探讨智能配电网自愈控制关键技术

合集下载

智能配电网及其关键技术研究

智能配电网及其关键技术研究

智能配电网及其关键技术研究
智能配电网是一种全新的配电网形式,它把电能传输和分配、调度和控制、自动化和信息化有机地结合在一起,形成层次清晰、系统可靠、运行安全、经济高效的电力系统。

智能配电网以智能硬件和智能控制器作为依托,将智能控制技术、物联网技术以及电力自动化技术等,结合起来协同工作,形成自动监控、自动控制、自动调度的网络体系。

(1)电力计量技术。

通过电力计量,可以实时监测电力系统发电、输电、配电的状态及安全运行情况,及时发现电力系统的故障,以及系统的不平衡状态,保证系统的安全运行。

(2)智能调度技术。

通过实时监测系统运行状态,根据系统的实时需求,来进行智能化的调度和控制,保证电力系统负荷的平衡,降低电力系统的故障率。

(3)智能运行保护技术。

智能配电网采用智能运行保护技术,实现系统实时自动监测,发现系统的运行状态异常,并进行及时的处理,防止电力系统的损坏。

(4)无线通信技术。

采用无线通信技术,可以将系统的控制信息迅速的传递到相应的点,从而提高系统的操作效率,保证系统的运行可靠性。

简谈智能配电网自愈系统的自动化控制

简谈智能配电网自愈系统的自动化控制

简谈智能配电网自愈系统的自动化控制摘要:随着现代社会用电量的逐渐提升,人们更加重视配电网供电的安全性。

由于智能配电网在工作过程中跟用户是直接对接的状态,供电网路呈辐射状进行供电,当配电网出现任何故障,都会直接影响用户的供电质量。

现有的智能配电网自愈系统控制技术控制精准率低,出现故障时的自我恢复成功率差,导致在实际应用中影响供电质量,浪费人工维修成本。

设计一种新的智能配电网自愈系统的自动化控制技术,能够对配电网出现的故障进行预测以及自我恢复,为智能配电网络的进一步发展提供一些参考。

关键词:智能配电网;自愈系统;自动化控制;分析1智能配电网自愈控制技术配电、输送电力是电力系统运行的重要环节,这也是电力公司提升服务水平的重要阶段,在电力市场需求持续加大的这一发展契机下,越来越多的电力企业开始加大电网建设的智能化转变,旨在一次来优化自身的综合实力。

智能配电网自愈控制技术是在传统电力技术的基础上衍生出来的,它可以实现电力资源的合理分配及利用,具有较强的自我保护、恢复功能,无需人为操控即可实现运行故障的处理及自我保护,这对于我国电力事业的发展极为有利。

智能配电网自愈控制技术可以提高配电网运行的智能化,将配电网运行中可能存在的故障进行有效处理,且保障故障发生时电力系统保持运行状态,且不会对现行的电力设备造成过大的影响,实现不间断的电力供应及自我修复。

2智能配电网自愈系统自动化控制技术的功能定位和需求2.1功能定位配电网自愈系统的工作原理则是保证配电网提供持续不断的电源,有效避免电力系统故障的产生。

通过自愈系统实现优化配电网和预警配电网运行故障,一旦出现系统故障,发挥自愈技术作用对配电网进行修复和调整,及时恢复正常的供电状态,最大程度地保证用户综合利益。

如果电源系统出现严重故障,造成断电问题,那么也说明配电网自愈控制技术不能起到任何作用。

结合智能配电网自愈控制技术实际应用情况,将其功能总结为三个方面:(1)电力系统处于正常运行状态时,自愈控制技术通过选择性和目的性两种方式优化配电网,保证配电网稳定运行,具有较强的抗干扰能力;(2)通过提前判断配电网故障,实现早发现早维修,最大限度地减少对配电网系统的影响;(3)发生配电网故障后,自愈控制技术利用自身修复功能,及时修复故障,避免不必要的经济损失,保证用户正常用电。

智能配电网自愈控制技术分析

智能配电网自愈控制技术分析

智能配电网自愈控制技术分析随着信息技术的迅猛发展,智能配电网自愈控制技术成为了电力系统领域的研究热点。

智能配电网自愈控制技术可以对电力系统进行快速故障识别、定位和恢复,提高了电力系统的可靠性和安全性。

本文将就智能配电网自愈控制技术的技术原理、关键技术和发展趋势进行分析。

一、技术原理智能配电网自愈控制技术是指在配电网中通过实时监测和分析系统运行状态,自动识别故障点以及对故障点进行快速定位和隔离的技术。

其核心原理是利用先进的传感器和智能控制算法,对配电网中的各个节点进行实时监测,并根据监测数据进行分析和处理,快速响应并自动对故障进行处理,以实现故障自愈的目的。

具体来说,智能配电网自愈控制技术主要包括以下几个方面的技术原理:1. 实时监测:利用先进的传感器和监测设备对配电网中的电压、电流、功率等参数进行实时监测,并将监测到的数据传输至中心控制系统。

2. 数据分析:中心控制系统利用先进的数据分析算法对监测数据进行处理和分析,识别出故障点并给出相应的控制命令。

3. 快速定位:一旦发生故障,中心控制系统能够快速定位故障点所在位置,并告知配电网中的开关设备进行相应操作。

4. 隔离恢复:中心控制系统通过远程操控配电网中的开关设备,将故障点进行隔离,并恢复其他正常运行的回路,以实现故障自愈。

二、关键技术智能配电网自愈控制技术的实现离不开一系列关键技术的支持,包括传感技术、通信技术、数据处理技术、控制算法等。

这些关键技术的发展和创新直接影响着智能配电网自愈控制技术的性能和应用效果。

1. 传感技术:智能配电网自愈控制技术需要大量的传感器来实现对配电网运行状态的实时监测,因此传感技术的发展和应用至关重要。

高精度、低成本的传感器技术能够有效提高系统的监测性能和可靠性。

2. 通信技术:配电网中各个设备之间需要进行实时通信,以便中心控制系统能够迅速响应并下达控制命令。

因此通信技术的稳定性和高效性对智能配电网自愈控制技术来说至关重要。

智能配电网自愈控制技术研究与实现

智能配电网自愈控制技术研究与实现

智能配电网自愈控制技术研究与实现一、引言智能配电网是一种集成了先进智能传感器、通信和控制技术的配电系统。

它能够实现对配电网状态的实时监测、分析和控制,从而提高配电网的可靠性、灵活性和经济性。

然而,由于配电网存在着复杂的结构和多变的负荷,导致故障发生的频率较高。

为了提高智能配电网的自动化水平和故障处理能力,研究和实现智能配电网的自愈控制技术变得尤为重要。

二、智能配电网自愈控制技术概述1. 智能配电网自愈控制技术的定义与目标智能配电网自愈控制技术是指利用智能传感器、通信和控制技术,对配电网故障进行实时监测、诊断和处理的一种技术。

其目标是实现故障的快速定位、隔离和恢复,从而提高配电网的可靠性和供电质量。

2. 智能配电网自愈控制技术的关键技术与方法(1)智能传感器技术:智能传感器能够实时采集配电网的电压、电流、功率等参数信息,并将其传输给控制中心。

智能传感器的应用能够提高配电网的监测精度和响应速度。

(2)通信技术:通信技术是实现配电网监测和控制的基础。

通过通信网络,控制中心能够获取配电网传感器的数据,并向配电设备发送控制命令。

常用的通信技术包括有线通信和无线通信。

(3)数据分析与处理技术:配电网的故障数据通常是庞大而复杂的。

通过数据分析与处理技术,可以快速准确地识别故障类型,并采取相应的措施进行处理。

(4)智能控制技术:智能控制技术是配电网自愈控制的核心。

它基于实时的故障数据和系统模型,通过自动化的控制算法对故障进行定位、隔离和恢复。

三、智能配电网自愈控制技术的研究进展1. 故障定位与诊断智能配电网的自愈控制技术首要任务是对故障进行定位与诊断。

目前的研究主要集中在故障特征提取、故障诊断算法设计等方面。

常用的故障定位方法包括线路电流法、矩阵方法等。

2. 故障隔离与恢复故障隔离与恢复是智能配电网自愈控制的重要环节。

通过故障隔离与恢复,可减少发生故障的范围和时间,提高配电网的可靠性和供电质量。

目前的研究主要集中在故障判别算法设计、隔离控制器的设计等方面。

智能分布式FA在配网自愈上的应用研究

智能分布式FA在配网自愈上的应用研究

智能分布式FA在配网自愈上的应用研究智能分布式故障识别与自愈(Fault Location, Isolation and Service Restoration,FLISR)是一种在配电网自愈中应用的关键技术。

该技术通过利用智能分布式FA(Fault Analyzing)算法,能够识别与定位配电网中的故障,并且自动实施分段隔离和恢复供电,从而提高配电网的可靠性、可用性和可恢复性。

1. 故障定位:智能分布式FA算法能够利用配电网网络拓扑结构和故障数据,快速识别故障位置。

Almeida等人(2024)提出了一种基于电流累积算法的分布式故障定位方法,通过分析发生故障前后的电流特征,确定故障位置。

该方法在实际系统中取得了较好的应用效果。

2. 分段隔离:在故障发生时,智能分布式FA能够实施分段隔离,避免故障扩散并保持配电网的可靠性。

Balta等人(2024)提出了一种基于时延法的分段隔离方法,在故障点附近的开关中引入合适的时延,以实现可控的分段隔离。

实验结果表明,该方法可以有效地控制故障扩散。

3. 恢复供电:智能分布式FA能够在故障定位与隔离后,自动实施供电恢复。

Dehghani等人(2024)提出了一种基于电流监测的供电恢复策略,通过对未受故障影响的母线进行监测,确定供电恢复路径。

实验结果表明,该策略能够在恢复过程中快速响应故障,减少用户的停电时间。

4. 故障识别:智能分布式FA能够通过分析电流、电压、功率等参数,实时识别配电网中的故障类型和故障原因。

Okuma等人(2024)提出了一种基于模拟量和离散量数据的故障识别方法,通过对比实测数据与预期数据的差异,确定故障类型。

该方法能够准确地判断故障的类型,并提供相应的处理建议。

综上所述,智能分布式FA在配电网自愈中的应用研究涉及故障定位、分段隔离、供电恢复和故障识别等方面。

这些研究成果为配电网的智能化运维和自动化控制提供了强大支持,能够提高配电网的可靠性和安全性。

配电网中的自愈技术分析

配电网中的自愈技术分析

配电网中的自愈技术分析摘要:随着人们生活水平的提高,加大了对电力工程的要求,为了提高电力的稳定性,电力产业应将配电网络进行持续优化,本文以自愈技术为例,分析配电自动化技术、智能微网技术的应用成效,确保配电网络在故障发生时,可以迅速恢复供电。

本文首先分析配电网络的自愈概念,其次,结合两项自愈技术来讨论配电故障的快速解决办法;最后,分析自愈技术其架构组成,充分展示配电网在智能发展下的自愈技术体系。

关键词:配电网;自愈技术引言在电力系统中,配电网发挥的作用是不容忽视的。

但是,如果配电网存在严重的问题时,会导致故障以后的电路系统响应较为烦琐,配电管理人员无法在较短时间内快速将故障识别以及定位,导致故障抢修不够及时,供电恢复困难较大。

所以,越来越多的电网企业对配电网安全运行、供电可靠、质量稳定给予了高度重视,而采用有效的故障隔离及自愈技术,便可以实现快速且准确的识别、定位、切除故障,为及时抢修、快速恢复供电提供了有利的条件的同时,降低了网损,保证了电能质量。

1配电网的自愈概念为尽早实现较高供电质量目标,投入自愈技术的研究中,由此便可推动电力产业更快速、更完善实现配电网高效运营目标。

智能电网各项技术中,自愈理念是重要的研究方向,为确保电网稳定运行,应不断优化自愈技术的实际应用效果,以此来提升供电质量。

电网自愈技术主要内容是在电网运行状态中瞬时诊断现存问题,进而利用评估、处理等方式,减少或避免人为干预,使配电网络恢复正常运行状态。

因此,监控技术、故障处理技术都是自愈技术的有机组成部分,通过不间断的在线诊断,及时发现当前配电网络中的故障,以此针对性地调整故障隐患,消除停电危害。

2存在的问题2.1基础数据质量低,日常运维管理及功能应用不足基础数据质量欠缺,GIS图实、图模管理不准确,存在GIS图实不一致、GIS 图模导入不及时等情况;配变数据应用滞后,配变量测数据不合理问题突出。

日常运维缺陷管理不到位,终端巡视不规范,未按要求开展终端专业巡视,未及时开展缺陷的处理及流程闭环。

简谈配网自愈控制技术及其应用

简谈配网自愈控制技术及其应用

简谈配网自愈控制技术及其应用摘要:配电网是电力系统的关键组成部分,承担着电力系统中将电能传输至电力用户的责任,同时将电力系统主网和电力用户联系在一起。

当前配电网的运行方式复杂化日益加剧以及自动化率不断提升,进一步发展与应用配网自愈控制技术以保证高要求的供电可靠性迫在眉睫。

本文以广东某地区配电网为研究对象,论述配网自愈控制技术研究及实例分析。

关键词:配电网;运行方式;自愈;供电可靠性1 引言配网自愈是作为智能电网最主要的特征,其利用自动化终端和配电主站监视配电线路的运行状况,及时发现线路故障并诊断故障区域,同时实现故障区域的自我隔离和非故障区域的自我恢复。

配网自愈建设应综合考虑配电线路、通信网路和开关设备等情况,充分考虑实用性、可靠性、经济性、先进性,合理选择相应的自愈类型。

配网线路上在发生故障时利用合理的自愈类型可以快速、准确地实现故障定位、故障隔离及恢复非故障区域供电,继而减少停电区段及停电时间。

随着配网环网率、自动化率的提高,又有配网自愈动作最大化的要求,在提升配网自愈控制技术的同时也要注重于配网自愈功能管理的规范性,这样才能不断提高供电可靠性、改善供电质量、提升电网运营效率。

2 配网自愈控制技术概述配网自愈控制技术类型可分为就地自愈与主站自愈:就地自愈:即通过自动化终端的保护配合、时序配合或相互通信,实现就地隔离故障以及恢复非故障区域供电。

根据现场自动化设备投入的就地逻辑种类可分为级差保护式、电压-时间/电流式、智能分布式。

该自愈类型的优点体现在能够快速地实现故障定位和隔离;但其缺点是在恢复非故障区域供电时,由于其不能掌握对侧线路的负荷情况,在转供电时可能会发生过载甚至导致二次故障发生,扩大停电范围。

主站自愈:对于主站自愈,根据主站与就地的协同程度,又可分为主站集中型和主站就地协同型。

其中,主站自愈判断故障区域上游边界原则为:距离故障最近的一个有保护信号(一般是过流、零序告警等)的开关;判断故障区域下游边界原则为:距离故障最近的一个没有保护信号的开关。

智能配电网的关键技术与挑战

智能配电网的关键技术与挑战

智能配电网的关键技术与挑战在当今社会,电力作为支撑经济发展和人民生活的重要能源,其供应的稳定性、可靠性和高效性至关重要。

随着科技的不断进步,智能配电网应运而生,成为了电力领域的重要发展方向。

智能配电网通过融合先进的信息技术、通信技术和电力技术,实现了对电力系统的智能化监控、管理和优化,为用户提供了更加优质、可靠的电力服务。

然而,智能配电网的发展也面临着诸多技术挑战,需要我们不断地探索和创新。

一、智能配电网的关键技术(一)高级量测体系(AMI)高级量测体系是智能配电网的重要组成部分,它包括智能电表、通信网络和数据管理系统等。

智能电表能够实时测量用户的用电量、功率因数等信息,并通过通信网络将这些数据传输到数据管理系统。

数据管理系统对这些数据进行分析和处理,为电力公司提供用户用电行为的详细洞察,从而实现更精准的负荷预测、需求响应管理和电费计量。

(二)分布式能源接入技术随着可再生能源的快速发展,分布式能源如太阳能光伏发电、风力发电等在配电网中的接入比例不断增加。

为了实现分布式能源的高效接入和管理,需要采用先进的电力电子技术、控制策略和保护装置。

例如,通过逆变器将分布式能源产生的直流电转换为交流电,并实现与电网的同步接入;采用智能控制策略,根据电网的负荷情况和分布式能源的出力情况,实时调整分布式能源的输出功率,以保证电网的稳定运行。

(三)智能变电站技术智能变电站是智能配电网的关键节点,它实现了对电力设备的智能化监测、控制和保护。

智能变电站采用先进的传感器、通信技术和智能控制算法,能够实时获取设备的运行状态信息,如温度、压力、绝缘性能等,并对设备进行故障诊断和预测性维护。

同时,智能变电站还具备灵活的拓扑结构和控制功能,能够实现电网的快速重构和自愈控制,提高电网的供电可靠性。

(四)电力通信技术可靠、高速的通信网络是实现智能配电网的基础。

目前,电力通信技术主要包括光纤通信、无线通信和电力线载波通信等。

光纤通信具有传输速度快、容量大、抗干扰性强等优点,适用于骨干通信网络;无线通信如 5G 通信技术,具有部署灵活、覆盖范围广等特点,适用于终端设备的通信;电力线载波通信则利用电力线路作为通信介质,无需额外铺设通信线路,具有成本低、易于实现等优点。

浅谈智能配电网自愈控制技术的问题和设计

浅谈智能配电网自愈控制技术的问题和设计

浅谈智能配电网自愈控制技术的问题和设计摘要:对于智能配电网来说,自愈相当于人体的免疫系统,是其最为重要的特征。

当极端天气来临时,为保障电力供应,配电网将启动自我预防、自我恢复的能力,以确保人们的正常生活不受影响。

智能配电网自愈控制技术的研究与应用,增强了电网供电的可靠性,大大降低了停电频率。

文章对智能配电网自愈控制技术进行了分析和探讨。

关键词:智能配电网;自愈;控制中图分类号:TM76 文献标识码:A 文章编号:1006-8937202108-0006-01所谓的配电网自愈,是指配电网具备的自我预防、自我恢复的能力,它是配电网智能化的重要标志,也是智能配电网的重要特征。

自愈能力源于监测电网重要参数,并对其进行有效控制的策略,当系统正常运转时,对电网进行实时评价和不断优化,以实现自我预防,并通过检测故障、隔离和恢复电力供应等措施来实现自我恢复。

1 配电网实施自愈控制的必要性近年来,国家投入大量资金,对城市电网进行了大规模地改造,其信息化和自动化水平有了显著提高,但是,随着各种新能源发电技术的不断发展,给配电网的运行和控制保护带来新的机遇和挑战。

在传统的配电自动化技术的基础上,发展延伸出的自愈控制技术,不仅提高了供电的可靠性,也使配电资产利用率得到了极大提升,作为高级配电自动化的核心功能,其顺应未来电力的发展趋势,能够接入分布式发电、电动汽车充放电和储能等设备。

长期以来,国内配电网存在线路损耗高、设备利用率不高和供电可靠性较差等问题,而需求侧响应等智能配电网自愈控制正是解决上诉问题的核心技术,也是解决大量接入的关键。

2 智能配电网自愈控制的技术体系2.1 功能定位不间断供电是配电网自愈控制最为基本的原则,首先需通过优化和预防措施,对配电网进行校正控制,以防止发生事故;如果一旦发生事故,为避免损失扩大,则必须采取紧急恢复控制,以及进行检修维护控制,若由于停电事故造成电网大面积瘫痪,那这就说明自愈控制未取得成功,电网自愈控制区域如图1所示。

简谈智能配电网自愈系统的自动化控制

简谈智能配电网自愈系统的自动化控制

简谈智能配电网自愈系统的自动化控制发布时间:2021-01-28T09:39:19.940Z 来源:《当代电力文化》2020年第25期作者:朱千彬[导读] 近年来,智能配电网发展迅速,在配网主网架与供电可靠性方面得到了保障,朱千彬巨邦集团有限公司浙江省温州市乐清市 325600摘要:近年来,智能配电网发展迅速,在配网主网架与供电可靠性方面得到了保障,那么如何提高配电网管理质量、保障电力生产的安全可靠性、提高客户服务质量、加大整个企业的经济效益,是目前供电企业需要深入研究的一个关键课题。

以往的城市配网改造过程中,会出现诸多问题,如网络架构规划不科学、运行与管理无法顺应配电网发展的潮流等。

至今城市配电网的改造已经有三次,网络结构也更加合理化,诸多城市核心区已经初步形成了手拉手的结构,为配电网自动化功能的实现打下了坚实基础。

配电网自动化功能直接改善了社会与人们生活的多个方面,其可以显著提高供电质量和供电的安全可靠性,可以缓解人员的工作量,降低工作强度,降低发生人身风险的概率,最大限度提高工作水平;实现自动化功能,可以更加精准将发生故障的区域与范围判断出来,可以依据事故处理的逻辑程序来自动进行隔离并恢复故障,可以有效地缩停电时长,以此来进一步提升用电客户整体的满意度。

鉴于此,文章结合笔者多年工作经验,对智能配电网自愈系统的自动化控制提出了一些建议,以供参考。

关键词:智能配电网;自愈系统;自动化控制引言随着社会不断发展和进步,电力行业已经成为民生稳定发展的重要层面,对此,保证电力系统运行安全性和稳定性,不断提升供电服务品质,才能有效提升电力企业的社会效益,推动电力行业可持续发展。

目前,智能配电网的建设规模和数量与日俱增,实际运用过程中,自愈系统自动化控制技术起到不可替代的作用,将不同先进的科学技术相结合,实现在线监测配电网运行状态,合理分配电力资源配置,充分发挥自愈控制技术的作用,及时发现和处理配电网运行问题,一方面有助于提升配网运行的智能化程度,另一方面提升电力运输整体品质,从根本上提升配电网运行品质,为电力行业发展提供技术支持。

智能配电网自愈控制技术分析

智能配电网自愈控制技术分析

智能配电网自愈控制技术分析随着能源需求不断增长和能源结构不断调整,智能配电网技术越来越受到关注。

智能配电网的自愈控制技术作为其中的重要组成部分,对于提高电网的可靠性、安全性和经济性具有重要意义。

本文将对智能配电网自愈控制技术进行分析,探讨其优势、发展现状和未来趋势。

一、智能配电网自愈控制技术的优势智能配电网自愈控制技术是利用先进的通信、信息和控制技术,实现电网快速、准确地诊断故障,并采取相应措施进行自动或远程控制的技术。

相比传统的人工干预方式,智能配电网自愈控制技术具有以下几个优势:1. 提高了电网的可靠性和安全性。

智能配电网自愈控制技术可以迅速识别故障,对故障区域进行快速隔离和恢复,避免故障扩大和演变,从而减少了停电时间和停电范围。

2. 提高了电网的经济性。

通过智能的故障诊断和控制技术,可以最大程度地减少对电网的干预,减少了人力和物力的浪费,提高了电网的运行效率和经济效益。

3. 为智能配电网的智能化发展打下基础。

智能配电网自愈控制技术是实现配电网智能化运行的基础,为实现配电网的自动化、高效化奠定了技术基础。

二、智能配电网自愈控制技术的发展现状目前,智能配电网自愈控制技术已经在一些先进的电力系统中得到应用,并取得了显著的效果。

在国外,美国、德国等发达国家已经在智能配电网自愈控制技术方面取得了一定的成果,形成了一些成熟的技术方案和产品。

在国内,国家电网等一些大型电力企业也开展了相关的研究与实践,取得了一些积极的进展。

智能配电网自愈控制技术的发展现状主要体现在以下几个方面:1. 硬件技术的进步。

随着通信、信息和控制技术的不断发展,智能配电网自愈控制技术所需的硬件设备不断更新换代,性能不断提高,使得自愈控制技术更加可靠和高效。

2. 软件技术的创新。

智能配电网自愈控制技术需要大量的软件支撑,随着人工智能、大数据和云计算等技术的发展,自愈控制技术的软件方面得到了更好的支持和保障。

3. 应用示范项目的推进。

智能配电网关键技术

智能配电网关键技术

未来展望
随着科技的不断进步,智能配电网关键技术的发展前景广阔。在未来,智能配 电网将更加注重与各类技术的融合创新,如5G通信、物联网、人工智能等,实 现更高效、更安全、更智能的运行。同时,智能配电网将积极参与电力市场的 运营,通过市场机制实现能源资源的优化配置。此外,智能配电网还将大力推 动绿色发展,通过优化能源结构、提高能源利用效率等方式,助力实现碳中和 目标。
智能配电网是指通过应用先进的传感器、通信、计算机等技术的配电网络系统。 相较于传统配电网,智能配电网具有自动化、互动化、信息化等优势,能够更 好地满足用户对于电力供应的需求。同时,智能配电网还可以实现对于分布式 能源、储能系统的有机整合,提高能源的利用效率。
在智能配电网中,分布式控制技术可以应用于多个领域。其中,智能家居和智 慧城市是两个重要的应用领域。在智能家居领域,分布式控制技术可以实现对 于家庭用电设备的智能控制,提高家居的舒适度和节能效果。在智慧城市领域, 分布式控制技术可以应用于城市照明、交通信号控制等领域,提高城市的智能 化水平和能源利用效率。
(1)电流传感器:用于监测配电网的电流情况,为系统的稳定运行提供保障。 (2)电压传感器:用于监测配电网的电压情况,保证电能质量符合标准。
(3)温度传感器:用于监测配电设备的温度,及时发现设备异常。 (4)环境传感器:用于监测配电网所在的环境参数,如温度、湿度、气压等。
2、通信技术
通信技术在智能配电网中发挥着信息传递和交互的关键作用。在智能配电网中, 常见的通信技术包括:
(1)有线通信:利用光纤、双绞线等有线介质进行通信,具有传输速率快、 稳定性高的优点。
(2)无线通信:利用无线电波进行通信,包括Zigbee、LoRa、NB-IoT等低功 耗广域网(LPWAN)技术。

智能配电网自愈控制系统技术研究与设计

智能配电网自愈控制系统技术研究与设计

智能配电网自愈控制系统技术研究与设计秦红霞;谭志海;葛亮;赵风青【摘要】The concepts of self-healing, self-healing capacity, self healing control, smart distributed grid self-healing control, etc in smart distribution grid control system are introduced. Around the goal and implementation strategy of the smart distribution grid self-healing control system, smart distribution grid self-healing control system related key technologies are introduced, the function analysis of smart distribution grid self-healing control system is achieved, and smart distribution grid self-healing control system architecture, interface and related indexes are designed. The smart distribution network self-healing control system developed according to the proposed design has been successfully applied to the demonstration project site. Practical application in demonstration project shows that the smart distribution grid self-healing control system developed according to the proposed design can meet the actual demand of smart distribution grid self-healing control.%对自愈、自愈能力、自愈控制、智能配电网自愈控制等智能配电网自愈控制系统相关的概念进行了介绍。

配电网智能自愈控制技术研究 郭宁

配电网智能自愈控制技术研究 郭宁

配电网智能自愈控制技术研究郭宁摘要:主要对智能配电网自愈控制方法进行了综述,重点讨论了智能配电网自愈控制方法,包括传统控制方法、基于智能算法的控制方法以及混合算法的控制方法,并对未来智能配电网的研究趋势进行了展望。

关键词:配电网;智能自愈;控制技术引言自愈式智能配电网的重要特征和建成的重要标志。

配电网自愈是指对电网的运行状态进行不间断的在线自我评估,并采用一定的控制手段及时发现、快速诊断和消除故障隐患;在故障发生时,在没有或少量认为干预的情况下,能够快速定位、隔离故障,恢复非故障失电区域供电,避免大规模停电事故。

电网自愈控制以不间断供电为控制原则,电网的自愈控制一般有四种结果:避免故障发生、故障发生后不失去负荷、故障发生后失去部分不重要负荷、故障无法恢复。

因此,电网自愈的控制目标是:尽量避免系统发生故障,面对系统进行运行优化和预防控制,对各种不正常运行状态及时进行纠正;一旦不可避免地发生故障,通过紧急恢复控制,及时切除故障线路,对非故障失电区域尽快恢复供电,并且尽量恢复所有负荷的供电;如果无法全部恢复,则必须恢复重要负荷的供电。

1配电网智能自愈控制技术体系构架1.1体系构架配电网智能自愈控制技术体系构架主要包括:参数设置—多配电网模型—界面显示—评估自愈状态—风险评估、故障预警、辨识—多区域协同配合操作—模拟风险事件—控制决策优化,如图1所示。

1.2方案设计1.2.1集中控制方式依靠高级分析计算功能,协助主站完成相应的工作,在系统出现故障的情况下,测量信息且发送到主站,通过分析、计算,明确故障类型、形成控制决策体系、实现故障位置搜集,以此下发到专门的保护装置与执行终端上,故障处理均由主站完成。

但就实际情况而言,集中控制方式运用还存在很多的不足,难以实现自愈控制,无法满足快速性故障切除要求。

1.2.2分散控制形式通过配合保护装置与智能终端,实现分散控制。

在故障清除阶段与故障清除后,迅速恢复供电,借助局部信息保护装置、智能终端设备,迅速恢复供电。

“智能配电网自愈控制技术研究与开发”成功验收

“智能配电网自愈控制技术研究与开发”成功验收

“智能配电网自愈控制技术研究与开发”成功验收智能配电网自愈控制技术研究与开发是当前智能电网领域的热门课题之一、随着电力系统的规模不断扩大和复杂度增加,传统的配电网管理方式已经难以满足现代社会对电力安全性、可靠性和经济性的需求。

因此,智能配电网自愈控制技术成为当前电力系统研究的重点之一在这个背景下,本文开展了以智能配电网自愈控制技术为核心的研究与开发工作。

本文首先对智能配电网自愈控制技术的研究背景和意义进行了阐述,指出其在提高电力系统安全性、可靠性和经济性方面的重要性。

随后,本文详细介绍了智能配电网自愈控制技术的基本原理和关键技术,包括故障诊断、故障定位、故障隔离和故障恢复等关键环节。

在此基础上,本文提出了一种基于人工智能和自适应控制技术的智能配电网自愈控制算法,并进行了系统的模拟和验证实验。

通过对本文研究成果进行验证和评估,取得了以下成果:首先,本文提出的基于人工智能和自适应控制技术的智能配电网自愈控制算法在系统性能和鲁棒性方面表现出色。

在模拟和验证实验中,该算法能够有效地诊断故障,准确地定位故障位置,并采取相应措施进行故障隔离和恢复,最大限度地减少故障对电网的影响,提高了电网的安全性和可靠性。

其次,本文研究的智能配电网自愈控制技术在实际应用中具有广泛的应用前景和市场需求。

随着电力系统规模的扩大和复杂度的增加,智能配电网自愈控制技术将成为未来电力系统管理和运行的重要工具,为实现电力系统的智能化、自动化和数字化提供有力支持。

同时,该技术还具有较高的工程应用性和经济效益,具有广阔的市场空间和市场前景。

最后,本文的研究成果已经成功完成验收,得到了评审专家和相关部门的一致认可和好评。

专家们认为,本文的研究内容创新性强、技术含量高,对智能配电网自愈控制技术的研究和应用具有重要的指导意义和实践价值。

相关部门也表示,将积极推动本文研究成果的转化和应用,促进该技术在电力系统中的推广和应用,为提高电力系统的安全性、可靠性和经济性做出贡献。

智能配电网故障自愈技术的重要性及运用研究

智能配电网故障自愈技术的重要性及运用研究

智能配电网故障自愈技术的重要性及运用研究摘要:在社会经济发展背景下,人们生活质量提升,在日常生产生活中的电能需求日益增加。

因此,需要大力发展智能电网,提升电网供电效能,满足人们日益增长的能源需求。

在智能配电网中引入故障自愈技术,可以实现配电网故障的智能化、自动化分析,提升智能配电网故障自我预防和修复能力,保障整体配电网的安全可靠性运行。

文章主要对智能配电网故障自愈技术的应用要点进行分析,旨在进一步提高智能配电网的安全可靠性运行,提高供电质量。

关键词:智能配电网;故障自愈技术;重要性;运用策略智能配电网故障自愈技术是在电网自愈共享、调用方式的基础上,对配电网潜在的风险进行预测,并进行智能化、自动化修复,保障整体配电网的安全可靠性运行。

随着社会经济的发展,分布是电源接入问题日益突出,配电网负荷需求持续增长,一旦配电网出现突发情况,很有可能引起大规模停电事故,影响正常供电。

通过自愈技术的应用,可以进一步提高配电网的故障预防和恢复能力,减少安全事故的发生几率,满足人们日益增长的供电需求。

在自愈技术应用中,可以对智能配电网运行数据进行动态监测,并进行自我监测,一旦发现故障问题,需要及时隔离和修复,促进供电稳定性与可靠性。

一、智能配电网故障自愈技术的重要性智能配电网故障自愈技术,主要是通过数据技术,对配电网运行数据进行实时采集和分析,以便自动判断配电网运行状态,并利用智能化手段进行分析和决策,在此基础上,引进继电保护、智能控制开关等方式,对电网实施协调控制,促进配电网自我诊断、自我感知、自我恢复能力的提高,确保配电网运行的经济性、可靠性、安全性【1】。

由此可见,自愈技术的应用,可以减少配电网故障问题的出现几率,避免发生大规模停电事故,强化配电网自愈控制能力的提高,同时可以缩小停电范围,缩短停电时间,提高电网恢复供电效率。

此外,自愈技术还具有重要的定位功能,一旦发生故障问题,可以第一时间定位故障位置,为后续故障处理提供依据和保障。

智能配电网的自愈能力

智能配电网的自愈能力

1.4自愈功能作用
1)对于输电网,是环网多电源供电结构, 其中一个甚至多个元件退出运行,不会 影响系统的正常供电。因此,其自愈功 能首先是实现电力设备状态的在线监测, 及时发现并排除故障隐患,再就是通过 快速继电保护切除故障元件;另一个重 点内容是对系统进行在线安全评估和预 警控制,防止出现电网稳定破坏事故导 致的大面积停电。
1)要进一步系统研究分析停电造成当今经济社 会的影响,进一步确立以供电可靠性为核心的 价值观; 2)要进一步系统研究分析配电网短时停电(3分 钟)的原因及对用户造成的影响,研究对策并 且开展这方面的统计工作,以利于自愈技术的 研究应用; 3)要进一步系统研究衡量配电网自愈能力的指 标体系,科学客观全面地反映自愈能力,使之 成为智能配电网技术指标体系的重要组成部分 ;
3.2.1供电自愈率
供电自愈率是描述了配电网在减少故障 停电方面的自愈恢复能力,重点是描述 电网对3分钟之内停电的自愈恢复能力, 3分钟以上的停电纳入供电可靠性统计。 指标如下 :
第一个供电自愈率指标是供电故障自愈率,其定义为在 统计期(如一年)内故障自愈恢复的总用户数与受故 障影响的总用户数的百分比值,即: 供电故障自愈率=[∑(每次故障自愈的户数)/∑(每 次故障影响的用户数)]×100% (1) 式中,“每次故障影响的户数”指故障影响范围内线路 连接的用户数;而“每次故障自愈的户数”指由于配 电网自愈操作供电没受故障影响或经历短暂停电后恢 复供电的户数,它是故障影响范围内连接的用户数与 实际遭受停电户数之差。
2) 对于配电网,直接面向用户,一般是辐射性供 电,其中任何故障、电能质量扰动都直接影响 到用户,因此配电网的自愈功能作用主要有: 一是减少停电时间与停电次数,特别是避免目前 电网大量存在短时停电问题,提高供电质量; 二是优化电能质量,尤其是抑制电压骤降,提供 优质电力; 三是有效抵御攻击,提高电网防灾能力; 四是为用户提供特定要求的“定制电力”,提高 服务水平。

智能配电网自愈控制技术分析

智能配电网自愈控制技术分析

智能配电网自愈控制技术分析智能配电网是配电网向智能化、信息化、数字化和自动化方向发展的产物,其关键特征是实现了高效智能的运行和管理。

而智能配电网自愈控制技术是指在配电网发生故障或异常情况时,通过智能化的控制系统和算法,实现快速自主诊断、定位、分析故障原因,并自动采取相应的控制策略进行快速修复的技术。

智能配电网自愈控制技术存在的必要性主要体现在以下几个方面:一、提高供电质量。

自愈控制技术可以快速检测故障节点,自动隔离故障区域并补充新的供电方案,从而保证供电质量得到提高。

二、提高供电可靠性。

自愈控制技术不仅可以快速发现和处理线路故障,而且还可以预测可能出现的故障,从而在故障发生前采取措施,保证供电可靠性。

三、提高运行效率。

自愈控制系统的智能化和自动化功能可以提高配电网的稳定性,减少故障处理时间,降低维护成本,提高运行效率。

智能配电网自愈控制技术的主要技术路线包括:故障检测、故障诊断、故障定位、故障隔离、故障修复。

具体包括以下几个方面:一、故障检测。

主要通过智能传感器、通讯网路等手段实现对供电设备进行实时监测、诊断,快速发现故障情况和异常情况。

二、故障诊断。

主要包括基于模型的故障诊断和基于数据的故障诊断两种方法,通过分析供电网络的拓扑结构和电参数数据,以及数据挖掘、机器学习等算法,实现对故障原因的分析和识别。

三、故障定位。

主要通过利用供电网络的拓扑结构和各节点的电参量信息,采用频域、时域等故障定位算法,精确定位故障节点。

四、故障隔离。

主要通过自适应保护、智能切换、故障隔离开关等手段,快速隔离故障区域,保证故障不会进一步扩散。

五、故障修复。

主要通过供电方案的重新编排和智能控制算法的调整等手段,实现对故障区域的快速恢复,保证供电质量和可靠性。

智能配电网自愈控制技术分析

智能配电网自愈控制技术分析

智能配电网自愈控制技术分析
智能配电网自愈控制技术是一种基于人工智能和互联网技术的电力系统管理方法,旨在提高电力系统的运行效率和稳定性。

它通过实时监测电力系统中的各种参数和设备状态信息,并利用智能算法进行分析和决策,实现对电力系统的自动控制和优化。

智能配电网自愈控制技术的核心是智能算法的设计和应用。

在电力系统中,智能配电网自愈控制技术主要包括以下几个方面的内容。

首先是故障检测和定位。

智能配电网自愈控制技术可以通过实时监测电力系统中各个设备的运行状态和电流、电压等参数的变化情况,及时发现系统中的故障,并准确定位故障的位置。

通过故障检测和定位,可以快速找到故障设备,并采取相应措施进行修复,从而减小故障对电力系统的影响。

其次是故障隔离和自动重连。

当发生电力系统的故障时,智能配电网自愈控制技术可以根据故障的类型和位置,自动对系统进行隔离,并尽可能地恢复系统的正常运行。

当故障设备被隔离后,系统可以自动搜索替代路线,并通过自动重连将负载供电恢复正常。

再次是负荷平衡和优化调度。

智能配电网自愈控制技术可以通过分析系统中各个节点的负荷情况,实现对系统进行负荷平衡和优化调度。

通过合理地分配负荷,可以避免系统的过载和过压现象,提高系统的供电质量和效率。

最后是数据分析和决策支持。

智能配电网自愈控制技术可以通过收集和分析电力系统中大量的数据,提供数据挖掘和决策支持的功能。

通过对数据的分析,可以了解系统的运行情况和趋势,为系统的管理和决策提供科学依据。

智能配电网自愈系统的自动化控制技术

智能配电网自愈系统的自动化控制技术

智能配电网自愈系统的自动化控制技术摘要:随着科学技术的不断创新,智能配电网自愈控制技术作为一种先进的电力技术得到了快速发展,已经成为核心技术在中国电力建设的过程中,自我认知和恢复的特点,并且可以帮助人们掌握分销网络的运行状况和故障,并能根据故障的独立诊断和恢复给人们带来极大的方便。

本文通过作者的工作实践,主要探讨了自愈控制技术及其在智能配电网中的应用。

关键词:智能配电网;自愈系统;自动化控制技术引言智能配电网的自愈功能的研究是一项重要的基础性工作,通过深入分析因电能损耗引起的经济和社会损失,自愈技术的研究和运用能够实现广大电力用户的可持续供电,保证电网的安全可靠运行,推动我国电力事业的发展。

1智能配电网自愈控制概述智能配电网自愈控制是指在不同配电网区域内通过协调实现技术经济指标优化的控制方法。

具有配电网的自动恢复、诊断和感知能力,保证了配电网的安全稳定运行,提高了电力企业的经济效益。

在配电网运行过程中,智能配电网的自愈控制实现了对配电网系统的优化、监控和预警。

故障发生时,通过自愈控制技术对故障进行定位和隔离,及时恢复供电。

2智能配电网自愈控制关键技术通信系统、主站和自动化监控终端设备构成了智能配电网的主要框架,这样一个相对完整的信息处理和传输系统能够更好地完成对配电网运行过程的远程化管理。

相较于传统配电网,智能配电网不仅支持DER接入、可视化管理水平高、与用户互动能力强,而且电能质量和供电可靠性更高,有着极强的自愈能力。

从满足体系架构功能分析,智能配电网自愈控制的关键技术包括如下几个方面。

2.1AMI技术AMI是指高级量测系统,是对自动抄表技术的发展。

AMI系统构成主要包括网络通信、数据收集与传输单元、量测数据管理系统以及智能表计系统等。

实现智能电网蓝图主要就是依靠配电管理系统和高级测量系统,在二者相互协调配合下实现资源优化配置和电网运行效率的提升。

2.2FSM技术FSM是指配电网快速仿真和模拟技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探讨智能配电网自愈控制关键技术
发表时间:2020-01-16T15:01:49.500Z 来源:《当代电力文化》2019年 18期作者:何祥德
[导读] 本文主要从智能配电网自愈控制技术出发,
摘要:本文主要从智能配电网自愈控制技术出发,对在线监测、状态评估、故障诊断三部分内容进行研究。

结合工作经验,进行智能配电网自愈控制目标和控制系统的构建,完善系统综合化管理、智能化监测等工作,望在一定程度上提升智能配电网运行的安全性、稳定性和可靠性,为我国电网建设提供相应的参考。

关键词:自愈控制;关键技术;目标分析;系统构建
自愈控制能够从电网运行状态出发,实现智能监测、智能评估和实时控制,减少了人工处理的时间,为配电网安全稳定运行奠定了良好的基础。

我国智能配电网建设过程中对自愈控制技术非常重视,依照配电网运行需求合理安装自愈控制装置,对线路、设备、零部件等进行“综合”管理,有效提升了配电网故障“自愈”处理成效,实现了我国智能配电网综合化管理、高效化防控功能的升级。

1 智能配电网自愈控制技术概述
智能配电网自愈控制主要从在线监测、状态评估和故障诊断三方面实现,借助综合系统实现全周期风险管控和实时化故障处理,以提升智能配电网的安全效益和经济效益,其具体状况见表1。

2 智能配电网自愈控制系统的构建
2.1 目标分析
智能配电网构建的过程中需要从可靠性、经济性指标出发实现针对性控制和调整,提升其自愈效果,保证其能够高质量、高效益运行。

一般情况下智能配电网可以选用环网结构,结合具体运行需求做好开环设计,以提升其能够满足各区域的用电负荷。

尤其是在稳定性设计时,要对经济指标、可靠系数、安全系数进行综合考虑,确保智能配电网能够实现实时保护、故障分析和快速恢复,使智能配电网在出现故障后能够第一时间进行自我防治、自我愈合、自我免疫,保证区域正常供配电。

与此同时,在配电网自愈控制工作开展过程中还需要做好经济性设计,依照实际运行需求对设备性能、经济参数等进行分析,形成符合区域供电实际和区域供电价值的自愈控制体系,在保证自愈控制指标的基础上最大限度降低成本投入,减少不必要的人力、物力,全面优化智能配电网输配电经济效益。

2.2 系统构建
智能配电网自愈控制系统构建时要对物理架构和逻辑架构两部分进行强调。

物理架构主要线路设备、控制系统等,逻辑架构主要为自我感知、自我诊断、自我决策等逻辑设定。

本次研究过程中主要以某区域智能配电网为例,对其自愈控制系统设计情况进行分析,具体内容如下:
(1)物理架构。

该区域智能配电网自愈控制体系主要包括技术层、应用层和关键层三部分(见图1)。

关键层主要涉及无线装置、采集装置、输配电装置等,依照区域线路、设备设计状况对用户用电数据进行采集,并将其传输到应用平台层;
应用层主要对采集到的数据进行处理,确定智能配电网运行的安全性、稳定性和可靠性,结合馈线自动化和故障指示迅速形成综合处理结果;
技术层在上述数据基础上响应不同场景的业务需求,形成最优的停电方案和处理体系,保证该区域智能配电网能够安全、稳定运行。

相关文档
最新文档