(2015-2017)三年高考真题精编解析一专题17-椭圆及其综合应用

合集下载

三年高考2015_2017高考数学试题分项版解析专题01集合理20171102354

三年高考2015_2017高考数学试题分项版解析专题01集合理20171102354

专题01 集合1.【2017课标1,理1】已知集合A={x|x<1},B={x|3x 1},则()A.A B {x|x 0}B.A B RC.A B {x|x 1}D.A B【答案】A【解析】由3x 1可得3x 30,则x 0,即B {x|x 0},所以A B {x|x 1}{x|x 0}{x|x 0},A B {x|x 1}{x|x 0}{x|x 1},故选A.【考点】集合的运算,指数运算性质.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2.【2017课标II,理】设集合A1,2,4,.若A1,则x x24x m0()A.1,3B.1,0 C.1,3 D.1,5【答案】C【解析】由A 1得1B,即x 1是方程x24x m 0的根,所以14m 0,m 3,B1,3,故选C.【考点】交集运算,元素与集合的关系3.【2017课标3,理1】已知集合A =(x,y│)x y 1,B =(x,y│)y x,则A B中22元素的个数为()A.3 B.2 C.1 D.0【答案】B【解析】集合中的元素为点集,由题意,结合A 表示以0,0为圆心,为半径的单位圆上所有点组成的集合,集合B表示直线y x上所有的点组成的集合,圆x2y21与直线y x11,1,1,1,则A B中有两个元素.故选B.相交于两点【考点】交集运算;集合中的表示方法.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.【2017北京,理1】若集合A={x|–2<x<1},B={x|x<–1或x>3},则A B=()(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}【答案】A【解析】利用数轴可知A B x2x1,故选A.【考点】集合的运算5.【2017浙江,1】已知P{x|1x1},Q{0x2},则P Q()A.(1,2)B.(0,1)C.(1,0)D.(1,2)【答案】A【解析】利用数轴,取P,Q所有元素,得P Q(1,2).【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.【2017天津,理1】设集合A{1,2,6},B{2,4},C{x R|1x5},则(A B)C()(A){2}(B){1,2,4}(C){1,2,4,6}(D){x R|1x5}【答案】B【解析】(A B)C{1,2,4,6}[1,5]{1,2,4},选B.【考点】集合的运算2【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进 行处理.7.【 2016课 标 1,理 1】 设 集 合 Ax xx,x 2x 30,则 AB24 3 0( )3(A )3,2 3(B ) 3, 23(C ) 1,23 (D ),3 2【答案】D 【解析】因为{ | 2 -4 3 0}={ |1 3}, ={ | 3}, A x x xx xB x x所以23 3A B ={x |1 x 3}{x |x }={x | x 3}, 故选 D.2 2考点:集合的交集运算【名师点睛】集合是每年中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要 把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集 之间的运算,常借助数轴进行运算. 8.【2016新课标 3理数】设集合 Sx | (x 2)(x 3)0,Tx | x,则 S T( )(A) 2,3] (B)(-,2]U 3,+ ) (C) 3,+) (D)(0,2]U 3,+ )【答案】D 【解析】由 (x 2)(x 3)0解得 x 3或 x 2 ,所以 S {x | x 2│ x 3},所以 ST {x | 0 x 2│ x 3},故选 D .考点:1、不等式的解法;2、集合的交集运算.9.【2016新课标 2理数】已知集合 A {1,2, 3}, B{x | (x 1)(x 2) 0, xZ },则A B ( )(A ){1}(B ){1,2}(C ){0,1,2,3}(D ){1,0,1,2,3}【答案】C【解析】3试题分析:集合B{x|1x2,x Z}{0,1},而A{1,2,3},所以A B{0,1,2,3},故选C.考点:集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.10. 【2016山东理数】设集合A{y|y2x,x R},B{x|x210},则A B=()(A)(1,1)(B)(0,1)(C)(1,)(D)(0,)【答案】C【解析】试题分析:A{y|y0},B{x|1x1},则A B(-1,+),选C.考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.11.【2016浙江理数】已知集合P x R x Q x R x2则P(Q)13,4,ðR()A.2,3] B.( -2,3 ] C.1,2) D.(,2][1,)【答案】B【解析】试题分析:根据补集的运算得ðR Q x x24(2,2),P(ðR Q)(2,2)1,32,3.故选B.考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,x2的系数一定要保证为正数,若x2的系数是负数,一定要化为正数,否则很容易出错.12.【2016年北京理数】已知集合A{x||x|2},B{1,0,1,2,3},则A B4()A.{0,1}B.{0,1,2}C.{1,0,1}D.{1,0,1,2}【答案】C【解析】试题分析:由A{x|2x2},得A B{1,0,1},故选C.考点:集合交集.13.【2016年四川理数】设集合A{x|2x2},Z为整数集,则A Z中元素的个数是()(A)3 (B)4 (C)5 (D)6【答案】C【解析】由题意,A Z{2,1,0,1,2},故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.14.【2015重庆,理1】已知集合A=1,2,3,B=2,3,则()A、A=BB、A B=C、AØBD、BØA 【答案】D【解析】由于2A,2B,3A,3B,1A,1B,故A、B、C均错,D是正确的,选D.【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.【名师点晴】考查集合的关系,涉及集合的相等.集合的交集运算,子集等概念,是送分题.515.【2015天津,理1】已知全集U1,2,3,4,5,6,7,8,集合A2,3,5,6,集合B ,则集合1,3,4,6,7AðB ( )U(A )2,5(B )3,6(C )2,5,6(D )2,3,5,6,8【答案】A【解析】ð{2,5,8},所以{2,5}U BAðB,故选A.U【考点定位】集合的运算.【名师点睛】本题主要考查集合的运算,涉及全集、补集、交集相关概念和求补集、交集的运算,是基础题.16.【2015四川,理1】设集合A {x|(x 1)(x 2)0},集合B {x |1x 3},则A B=()(A){x|1x 3}(B){x|1x 1}(C){x |1x 2} (D){x|2x 3}【答案】A【解析】A {x|1x 2},B {x |1x 3},A B {x|1x 3},选A.【考点定位】集合的基本运算.17.【2015广东,理1】若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M N=()A.B .1,4C.0D .1,4【答案】A.【解析】因为Mx|x4x 104,1,Nx|x4x101,4,所以M N,故选A.【考点定位】一元二次方程的解集,集合的基本运算.【名师点睛】本题主要考查一元二次方程的解集,有限集合的交集运算和运算求解能力,属于容易题.618.【2015浙江,理1】已知集合P{x x22x0},Q{x1x2},则(ð)R P Q()A.[0,1)B. (0,2]C. (1,2)D. [1,2]【答案】C.【解析】由题意得,C P(0,2)R,∴(ðR P)Q(1,2),故选C.27. 【2016天津理数】已知集合A{1,2,3,4},B{y|y3x2,x A},则A B=()(A){1}(B){4}(C){1,3}(D){1,4}【答案】D【解析】试题分析:B{1,4,7,10},A B{1,4}.选D.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.28. 【2015陕西,理1】设集合M{x|x2x},N{x|lg x0},则M N()A.[0,1]B.(0,1]C.[0,1)D.(,1]【答案】A【解析】,x lg x0x0x1,所以0,1,x x2x0,1故选A.【考点定位】1、一元二次方程;2、对数不等式;3、集合的并集运算.【名师点晴】本题主要考查的是一元二次方程、对数不等式和集合的并集运算,属于容易题.解题时要看清楚是求“”还是求“”和要注意对数的真数大于,否则很容易出现错误.729.【2015新课标2,理1】已知集合A {2,1,0,1,2},Bx(x 1)(x 20,则A B ()A.A1,0B .0,1C .1,0,1D .0,1,2【答案】A【解析】由已知得Bx 2x 1,故A B1,0,故选A.【考点定位】集合的运算.【名师点睛】本题考查一元二次不等式解法和集合运算,要求运算准确,属于基础题.综上所述,“存在集合C使得A C,B C C是“A B”的充要条件.U30.【2015福建,理1】若集合Ai i2i3i 4(是虚数单位),B1,1,则A B等,,,于( )A .1B .1C .1,1D.【答案】C【解析】由已知得Ai ,1,i,1,故A B1,1,故选C.【考点定位】1、复数的概念;2、集合的运算.【名师点睛】本题考查复数的概念和集合的运算,利用i21和交集的定义求解,属于基础题,要注意运算准确度.31.【2017江苏,1】已知集合A {1,2},B {a,a23},若A B {1}则实数的值为▲.【答案】1【解析】由题意1B,显然a233,所以a 1,此时a234,满足题意,故答案为1.【考点】元素的互异性8满足“互异性”而导致解题错误.(3)防范空集.在解决有关A B,A B等集合问题时,往往忽略空集的情况,一定先考虑是否成立,以防漏解.32.【2016江苏卷】已知集合A{1,2,3,6},B{x|2x3},则A B=________▲________.1,2【答案】【解析】试题分析:A B{1,2,3,6}{x|2x3}{1,2}考点:集合运算33.【2015江苏,1】已知集合A1,2,3,B2,4,5,则集合A B中元素的个数为_______.【答案】5【解析】A B{1,2,3}{2,4,5}{1,2,3,4,5},,,则集合A B中元素的个数为5个.【考点定位】集合运算【名师点晴】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A或属于集合B的元素的个数. 本题需注意检验集合的元素是否满足互异性,否则容易出错.9。

三年高考(2015-2017)数学(理)试题分项版解析+Word版含解析-专题01 集合

三年高考(2015-2017)数学(理)试题分项版解析+Word版含解析-专题01 集合

1.【2017课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则( )A .{|0}AB x x =<B .A B =RC .{|1}A B x x =>D .A B =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以 {|1}{|0}{|0}A B x x x x x x =<<=< ,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.【考点】集合的运算,指数运算性质.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =( ) A.{}1,3- B.{}1,0 C.{}1,3 D.{}1,5【答案】C【解析】由{}1A B = 得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =,故选C.【考点】 交集运算,元素与集合的关系3.【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为( )A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意,结合A 表示以()0,0 为圆心, 为半径的单位圆上所有点组成的集合,集合B 表示直线y x = 上所有的点组成的集合,圆221x y += 与直线y x = 相交于两点()1,1 ,()1,1-- ,则A B 中有两个元素.故选B .【考点】 交集运算;集合中的表示方法.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.【2017北京,理1】若集合A ={x |–2<x <1},B={x |x <–1或x >3},则A B =( )(A ){x |–2<x <–1} (B ){x |–2<x <3}(C ){x |–1<x <1} (D ){x |1<x <3}【答案】A 【解析】利用数轴可知{}21A B x x =-<<- ,故选A.【考点】集合的运算5.【2017浙江,1】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P ( )A .)2,1(-B .)1,0(C .)0,1(-D .)2,1(【答案】A【解析】利用数轴,取Q P ,所有元素,得=Q P )2,1(-.【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.【2017天津,理1】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =( )(A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R 【答案】B【解析】(){1246}[15]{124}A B C =-= ,,,,,, ,选B.【考点】 集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.7.【2016课标1,理1】设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫⎪⎝⎭ 【答案】D 【解析】因为23{|-430}={|13},={|},2A x x x x xB x x =+<<<>所以33={|13}{|}={|3},22A B x x x x x x <<><< 故选D. 考点:集合的交集运算【名师点睛】集合是每年中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.8.【2016新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T = ( )(A) 2,3] (B)(-∞ ,2]U 3,+∞) (C) 3,+∞) (D)(0,2]U 3,+∞)【答案】D【解析】由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥ 或,故选D .考点:1、不等式的解法;2、集合的交集运算.9.【2016新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,,【答案】C【解析】试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}= ,故选C.考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.10. 【2016山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞(D )(0,)+∞【答案】C【解析】试题分析:}0|{>=y y A ,}11|{<<-=x x B ,则A B =∞ (-1,+),选C.考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.11.【2016浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð( )A .2,3]B .( -2,3 ]C .1,2)D .(,2][1,)-∞-⋃+∞【答案】B【解析】 试题分析:根据补集的运算得{}[](]24(2,2),()(2,2)1,32,3=<=-∴=-=- R R Q x x P Q 痧.故选B . 考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,2x 的系数一定要保证为正数,若2x 的系数是负数,一定要化为正数,否则很容易出错.12.【2016年北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B = ( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-【答案】C【解析】试题分析:由}22|{<<-=x x A ,得}1,0,1{-=B A ,故选C.考点:集合交集.13.【2016年四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )6【答案】C【解析】由题意,{2,1,0,1,2}A Z =-- ,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.14.【2015重庆,理1】已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、A ØBD 、B ØA【答案】D【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D .【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.【名师点晴】考查集合的关系,涉及集合的相等.集合的交集运算,子集等概念,是送分题.15.【2015天津,理1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B = ð( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8【答案】A【解析】{2,5,8}U B =ð,所以{2,5}U A B = ð,故选A. 【考点定位】集合的运算.【名师点睛】本题主要考查集合的运算,涉及全集、补集、交集相关概念和求补集、交集的运算,是基础题.16.【2015四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B = ( )(){|13}A x x -<<(){|11}B x x -<< (){|12}C x x <<(){|23}D x x <<【答案】A【解析】 {|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<< ,选A.【考点定位】集合的基本运算.17.【2015广东,理1】若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N = ( )A .∅B .{}1,4--C .{}0D .{}1,4【答案】A .【解析】因为()(){}{}|4104,1M x x x =++==--,()(){}{}|4101,4N x x x =--==,所以M N =∅ ,故选A .【考点定位】一元二次方程的解集,集合的基本运算.【名师点睛】本题主要考查一元二次方程的解集,有限集合的交集运算和运算求解能力,属于容易题. 18.【2015浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q = ð( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]【答案】C.【解析】由题意得,)2,0(=P C R ,∴()(1,2)R P Q = ð,故选C.27. 【2016天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( )(A ){1} (B ){4} (C ){1,3}(D ){1,4}【解析】试题分析:{1,4,7,10},A B {1,4}.B == 选D .考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.28. 【2015陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A 【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N = ,故选A .【考点定位】1、一元二次方程;2、对数不等式;3、集合的并集运算.【名师点晴】本题主要考查的是一元二次方程、对数不等式和集合的并集运算,属于容易题.解题时要看清楚是求“ ”还是求“ ”和要注意对数的真数大于,否则很容易出现错误.29.【2015新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B = ( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2【答案】A 【解析】由已知得{}21B x x =-<<,故{}1,0A B =- ,故选A .【考点定位】集合的运算.【名师点睛】本题考查一元二次不等式解法和集合运算,要求运算准确,属于基础题. 综上所述,“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的充要条件.30.【2015福建,理1】若集合{}234,,,A i i i i = (是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .【解析】由已知得{},1,,1A i i =--,故A B = {}1,1-,故选C .【考点定位】1、复数的概念;2、集合的运算.【名师点睛】本题考查复数的概念和集合的运算,利用21i =-和交集的定义求解,属于基础题,要注意运算准确度.31.【2017江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B = 则实数的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】元素的互异性满足“互异性”而导致解题错误.(3)防范空集.在解决有关,A B A B =∅⊆ 等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.32.【2016江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ________▲________.【答案】{}1,2-【解析】试题分析:{1,2,3,6}{|23}{1,2}A B x x =--<<=-考点:集合运算33.【2015江苏,1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5A 中元素的个数为5个.【解析】{123}{245}{12345}A B==,,,,,,,,,,,则集合B【考点定位】集合运算【名师点晴】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A或属于集合B的元素的个数. 本题需注意检验集合的元素是否满足互异性,否则容易出错.。

2015至2017理科数学真题及答案解析全国卷1

2015至2017理科数学真题及答案解析全国卷1

2015至2017理科数学真题及答案解析全国卷12015年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足1+z1z -=i ,则|z|=(A )1 (B (C (D )2 2.sin20°cos10°-con160°sin10°=(A)-(B (C )12- (D )123.设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n4.投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.3125.已知M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,若1MF •2MF <0,则y 0的取值范围是(A )(-3,3) (B )(-6,6)(C )(3-3) (D )(3-,3)(A )5 (B ) 6 (C )7 (D )810.25()x x y ++的展开式中,52x y 的系数为 (A )10 (B )20 (C )30 (D )6011.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

2015年-2017年普通高等学校招生全国统一考试物理试题(江苏卷,参考版解析)

2015年-2017年普通高等学校招生全国统一考试物理试题(江苏卷,参考版解析)

学霸推荐学习七法一、听视并用法上课听和看注意力集中一、听思并用法上课听老师讲并思考问题三、符号助记法在笔记本上课本上做记号标记四、要点记取法重点要点要在课堂上认真听讲记下五、主动参与法课堂上积极主动的参与老师的讲题互动六、听懂新知识法听懂老师讲的新知识并做好标记七、目标听课法课前预习不懂得标记下,在课堂上不会的标记点认真听讲做笔记带着求知的好奇心听课,听不明白的地方就标记下来,并且课后积极的询问并弄懂这些知识,听明白的知识点也要思考其背后的知识点,打牢基础。

2015年普通高等学校招生全国统一考试物理试题(江苏卷,参考版解析)一、单向选择题:本题共5小题,每小题3分,共15分1.一电器中的变压器可视为理想变压器,它将220V 交变电流改为110V ,已知变压器原线圈匝数为800,则副线圈匝数为A .200B .400C .1600D .3200 【答案】B【解析】:根据变压器的变压规律2121n n U U ,可求副线圈匝数为400,所以B 正确。

2.静电现象在自然界中普遍存在,我国早在西汉末年已有对静电现象的记载《春秋纬 考异邮》中有玳瑁吸衣若只说,但下列不属于静电现象的是 A .梳过头发的塑料梳子吸起纸屑B .带电小球移至不带电金属球附近,两者相互吸引C .小线圈接近通电线圈过程中,小线圈中产生电流D .从干燥的地毯走过,手碰到金属把手时有被电击的感觉 【答案】C【解析】:小线圈接近通电线圈过程中,消息安全中产生感应电流是电磁感应现象,不是静电现象,所以C 正确。

3.过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕。

“51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径为120,该中心恒星与太阳的质量比约为 A .110B .1C .5D .10 【答案】B4.如图所示,用天平测量匀强磁场的磁感应强度,下列各选项所示的载流线圈匝数相同,边长NM 相等,将它们分别挂在天平的右臂下方,线圈中通有大小相同的电流,天平处于平衡状态,若磁场发生微小变化,天平最容易失去平衡的是【答案】A5.如图所示,某“闯关游戏”的笔直通道上每隔8m 设有一个关卡,各关卡同步放行和关闭,放行和关闭的时间分别为5s 和2s 。

三年高考2015_2017高考数学试题分项版解析专题14椭圆及其相关的综合问题文2017110113

三年高考2015_2017高考数学试题分项版解析专题14椭圆及其相关的综合问题文2017110113

专题 14 椭圆及其相关的综合问题1.【2017浙江,2】椭圆x y的离心率是2219 4A .133B .5 3C .2 3D .59【答案】B【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于 a ,b ,c 的 方程或不等式,再根据 a ,b ,c 的关系消掉得到 a ,c 的关系式,建立关于 a ,b ,c 的方程或不等式, 要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 2.【2017课标 1,文 12】设 A 、B 是椭圆 C :xy221长轴的两个端点,若 C 上存在点M 满3m足∠AMB =120°,则 m 的取值范围是A .(0,1][9,)B . (0, 3][9,)C .(0,1][4,)D . (0, 3][4,)【答案】A 【解析】试 题 分 析 : 当 0 m 3, 焦 点 在 轴 上 , 要 使 C 上 存 在 点 M 满 足 AMB120, 则a btan 603,即 3 m,得 0m 1;当 m 3,焦点在 y 轴上,要使 C 上存在点3am,得 m 9 ,故 m 的取值范围为 M 满足AMB120,则tan 603 ,即 3 b3(0,1][9,),选A.1【考点】椭圆【名师点睛】本题设置的是一道以椭圆的知识为背景的求参数范围的问题.解答问题的关键是a 利用条件确定 a ,b 的关系,求解时充分借助题设条件AMB 120 转化为 tan 603b, 这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论. 3.【2017课标 3,文 11】已知椭圆C :xy2 2221,(a >b >0)的左、右顶点分别为 A1,A 2,ab且以线段 A 1A 2为直径的圆与直线bx ay 2ab0相切,则 C 的离心率为()A .63B .3 3C .2313D .【答案】A【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于 a ,b ,c 的 方程或不等式,再根据 a ,b ,c 的关系消掉得到 a ,c 的关系式,而建立关于 a ,b ,c 的方程或不等 式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2016高考新课标 1文数】直线 l 经过椭圆的一个顶点和一个焦点,若椭圆中心到 l 的距离 1为其短轴长的 ,则该椭圆的离心率为()4 1 12 3 (A ) (B )(C )(D ) 3 234【答案】B 【解析】11 OF c, OB b, O D2bb 试题分析:如图,由题意得在椭圆中,42 在 RtOFB 中,| OF|| OB || BF|| OD |,且 a 2 b 2c 2 ,代入解得2a 4c,所以椭圆得离心率得e221,故选B. 2yBDxF O考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a,c的齐次方程,方程两边同时除以a的最高次幂,转化为关于e的方程,解方程求e.5.2016高考新课标Ⅲ文数]已知O为坐标原点,F是椭圆C:x y22221(a b 0)的左焦a b点,A,B分别为C的左,右顶点.P为C上一点,且PF x轴.过点A的直线与线段PF 交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()(A)13(B)12(C)23(D)34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得a,c的值,进而求得的值;(2)建立a,b,c的齐次等式,求得ba或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出.6.【2015高考新课标1,文5】已知椭圆E的中心为坐标原点,离心率为12,E的右焦点与抛物线C:y28x的焦点重合,A,B是C的准线与E的两个交点,则AB ( )3(A ) (B ) (C )(D )12【答案】B【解析】∵抛物线 C : y 2 8x 的焦点为(2,0),准线方程为 x2,∴椭圆 E 的右焦点为(2,0),∴椭圆 E 的焦点在 x 轴上,设方程为 x y22221(a b 0) ,c=2,ab∵ec 1xy, 22,∴ a 4,∴b2a2c212 ,∴椭圆 E 方程为1a 216 12将 x2代入椭圆 E 的方程解得 A (-2,3),B (-2,-3),∴|AB|=6,故选 B.【考点定位】抛物线性质;椭圆标准方程与性质【名师点睛】本题是抛物线与椭圆结合的基础题目,解此类问题的关键是要熟悉抛物线的定义、 标准方程与性质、椭圆的定义、标准方程与性质,先由已知曲线与待确定曲线的关系结合已知 曲线方程求出待确定曲线中的量,写出待确定曲线的方程或求出其相关性质. 7.【2015高考福建,文 11】已知椭圆xy22E :1(ab 0) 的右焦点为 F .短轴的一个ab22端点为 M ,直线l :3x 4y0交椭圆 E 于 A , B 两点.若 AFBF4,点 M 到直线的距离不小于 4 5,则椭圆 E 的离心率的取值范围是( )A . 3 (0, ]23 (0, ] 4B .3 [ ,1) 2C .3 D .[ ,1)4【答案】A【考点定位】1、椭圆的定义和简单几何性质;2、点到直线距离公式. 【 名 师 点 睛 】 本 题 考 查 椭 圆 的 简 单 几 何 性 质 , 将 AFBF 4转 化 为AF AF a,进而确定的值,是本题关键所在,体现了椭圆的对称性和椭圆概念1424的重要性,属于难题.求离心率取值范围就是利用代数方法或平面几何知识寻找椭圆中基本量 a ,b ,c 满足的不等量关系,以确定 c a的取值范围.8.【2015高考广东,文 8】已知椭圆 xy22( m 0)的左焦点为F4,0 ,则 m21125 m()A .B .C .D .【答案】C【考点定位】椭圆的简单几何性质.【名师点晴】本题主要考查的是椭圆的简单几何性质,属于容易题.解题时要注意椭圆的焦点 落在哪个轴上,否则很容易出现错误.解本题需要掌握的知识点是椭圆的简单几何性质,即椭 圆 xy22( a b 0 )的左焦点 F c ,0,右焦点F c ,0,其中a 2b 2c 2 . 22112a b9.【2015高考浙江,文 15】椭圆 xy22( ab 0 )的右焦点 Fc ,0关于直线221a bb y x c的对称点 Q 在椭圆上,则椭圆的离心率是.【答案】22【解析】设 Fc ,0关于直线b y x 的对称点为 Q (m ,n ) ,则有cn b1m c c,解得n b m 22 c 2c 2bbc2bc 322m,n, 所以aa22c2b bc2bc 322Q (,)在 椭 圆 上 , 即 有aa22(c2b )(bc2bc )c32 222,解得 a 2 2c 2 ,所以离心率2 1e.aa ba242 2【考点定位】1.点关于直线对称;2.椭圆的离心率.【名师点睛】本题主要考查椭圆的离心率.利用点关于直线对称的关系,计算得到右焦点的对 称点,通过该点在椭圆上,代入方程,转化得到关于 a ,c 的方程,由此计算离心率.本题属于5中等题。

2015-2017解析几何全国卷高考真题版

2015-2017解析几何全国卷高考真题版

2015-2017解析几何全国卷高考真题1、(2015年1卷5题)已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值围是( )(A )(-3,3) (B )(-6,6)(C )(3-,3) (D )() 【答案】A【解析】由题知12(F F ,220012x y -=,所以12MF MF •=0000(,),)x y x y -•- =2220003310x y y +-=-<,解得033y -<<,故选 A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.2、(2015年1卷14题)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 【答案】22325()24x y -+=【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 考点:椭圆的几何性质;圆的标准方程3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N 两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.【答案】0y a --=0y a ++=(Ⅱ)存在【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.试题解析:(Ⅰ)由题设可得)M a,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x=C在,)a 处的切线方程为y a x -=-0y a --=.故24x y =在x=-处的到数值为C在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力4、(2015年2卷7题)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .10 【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±,所以MN =C .考点:圆的方程.5、(2015年2卷11题).已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为()A.5 B.2 C.3 D.2【解析】设双曲线方程为22221(0,0)x ya ba b-=>>,如图所示,AB BM=,0120ABM∠=,过点M作MN x⊥轴,垂足为N,在Rt BMN∆中,BN a=,3MN a=,故点M的坐标为(2,3)M a a,代入双曲线方程得2222a b a c==-,即222c a=,所以2e=,故选D.考点:双曲线的标准方程和简单几何性质.6、(2015年2卷20题)(本题满分12分)已知椭圆222:9(0)C x y m m+=>,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(Ⅰ)证明:直线OM的斜率与l的斜率的乘积为定值;(Ⅱ)若l过点(,)3mm,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率,若不能,说明理由.【解析】(Ⅰ)设直线:l y kx b=+(0,0)k b≠≠,11(,)A x y,22(,)B x y,(,)M MM x y.将y kx b=+代入2229x y m+=得2222(9)20k x kbx b m+++-=,故12229Mx x kbxk+==-+,299M Mby kx bk=+=+.于是直线OM的斜率9MOMMykx k==-,即9OMk k⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm ,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k =-.设点P 的横坐标为P x .由2229,9,y x kx y m ⎧=-⎪⎨⎪+=⎩得2222981Pk m x k =+,即P x =.将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x ==2(3)23(9)mk k k -⨯+.解得14k =24k =.因为0,3i i k k >≠,1i =,2,所以当l的斜率为4或4+OAPB 为平行四边形.考点:1、弦的中点问题;2、直线和椭圆的位置关系.7、(2016年1卷5题)(5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值围是(A )()1,3- (B)(- (C )()0,3 (D)( 【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c,这一点易出错.8、(2016年1卷10题)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E两点.已知|AB |=,|DE|=则C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.9、(2016年1卷20题)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值围.【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[ 试题解析:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k . 则3482221+=+k k x x ,341242221+-=k k x x .所以34)1(12||1||22212++=-+=k k x x k MN . 过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以 1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值围为)38,12[. 考点:圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试容,主要由求值、求方程、求定值、最值、求参数取值围等几部分组成, .其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.10、(2016年2卷4题)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=(A )43- (B )34- (C(D )2【解析】A圆化为标准方程为:,故圆心为,,解得,故选A .11、(2016年2卷11题)已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(B )32(C(D )2 【解析】A离心率,由正弦定理得. 12、(2016年2卷20题)(本小题满分12分)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值围.2228130x y x y +--+=()()22144x y -+-=()14,1d ==43a =-1221F F e MF MF =-122112sin 31sin sin 13F F Me MF MF F F ====---【解析】 ⑴当时,椭圆E 的方程为,A 点坐标为, 则直线AM 的方程为.联立并整理得, 解得或,则因为,所以 因为,,,整理得, 无实根,所以. 所以的面积为. ⑵直线AM 的方程为,联立并整理得,解得或所以 所以因为所以,整理得,. 4t =22143x y +=()20-,()2y kx =+()221432x y y k x ⎧+=⎪⎨⎪=+⎩()2222341616120k x k x k +++-=2x =-228634k x k -=-+222861223434k AMk k -=+=++AM AN ⊥21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭AM AN =0k >212124343k k k=++()()21440k k k --+=2440k k -+=1k =AMN △221112144223449AM⎫==⎪+⎭(y k x =(2213x y t y k x ⎧+=⎪⎨⎪=+⎩()222223230tk x x t k t +++-=x =x =AM =+=3AN k k+2AM AN =23k k+23632k k t k -=-因为椭圆E 的焦点在x 轴,所以,即,整理得.13、(2016年3卷11题)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12 (C )23 (D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e的值;(2)建立,,a b c 的齐次等式,求得b a 或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .14、(2016年3卷16题)已知直线l :30mx y m ++=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若AB =,则||CD =__________________.【答案】43t >236332k k k ->-()()231202k k k +-<-2k <考点:直线与圆的位置关系. 【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.15、(2016年3卷20题)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点. (I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.试题解析:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且 )2,21(),,21(),,21(),,2(),0,2(22ba Rb Q a P b b B a A +---.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分 (Ⅰ)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a aba ab a b a a b a k =-=-==--=+-=,所以AR FQ . ......5分(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆.由题设可得221211b a x a b -=--,所以01=x (舍去),11=x .设满足条件的AB 的中点为),(y x E .当AB 与x 轴不垂直时,由DE ABk k =可得)1(12≠-=+x x yb a .而y ba =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分 考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.16、(2017年1卷15题)已知双曲线2222:x y C a b-,(0a >,0b >)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点,若60MAN ∠=︒,则C 的离心率为_______.【解析】如图,OA a =,AN AM b ==∵60MAN ∠=︒,∴AP =,OP =∴tan AP OP θ==又∵tan b aθ=b a =,解得223a b =∴e ==17、(2017年1卷20题)已知椭圆C :22221x y a b+=()0a b >>,四点()111P ,,()201P ,,31P ⎛- ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点 将()23011P P ⎛- ⎝⎭,,代入椭圆方程得 222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b = ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,, 221121A A P A P B y y k k m m m----+=+==- 得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶()()1122A x y B x y ,,,联立22440y kx b x y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-= 122814kb x x k -+=+,21224414b x x k -⋅=+则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠ 21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立. ∴直线l 的方程为21y kx k =-- 当2x =时,1y =-所以l 过定点()21-,.18、(2017年2卷9题)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B .3C .2D .233【命题意图】主要考查双曲线的性质及直线与圆的位置关系,意在考查考生的转化与化归思想. 【解析】解法一:常规解法根据双曲线的标准方程可求得渐近线方程为by x a=±,根据直线与圆的位置关系可求得圆心到渐进线的距离为3,∴ 圆心到渐近线的距离为221b ab a ⋅⎛⎫+ ⎪⎝⎭,即2231b ab a ⋅=⎛⎫+ ⎪⎝⎭,解得2e =.解法二:待定系数法设渐进线的方程为y kx =,根据直线与圆的位置关系可求得圆心到渐进线的距离为3,∴ 圆心到渐近线的距离为221k k +,即2231k k =+,解得23k =;由于渐近线的斜率与离心率关系为221k e =-,解得2e =.19、(2017年2卷16题)已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N = .【命题意图】本题主要考查抛物线的定义及直线与抛物线的位置关系,意在考查考生的转化与 化归思想运算求解的能力 【解析】解法一:几何法习. 20、(2017年2卷20题)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1) 求点P 的轨迹方程;(2) 设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【命题意图】椭圆,定值问题的探索;运算求解能力【基本解法】(Ⅰ)解法一:相关点法求轨迹:设()00,M x y ,()0,0N x ,(),P x y ,则:()0,NP x x y =-,()00,NM y =. 又2NP NM =,所以:())00,0,x x y y -=,则:00,x x y ==.又()00,M x y 在椭圆C 上,所以:220012x y +=。

全国卷历年高考解析几何解答题真题归类分析(含答案)

全国卷历年高考解析几何解答题真题归类分析(含答案)

全国卷历年高考解析几何解答题真题归类分析(含答案)一、椭圆(2015年2卷)已知椭圆C:9x 2+y 2=m 2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值.(2)若l 过点(,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.分析:(1)将直线y=kx+b(k≠0,b≠0)与椭圆C:9x 2+y 2=m 2(m>0)联立,结合根与系数的关系及中点坐标公式证明.(2)由四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分求解证明. 解析】:(1)设直线l :y=kx+b(k≠0,b≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ). 将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故92221+-=+=k kbx x x M , 992+=+=k b b k y M M .于是直线OM 的斜率kx y k M M OM 9-== 即k OM ·k=-9,所以直线OM 的斜率与l 的斜率的积是定值.(2)四边形OAPB 能为平行四边形,因为直线l 过点(,m),所以l 不过原点且与C 有两个交点的充要条件是k>0,k≠3,由(1)得OM 的方程为y=-x. 设点P 的横坐标为x p .由⎪⎩⎪⎨⎧=+-=22299m y x x k y ,得8192222+=k m k x p ,即932+±=k km x p . 将点),3(m m 的坐标代入l 的方程得3)3(k m b -=,因此)9(3)3(2+-=k k k x M 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相评分,即P M x x =2.=,解得k k 12==因为k i >0,k i ≠3,i=1,2,所以当l 的斜率为4-或4+时,四边形OAPB 为平行四边形.(2016年1卷)设圆x 2+y 2+2x-15=0的圆心为A,直线l 过点B(1,0)且与x 轴不重合, l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E. (1)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.【解析】(1)圆A 整理为(x+1)2+y 2=16,点A 坐标为(-1,0),如图,∵BE ∥AC,则∠ACB=∠EBD,由|AC|=|AD|,则∠ADC=∠ACD,∴∠EBD=∠EDB,则|EB|=|ED|, ∴|AE|+|EB|=|AE|+|ED|=|AD|=4.所以E 的轨迹为一个椭圆,方程为2x 4+2y 3=1(y≠0);(2)C 1: 2x 4 +2y 3=1;设l :x=my+1,因为PQ ⊥l ,设PQ:y=-m(x-1),联立l 与椭圆C 1,22x my 1,x y 1,43⎧=+⎪⎨+=⎪⎩得(3m 2+4)y 2+6my-9=0; 则|MN|=M -y N |==()2212m13m 4++;圆心A 到PQ 距离d==,所以=,∴S MPNQ =12|MN|·|PQ|=12·()2212m 13m 4+⋅+=24[12,8).(2016年2卷)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA. (I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,,则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-=解得2x =-或228634k x k -=-+21234k + 因为AM AN ⊥,所以21212413341AN k kk ==⋅⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >212124343k k k=++, 整理得()()21440k k k --+=,2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM⎫==⎪+⎭. ⑵直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=⎩并整理得, ()222223230tk x x t k t +++-=,解得x =或x =所以AM =,所以AN =因为2AM AN =,所以2=,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.(2017年1卷)已知椭圆()2222:=10x y C a b a b +>>,四点()111P ,,()201P ,,3–1P ⎛ ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过点2P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为–1,求证:l 过定点.解析:(1)根据椭圆对称性,必过3P ,4P ,又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点.将()23011P P ⎛- ⎝⎭,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =, 21b =,所以椭圆C 的方程为2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,, 221121A A P A P B y y k k m m m----+=+==-,得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,,联立22440y kx bx y =+⎧⎨+-=⎩, 消去y 整理得()222148440k x kbx b +++-=,122814kb x x k -+=+,21224414b x x k -⋅=+, 则22121211P A P By y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=22228888144414kb k kb kbk b k --++==-+ ()()()811411k b b b -=-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.所以直线l 的方程为21y kx k =--.当2x =时,1y =-,所以l 过定点()21-,.(2017年2卷)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.求证:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解析:(1)设点()P x y ,,易知(0)N x ,,(0)NP y =,,又0NM NP ⎛== ⎝,所以点M x y ⎛⎫ ⎪⎝⎭.又M 在椭圆C上,所以2212x +=,即222x y +=. (2)由题知()1,0F -,设()3,Q t -,(),P m n ,则()3,OQ t =-,()1,PF m n =---,33OQ PF m tn ⋅=+-,(),OP m n =,()3,PQ m t n =---,由1O P P Q ⋅=,得2231m m tn n --+-=.又由(1)知222m n +=,所以330m tn +-=,从而0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线的垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过曲线C 的左焦点()1,0F -. 二、抛物线(2015年1卷)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.解析:(Ⅰ)由题设可得)M a,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x=C在,)a 处的切线方程为y a x --0y a --=.故24x y =在x=-处的到数值为C在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k .将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-.∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a +. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.(2016年3卷)已知抛物线C:y 2=2x 的焦点为F,平行于x 轴的两条直线l 1,l 2分别交C 于A,B 两点,交C 的准线于P,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【解析】(1)由题意可知F 1,02⎛⎫⎪⎝⎭,设l 1:y=a,l 2:y=b 且ab≠0,A 2a ,a 2⎛⎫ ⎪⎝⎭,B 2b ,b 2⎛⎫ ⎪⎝⎭P 1,a 2⎛⎫-⎪⎝⎭,Q 1,b 2⎛⎫- ⎪⎝⎭,R 1a b ,22⎛⎫+- ⎪⎝⎭,记过A,B 两点的直线方程为l,由点A,B 可得直线方程为2x-(a+b)y+ab=0,因为点F 在线段AB 上,所以ab+1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,所以k 1=2a b1a -+,k 2=b 1122--=-b,又因为ab+1=0, 所以k 1=22a b a b 1aba a 1a a abb ---====-+-,所以k 1=k 2,即AR ∥FQ. (2)设直线AB 与x 轴的交点为D ()1x ,0,所以S △ABF =1111a b FD a b x 222-=--, 又S △PQF =a b 2-,所以由题意可得S △PQF =2S △ABF 即:a b 2- =2×12·11x 2a b ⋅--,解得x 1=0(舍)或x 1=1.设满足条件的AB 的中点为E(x,y). 当AB 与x 轴不垂直时,由k AB =k DE 可得2ya b x 1=+-(x≠1).而21a b y=+,所以y 2=x-1(x≠1).当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为y 2=x-1.(2017年3卷)已知抛物线22C y x =:,过点()20,的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)求证:坐标原点O 在圆M 上;(2)设圆M 过点()42P -,,求直线l 与圆M 的方程.解析:(1)显然当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立222y xx my ⎧=⎨=+⎩,得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-. ⋅1212OA OB x x y y ⋅=+u u r u u u r 1212(2)(2)my my y y =+++21212(1)2()4m y y m y y =++++= 24(1)2240m m m -++⋅+=,所以⊥,即点O 在圆M 上.(2)若圆M 过点P ,则⋅,即1212(4)(4)(2)(2)0x x y y --+++=,即1212(2)(2)(2)(2)0my my y y --+++=,即21212(1)(22)()80m y y m y y +--++=,化简得2210m m --=,解得12m =-或1.①当12m =-时,:240l x y +-=,设圆心为00(,)Q x y ,则120122y y y +==-,0019224x y =-+=,半径||r OQ =,则圆229185:4216M x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. ②当1m =时,:20l x y --=,设圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径r OQ =22:(3)(1)10M x y -+-=.。

2015-2017全国新课标卷圆锥曲线 极坐标参数方程高考真题汇编【解析版】

2015-2017全国新课标卷圆锥曲线 极坐标参数方程高考真题汇编【解析版】

2015圆锥曲线【答案】(I;(II ).试题分析:(I )先写过点,的直线方程,再计算原点到该直线的距离,进而可得椭圆的离心率;(II )先由(I )知椭圆的方程,设的方程,联立,消去,可得和的值,进而可得,再利用可得的值,进而可得椭圆的方程.试题解析:(I )过点(c,0),(0,b)的直线方程为, 则原点O 到直线的距离, 由,得.(II)解法一:由(I )知,椭圆E 的方程为. (1) 依题意,圆心M(-2,1)是线段AB 的中点,且.易知,AB不与x 轴垂直,设其直线方程为,代入(1)得设则 由,得解得. 从而.于是.由.故椭圆E 的方程为.解法二:由(I )知,椭圆E 的方程为. (2) 221123x y +=(),0c ()0,b O E E AB ()2222144y k x x y b⎧=++⎪⎨+=⎪⎩y 12x x +12x x k AB =2b E 0bx cy bc +-=bcd a==12d c =2a b ==2c a =22244x y b +=|AB|(2)1y k x =++2222(14)8(21)4(21)40k x k k x k b +++++-=1122(,y ),B(,y ),A x x 221212228(21)4(21)4,.1414k k k b x x x x k k++-+=-=-++124x x +=-28(21)4,14k k k +-=-+12k =21282x x b =-12|AB ||x x =-==|AB|=23b =221123x y +=22244x y b +=设则,, 两式相减并结合得. 易知,AB 不与x 轴垂直,则,所以AB 的斜率 因此AB 直线方程为,代入(2)得所以,.于是.由.故椭圆E 的方程为.考点:1、直线方程;2、点到直线的距离公式;3、椭圆的简单几何性质;4、椭圆的方程;5、圆的方程;6、直线与圆的位置关系;7、直线与圆锥曲线的位置.【分析及点评】本题题型较之往年几乎没有改变,第一问,求解曲线离心率,属于基础题型,稍微有点圆锥曲线基础的学生应该都能完成;第二问求解曲线方程,较之往年变换较大,无论从难度和出题角度都会对学生造成较大干扰。

三年高考2015_2017高考数学试题分项版解析专题集合理

三年高考2015_2017高考数学试题分项版解析专题集合理

专题01 集合1.【2017课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则( )A .{|0}AB x x =<IB .A B =R UC .{|1}A B x x =>UD .A B =∅I【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以 {|1}{|0}{|0}A B x x x x x x =<<=<I I ,{|1}{|0}{|1}A B x x x x x x =<<=<U U ,故选A.【考点】集合的运算,指数运算性质.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,5【答案】C【解析】由{}1A B =I 得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =,故选C.【考点】 交集运算,元素与集合的关系3.【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为( ) A .3B .2C .1D .0【答案】B 【解析】集合中的元素为点集,由题意,结合A 表示以()0,0 为圆心, 为半径的单位圆上所有点组成的集合,集合B 表示直线y x = 上所有的点组成的集合,圆221x y += 与直线y x =相交于两点()1,1 ,()1,1-- ,则A B I 中有两个元素.故选B .【考点】 交集运算;集合中的表示方法.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.【2017北京,理1】若集合A ={x |–2<x <1},B={x |x <–1或x >3},则A I B =( )(A ){x |–2<x <–1} (B ){x |–2<x <3}(C ){x |–1<x <1} (D ){x |1<x <3}【答案】A 【解析】利用数轴可知{}21A B x x =-<<-I ,故选A.【考点】集合的运算5.【2017浙江,1】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P Y ( )A .)2,1(-B .)1,0(C .)0,1(-D .)2,1(【答案】A 【解析】利用数轴,取Q P ,所有元素,得=Q P Y )2,1(-.【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.【2017天津,理1】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =U I ( )(A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R【答案】B【解析】(){1246}[15]{124}A B C =-=U I I ,,,,,, ,选B.【考点】 集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.7.【2016课标1,理1】设集合{}2430A x x x =-+< ,{}230x x ->,则A B =I ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭【答案】D 【解析】因为23{|-430}={|13},={|},2A x x x x xB x x =+<<<>所以33={|13}{|}={|3},22A B x x x x x x <<><<I I 故选D. 考点:集合的交集运算【名师点睛】集合是每年中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.8.【2016新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =I ( )(A) 2,3] (B)(-∞ ,2]U 3,+∞) (C) 3,+∞) (D)(0,2]U 3,+∞)【答案】D【解析】由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥I 或,故选D .考点:1、不等式的解法;2、集合的交集运算.9.【2016新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =U ( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,,【答案】C【解析】试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}=U ,故选C.考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.10. 【2016山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B U =( )(A )(1,1)-(B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C【解析】试题分析:}0|{>=y y A ,}11|{<<-=x x B ,则A B =∞U (-1,+),选C. 考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.11.【2016浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð( ) A .2,3] B .( -2,3 ] C .1,2)D .(,2][1,)-∞-⋃+∞【答案】B【解析】 试题分析:根据补集的运算得{}[](]24(2,2),()(2,2)1,32,3=<=-∴=-=-U U R R Q x x P Q 痧.故选B . 考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,2x 的系数一定要保证为正数,若2x 的系数是负数,一定要化为正数,否则很容易出错.12.【2016年北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =I ( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-【答案】C【解析】试题分析:由}22|{<<-=x x A ,得}1,0,1{-=B A I ,故选C.考点:集合交集.13.【2016年四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A I Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )6【答案】C【解析】由题意,{2,1,0,1,2}A Z =--I ,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.14.【2015重庆,理1】已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、A ØBD 、B ØA【答案】D【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D .【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.【名师点晴】考查集合的关系,涉及集合的相等.集合的交集运算,子集等概念,是送分题.15.【2015天津,理1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B =I ð( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8【答案】A【解析】{2,5,8}U B =ð,所以{2,5}U A B =I ð,故选A.【考点定位】集合的运算.【名师点睛】本题主要考查集合的运算,涉及全集、补集、交集相关概念和求补集、交集的运算,是基础题.16.【2015四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =U ( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x <<(){|23}D x x <<【答案】A【解析】{|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<<U ,选A.【考点定位】集合的基本运算.17.【2015广东,理1】若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =I ( )A .∅B .{}1,4--C .{}0D .{}1,4【答案】A .【解析】因为()(){}{}|4104,1M x x x =++==--,()(){}{}|4101,4N x x x =--==,所以M N =∅I ,故选A .【考点定位】一元二次方程的解集,集合的基本运算.【名师点睛】本题主要考查一元二次方程的解集,有限集合的交集运算和运算求解能力,属于容易题.18.【2015浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =I ð( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]【答案】C.【解析】由题意得,)2,0(=P C R ,∴()(1,2)R P Q =I ð,故选C.27. 【2016天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B I =( )(A ){1} (B ){4} (C ){1,3} (D ){1,4}【答案】D【解析】试题分析:{1,4,7,10},A B {1,4}.B ==I 选D .考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.28. 【2015陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =U ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A 【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N =U ,故选A .【考点定位】1、一元二次方程;2、对数不等式;3、集合的并集运算.【名师点晴】本题主要考查的是一元二次方程、对数不等式和集合的并集运算,属于容易题.解题时要看清楚是求“I ”还是求“U ”和要注意对数的真数大于,否则很容易出现错误.29.【2015新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =I ( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2【答案】A 【解析】由已知得{}21B x x =-<<,故{}1,0A B =-I ,故选A . 【考点定位】集合的运算.【名师点睛】本题考查一元二次不等式解法和集合运算,要求运算准确,属于基础题. 综上所述,“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A I ”的充要条件.30.【2015福建,理1】若集合{}234,,,A i i i i = (是虚数单位),{}1,1B =- ,则A B I 等于 ( )A .{}1-B .{}1C .{}1,1-D .【答案】C【解析】由已知得{},1,,1A i i =--,故A B =I {}1,1-,故选C .【考点定位】1、复数的概念;2、集合的运算.【名师点睛】本题考查复数的概念和集合的运算,利用21i =-和交集的定义求解,属于基础题,要注意运算准确度.31.【2017江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =I 则实数的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】元素的互异性满足“互异性”而导致解题错误.(3)防范空集.在解决有关,A B A B =∅⊆I 等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.32.【2016江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B I ________▲________.【答案】{}1,2-【解析】试题分析:{1,2,3,6}{|23}{1,2}A B x x =--<<=-I I考点:集合运算33.【2015江苏,1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A Y 中元素的个数为_______.【答案】5【解析】{123}{245}{12345}A B ==U U ,,,,,,,,,,,则集合B A Y 中元素的个数为5个.【考点定位】集合运算【名师点晴】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或属于集合B 的元素的个数. 本题需注意检验集合的元素是否满足互异性,否则容易出错.。

2015至2017理科数学真题及答案解析全国卷1

2015至2017理科数学真题及答案解析全国卷1

2015至2017理科数学真题及答案解析全国卷12015年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛7.设D 为ABC 所在平面内一点3BC CD=,则(A ) 1433AD AB AC =-+ (B ) 1433AD AB AC =- (C ) 4133AD AB AC =+ (D ) 4133AD AB AC =-8.函数f (x )=的部分图像如图所示,则f (x )的单调递减区间为 (A )(),k (b )(),k(C )(),k(D )(),k9.执行右面的程序框图,如果输入的t=0.01,则输出的n= (A )5 (B )6 (C )7 (D )810.25()x x y ++的展开式中,52x y 的系数为 (A )10 (B )20 (C )30 (D )6011.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

三年高考(2016-2018)高考数学试题分项版解析 专题17 椭圆 理(含解析)

三年高考(2016-2018)高考数学试题分项版解析 专题17 椭圆 理(含解析)

专题17 椭圆考纲解读明方向 考纲解读分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.2018年高考全景展示1.【2018年理数全国卷II 】已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D. 【答案】D【解析】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 详解:因为为等腰三角形,,所以PF 2=F 1F 2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.3.【2018年理北京卷】已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.【答案】 2【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,解得椭圆M的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M的离心率为双曲线N的渐近线方程为,由题意得双曲线N的一条渐近线的倾斜角为,点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2018年理数天津卷】设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.(I)求椭圆的方程;(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.【答案】(Ⅰ);(Ⅱ)或【解析】分析:(Ⅰ)由题意结合椭圆的性质可得a=3,b=2.则椭圆的方程为.(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由题意可得5y1=9y2.由方程组可得.由方程组可得.据此得到关于k的方程,解方程可得k的值为或详解:(Ⅰ)设椭圆的焦距为2c,由已知知,又由a2=b2+c2,可得2a=3b.由已知可得,,,由,可得ab=6,从而a=3,b=2.所以,椭圆的方程为.(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故.又因为,而∠OAB=,故.由,可得5y1=9y2.由方程组消去x,可得.易知直线AB的方程为x+y–2=0,由方程组消去x,可得.由5y1=9y2,可得5(k+1)=,两边平方,整理得,解得,或.所以,k的值为或点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.【2018年全国卷Ⅲ理】已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【答案】(1)(2)或(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.②将代入①得.所以l的方程为,代入C的方程,并整理得.故,代入②解得.所以该数列的公差为或.点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利用点差法,设而不求可减小计算量,第二问由已知得到,求出m 得到直线方程很关键,考查了函数与方程的思想,考察学生的计算能力,难度较大。

三年高考2015_2017高考数学试题分项版解析专题17椭圆及其综合应用理20171102338

三年高考2015_2017高考数学试题分项版解析专题17椭圆及其综合应用理20171102338

专题17 椭圆及其综合应用1.【2017浙江,2】椭圆22194x y +=的离心率是A B C .23D .59【答案】B 【解析】试题分析:e ==,选B .2.【2017课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3B .3C .3D .13【答案】A 【解析】试题分析:以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即:d a ==,整理可得223a b =,即()222223,23a a c a c =-=,从而22223c e a ==,椭圆的离心率c e a ===故选A .【考点】椭圆的离心率的求解;直线与圆的位置关系【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式e =ca; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则()A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1【答案】A 【解析】4.【2016高考新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为()(A )13(B )12(C )23(D )34【答案】A 【解析】试题分析:由题意设直线的方程为()y k x a =+,分别令x c =-与0x =得点||()F M k ac =-,||OE ka =,由O B E C B ∆∆,得1||||2||||OE OB FM BC =,即2(c )k a ak a a c=-+,整理,得13c a =,所以椭圆离心率为13e =,故选A . 考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出.5.【2015高考新课标1,理14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为.【答案】22325()24x y -+=【解析】设圆心为(,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=.6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是.【解析】由题意得,),C(,),22b b B ,因此22222)()0322b c c a e -+=⇒=⇒ 考点:椭圆离心率【名师点睛】椭圆离心率的考查,一般分两个层次,一是由离心率的定义,只需分别求出,a c ,这注重考查椭圆标准方程中量的含义,二是整体考查,求,a c 的比值,这注重于列式,即需根据条件列出关于,a c 的一个齐次等量关系,通过解方程得到离心率的值.7.【2017课标1,理20】已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2,P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此134,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,在设直线l 的方程,当l 与x 轴垂直,通过计算,不满足题意,再设设l :y kx m =+(1m ≠),将y kx m=+代入2214x y +=,写出判别式,韦达定理,表示出12k k +,根据121k k +=-列出等式表示出和m的关系,判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b+>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。

高中文科数学(2017-2015)三年高考真题汇编:椭圆及其相关的综合问题解析版

高中文科数学(2017-2015)三年高考真题汇编:椭圆及其相关的综合问题解析版

高中文科数学(2017-2015)三年高考真题汇编:椭圆及其相关的综合问题1.【2017浙江,2】椭圆22194x y +=的离心率是A B C .23D .59【答案】B【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于c b a ,,的方程或不等式,再根据c b a ,,的关系消掉b 得到c a ,的关系式,建立关于c b a ,,的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2017课标1,文12】设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞【答案】A 【解析】试题分析:当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab ≥= ≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab ≥= ≥,得9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A .【考点】椭圆【名师点睛】本题设置的是一道以椭圆的知识为背景的求参数范围的问题.解答问题的关键是利用条件确定b a ,的关系,求解时充分借助题设条件 120=∠AMB 转化为360tan =≥ ba,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论.3.【2017课标3,文11】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C D .13【答案】A【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )(A )13 (B )12 (C )23 (D )34【答案】B 【解析】试题分析:如图,由题意得在椭圆中,11OF c,OB b,OD 2b b 42===⨯= 在Rt OFB ∆中,|OF ||OB ||BF ||OD |⨯=⨯,且222a b c =+,代入解得22a 4c =,所以椭圆得离心率得1e 2=,故选B.考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .5.[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .6.【2015高考新课标1,文5】已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =( )(A )3(B )6(C )9(D )12 【答案】B【解析】∵抛物线2:8C y x =的焦点为(2,0),准线方程为2x =-,∴椭圆E 的右焦点为(2,0),∴椭圆E 的焦点在x 轴上,设方程为22221(0)x y a b a b+=>>,c=2,∵12c e a ==,∴4a =,∴22212b a c =-=,∴椭圆E 方程为2211612x y +=,将2x =-代入椭圆E 的方程解得A (-2,3),B (-2,-3),∴|AB|=6,故选B. 【考点定位】抛物线性质;椭圆标准方程与性质【名师点睛】本题是抛物线与椭圆结合的基础题目,解此类问题的关键是要熟悉抛物线的定义、标准方程与性质、椭圆的定义、标准方程与性质,先由已知曲线与待确定曲线的关系结合已知曲线方程求出待确定曲线中的量,写出待确定曲线的方程或求出其相关性质.7.【2015高考福建,文11】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .B .3(0,]4C .D .3[,1)4【答案】A【考点定位】1、椭圆的定义和简单几何性质;2、点到直线距离公式.【名师点睛】本题考查椭圆的简单几何性质,将4AF BF +=转化为142AF AF a +==,进而确定a 的值,是本题关键所在,体现了椭圆的对称性和椭圆概念的重要性,属于难题.求离心率取值范围就是利用代数方法或平面几何知识寻找椭圆中基本量,,a b c 满足的不等量关系,以确定ca的取值范围. 8.【2015高考广东,文8】已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( )A .9B .4C .3D .2 【答案】C【考点定位】椭圆的简单几何性质.【名师点晴】本题主要考查的是椭圆的简单几何性质,属于容易题.解题时要注意椭圆的焦点落在哪个轴上,否则很容易出现错误.解本题需要掌握的知识点是椭圆的简单几何性质,即椭圆22221x y a b +=(0a b >>)的左焦点()1F ,0c -,右焦点()2F ,0c ,其中222a b c =+.9.【2015高考浙江,文15】椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线b y xc=的对称点Q 在椭圆上,则椭圆的离心率是.【解析】设()F ,0c 关于直线b y x c =的对称点为(,)Q m n ,则有1222n bm c cn b m c⎧⋅=-⎪⎪-⎨+⎪=⨯⎪⎩,解得3222222,c b bc bc m n a a --==,所以3222222(,)c b bc bcQ a a --在椭圆上,即有32222422(2)(2)1c b bc bc a a b --+=,解得222a c =,所以离心率c e a ==【考点定位】1.点关于直线对称;2.椭圆的离心率.【名师点睛】本题主要考查椭圆的离心率.利用点关于直线对称的关系,计算得到右焦点的对称点,通过该点在椭圆上,代入方程,转化得到关于,a c 的方程,由此计算离心率.本题属于中等题。

专题三:椭圆高考真题赏析解析版

专题三:椭圆高考真题赏析解析版

专题三:椭圆高考真题赏析一、单选题1.2017年全国普通高等学校招生统一考试理科数学(全国卷3正式版)的圆与直线20bx ay ab -+=相切,则C 的离心率为【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所2.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B 【解析】 【分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得n =. 【详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991 cos2233n n nF ABn n+-∠==⋅⋅.在12AF F△中,由余弦定理得2214422243n n n n+-⋅⋅⋅=,解得3n=.2222423,3,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.法二:由已知可设2F B n=,则212,3AF n BF AB n===,由椭圆的定义有121224,22a BF BF n AF a AF n=+=∴=-=.在12AF F△和12BF F△中,由余弦定理得2221222144222cos4,422cos9n n AF F nn n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F∠∠互补,2121cos cos0AF F BF F∴∠+∠=,两式消去2121cos cosAF F BF F∠∠,,得223611n n+=,解得32n=.2222423,3,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.3.2018年全国普通高等学校招生统一考试理数(全国卷II)已知1F,2F是椭圆22221(0)x yC a ba b+=>>:的左,右焦点,A是C的左顶点,点P在过A3的直线上,12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为A .23B .12C .13D .14【答案】D 【解析】 【分析】 【详解】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c, 由AP斜率为6得,222tan sin cos 6PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以2221=4,54sin()3c a c e a c PAF =∴==+-∠,故选D. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 4.2019年全国统一高考数学试卷(理科)(新课标Ⅱ) 若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D . 【详解】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养. 二、填空题5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为___________. 【答案】22325()24x y -+= 【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 考点:椭圆的几何性质;圆的标准方程6.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)【答案】( 【解析】 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y ,22013620x ∴+=,解得03x =(03x =-舍去), M ∴的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.三、解答题7.2020年全国统一高考数学试卷(文科)(新课标Ⅰ)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析.【解析】 【分析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解. (2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,当203y ≠时,可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭即可知直线过定点3,02⎛⎫ ⎪⎝⎭,当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭,命题得证.【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)xE y aa+=>可得:(),0A a-,(),0B a,()0,1G∴(),1AG a=,(),1GB a=-∴218AG GB a⋅=-=,∴29a=∴椭圆方程为:2219xy+=(2)证明:设()06,P y,则直线AP的方程为:()()363yy x-=+--,即:()039yy x=+联立直线AP的方程与椭圆方程可得:()221939xyyy x⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y+++-=,解得:3x=-或223279yxy-+=+将223279yxy-+=+代入直线()039yy x=+可得:0269yyy=+所以点C的坐标为20022003276,99y yy y⎛⎫-+⎪++⎝⎭.同理可得:点D的坐标为2002200332,11y yy y⎛⎫--⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭. 故直线CD 过定点3,02⎛⎫⎪⎝⎭.【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.8.2020年全国统一高考数学试卷(理科)(新课标Ⅱ)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】 【分析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】 (1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c =⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22bAB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=,43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,3b c =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533cMF c c =+==,解得3c =. 因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =. 【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.9.2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【答案】(1)AM 的方程为2y x =-+2y x =;(2)证明见解析. 【解析】 【分析】(1)首先根据l 与x 轴垂直,且过点()1,0F ,求得直线l 的方程为1x =,代入椭圆方程求得点A 的坐标为1,2⎛⎫ ⎪ ⎪⎝⎭或1,2⎛⎫-⎪ ⎪⎝⎭,利用两点式求得直线AM 的方程; (2)分直线l 与x 轴重合、l 与x 轴垂直、l 与x 轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果. 【详解】(1)由已知得()1,0F ,l 的方程为1x =.由已知可得,点A 的坐标为1,2⎛ ⎝⎭或1,2⎛-⎝⎭.所以AM 的方程为2y x =-+2y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠. 当l 与x 轴不重合也不垂直时,设l 的方程为()()10y k x k =-≠,()()1122,,,A x y B x y ,则12x x <<直线MA 、MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y k k x y k x k =-=-得()()()12121223422MA MB kx x k x x kk k x x -+++=--.将()1y k x =-代入2212x y +=得()2222214220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则()33312122441284234021k k k k kkx x k x x k k --++-++==+. 从而0MA MB k k +=,故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 【点睛】该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论. 10.2018年全国卷Ⅲ理数高考试题文已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.【答案】(1)12k <-(2)28或28- 【解析】分析:(1)设而不求,利用点差法进行证明.(2)解出m,进而求出点P 的坐标,得到FP ,再由两点间距离公式表示出,FA FB ,得到直l 的方程,联立直线与椭圆方程由韦达定理进行求解.详解:(1)设()()1122,,,A x y B x y ,则222211221,14343x y x y +=+=.两式相减,并由1212y y k x x -=-得 1212043x x y y k +++⋅=. 由题设知12121,22x x y y m ++==,于是 34k m=-.① 由题设得302m <<,故12k <-.(2)由题意得()1,0F ,设()33,P x y ,则()()()()3311221,1,1,0,0x y x y x y -+-+-=.由(1)及题设得()()31231231,20x x x y y y m =-+==-+=-<. 又点P 在C 上,所以34m =,从而31,2P ⎛⎫- ⎪⎝⎭,32FP =.于是(122x FA x ===-. 同理222x FB =-. 所以()121432FA FB x x +=-+=. 故2FP FA FB =+,即,,FA FP FB 成等差数列. 设该数列的公差为d ,则()212112||2d FB FA x x x x =-=-=+②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得d =.所以该数列的公差为28或28-. 点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利用点差法,设而不求可减小计算量,第二问由已知得到0FP FM +=,求出m 得到直线方程很关键,考查了函数与方程的思想,考察学生的计算能力,难度较大. 11.2017年全国普通高等学校招生统一考试理科数学(新课标1卷)已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【答案】(1) 2214x y +=.(2)证明见解析. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x 轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩.故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且2t <,可得A ,B 的坐标分别为(t,2),(t,2-).则1222122k k t t +=-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得()222418440kx kmx m +++-=由题设可知()22=16410k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ ()()12121221kx x m x x x x +-+=.由题设121k k +=-,故()()()12122110k x x m x x ++-+=.即()()22244821104141m km k m k k --+⋅+-⋅=++. 解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即()1122m y x ++=--,所以l 过定点(2,1-)点睛:椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.12.2017年全国普通高等学校招生统一考试理科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析.【解析】 【分析】 【详解】(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00NP (x ,),NM 0,x y y =-=()由NP 2NM =得0002x y y ==,. 因为M (00,x y )在C 上,所以22x 122y +=.因此点P 的轨迹为222x y +=.由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则()()OQ 3t PF 1m n OQ PF 33m tn =-=---⋅=+-,,,,, ()OP m n PQ 3m t n ==---,,(,).由OP PQ 1⋅=得-3m-2m +tn-2n =1,又由(1)知222m n +=,故3+3m-tn=0. 所以OQ PF 0⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现. 13.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN 的面积AMNS11212144227749=⨯⨯⨯=.(Ⅱ)由题意3t >,0k >,()A .将直线AM 的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x =+=.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当k =因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->2k <<.因此k 的取值范围是)2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.14.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a>b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y +=(2)2y x =-【解析】试题分析:设出F ,由直线AF 的斜率为3求得c ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF的斜率为3,()0,2A -所以2c =c =又222c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即2k <-或2k >时 1212221612,1414k x x x x k k+==++. 所以PQ ===点O 到直线l 的距离d =所以21214OPQS d PQ k∆==+,0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++,当且仅当2t =2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或22y x =--. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.15.2020年全国统一高考数学试卷(理科)(新课标Ⅲ)已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ的面积. 【详解】(1)222:1(05)25x yC mm+=<<∴5 a=,b m =,根据离心率22154115c b mea a⎛⎫⎛⎫==-=-=⎪ ⎪⎝⎭⎝⎭,解得54m=或54m=-(舍),∴C的方程为:22214255x y⎛⎫⎪⎝⎭+=,即221612525x y+=;(2)不妨设P,Q在x轴上方点P在C上,点Q在直线6x=上,且||||BP BQ=,BP BQ⊥,过点P作x轴垂线,交点为M,设6x=与x轴交点为N根据题意画出图形,如图||||BP BQ=,BP BQ⊥,90PMB QNB∠=∠=︒,又90PBM QBN∠+∠=︒,90BQN QBN∠+∠=︒,∴PBM BQN∠=∠,根据三角形全等条件“AAS”,可得:PMB BNQ≅△△,221612525x y+=,∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=, 根据点到直线距离公式可得P 到直线AQ 的距离为:222311110555125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:1555252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+===+, 根据两点间距离公式可得:()()226580185AQ =++-= ∴APQ 面积为:1518522185=, 综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.6.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3m m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+.【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示; (2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kb x k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k ==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-.(2)四边形OAPB 能为平行四边形.∵直线l 过点(,)3m m ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = ∴239k =+2(3)23(9)mk k k -⨯+.解得147k =-,247k =+. ∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形.考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.。

2015-2017全国高考理科解析几何高考题汇编整理版

2015-2017全国高考理科解析几何高考题汇编整理版

3 3 32015-2017高考解析几何汇编017(一)10.已知F 为抛物线C: y 2=4x 的焦点,过F 作两条互相垂直的直线l i , I 2,直线l i 与C交于A 、B 两点,直线12与C 交于D 、E 两点,则|AB|+| DE 的最小值为 A. 16B . 14C. 12 D . 102 22017(一)20.( 12 分)已知椭圆 C :冷 +占=1 (a>b>0),四点 R (1,1),P ? (0,1),P 3(-, a b4),P 4(1,翌 )中恰有三点在椭圆C 上.(1)求C 的方程;22(2)设直线I 不经过P 2点且与C 相交于A, B 两点 若直线P 2A 与直线P 2B 的斜率的和为-, 证明:I 过定点•2 22017(二)9.若双曲线C:拿卡“ (-0,)的一条渐近线被圆WE —所截得的弦长为2,则C 的离心率为 A . 2B . , 322017(二)20. (12分)设O 为坐标原点,动点M 在椭圆C :^ y^1上,过M 作x 轴的垂线, 垂足为N ,点P 满足NP 二2NM . (1) 求点P 的轨迹方程;(2) 设点Q 在直线x = -3上,且OPPQ N .证明:过点P 且垂直于OQ 的直线I 过C 的 左焦点F.2 22017(三)10.已知椭圆C: x 2=1,(a>b>0)的左、右顶点分别为 A , A 2,且以线段A 1A 2a b为直径的圆与直线bx-ay ,2ab=0相切,则C 的离心率为D.23 3A. D.2017(三)20.( 12分)已知抛物线 C: y 2=2x ,过点(2,0)的直线I 交C 与A,B 两点,圆M 是 以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4, -2),求直线I 与圆M 的方程.2爲=1(a 0,b ■ 0)的左焦点为F ,离心率为 2 .若经过F 和 bP (0, 4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为2016(二) (20)(本小题满分12分)壬j?—+*-=1的焦点在玄轴上,A 是E 的左顶点,斜率为k (k>0)的直线交E 于A,M两点,点N 在E 上, MA 丄NA.(I )当t=4,""l 时,求厶AMN 的面积;(II )当E时,求k 的取值范围.2016(北京)19.(本小题14分)已知椭圆C:笃 占=1 ( a b 0)的离心率为仝 ,A(a,0),a b22X 2017(天津)(5)已知双曲线 — a2 2 2 2(A ) "1 (B )訂2 2(O 才討1 (D )2017(天津)(19)(本小题满分X 2 2 14 分)设椭圆笃冷 1(a b0)的左焦点为F ,右顶点为A , 1离心率为-.已知A 是抛物线2(I )求椭圆的方程和抛物线的方y 2 =2px(p 0)的焦点, F 到抛物线的准线的距离为(II )设上两点P ,Q 关于轴对称,直线AP 与椭圆相交于点B ( B 异于点A ), 直线BQ 与轴相交于点D 若△ APD 的面积为空, 2求直线AP 的方程.2016(二)(11)已知F 1,F 2是双曲线 E 的左,右焦点,点M 在E 上, M F 1与上’轴垂直,s 」f ,则E 的离心率为(A 」(B )2 (C )(D) 2已知椭圆E: LB(0, b), 0(0,0) , OAB 的面积为1.(1)求椭圆C的方程;(2)设P的椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:AN| BM|为定值.2016(一)(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知| AB|=4、2,|DE|=2 5,则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)82016(一)20.(本小题满分12分)设圆x2y2・2x-15=0的圆心为A,直线I过点B( 1,0)且与x轴不重合,I交圆A于C, D 两点,过B 作AC的平行线交AD于点E.(I)证明EA+|EB|为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线G,直线l交C于M,N两点,过B且与l垂直的直线与圆A交于P,Q 两点,求四边形MPNQ面积的取值范围.2 22016(三)(11)已知O为坐标原点,F是椭圆C:笃•笃=1(a0)的左焦点,A,B分别为a bC的左,右顶点.P为C上一点,且PF丄x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,贝U C的离心率为11 2 3(A) - (B) - (C) - (D)-3 2 3 42016(三)(20)(本小题满分12分)已知抛物线C: y2=2x的焦点为F,平行于x轴的两条直线1(2分别交C于A,B两点,交C 的准线于P,Q两点.(I)若F在线段AB上, R是PQ的中点,证明AR// FQ;(II )若厶PQF 的面积是厶ABF 的面积的两倍,求AB 中点的轨迹方程.2015 (二) (11)已知A , B 为双曲线E 的左,右顶点,点 M 在E 上, ?ABM 为等腰三角形, 且顶角为120°,则E 的离心率为 (A ) V 5 (B ) 2 (C ) V 3 (D ) V2 2015 (二) 20.(本小题满分12分)已知椭圆C : 9x 2 y 2二m 2(m 0),直线I 不过原点O 且不平行于坐标轴,I 与C 有两个交 点A ,B ,线段AB 的中点为M 。

三年高考(2020)高考数学试题分项版解析 专题17 椭圆 理(含解析)

三年高考(2020)高考数学试题分项版解析 专题17 椭圆 理(含解析)

专题17 椭圆考纲解读明方向考纲解读考点内容解读要求常考题型预测热度1.椭圆的定义及其标准方程掌握椭圆的定义、几何图形、标准方程及简单性质掌握选择题解答题★★★2.椭圆的几何性质掌握填空题解答题★★★3.直线与椭圆的位置关系掌握解答题★★★分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.2020年高考全景展示1.【2020年理数全国卷II】已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2020年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.3.【2020年理北京卷】已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.【答案】 2【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,解得椭圆M的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M的离心率为双曲线N的渐近线方程为,由题意得双曲线N的一条渐近线的倾斜角为,点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2020年理数天津卷】设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.(I)求椭圆的方程;(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.【答案】(Ⅰ);(Ⅱ)或【解析】分析:(Ⅰ)由题意结合椭圆的性质可得a=3,b=2.则椭圆的方程为.(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由题意可得5y1=9y2.由方程组可得.由方程组可得.据此得到关于k的方程,解方程可得k的值为或详解:(Ⅰ)设椭圆的焦距为2c,由已知知,又由a2=b2+c2,可得2a=3b.由已知可得,,,由,可得ab=6,从而a=3,b=2.所以,椭圆的方程为.(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故.又因为,而∠OAB=,故.由,可得5y1=9y2.由方程组消去x,可得.易知直线AB的方程为x+y–2=0,由方程组消去x,可得.由5y1=9y2,可得5(k+1)=,两边平方,整理得,解得,或.所以,k的值为或点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.【2020年全国卷Ⅲ理】已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【答案】(1)(2)或(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.②将代入①得.所以l的方程为,代入C的方程,并整理得.故,代入②解得.所以该数列的公差为或.点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利用点差法,设而不求可减小计算量,第二问由已知得到,求出m 得到直线方程很关键,考查了函数与方程的思想,考察学生的计算能力,难度较大。

高三理科数学高考真题三年(2015-2017年)考点分类汇编:专题17椭圆及其综合应用

高三理科数学高考真题三年(2015-2017年)考点分类汇编:专题17椭圆及其综合应用

专题17椭圆及其综合应用一、选择题1.【椭圆的简单几何性质,双曲线的简单几何性质】【2016,浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1【答案】A2. 【椭圆方程与几何性质】【2016,新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13B.12C.23D.34【答案】A 二、非选择题3. 【椭圆离心率】【2016,江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是_______________.4. 【圆锥曲线综合问题】【2016,新课标1卷】设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[ 5. 【椭圆、抛物线的标准方程及其几何性质,直线与圆锥曲线的位置关系,二次函数的图象和性质】【2016,山东理数】平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>E :22x y =的焦点F 是C 的一个顶点.(I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)1422=+yx ;(Ⅱ)(i )略;(ii )12S S 的最大值为49,此时点P 的坐标为)41,22(6. 【椭圆的标准方程和几何性质,直线方程】【2016,天津理数】设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.【答案】(Ⅰ)22143x y +=(Ⅱ)),46[]46,(+∞--∞7. 【圆与椭圆的位置关系,椭圆的离心率】【2016,浙江理数】如图,设椭圆2221x y a+=(a >1).(I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 范围.【答案】(I )22221a k a k +(II )02e <≤.8. 【椭圆的性质,直线与椭圆的位置关系】【2016,新课标2理数】已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449;(Ⅱ)).9. 【椭圆方程及其性质,直线与椭圆的位置关系】【2016,北京理数】已知椭圆C :22221+=x y a b(0a b >>),(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1. (1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.【答案】(1)2214x y +=;(2)略. 10. 【椭圆的标准方程及其几何性质】【2016,四川理数】已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T . (Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PTPA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=.11. 【椭圆的几何性质,圆的方程】【2015,新课标1,理14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________________.【答案】22325()24x y -+=12. 【椭圆方程,直线与椭圆位置关系】【2015江苏高考,18】如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>的离心率为2,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于 点P ,C ,若PC =2AB ,求直线AB 的方程.【答案】(1)2212x y +=(2)1y x =-或1y x =-+.13. 【椭圆的标准方程与几何性质,直线与椭圆位置关系综合问题,函数最值问题】【2015,山东,理20】平面直角坐标系xoy 中,已知椭圆()2222:10x y C a b ab+=>>的离心率为,左、右焦点分别是12,F F ,以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .( i )求OQ OP的值;(ii )求ABQ ∆面积的最大值.【答案】(I )2214x y +=;(II )( i )2;(ii )14. 【椭圆的简单几何性质,椭圆的方程,圆的方程,直线与圆的位置关系,直线与圆锥曲线的位置】【2015,陕西,理20】已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c .(I )求椭圆E 的离心率;(II )如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的 方程.【答案】(I (II )221123x y +=.15.【弦的中点问题,直线和椭圆的位置关系】【2015,新课标2,理20】已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)略;(Ⅱ)能,4416. 【椭圆的标准方程与几何性质,直线与椭圆的位置关系】【2015,四川,理20】如图,椭圆E :2222+1(0)x y a b a b =>>,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行与x 轴时,直线l 被椭圆E 截得的线段长为(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PAQB PB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)22142x y +=;(2)存在,Q 点的坐标为(0,2)Q . 17. 【椭圆的标准方程与几何性质,直线与椭圆相交问题】【2015,重庆,理21】如图,椭圆()222210x y a b a b+=>>的左、右焦点分别为12,,F F 过2F 的直线交椭圆于,P Q 两点,且1PQ PF ⊥(1)若1222PF PF =+=,求椭圆的标准方程(2)若1,PF PQ =求椭圆的离心率.e【答案】(1)22+y =14x ;(218. 【椭圆的离心率,椭圆的标准方程,点点关于直线对称的应用】【2015,安徽,理20】设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为10. (I )求E 的离心率e ;(II )设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.【答案】(I )5;(II )221459x y +=.19. 【椭圆的标准方程,直线和椭圆的位置关系,点和圆的位置关系】【2015,福建,理18】已知椭圆E :22221(a 0)x y b a b +=>>过点.(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线1x my m R =-?,()交椭圆E 于A ,B 两点, 判断点G 9(4-,0)与以线段AB 为直径的圆的位置关系,并说明理由.【答案】(Ⅰ)22142x y +=;(Ⅱ) G 9(4-,0)在以AB 为直径的圆外.20. 【椭圆的标准方程及其性质,直线与椭圆位置关系】【2015,湖南理20】已知抛物线21:4C x y =的焦点F 也是椭圆22222:1(0)y x C a b a b+=>>的一个焦点,1C 与2C 的公共弦的长为(1)求2C 的方程;(2)过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且AC 与BD 同向 (ⅰ)若||||AC BD =,求直线l 的斜率(ⅱ)设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形【答案】(1)22198y x +=;(2)(i )4±,(ii )详见解析.1. 【椭圆的简单几何性质】【2017,浙江,2】椭圆22194x y +=的离心率是( )A B C .23D .59【答案】B 【解析】试题分析:e ==,选B .2. 【椭圆的离心率的求解;直线与圆的位置关系】【2017,课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C D .13【答案】A 【解析】试题分析:以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=, 直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即:d a ==,整理可得223a b =,即()222223,23a a c a c =-=,从而22223c e a ==,椭圆的离心率c e a ===, 故选A .【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式e =c a; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3. 【椭圆的标准方程,直线与圆锥曲线的位置关系】【2017,课标1,理20】已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】根据121k k +=-列出等式表示出k 和m 的关系,判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++. 解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)4. 【轨迹方程的求解,直线过定点问题】【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.【2017浙江,2】椭圆22194x y +=的离心率是A .133B .53C .23D .59【答案】B 【分析】 试题分析:94533e -==,选B .2.【2017课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆和直线20bx ay ab -+=相切,则C 的离心率为A 6B 3C 2D .13【答案】A 【分析】试题分析:以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=和圆相切,所以圆心到直线的距离等于半径,即:22d a a b==+,整理可得223a b =,即()222223,23a a c a c =-=,从而22223c e a ==,椭圆的离心率263c e a ===,故选A .【考点】椭圆的离心率的求解;直线和圆的位置关系【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式e =c a; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)和双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则()A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A 【分析】则很容易出现错误。

4.【2016高考新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 和线段PF 交于点M ,和y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为() (A )13(B )12(C )23(D )34【答案】A 【分析】试题分析:由题意设直线l 的方程为()y k x a =+,分别令x c =-和0x =得点||()FM k a c=-,||OE ka=,由OBE CBM∆∆,得1||||2||||OE OB FM BC=,即2(c)ka ak a a c=-+,整理,得13ca=,所以椭圆离心率为13e=,故选A.考点:椭圆方程和几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c的值,进而求得e的值;(2)建立,,a b c的齐次等式,求得ba或转化为关于e的等式求解;(3)通过特殊值或特殊位置,求出e.5.【2015高考新课标1,理14】一个圆经过椭圆221164x y+=的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.【答案】22325()24x y-+=【分析】设圆心为(a,0),则半径为4a-,则222(4)2a a-=+,解得32a=,故圆的方程为22325()24x y-+=.6.【2016高考江苏卷】如图,在平面直角坐标系xOy中,F是椭圆22221()x ya ba b+=>>0的右焦点,直线2by=和椭圆交于,B C两点,且90BFC∠=,则该椭圆的离心率是.6【分析】由题意得33(,),C(,),22b bB,因此2222236()()0322bc c a e-+=⇒=⇒=考点:椭圆离心率【名师点睛】椭圆离心率的考查,一般分两个层次,一是由离心率的定义,只需分别求出,a c ,这注重考查椭圆标准方程中量的含义,二是整体考查,求,a c 的比值,这注重于列式,即需根据条件列出关于,a c 的一个齐次等量关系,通过解方程得到离心率的值.7.【2017课标1,理20】已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且和C 相交于A ,B 两点.若直线P 2A 和直线P 2B 的斜率的和为–1,证明:l 过定点. 【分析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此134,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 和直线P 2B 的斜率分别为k 1,k 2,在设直线l 的方程,当l 和x 轴垂直,通过计算,不满足题意,再设设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,韦达定理,表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,判断出直线恒过定点.试题分析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+. 而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++. 解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线和圆锥曲线的位置关系.8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。

(1) 求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=。

证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F 。

【答案】(1) 222x y +=。

(2)证明略。

【分析】试题分析:(1)设出点P 的坐标,利用2=NP NM 得到点P 和点,M 坐标之间的关系即可求得轨迹方程为222x y +=。

(2)利用1OP PQ ⋅=可得坐标关系2231m m tn n --+-=,结合(1)中的结论整理可得0=OQ PF ,即⊥OQ PF ,据此即可得出题中的结论。

试题分析:(1)设()()00,,,P x y M x y ,设()0,0N x , ()()00,,0,NP x x y NM y =-=。

由2=NP NM 得002,2x x y y ==。

因为()00,M x y 在C 上,所以22122x y +=。

因此点P 的轨迹方程为222x y +=。

(2)由题意知()1,0F -。

设()()3,,,Q t P m n -,则()()3,,1,,33OQ t PF m n OQ PF m tn =-=---⋅=+-, ()(),,3,OP m n PQ m t n ==---。

由1=OP PQ 得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=。

所以0=OQ PF ,即⊥OQ PF 。

又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F 。

【考点】轨迹方程的求解;直线过定点问题。

9.【2017山东,理21】在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>2,焦距为2.(Ⅰ)求椭圆E 的方程; (Ⅱ)如图,动直线l :13y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且122k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT是M的两条切线,切点分别为,S T.求SOT∠的最大值,并求取得最大值时直线l的斜率.【答案】(I)221 2xy+=.(Ⅱ)SOT∠的最大值为3π,取得最大值时直线l的斜率为122k=±.【分析】试题分析:(I)本小题由22cea==,22c=确定,a b即得.(Ⅱ)通过联立方程组2211,23,2xyy k x⎧+=⎪⎪⎨⎪=-⎪⎩化简得到一元二次方程后使用韦达定理,使用弦长公式确定||AB及圆M的半径r表达式.试题分析:(I)由题意知2cea==,22c=,所以2,1a b==,因此椭圆E的方程为2212xy+=.(Ⅱ)设()()1122,,,A x yB x y,联立方程2211,23xyy k x⎧+=⎪⎪⎨⎪=⎪⎩得()2211424310k x k x+--=,由题意知0∆>,且()1121221231221kx x x xk+==-+,所以2211211221181221k kAB k x xk++=+-=+.由题意可知圆M 的半径r 为2211211822321k k r k ++=+ 由题设知1224k k =,所以224k k =因此直线OC 的方程为24y x k =.联立方程221,22,4x y y x k ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此2221211814k OC x y k +=+=+. 由题意可知1sin21SOT rOC r OCr ∠==++,而2121221121181411822321k OC k r k k k ++=+++21221112324141k k k +=++,令2112t k =+,则()11,0,1t t>∈, 因此2223313112221121119224OC t rt t t t t ===≥+-⎛⎫+---+ ⎪⎝⎭,当且仅当112t =,即2t =时等号成立,此时122k =±,所以1sin 22SOT ∠≤,因此26SOT π∠≤,所以SOT ∠最大值为3π.综上所述:SOT ∠的最大值为3π,取得最大值时直线l 的斜率为122k =±. 【考点】1.椭圆的标准方程及其几何性质;2.直线和圆锥曲线的位置关系;3. 二次函数的图象和性质.10.【2017天津,理19】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 和椭圆相交于点B (B 异于点A ),直线BQ 和x 轴相交于点D .若APD △6AP 的方程. 【答案】(1)22413y x +=,24y x =.(2)3630x +-=,或3630x -=. 【分析】试题分析:由于A 为抛物线焦点,F 到抛物线的准线l 的距离为12,则12a c -=,又椭圆的离心率为12,求出,,c a b ,得出椭圆的标准方程和抛物线方程;则(1,0)A ,设直线AP 方程为设1(0)x my m =+≠,解出P Q 、两点的坐标,把直线AP 方程和椭圆方程联立解出B 点坐标,写出BQ 所在直线方程,求出点D 的坐标,最后根据APD △6m ,得出直线AP 的方程.试题分析:(Ⅰ)解:设F 的坐标为(,0)c -.依题意,12c a =,2p a =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=.所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =.(Ⅱ)解:设直线AP 的方程为1(0)x my m =+≠,和直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-.将1x my =+和22413y x +=联立,消去x ,整理得22(34)60m y my ++=,解得0y =,或2634my m -=+.由点B 异于点A ,可得点222346(,)3434m mB m m -+-++.由2(1,)Q m-,可得直线BQ的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+,故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++.又因为APD △的面积为6,故221626232||m m m ⨯⨯=+,整理得2326|20m m -+=,解得6||m =,所以6m =. 所以,直线AP 的方程为3630x +-=,或3630x -=. 【考点】直线和椭圆综合问题11.【2017江苏,17】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F , 2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l .(1)求椭圆E 的标准方程;(2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=(2)4737( 【分析】解:(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是223b a c =-=因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 和1l 相交于1F ,和题设不符. 当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. F 1⋅O⋅F 2xy(第17题)因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001xy--,从而直线1l 的方程:001(1)x y x y +=-+,① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得004737,77x y ==;220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P 的坐标为4737(,)77.12.【2016高考新课标1卷】(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且和x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且和l 垂直的直线和圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[ 【分析】试题分析:根据EA EB +可知轨迹为椭圆,利用椭圆定义求方程;(II )分斜率是否存在设出直线方程,当直线斜率存在时设其方程为)0)(1(≠-=k x k y ,根据根和系数的关系和弦长公式把面积表示为x 斜率k 的函数,再求最值.试题分析:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ).过点)0,1(B 且和l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S . 可得当l 和x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 和x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为)38,12[. 考点:圆锥曲线综合问题【名师点睛】高考分析几何解答题大多考查直线和圆锥曲线的位置关系,直线和圆锥曲线的位置关系是一个很宽泛的测试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成, .其中考查较多的圆锥曲线是椭圆和抛物线,解决这类问题要重视方程思想、函数思想及化归思想的使用.13.【2016高考山东理数】(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>> 的离心率是32,抛物线E :22x y=的焦点F 是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 和C 交和不同的两点A ,B ,线段AB 的中点为D ,直线OD 和过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 和y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)1422=+y x ;(Ⅱ)(i )见分析;(ii )12S S 的最大值为49,此时点P 的坐标为)41,22( 【分析】试题分析:(Ⅰ)根据椭圆的离心率和焦点求方程;(Ⅱ)(i )由点P 的坐标和斜率设出直线l 的方程和抛物线联立,进而判断点M 在定直线上;(ii )分别列出1S ,2S 面积的表达式,根据二次函数求最值和此时点P 的坐标.试题分析:(Ⅱ)(i )设)0)(2,(2>m m m P ,由y x 22=可得x y =/, 所以直线l 的斜率为m ,因此直线l 的方程为)(22m x m m y -=-,即22m mx y -=. 设),(),,(),,(002211y x D y x B y x A ,联立方程222241m y mx x y ⎧=-⎪⎨⎪+=⎩得014)14(4322=-+-+m x m x m ,由0>∆,得520+<<m 且1442321+=+m m x x , 因此142223210+=+=m m x x x , 将其代入22m mx y -=得)14(2220+-=m m y , 因为mx y 4100-=,所以直线OD 方程为x m y 41-=. 联立方程⎪⎩⎪⎨⎧=-=m x x m y 41,得点M 的纵坐标为M 14y =-,即点M 在定直线41-=y 上. (ii )由(i )知直线l 方程为22m mx y -=,令0=x 得22m y -=,所以)2,0(2m G -,又21(,),(0,),22mP m F D))14(2,142(2223+-+mmmm,所以)1(41||2121+==mmmGFS,)14(8)12(||||212222++=-⋅=mmmxmPMS,所以222221)12()1)(14(2+++=mmmSS,令122+=mt,则211)1)(12(2221++-=+-=tttttSS,当211=t,即2=t时,21SS取得最大值49,此时22=m,满足0>∆,所以点P的坐标为)41,22(,因此12SS的最大值为49,此时点P的坐标为)41,22(.考点:1.椭圆、抛物线的标准方程及其几何性质;2.直线和圆锥曲线的位置关系;3. 二次函数的图象和性质.14.【2015江苏高考,18】(本小题满分16分)如图,在平面直角坐标系xOy中,已知椭圆()222210x ya ba b+=>>2,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线和椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.【答案】(1)2212x y +=(2)1y x =-或1y x =-+.【分析】试题分析(1)求椭圆标准方程,只需列两个独立条件即可:一是离心率为22,二是右焦点F 到左准线l 的距离为3,解方程组即得(2)因为直线AB 过F ,所以求直线AB 的方程就是确定其斜率,本题关键就是根据PC=2AB 列出关于斜率的等量关系,这有一定运算量.首先利用直线方程和椭圆方程联立方程组,解出AB 两点坐标,利用两点间距离公式求出AB 长,再根据中点坐标公式求出C 点坐标,利用两直线交点求出P 点坐标,再根据两点间距离公式求出PC 长,利用PC=2AB 解出直线AB 斜率,写出直线AB 方程.(2)当x AB ⊥轴时,2AB =C 3P =,不合题意.当AB 和x 轴不垂直时,设直线AB 的方程为()1y k x =-,()11,x y A ,()22,x y B , 将AB 的方程代入椭圆方程,得()()2222124210kxk x k +-+-=,则()221,2221k k x±+=,C 的坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭,且()()()()()222222121212211k x x y y k xx +AB =-+-=+-=.若0k =,则线段AB 的垂直平分线为y 轴,和左准线平行,不合题意.从而0k ≠,故直线C P 的方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,则P 点的坐标为()22522,12k k k ⎛⎫+ ⎪- ⎪+⎝⎭,从而()()2222311C 12k k k k ++P =+. 因为C 2P =AB ,所以()()()2222223114211212k k k kk k+++=++,解得1k =±.此时直线AB 方程为1y x =-或1y x =-+. 【考点定位】椭圆方程,直线和椭圆位置关系差法”解决,往往会更简单。

相关文档
最新文档