 时 , 求△BGH与△ABC的面积之比 .数学试卷第 6页(共 8页)数学试卷第7页(共 8页)数学试卷第8页(共8页)。

2017年浙江省宁波市中考数学试卷

2017年浙江省宁波市中考数学试卷

2017年浙江省宁波市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)在,,0,﹣2这四个数中,为无理数的是()A.B.C.0D.﹣22.(4分)下列计算正确的是()A.a2+a3=a5B.(2a)2=4a C.a2•a3=a5D.(a2)3=a5 3.(4分)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮﹣﹣“泰欧”轮,其中45万吨用科学记数法表示为()A.0.45×106吨B.4.5×105吨C.45×104吨D.4.5×104吨4.(4分)要使二次根式有意义,则x的取值范围是()A.x≠3B.x>3C.x≤3D.x≥35.(4分)如图所示的几何体的俯视图为()A.B.C.D.6.(4分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.7.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°8.(4分)若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为()A.2B.3C.5D.79.(4分)如图,在Rt△ABC中,∠A=90°,BC=2,以BC的中点O为圆心⊙O分别与AB,AC相切于D,E两点,则的长为()A.B.C.πD.2π10.(4分)抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限11.(4分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E 作EF∥BC,分别交BD,CD于G,F两点.若M,N分别是DG,CE的中点,则MN 的长为()A.3B.C.D.412.(4分)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是()A.3B.4C.5D.6二、填空题(每题4分,满分24分,将答案填在答题纸上)13.(4分)实数﹣8的立方根是.14.(4分)分式方程的解是.15.(4分)如图,用同样大小的黑色棋子按如图所示的规律摆放:则第⑦个图案有个黑色棋子.16.(4分)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)17.(4分)已知△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y的图象上,则m的值为.18.(4分)如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为.三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)先化简,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x.20.(8分)在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.21.(8分)大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量;(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由.22.(10分)如图,正比例函数y1=﹣3x的图象与反比例函数y2的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.23.(10分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?24.(10分)在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.25.(12分)如图,抛物线y x2x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).26.(14分)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B∠D,∠C∠A,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA 的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,当DH=BG时,求△BGH与△ABC的面积之比.2017年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)在,,0,﹣2这四个数中,为无理数的是()A.B.C.0D.﹣2【解答】解:,0,﹣2是有理数,是无理数,故选:A.2.(4分)下列计算正确的是()A.a2+a3=a5B.(2a)2=4a C.a2•a3=a5D.(a2)3=a5【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、积的乘方等于乘方的积,故B不符合题意;C、同底数幂的乘法底数不变指数相加,故C符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:C.3.(4分)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮﹣﹣“泰欧”轮,其中45万吨用科学记数法表示为()A.0.45×106吨B.4.5×105吨C.45×104吨D.4.5×104吨【解答】解:将45万用科学记数法表示为:4.5×105.故选:B.4.(4分)要使二次根式有意义,则x的取值范围是()A.x≠3B.x>3C.x≤3D.x≥3【解答】解:依题意得:x﹣3≥0,解得x≥3.故选:D.5.(4分)如图所示的几何体的俯视图为()A.B.C.D.【解答】解:从上边看外边是正六边形,里面是圆,故选:D.6.(4分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.【解答】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.故选:C.7.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.8.(4分)若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为()A.2B.3C.5D.7【解答】解:∵数据2,3,x,5,7的众数为7,∴x=7,则这组数据为2、3、5、7、7,∴中位数为5,故选:C.9.(4分)如图,在Rt△ABC中,∠A=90°,BC=2,以BC的中点O为圆心⊙O分别与AB,AC相切于D,E两点,则的长为()A.B.C.πD.2π【解答】解:连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE AC,∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=2∴由勾股定理可知AB=2,∴r=1,∴故选:B.10.(4分)抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵y=x2﹣2x+m2+2=(x﹣1)2+(m2+1),∴顶点坐标为:(1,m2+1),∵1>0,m2+1>0,∴顶点在第一象限.故选:A.11.(4分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E 作EF∥BC,分别交BD,CD于G,F两点.若M,N分别是DG,CE的中点,则MN 的长为()A.3B.C.D.4【解答】解:解法一:如图1,过M作MK⊥CD于K,过N作NP⊥CD于P,过M作MH⊥PN于H,则MK∥EF∥NP,∵∠MKP=∠MHP=∠HPK=90°,∴四边形MHPK是矩形,∴MK=PH,MH=KP,∵NP∥EF,N是EC的中点,∴,,∴PF FC BE=2,NP EF=3,同理得:FK=DK=1,∵四边形ABCD为正方形,∴∠BDC=45°,∴△MKD是等腰直角三角形,∴MK=DK=1,NH=NP﹣HP=3﹣1=2,∴MH=2+1=3,在Rt△MNH中,由勾股定理得:MN;解法二:如图2,连接FM、EM、CM,∵四边形ABCD为正方形,∴∠ABC=∠BCD=∠ADC=90°,BC=CD,∵EF∥BC,∴∠GFD=∠BCD=90°,EF=BC,∴EF=BC=DC,∵∠BDC∠ADC=45°,∴△GFD是等腰直角三角形,∵M是DG的中点,∴FM=DM=MG,FM⊥DG,∴∠GFM=∠CDM=45°,∴△EMF≌△CMD,∴EM=CM,过M作MH⊥CD于H,由勾股定理得:BD6,EC2,∵∠EBG=45°,∴△EBG是等腰直角三角形,∴EG=BE=4,∴BG=4,∴DM∴MH=DH=1,∴CH=6﹣1=5,∴CM=EM,∵CE2=EM2+CM2,∴∠EMC=90°,∵N是EC的中点,∴MN EC;故选C.方法三:连EM,延长EM于H,使EM=MH,连DH,CH,可证△EGM≌HDM,再证△EBC≌△HDC,利用中位线可证MN EC2.故选:C.12.(4分)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是()A.3B.4C.5D.6【解答】解:如图所示:设①的周长为:4x,③的周长为2y,④的周长为2b,即可得出①的边长以及③和④的邻边和,设②的周长为:4a,则②的边长为a,可得③和④中都有一条边为a,则③和④的另一条边长分别为:y﹣a,b﹣a,故大矩形的边长分别为:b﹣a+x+a=b+x,y﹣a+x+a=y+x,故大矩形的面积为:(b+x)(y+x),其中b,x,y都为已知数,故n的最小值是3.故选:A.二、填空题(每题4分,满分24分,将答案填在答题纸上)13.(4分)实数﹣8的立方根是﹣2.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案﹣2.14.(4分)分式方程的解是x=1.【解答】解:去分母得:4x+2=9﹣3x,解得:x=1,经检验x=1是分式方程的解,故答案为:x=115.(4分)如图,用同样大小的黑色棋子按如图所示的规律摆放:则第⑦个图案有19个黑色棋子.【解答】解:第一个图需棋子1,第二个图需棋子1+3,第三个图需棋子1+3×2,第四个图需棋子1+3×3,…第n个图需棋子1+3(n﹣1)=3n﹣2枚.所以第⑦个图形有19颗黑色棋子.故答案为:19;16.(4分)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了280米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)【解答】解:如图在Rt△ABC中,AC=AB•sin34°=500×0.56≈280m,∴这名滑雪运动员的高度下降了280m.故答案为28017.(4分)已知△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y的图象上,则m的值为4或.【解答】解:∵△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),∴AB边的中点(﹣1,1),BC边的中点(﹣2,0),AC边的中点(﹣2,﹣2),∵将△ABC向右平移m(m>0)个单位后,∴AB边的中点平移后的坐标为(﹣1+m,1),AC边的中点平移后的坐标为(﹣2+m,﹣2).∵△ABC某一边的中点恰好落在反比例函数y的图象上,∴﹣1+m=3或﹣2×(﹣2+m)=3.∴m=4或m.故答案为4或.18.(4分)如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为.【解答】解:作EH⊥AD于H,连接BE、BD,连接AE交FG于O,如图,∵四边形ABCD为菱形,∠A=60°,∴△BDC为等边三角形,∠ADC=120°,∵E点为CD的中点,∴CE=DE=1,BE⊥CD,在Rt△BCE中,BE CE,∵AB∥CD,∴BE⊥AB,设AF=x,∵菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD 上,∴EF=AF,FG垂直平分AE,∠EFG=∠AFG,在Rt△BEF中,(2﹣x)2+()2=x2,解得x,在Rt△DEH中,DH DE,HE DH,在Rt△AEH中,AE,∴AO,在Rt△AOF中,OF,∴cos∠AFO.故答案为.三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)先化简,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x.【解答】解:原式=4﹣x2+x2+4x﹣5=4x﹣1,当x时,原式=6﹣1=5.20.(8分)在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.【解答】解:如图所示.21.(8分)大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量;(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由.【解答】解:(1)根据题意得:300×(1﹣30%﹣25%﹣25%)=60(尾),则实验中“宁港”品种鱼尾有60尾;(2)根据题意得:300×30%×80%=72(尾),则实验中“甬岱”品种鱼苗有72尾成活,补全条形统计图:(3)“宁港”品种鱼苗的成活率为100%=85%;“御龙”品种鱼苗的成活率为100%=74.6%;“象山港”品种鱼苗的成活率为100%=80%,则“宁港”品种鱼苗的成活率最高,应选“宁港”品种进行推广.22.(10分)如图,正比例函数y1=﹣3x的图象与反比例函数y2的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.【解答】解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,∴S△ADO=S△ACD=6,∴k=﹣12;(2)联立得:,解得:或,即A(﹣2,6),B(2,﹣6),根据图象得:当y1>y2时,x的范围为x<﹣2或0<x<2.23.(10分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?【解答】解:(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有,解得.答:甲种商品的销售单价900元,乙种商品的销售单价600元;(2)设销售甲种商品a万件,依题意有900a+600(8﹣a)≥5400,解得a≥2.答:至少销售甲种商品2万件.24.(10分)在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,∠BAD=∠BCD=90°,∵BF=DH,∴AH=CF,在Rt△AEH中,EH,在Rt△CFG中,FG,∵AE=CG,∴EH=FG,同理:EF=HG,∴四边形EFGH为平行四边形;(2)解:在正方形ABCD中,AB=AD=1,设AE=x,则BE=x+1,在Rt△BEF中,∠BEF=45°,∴BE=BF,∵BF=DH,∴DH=BE=x+1,∴AH=AD+DH=x+2,在Rtt△AEH中,tan∠AEH=2,∴AH=2AE,∴2+x=2x,解得:x=2,∴AE=2.25.(12分)如图,抛物线y x2x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).【解答】解:(1)把C点坐标代入抛物线解析式可得9c,解得c=﹣3,∴抛物线解析式为y x2x﹣3,令y=0可得x2x﹣3=0,解得x=﹣4或x=3,∴A(﹣4,0),设直线AC的函数表达式为y=kx+b(k≠0),把A、C坐标代入可得,解得,∴直线AC的函数表达式为y x+3;(2)①∵在Rt△AOB中,tan∠OAB,在RtAOD中,tan∠OAD,∴∠OAB=∠OAD,∵在Rt△POQ中,M为PQ的中点,∴OM=MP,∴∠MOP=∠MPO,且∠MOP=∠AON,∴∠APM=∠AON,∴△APM∽△AON;②如图,过点M作ME⊥x轴于点E,则OE=EP,∵点M的横坐标为m,∴AE=m+4,AP=2m+4,∵tan∠OAD,∴cos∠EAM=cos∠OAD,∴,∴AM AE,∵△APM∽△AON,∴,即,∴AN.26.(14分)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B∠D,∠C∠A,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA 的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,当DH=BG时,求△BGH与△ABC的面积之比.【解答】解:(1)在半对角四边形ABCD中,∠B∠D,∠C∠A,∵∠A+∠B+∠C+∠D=360°,∴3∠B+3∠C=360°,∴∠B+∠C=120°,即∠B与∠C的度数和为120°;(2)证明:∵在△BED和△BEO中∴△BED≌△BEO,∴∠BDE=∠BOE,∵∠BCF∠BOE,∴∠BCF∠BDE,连接OC,设∠EAF=α,则∠AFE=2∠EAF=2α,∴∠EFC=180°﹣∠AFE=180°﹣2α,∵OA=OC,∴∠OAC=∠OCA=α,∴∠AOC=180°﹣∠OAC﹣∠OCA=180°﹣2α,∴∠ABC∠AOC∠EFC,∴四边形DBCF是半对角四边形;(3)解:过点O作OM⊥BC于M,∵四边形DBCF是半对角四边形,∴∠ABC+∠ACB=120°,∴∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,∴∠OBC=∠OCB=30°,∴BC=2BM BO BD,∵DG⊥OB,∴∠HGB=∠BAC=60°,∵∠DBG=∠CBA,∴△DBG∽△CBA,∴的面积的面积()2,∵DH=BG,BG=2HG,∴DG=3HG,∴的面积的面积,∴的面积的面积.。

2017年宁波中考数学卷答案解析版

2017年宁波中考数学卷答案解析版

答案解析部分一、<b >选择题(每小题4分,共48分)</b>1、【答案】A【考点】无理数【解析】【解答】解:无理数就是无限不循环小数。

无理数应满足三个条件:①是小数;②是无限小数;③不循环;由无理数的定义即可得出答案为A.【分析】根据无理数的定义即可得出答案.2、【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则和去括号法则【解析】【解答】解:与a3不是同类项,不能合并,故错误;B.原式=4a2.故错误;C.原式=a2+3=a5.故正确;D.原式=a6.故错误;故选C。

【分析】利用同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘;积的乘方,将每个数分别乘方;以及合并同类项法则即可判断正确答案。

3、【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:45万吨=×105吨.故答案为B.【分析】科学计数法的定义:将一个数字表示成a×10n的形式;其中1≤|a|<10,n为整数.由此可得出正确答案. 4、【答案】D【考点】二次根式有意义的条件【解析】【解答】解:依题可得:x-3≥0.∴x≥3.故选D.【分析】根据二次根式有意义的条件:被开方数大于或等于0即可得出答案.5、【答案】D【考点】简单几何体的三视图【解析】【解答】解:俯视图是指从上往下看所得到的平面图形.由此可得出正确答案.故答案为D.【分析】由俯视图的定义即可选出正确答案.6、【答案】C【考点】概率公式【解析】【解答】解:∵从装有5个红球、2个白球、3个黄球的袋中任意摸出1个球有10种等可能结果,其中摸出的球是黄球的结果有3种,∴从袋中任意摸出1个球是黄球的概率为:.故答案为C.【分析】依题可得共有10种等可能结果,其中摸出的球是黄球的结果有3中,利用概率公式即可得出答案. 7、【答案】D【考点】平行线的性质【解析】【解答】解:∵m∥n.∴∠2=∠1+∠ABC.又∵∠1=20°,∠ABC=30°∴∠2=50°.故答案为D.【分析】根据平行线的性质即可得出内错角相等,由题目条件即可得出答案.8、【答案】C【考点】中位数、众数【解析】【解答】解:依题可得:x=7.将这组数据从小到大排列为:2,3,5,7,7.∴中位数为5.故答案为C.【分析】由众数定义求出x值,再根据中位数定义求出中位数.9、【答案】B【考点】直角三角形斜边上的中线,勾股定理,正方形的判定,切线的性质,弧长的计算【解析】【解答】解:∵O为BC中点.BC=2.∴OA=OB=OC=.又∵AC、AB是⊙O的切线,∴OD=OE=⊥AC,OD⊥AB,∵∠A=90°.∴四边形ODAE为正方形.∴∠DOE=90°.∴(2r)2+(2r)2=.∴r=1.∴弧DE===.故答案为B.【分析】根据O为BC中点.BC=2.求出OA=OB=OC=;再根据AC、AB是⊙O的切线,得出四边形ODAE 为正方形;由勾股定理求出r的值,再根据弧长公式得出弧DE的长度.10、【答案】A【考点】坐标确定位置,二次函数的性质【解析】【解答】解:∵y=x2-2x+m2+2.∴y=(x-1)2+m2+1.∴顶点坐标(1,m2+1).∴顶点坐标在第一象限.故答案为A.【分析】根据配方法得出顶点坐标,从而判断出象限.11、【答案】C【考点】勾股定理,三角形中位线定理,正方形的性质,相似三角形的判定与性质【解析】【解答】解:取DF、CF中点K、H,连接MK、NH、CM,作MO⊥NH(如下图).∵四边形ABCD是边长为6的正方形,BE=4.∴AE=DF=2,CF=BE=4.∴△DGF∽△BGE∴==.∴GF=2,EF=4.又∵M、N、K、H、都是中点,∴MK=GF=1,NH=EF==DF=1,FH=CF=2,∴MK=OH==MO=3∴NO=2.在Rt△MON中,∴MN= == .故答案为C.【分析】取DF、CF中点K、H,连接MK、NH、CM,作MO⊥NH(如上图);由正方形ABCD是边长和BE 的长可以得出AE=DF=2,CF=BE=4;再由题得到△DGF∽△BGE,利用相似三角形的性质可以求出.GF=2,EF=4;再根据三角形中位线可以得出MO=3,NO=2;利用勾股定理即可得出答案.12、【答案】A【考点】图形的剪拼【解析】【解答]解:依题可得:至少要知道三个小矩形的周长,就可以知道大矩形的长和宽,从而求出大矩形的面积.故答案为A.【分析】由题意就可以知道n=3.二、<b >填空题(每小题4分,共24分)</b>13、【答案】-2【考点】立方根【解析】【解答】解:∵(-2)3=-8.∴−8 的立方根是-2.故答案为-2.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.14、【答案】x=1【考点】解分式方程【解析】【解答】解:去分母得:2(2x+1)=3(3-x).去括号得:4x+2=9-3x.移项得:4x+3x=9-2.合并同类项得:7x=7.系数化为1得:x=1.经检验x=1是分式方程的解.故答案为:x=1.【分析】将分式方程转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解。

浙江省宁波市2017年中考数学真题试题(含解析) (1)

浙江省宁波市2017年中考数学真题试题(含解析) (1)

A. x ¹ 3 【答案】D
B. x >3
C. x £ 3
D. x ³ 3
考点:二次根式有意义的条件. 5.如图所示的几何体的俯视图为( )
【答案】D
【解析】
试题解析:从上往下看,易得一个正六边形和圆.
故选 D .
考点:三视图.
6.一个不透明的布袋里装有 5 个红球,2 个白球,3 个黄球,它们除颜色外其余都相同,从袋中任意摸出 1
【答案】(1)证明见解析;(2)2 【解析】 试题分析:(1)易证 AH=CF,结合已知条件由勾股定理可得 EH=FG,同理可得 EF=GH,从而得证. (2)设 AE=x,则 BE=x+1,由∠FEB = 45°可得 DH=x+1,AH=x+2,由 tan∠AEH = 2 可求出结果.
试题分析:(1)在矩形 ABCD 中,AD=BC,∠BAD=∠BCD=90° 又∵BF=DH ∴AD+DH=BC+BF 即 AH=CF
三、解答题 (本大题共 8 小题,共 78 分.解答应写出文字说明、证明过程或演算步骤.)
19.先化简,再求值: ( 2
+ x) ( 2
-
x)
+( x
-
1) (
x
+ 5)
,其中
x
=
3 2
.
【答案】5.
【解析】
3
试题分析:利用平方差公式和多项式乘以多项式进行化简,然后把 x= 代入化简结果中即可求解.
则这组数据按照从小到大的顺序排列为:2,3,5,7,7,
中位数为:5.
故选 C.
考点:众数;中位数.
9.如图,在 Rt△ABC 中,∠A = 90°, BC = 2 2 ,以 BC 的中点 O 为圆心分别与 AB , AC 相切于 D , E 两 点,则 DE 的长为( )

2017年浙江省宁波市中考数学试卷-答案

2017年浙江省宁波市中考数学试卷-答案

EF 2 EO2

7 4
2
ห้องสมุดไป่ตู้

7 2 2

21 在 Rt△EOF 中.∴ cos EFG OF
4
EF
21 .故答案为: 21 .
7
7
【提示】连接 BE、AE 交 GF 于点 O,在菱形 ABCD 中, AB 2,A 60 ,E 为 CD 中点, 以及图形的翻折,可以求出 BE,BF,EF,AE,根据 AG EG,AF EF ,得出 GF 垂直平分 AE, 从而求出 EO,FO,最后在 Rt△EOF 中,利用三角函数定义即可得出答案. 【考点】等腰三角形的性质,勾股定理,菱形的性质,解直角三角形 三、解答题 19.【答案】原式化简得 4x 1 ,当 x 3 ,原式 5
(3)解:依题可得: “宁港”品种鱼苗的成活率为: 51 100% 85% .
60 “甬岱”品种鱼苗的成活率为: 56 100% 74.6% .
75 “象山港”品种鱼苗的成活率为: 60 100% 80% .
75 答:“宁港”品种鱼苗的成活率最高,应选“宁港”品种进行推广. 【提示】(1)根据总体乘以部分所占总体的百分数得出答案. (2)根据总体乘以部分所占总体的百分数得出答案. (3)根据部分除以总体求出各品种鱼苗的成活率,从而得出答案. 【考点】扇形统计图,条形统计图 22.【答案】(1) 12
6 / 12
(2) x 2 或 0 x 2
【解析】(1)解:如图,过点 A 作 AD OC 于点 D.
又∵
AC

AO .∴ CD

DO .∴
S△ADO

1 2
S△ACO

2017学年浙江省宁波中考数学年试题答案

2017学年浙江省宁波中考数学年试题答案

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前江苏省镇江市2017年中考试卷数 学本试卷满分120分,考试时间120分钟.一、填空题(每小题2分,共24分) 1.3的倒数是 .2.计算:53a a ÷= . 3.分解因式:29b -= .4.当x = 时,分式523x x -+的值为零.5.如图,转盘中6个扇形的面积都相等.任意转动转盘一次,当转盘停止转动时,指针指向奇数的概率是 .6.圆锥底面圆的半径为2,母线长为5,它的侧面积等于 (结果保留π).7.如图,Rt ABC △中,90,6ACB AB ∠==,点D 是AB 的中点,过AC 的中点E 作EF CD ∥交AB 于点F ,则EF = .8.若二次函数24y x x n =-+的图像与x 轴只有一个公共点,则实数n = . 9.如图,AB 是O 的直径,AC 与O 相切,CO 交O 于点D ,若30CAD ∠=,则BOD ∠ .10.若实数a 满足13||22a -=,则a 对应于图中数轴上的点可以是A 、B 、C 三点中的点 .11.如图,ABC △中,6AB =,DE AC ∥,将BDE △绕点B 顺时针旋转得到BD E ''△,点D 的对应点D '落在边BC 上,已知5,4BE D C ''==,则BC 的长为 .12.已知实数m 满足2310m m -+=,则代数式22192m m ++的值等于 .二、选择题(每小题3分,共15分)13.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收.其中1100000000用科学记数法表示应为 ( ) A .80.1110⨯B .91.110⨯C .101.110⨯D .91110⨯14.如图是由6个大小相同的小正方体组成的几何体,它的主视图是( )ABCD15. a b 、是实数,点((2,,))3A a B b 、在反比例函数2y x =-的图像上,则 ( )A .a b <<0B .0b a <<C .0a b <<D .0b a << 16.若该组数据的中位数不大于38,则符合条件的正整数的取值共有( )A .3个B .4个C .5个D .6个17.点E F 、分别在平行四边形ABCD 的边BC AD 、上,BE DF =,点P 在边AB 上, : 1 : (1)AP PB n n =>,过点P 且平行于AD 的直线l 将ABE △分成面积为12S S 、的两部分,将CDF △分成面积为34S S 、的两部分(如图).下列四个等式:131 : =1 : ; :S S n S ①②4142331241 : (21);() : ) 1 : ;() : (): (( 1).S n S S S S n S S S S n n =+++=--=+③④其中成立的有( )-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第3页(共6页) 数学试卷 第4页(共6页)A .①②④B .②③C .②③④D .③④三、解答题(本大题共11小题,共81分)18.(8分)(1)计算:20(2)tan 45(32);-+- (2)化简:(1)(1)(2).x x x x +-+-19.(10分)(1)解方程组:4,25x y x y -=⎧⎨+=⎩; (2)解不等式:2132x x -->.20.(6分)为了解射击运动员小杰的集训效果,教练统计了他集训前后的两次测试成绩(每次测试射击10次),制作了如图所示的条形统计图. (1)集训前小杰射击成绩的众数为 ; (2)分别计算小杰集训前后射击的平均成绩; (3)请用一句话评价小杰这次集训的效果.21.(6分)某校5月份举行了八年级生物实验考查,有A 和B 两个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽、小华都参加了本次考查.(1)小丽参加实验A 考查的概率是 ;(2)用列表或画树状图的方法求小明、小丽都参加实验A 考查的概率; (3)他们三人都参加实验A 考查的概率是 .22.(6分)如图,点B E 、分别在AC DF 、上,AF 分别交BD CE 、于点,M N 、,A F ∠=∠1=2∠∠.(1)求证:四边形BCED 是平行四边形;(2)已知2DE =,连接BN ,若BN 平分DBC ∠,求CN 的长.23.(6分)如图,小明在教学楼A 处分别观测对面实验楼CD 底部的俯角为45,顶部的仰角为37.已知教学楼和实验楼在同一平地上,观测点距地面的垂直高度AB 为15m .求实验楼的垂直高度即CD 长(精确到1m ).参考值:sin370. 60,cos370. 80,tan370.75≈≈≈.24.(6分)如图,Rt ABC △中,90,3cm ,4cm B AB BC ∠===,点D 在AC 上,1cm AD =.点P 从点A 出发,沿AB 匀速运动;点Q 从点C 出发,沿C B A C →→→的路径匀速运动.两点同时出发,在B 点处首次相遇后,点P 的运动速度每秒提高了2cm ,并沿B A C →→的路径匀速运动;点Q 保持速度不变,并继续沿原路径匀速运动,两点在D 点处再次相遇后停止运动.设点P 原来的速度为cm/s x . (1)点Q 的速度为 cm/s (用含x 的代数式表示); (2)求点P 原来的速度.25.(6分)如图①,一次函数y x b =-+与反比例函数(0)ky k x =≠的图像交于点(1,3)A 、(,1)B m ,与x 轴交于点D ,直线OA 与反比例函数()ky k x x =≠图像的另一支交于点C ,过点B 作直线l 垂直于x 轴,点E 是点D 关于直线l 的对称点. (1)k = ; (2)判断点 B E C 、、是否在同一条直线上,并说明理由; (3)如图②,已知点F 在x 轴正半轴上,32OF =.点P 是反比例函数(0)ky k x =≠图像位于第一象限部分上的点(点P 在点A 的上方),ABP EBF ∠=∠,则点P 的坐标为( , ).数学试卷 第5页(共6页) 数学试卷 第6页(共6页)①②26.(8分)如图①,Rt ABC △中,90C ∠=,点D 在AC 上,CBD A ∠=∠,过 A D 、两点的圆的圆心O 在AB 上. (1)利用直尺和圆规在图①中画出O (不写作法,保留作图痕迹,并用黑色水笔把线条描清楚);(2)判断BD 所在直线与(1)中所作的O 的位置关系,并证明你的结论; (3)设O 交AB 于点E ,连接DE ,过点E 作EF BC ⊥,F 为垂足.若点D 是线段AC 的黄金分割点(即DC ADAD AC =),如图②,试说明四边形DEFC 是正方形.27.(8分)如图,在平面直角坐标系中,矩形OABC 的边 OA OC 、分别在x 轴、y 轴上,点B 坐标为(4,) (0)t t >,二次函数2(0)y x bx b =+<的图像经过点B ,顶点为点D .(1)当12t =时,顶点D 到x 轴的距离等于 ;(2)点E 是二次函数2(0)y x bx b =+<的图像与x 轴的一个公共点(点E 与点O 不重合).求OE EA 的最大值及取得最大值时的二次函数表达式;(3)矩形OABC 的对角线OB AC 、交于点F ,直线l 平行于x 轴,交二次函数2(0)y x bx b =+<的图像于点M N 、,连接DM DN 、.当DMN FOC △≌△时,求t 的值.28.(11分)【回顾】如图①,ABC △中,30,3,4B AB BC ∠===,则ABC △的面积等于 .【探究】图②是同学们熟悉的一副三角尺,一个含有30的角,较短的直角边长为a ;另一个含有45的角,直角边长为b .小明用两副这样的三角尺拼成一个平行四边形ABCD(如图③),用了两种不同的方法计算它的面积,从而推出6sin75=.小丽用两副这样的三角尺拼成一个矩形EFGH (如图④),也推出6sin75=.请你写出小明或小丽推出6sin75=的具体说理过程.【应用】在四边形ABCD 中,AD BC ∥,75,6,5,10D BC CD AD ∠====(如图⑤).(1)点E 在AD 上,设t BE CE =+,求2t 的最小值;(2)点F 在AB 上,将BCF △沿CF 翻折,点B 落在AD 上的点G 处.点G是AD的中点吗?说明理由.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。

2017宁波中考数学试题及答案

2017宁波中考数学试题及答案

2017宁波中考数学试题及答案2017年宁波市初中毕业生学业考试数学试题一、选择题(本大题共10小题,每小题3分,共30分)1. 以下运算正确的是()A. 3a² - 2a² = a²B. 3a² - 2a = a²C. 3a² + 2a² = 5a²D. 3a² - 2a² = 5a²2. 以下哪个数是无理数?()A. √2B. 0.1C. 0.33333...D. 0.33. 以下哪个图形是轴对称图形?()A. 平行四边形B. 矩形C. 菱形D. 梯形4. 以下哪个选项是二次函数y = ax² + bx + c(a ≠ 0)的图像?()A. 抛物线开口向上,顶点在y轴上B. 抛物线开口向下,顶点在x轴上C. 抛物线开口向上,顶点在x轴上D. 抛物线开口向下,顶点在y轴上5. 以下哪个选项是等腰三角形的判定条件?()A. 两边相等B. 两角相等C. 一边上的高等于底边的一半D. 两边上的高相等6. 以下哪个选项是正确的三角函数关系?()A. sin(45°) = cos(45°)B. sin(30°) = cos(60°)C. sin(60°) = cos(30°)D. sin(90°) = cos(0°)7. 以下哪个选项是正确的不等式性质?()A. 如果a > b,那么a - c > b - cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a² > b²8. 以下哪个选项是正确的几何定理?()A. 对顶角相等B. 内错角相等C. 同位角相等D. 同旁内角互补9. 以下哪个选项是正确的统计量?()A. 平均数B. 中位数C. 众数D. 所有选项10. 以下哪个选项是正确的概率计算?()A. P(A) + P(B) = 1B. P(A) + P(B) > 1C. P(A) + P(B) = 2D. P(A) + P(B) < 1二、填空题(本大题共6小题,每小题4分,共24分)11. 已知a = 2,b = 3,求a² + b²的值。

浙江省宁波市2017中考数学试题(图片版,含答案)

浙江省宁波市2017中考数学试题(图片版,含答案)

上大附中何小龙
【素材积累】
1、人生只有创造才能前进;只有适应才能生存。

博学之,审问之,慎思之,明辨之,笃行之。

我不知道将来会去何处但我知道我已经摘路上。

思想如钻子,必须集中摘一点钻下去才有力量。

失败也是我需要的,它和成功对我一样有价值。

2、为了做有效的生命潜能管理,从消极变为积极,你必须了解人生的最终目的。

你到底想要什么?一生中哪些对你而言是最重要的?什么是你一生当中最想完成的事?或许,你从来没有认真思量过生命潜能管理旧是以有系统的方法管理自我及周边资源,达成。

2017浙江宁波中考试卷(解析版)

2017浙江宁波中考试卷(解析版)

宁波市2017年初中毕业生学业考试数学试题卷Ⅰ一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2017浙江宁波,1,4分)12,0,-2这四个数中,为无理数的是( )A B .12C .0D .2- 答案:A ,解析:∵无理数是无限不循环小数,而0、21、﹣2都属于有理数,3为无限不循环小数,∴3为无理数 .故选A .2.(2017浙江宁波,2,4分)下列计算正确的是( )A .235a a a +=B .()224a a =C .a 2⋅a 3=a 5D .()325a a =答案:C ,解析:A 中,a 2与a 3不是同类项,不可以合并,错误;B 中,(2a )2=4a 2,错误;C 中,a 2﹒a 3=a 5,正确;D 中,(a 2)3=a 6,错误.故选C .3.(2017浙江宁波,3,4分)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为( )A .0.45×106吨B .4.5×105吨C .45×104吨D .4.5×104吨答案:B ,解析:45万吨=450000吨=4.5×105吨.故选B .4.(2017浙江宁波,4,4分)x 的取值范围是( )A .x≠3B .3x >C .x≤3D .x≥3答案:D ,解析:根据二次根式的双重非负性,要使二次根式3-x 有意义,则x -3≥0,解得x ≥3.故选D .5.(2017浙江宁波,5,4分)如图所示的几何体的俯视图为( )答案:D ,解析:根据三视图的概念,俯视图是从物体的上面向下面看所得的视图,从上往下看,只有D 正确.故选D .6.(2017浙江宁波,6,4分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A .12 B .15C .310D .710 答案:C ,解析:根据概率计算公式,全部情况有10个小球,符合条件的情况黄球有3个,故从袋中任意摸出1个球,是黄球的概率为:103.故选C . 7.(2017浙江宁波,7,4分)已知直线m n ∥,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC =∠°),其中A ,B 两点分别落在直线m ,n 上,若120=∠°,则2∠的度数为( )A .20°B .30°C .45°D .50°答案:D ,解析:∵m ∥n ,∴∠2=∠1+∠ABC .∵∠1=20°,∠ABC =30°,∴∠2=20°+30°=50°.故选D .8.(2017浙江宁波,8,4分)若一组数据2,3,x ,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .7答案:C ,解析:由数据2,3,x ,5,7的众数为7,可知x =7.把这组数据从小到大的顺序排列为:2,3,5,7,7.位于中间的数为5,故中位数为5.故选C .9.(2017浙江宁波,9,4分)如图,在Rt △ABC 中,90A =∠°,22BC =,以BC 的中点O 为圆心分别与AB ,AC 相切于D ,E 两点,则»DE的长为( ) A .4π B .2π C .π D .2π答案:B ,解析:连接OE ,OD .AB ,AC 分别切⊙O 于点D ,E ,∴∠OED =∠ODA =90°,又∵∠A =90°,∴四边形OEAD 为矩形.∵OD =OE ,∴四边形OEAD 为正方形.∴∠EOD =90°,OE ∥AB ,OD ∥AC .∵O 为BC 的中点,∴OE 、OD 为△ABC 的中位线,∴OE =21AB ,OD =21AC ,∵OD =OE ,∴AB =AC .∴∠B =∠C =45°.∴AB =BCsin 45°=22×22=2,∴OE =OD =1.∴⌒DE 的长为:180190⨯π=2π.故选B .10.(2017浙江宁波,10,4分)抛物线2222y x x m =-++(m 是常数)的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A ,解析:二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为:)44,2(2a b ac a b --,∵-a b 2=-22--=1>0,a b ac 442-=44)2(42-+m =2m +1>0,故此抛物线的顶点在第一象限.故选A . 11.(2017浙江宁波,11,4分)如图,四边形ABCD 是边长为6的正方形,点E 在边AB 上,4BE =,过点E 作EF BC ∥,分别交BD ,CD 于G ,F 两点,若M ,N 分别是DG ,CE 的中点,则MN 的长为( )A .3B .23C 13D .4答案:C ,解析:过点M 作MK ⊥CD 交CD 于K ,过点N 作NH ⊥BC 交BC 于点H ,交KM 的延长线于点Q .易知MK ∥BC ,QH ∥CD ,∴四边形QHCK 为矩形,∴∠Q =90°.∵四边形ABCD 为正方形,∴∠BDC =∠BDA =45°,AD ∥BC .∴DF =GF =AE =AB -BE =6-4=2.∵EF ∥BC ,∴MK ∥EF .∵M 为DG 的中点,∴MK =21GF =1.KF =21DF =1.∵QH ∥AB ,点N 为CE 的中点,∴HC =21BC =3,NH =21BE =2.∴QM =HC -MK =3-1=2.QN =CK -NH =4+1-2=3. 在Rt △QNM 中,MN =13322222=+=+QN QM .故选C .12.(2017浙江宁波,12,4分)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中,若知道九个小矩形中n 个小矩形的周长,就一定能算出这个大矩形的面积,则n 的最小值是( )A .3B .4C .5D .6答案:A ,解析:如图所示,设矩形②的边长为m ,矩形③的边长为a ,b ,矩形④的边长为b ,c ,则大矩形的面积为:(a +b +m )(b +c +m ),a +b =矩形③周长的一半,b +c =矩形④周长的一半,故欲求大矩形的面积最少需知道矩形②,③,④的周长.故n =3.故选A .卷Ⅱ二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(2017浙江宁波,13,5分)实数8-的立方根是 .答案:-2,解析: ∵(-2)3=-8,∴-8的立方根是-2.故填-2.14.(2017浙江宁波,14,5分)分式方程21332x x +=-的解是 . 答案:x =1,解析:去分母,得2(2x +1)=3(3-x ),去括号,得4x +2=9-3x ,移项并合并同类项,得7x =7,系数化为1,得x =1.经检验x =1是分式方程的根. 故填x =1.15.(2017浙江宁波,15,5分)如图,用同样大小的黑色棋子按如图所示的规律摆放:则第⑦个图案有 个黑色棋子.答案:19,解析:第①个图形中共有1个黑色棋子;第2个图形中共有(1+3)个黑色棋子,第3个图形中共有(1+2×3)个黑色棋子,第4个图形中共有(1+3×3)个黑色棋子,……,按此规律可知,第n 个图形共有[3(n -1)+1]=(3n -2)个黑色棋子,所以第⑦个图形中黑色棋子的个数为3×7-2=19.故填19.16.(2017浙江宁波,16,5分)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知500AB =米,则这名滑雪运动员的高度下降了 米.(参考数据:sin340.56°≈,cos340.83°≈,tan340.67°≈)答案:280,解析:在Rt △ABC 中,sinB =AB AC ≈0.56,解得AC =ABsin 34°=500×0.56=280. 17.(2017浙江宁波,17,5分)已知ABC △的三个顶点为()1,1A -,()1,3B -,()3,3C --,将ABC △向右平移()0m m >个单位后,ABC △某一边的中点恰好落在反比例函数3y x=的图象上,则m 的值为 . 17.答案:0.5或4,解析:如图:根据中点坐标公式可知AB 的中点D 的坐标为(-1,1),AC 的中点E 的坐标为(-2,-2),BC 的中点坐标为(-2,1).分三种情况:当点D 平移后落在反比例函数3y x =的图象上时,点D 平移后的坐标为(-1+m ,1),代入反比例函数3y x =中,得311m=-+,解得m =4;当点E 平移后落在反比例函数3y x =的图象上时,点E 平移后的坐标为(-2+m ,-2),代入反比例函数3y x=中,得322m =--+,解得m =0.5;当点F 平移后落在反比例函数3y x=的图象上时,点F 平移后的坐标为(-2+m ,0),∵反比例函数的解析式k y x=(k ≠0)中,x ≠0,y ≠0,这种情况不存在.故填0.5或4.18.(2017浙江宁波,18,5分)如图,在菱形纸片ABCD 中,2AB =,60A =∠°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos EFG ∠的值为 .18.答案:721,解析:连接BE ,过点E 作EH ⊥AD 交AD 的延长线于点H ,过G 作GM ⊥AB 于点M .∵四边形ABCD 为菱形,∴AB =BC =CD =AD =2,∠C =∠A =60°,AB ∥CD ,∴△BCD 为等边三角形,∵点E 为CD的中点,∴CE =DE =21CD =1,∠BEC =90°,∴BE =BCsin 60°=2×23=3. ∵AB ∥CD ,∴∠EBF =∠BEC =90°,设AF =EF =x ,∴BF =2-x ,在Rt △BEF 中,BE 2+BF 2=EF 2,∴(3)2+(2-x )2=x 2,解得x =47.即BF =47.在Rt △DEH 中,∵∠EDH =60°,DE =1,∴DH =21,HE =23,设AG =EG =a ,GH =2-a +21=a -25,在Rt △HEG 中,EG 2=EH 2+GH 2,即222)25()23(a a -+=,解得a =57.即AG =57.在Rt △AGM 中,∵∠A =60°,∴AM =21AG =107,GM =AGsin 60°=1037. ∴FM =AF -AM =47-107=2021.在RtFGM 中,FG =2222)2021()1037(+=+GM FM =20217 ∴cos ∠GFM =202172021=FG FM =721.∵∠GFM =∠EFG ,∴cos ∠EFG =721.三、解答题 (本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(2017浙江宁波,19,6分)先化简,再求值:()()()()2215x x x x +-+-+,其中32x =. 思路分析:先根据平方差公式、多项式与多项式乘法进行化简,然后代入求值即可.解:原式=4-x 2+x 2+4x -5=4x -1当x =23时,原式=4×23-1=5. 20.(2017浙江宁波,20,8分)在44´的方格纸中,ABC △的三个顶点都在格点上.(1)在图1中画出与ABC △成轴对称且与ABC △有公共边的格点三角形(画出一个即可);(2)将图2中的ABC △绕着点C 按顺时针方向旋转90°,画出经旋转后的三角形.思路分析:根据图形平移和旋转的性质进行作图.(1)可以AC 所在直线为对称轴,也可以BC 所在直线为对称轴进行作图.解:(1)画出其中一种情况即可:(2)如图所示:21.(2017浙江宁波,21,8分)大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1) 求实验中“宁港”品种鱼苗的数量;(2) 求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由.思路分析:(1)利用扇形统计图计算出“宁港”品种鱼苗所占的百分比,然后利用总量乘所占百分比即可.(2)用总量ד甬岱”品种鱼苗的百分比×成活率即可求出实验中“甬岱”品种鱼苗的成活数,并据此不全条形统计图.(3)通过计算成活率并进行比较得出结论.解:(1)300×(1-30%-25%-25%)=60(尾). 答:实验中“宁港”品种鱼苗有60尾.(2)300×30%×80%=72(尾).答:实验中“甬岱”品种鱼苗的成活了72尾.补全条形统计图:(3)“宁港”品种鱼苗的成活率为6051×100%=85%. “御龙”品种鱼苗的成活率为7556×100%=74.6%. “象山港”品种鱼苗的成活率为7560×100%=80%.答:“宁港”品种鱼苗的成活率最高,应选“宁港”品种鱼苗进行推广.22.(2017浙江宁波,22,8分)如图,正比例函数13y x =-的图象与反比例函数2k y x=的图象交于A 、B 两点.点C 在x 轴负半轴上,AC AO =,ACO △的面积为12.(1)求k 的值;(2)根据图象,当12y y >时,写出x 的取值范围.思路分析:(1)过点A 作AD ⊥x 轴,因为AC =AO ,所以△ACO 的面积=2△ADO 的面积.根据反比例函数中k 的几何意义确定k 的值.(2)几何函数图象直接写出x 的取值范围即可.解:(1)如图所示,过点A 作AD ⊥x 轴于点D ,∵AC =AO ,∴CD =OD ,∴S △ACO =2S △ADO =12.即k =-12.(2)x <-2或0<x <2.23.(2017浙江宁波,23,10分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?思路分析:(1)根据2件甲种商品的销售收入=3件乙种商品的销售收入,3件甲种商品的销售收入-2件乙种商品的销售收入=1500元,列出二元一次方程组,进行求解即可.(2)根据甲、乙两种商品的销售总收入≥5400万元,列出不等式进行求解.解:(1)设甲种商品销售单价x 元,乙种商品的销售单价y 元,根据题意得⎩⎨⎧=-=1500233x 2y x y ,解得⎩⎨⎧==600900y x . 答:甲种商品销售单价900元,乙种商品的销售单价600元.(2)设销售甲种商品a 万件,则销售乙种商品(8-a )万件,根据题意,得 900a +600(8-a)≥5400,解得:a≥2.答:至少销售甲种产品2万件.24.(2017浙江宁波,24,10分)在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD 的四边BA 、CB 、DC 、AD 分别延长至E 、F 、G 、H ,使得AE CG =,BF DH =,连接EF ,FG ,GH ,HE .(1) 求证:四边形EFGH 为平行四边形;(2) 若矩形ABCD 是边长为1的正方形,且45FEB =∠°,tan 2AEH =∠,求AE 的长.思路分析:(1)根据矩形的对边相等,四个角都是直角,AE =CG ,BF =DH ,可以得出△BEF ≌△DGH ,△CFG ≌△AHE ,得出EF =GH ,EH =FG ,所以四边形EFGH 为平行四边形.(2)利用矩形的对边相等,45FEB =∠°,用与AE 相关的代数式表示AH ,然后利用tan 2AEH =∠即可求出AE 的长.解:(1)在矩形ABCD 中,AD =BC ,∠BAD =∠BCD =90°,又∵BF =DH , ∴AD +DH =BC +BF ,即AH =CF . 又∵AE =CG ,∴△AHE ≌△CFG , ∴EH =GF , 同理 EF =HG ,∴四边形EFGH 为平行四边形.(2)在正方形ABCD 中,AB =AD =1.设AE =x ,则BE =x +1. ∵在Rt △BEF 中,∠BEF =45°,∴BE =BF .∵BF =DH ,∴DH =BE =x +1.∴AH =AD +DH =x +2.∵在Rt △AEH 中,tan ∠AEH =2,∴AH =2AE .∴2+x =2x ,解得x =2.即AE =2.25.(2017浙江宁波,25,12分)如图,抛物线21144y x x c =++与x 轴的负半轴交于点A ,与y 轴交于点B ,连结AB ,点C (6,215)在抛物线上,直线AC 与y 轴交于点D(1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连结PQ 与直线AC 交于点M ,连结MO 并延长交AB 于点N ,若M 为PQ 的中点.①求证:APM AON △∽△;②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).思路分析:(1)将点C 的坐标代入二次函数的解析式中,可求出点c 的值;令y =0,求得点A 的坐标,利用待定系数法求得直线AC 的函数表达式;(2)①分别求出点D ,点B 的坐标,求得∠OAB =∠OAD ,根据直角三角形斜边中线等于斜边一半,知OM =PM ,所以∠MOP =∠MPO ,易求∠MPO =∠AON ,利用两角对应相等的两个三角形相似,结论易证;②由△APM ∽△AON ,得AM AP AN AO=,分别用含m 的代数式表示AM ,AP ,AO 的值,即可求出AN 的值. 解:(1)把点C (6,215),得c ++=239215,解得:c =-3.∴y =41x 2+41x -3.当y =0时,41x 2+41x -3=0,解得x 1=-4,x 2=3.∴A (-4,0). 设直线AC 的函数表达式为:y =kx +b (k≠0).把A (-4,0),C (6,215)代入,得⎪⎩⎪⎨⎧+=+=b k 6215b k 4-0,解得⎪⎩⎪⎨⎧==343b k . ∴直线AC 的函数表达式为y =343+x . (2)①在Rt △AOB 中,tan ∠OAB =43OA OB =, 在Rt △AOB 中,tan ∠OAD =43OA OB =.∴∠OAB =∠OAD . ∵在Rt △POQ 中,M 为PQ 的中点,∴OM =MP . ∴ ∠MOP =∠MPO ,∵∠MOP =∠AON ,∴∠MPO =∠AON ,∴△APM ∽△AON .② 如图,过点M 作ME ⊥x 轴于点E ,又∵OM =MP ,∴OE =EP .∵点M 横坐标为m ,∴AE =m +4,AP =2m +4.∵tan ∠OAD =43,∴cos ∠EAM =cos ∠OAD =54.∴AM =45AE =44)m 5+(. 由△APM ∽△AON ,得AM AP AN AO =,∴AN =4220m 5++m .26.(2017浙江宁波,26,12分)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD 中,12B D =∠∠,12C A =∠∠,求B ∠与C ∠的度数之和; (2)如图2,锐角ABC △内接于O ⊙,若边AB 上存在一点D ,使得BD BO =,OBA ∠的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,2AFE EAF =∠∠.求证:四边形DBCF 是半对角四边形;(3)如图3,在(2)的条件下,过点D 作DG OB ^于点H ,交BC 于点G ,当DH BG =时,求BGH △与ABC △的面积之比.思路分析:(1)利用四边形内角和等于360°及半对角四边形的定义求解;(2)连接OC ,易证△BED ≌BEO ,则∠BDE =∠BOE ,利用圆周角定理,得∠C =12∠BOE ,故∠C =∠BDE .利用设∠EAF =α,用α的代数式分别表示∠EFC ,∠AOC 的度数,再利用圆周角定理,可表示出∠ABC 的度数,进而得证;(3)过点O 作OM ⊥BC ,先证明△DBG ∽△CBA ,利用相似三角形的面积比等于相似比的平方,求得S △DBG :S △CBA的值,再求出△BHG 与△BDG 的面积比,进而可求得△BGH 与△ABC 的面积之比.解:(1)在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A , ∵∠A +∠B +∠C +∠D =360°,∴3∠B +3∠C =360°.∴∠B +∠C =120°,即∠B 与∠C 的和为120°.(2)在△BED 和△BEO 中,⎪⎩⎪⎨⎧=∠=∠=BE BE EBO EBD BO BD ,∴△BED ≌△BEO (SAS ). ∴∠BDE =∠BOE ,又∵∠BCF =21∠BOE ,∴∠BCF =21∠BDE . 如图,连接OC ,设∠EAF =a ,则∠AFE =2A .∴∠EFC =180°-∠AFE =180°-2A .∵OA =OC , ∴∠O AC =∠O CA =A . ∴∠AOC =180°-2A .∴∠ABC =21∠AOC =21∠EFC ,∴四边形DBCF 是半对角四边形. (3)如图,作OM ⊥BC 于点M .∵四边形DBCF 是半对角四边形.∴∠ABC +∠ACB =120°,∴∠BAC =60°,∴∠BOC =2∠BAC =120°,∵OB =OC ,∴∠OBC =∠OBC =30°,∴BC =2BM =3BO =3BD .∵DG ⊥OB ,∴∠HGB =∠BAC =60°.∵∠DBG =∠CBA ,∴△DBG ∽△CBA . ∴31BC BD ABC DBG 2=⎪⎭⎫ ⎝⎛=的面积△的面积△,∵DH =BG ,BG =2HG ,∴DG =3HG , ∴31BDG BHG =的面积△的面积△,∴91ABC BHG =的面积△的面积△.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁波市2017年初中毕业生学业考试
数学试题
试题卷Ⅰ
一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.在3,12,0,2这四个数中,为无理数的是( )
A.3
B.12
C.0
D.2-
2.下列计算正确的是( )
A.235a a a
B.224a a
C.235a a a
D.325a a
3.2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为( )
A.60.4510吨
B.54.510吨
C.44510吨
D.44.510吨
4.要使二次根式3x 有意义,则x 的取值范围是( )
A.3x
B.3x
C.3x
D.3x
5.如图所示的几何体的俯视图为( )
6.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )
A.1
2 B.1
5 C.310 D.7
10
7.已知直线m n ∥,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC ∠°),其中A ,B 两点分别落在直线m ,n 上,若120∠°,则2∠的度数为( )
A.20°
B.30°
C.45°
D.50°
8.若一组数据2,3,x ,5,7的众数为7,则这组数据的中位数为( )
A.2
B.3
C.5
D.7
9.如图,在Rt ABC △中,90A ∠°,22BC ,以BC 的中点O 为圆心分别与AB ,AC 相切于D ,E 两点,则DE 的长为( )
A.4
B.2
C.
D.2
10.抛物线2222y x x m (m 是常数)的顶点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
11.如图,四边形ABCD 是边长为6的正方形,点E 在边AB 上,4BE ,过点E 作EF BC ∥,分别交BD ,CD 于G ,F 两点,若M ,N 分别是DG ,CE 的中点,则MN 的长为( )
A.3
B.23
C.13
D.4
12.一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中,若知道九个小矩形中n 个小矩形的周长,就一定能算出这个大矩形的面积,则n 的最小值是
( )
A.3
B.4
C.5
D.6
试题卷Ⅱ
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.实数8的立方根是 .
14.分式方程213
32x x 的解是 . 15.如图,用同样大小的黑色棋子按如图所示的规律摆放:
则第⑦个图案有 个黑色棋子.
16.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知500AB 米,则这名滑雪运动员的高度下降了 米.(参考数据:sin340.56°≈,cos340.83°≈,tan340.67°≈)
17.已知ABC △的三个顶点为1,1A ,1,3B ,3,3C ,将ABC △向右平移0m m 个单位后,ABC △ 某一边的中点恰好落在反比例函数3
y x 的图象上,则m 的值为 .
18.如图,在菱形纸片ABCD 中,2AB ,60A ∠°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos EFG ∠的值为 .
三、解答题 (本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.)
19.先化简,再求值:2215x x x x ,其中3
2x .
20.在44的方格纸中,ABC △的三个顶点都在格点上.
(1)在图1中画出与ABC △成轴对称且与ABC △有公共边的格点三角形(画出一个即可);
(2)将图2中的ABC △绕着点C 按顺时针方向旋转90°,画出经旋转后的三角形.
21.大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):
(1)求实验中“宁港”品种鱼苗的数量;
(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;
(3)你认为应选哪一品种进行推广?请说明理由.
22.如图,正比例函数
13
y x的图象与反比例函数
2k
y
x
的图象交于A、B两点.点C在x轴负半轴上,AC AO,ACO
△的面积为12.
(1)求k的值;
(2)根据图象,当
12
y y时,写出x的取值范围.
23.2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
24.在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:
如图,将矩形ABCD 的四边BA 、CB 、DC 、AD 分别延长至E 、F 、G 、H ,使得AE CG ,BF DH ,连接EF ,FG ,GH ,HE .
(1) 求证:四边形EFGH 为平行四边形;
(2) 若矩形ABCD 是边长为1的正方形,且45FEB ∠°,tan 2AEH ∠,求AE 的长.
25.如图,抛物线21144y x x c 与x 轴的负半轴交于点A ,与y 轴交于点B ,连结AB ,点15
6,2C 在抛
物线上,直线AC 与y 轴交于点D .
(1)求c 的值及直线AC 的函数表达式;
(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连结PQ 与直线AC 交于点M ,连结MO 并延长交AB 于点N ,若M 为PQ 的中点.
①求证:APM AON △∽△;
②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).
26.有两个内角分别是它们对角的一半的四边形叫做半对角四边形.
(1)如图1,在半对角四边形ABCD 中,12B D ∠∠,12C A ∠∠,求B ∠与C ∠的度数之和;
(2)如图2,锐角ABC △内接于O ⊙,若边AB 上存在一点D ,使得BD BO ,OBA ∠的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,2AFE EAF ∠∠.
求证:四边形DBCF 是半对角四边形;
(3)如图3,在(2)的条件下,过点D 作DG OB 于点H ,交BC 于点G ,当DH BG 时,求BGH △与ABC △的面积之比.。

相关文档
最新文档