电机变压器计算公式
千瓦安培换算公式
千瓦安培换算公式千瓦安培(kVA)是一种功率单位,常用于电力系统中的变压器、发电机和电动机的额定容量表示。
它是电器设备所需的“视在功率”(apparent power)的度量单位。
视在功率是指电流和电压的乘积,用来表示电器设备所需的总电力。
千瓦安培的计算公式为 kVA = V * I,其中 V 代表电压(伏特),I 代表电流(安培)。
这个公式可以帮助我们计算出电器设备所需的视在功率,从而选择合适容量的变压器、发电机或电动机。
在实际应用中,理解和正确使用千瓦安培的概念非常重要。
电力系统的设计和运行需要考虑到电器设备的需求和供电能力之间的平衡。
如果电器设备所需的视在功率超过了供电能力,电力系统可能会出现过载或者故障。
因此,正确计算和选择千瓦安培的容量是非常重要的。
首先,我们需要了解电压和电流的关系。
电压是指电子的电势差,单位为伏特。
电流是指电子流动的方向和强度,单位为安培。
根据欧姆定律,电流等于电压除以电阻,即 I = V / R。
在实际应用中,电压和电流的值由电力系统的设计和设备的特性决定。
接下来,我们可以使用千瓦安培的计算公式来计算电器设备所需的视在功率。
例如,如果我们知道某个设备的电压为220伏特,电流为10安培,那么该设备所需的视在功率为 kVA = 220 * 10 = 2200千瓦安培。
计算出设备所需的千瓦安培后,我们需要选择合适容量的变压器、发电机或电动机。
通常情况下,我们应该选择稍大于所需容量的设备,以确保系统在负载峰值或突发负荷时能够正常运行,并提供一定的冗余。
过小的容量可能会导致设备过载和不稳定的电力供应。
此外,我们还应该考虑到设备的效率。
设备的效率是指设备所消耗的实际功率与所需的视在功率之间的比值。
选择高效率的设备可以减少能源消耗和运行成本。
总之,千瓦安培是一种重要的电力单位,用于表示电器设备所需的视在功率。
正确理解和使用千瓦安培的计算公式可以帮助我们选择合适容量的变压器、发电机或电动机,并确保电力系统的稳定运行。
变压器计算公式
变压器计算公式已知容量,求其各电压等级侧额定电流口诀a:容量除以电压值,其商乘六除以十。
说明:适用于任何电压等级。
在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。
将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀:容量系数相乘求。
已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。
口诀b:配变高压熔断体,容量电压相比求。
配变低压熔断体,容量乘9除以5。
说明:正确选用熔断体对变压器的安全运行关系极大。
当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。
这是电工经常碰到和要解决的问题。
已知三相电动机容量,求其额定电流口诀(c):容量除以千伏数,商乘系数点七六。
说明:(1)口诀适用于任何电压等级的三相电动机额定电流计算。
由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。
若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数。
三相二百二电机,千瓦三点五安培。
常用三百八电机,一个千瓦两安培。
低压六百六电机,千瓦一点二安培。
高压三千伏电机,四个千瓦一安培。
高压六千伏电机,八个千瓦一安培。
(2)口诀c使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。
(3)口诀c中系数是考虑电动机功率因数和效率等计算而得的综合值。
功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。
这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。
(4)运用口诀计算技巧。
变压器计算公式
变压器计算公式已知容量,求其各电压等级侧额定电流口诀a :容量除以电压值,其商乘六除以十。
说明:适用于任何电压等级。
在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。
将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀:容量系数相乘求。
已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。
口诀b :配变高压熔断体,容量电压相比求。
配变低压熔断体,容量乘9除以5。
说明:正确选用熔断体对变压器的安全运行关系极大。
当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。
这是电工经常碰到和要解决的问题。
已知三相电动机容量,求其额定电流口诀(c):容量除以千伏数,商乘系数点七六。
说明:(1)口诀适用于任何电压等级的三相电动机额定电流计算。
由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。
若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数。
三相二百二电机,千瓦三点五安培。
常用三百八电机,一个千瓦两安培。
低压六百六电机,千瓦一点二安培。
高压三千伏电机,四个千瓦一安培。
高压六千伏电机,八个千瓦一安培。
(2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。
(3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。
功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。
这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。
(4)运用口诀计算技巧。
电机负荷率计算公式
电机负荷率计算公式
变压器的实际容量/额定容量*100%=负载率。
对于伺服电机,负载率是指电机在每个工作循环中的工作时间/(工作时间、非工作时间)之比。
如果占空比低,允许电机以三倍的连续电流短时间运行,这样可以获得比额定连续运行更大的力
一般来说,大功率电机具有很强的负载能力。
T=P/w=P/(2π/60)=9550p/n 负载T的单位为n*m(牛顿米),功率P的单位为瓦特(w),角速度的单位为rad/S(弧度每秒),电机转速的单位为m/S(米每秒)。
从理论上讲,扭矩是0.75KW。
还有过载系数,可以在短时间内达到0.75*过载系数。
这是最大负载。
另外,根据转矩的计算,如果超过额定转矩,转速将开始下降,即滑移率将增加。
我的理解是,没有超过电机的最大转矩,电机会转动,但会剧烈升温。
如何根据电机总功率计算配电变压器大小-
如何根据电机总功率计算配电变压器大小?1.电动机起动电流Iq≈2~7额定电流,GB12325-90规定10KV及以下三相供电电压允许偏差为额定电压的±7%,GB-T-3811-2023起重机设计规范7.2.1.2规定电压波动不得超过额定值的±10%。
2.单台电动机直接启动场合降压变压器容量的选择:四极或二极鼠笼电机拖动风机一般直接启动,启动电流为额定电流的六倍,当电网电压下降15%时——留意已经超过了最大±10%的标准,则变压器次级容量=√3*380* (1-15) %Iq/1000*cosφ=1.732*323 Iq/850=0.66Iq,变压器的平均功耗为7.5%,所以变压器的容量=(1+0.075)*变压器次级容量=1.075*0.66Iq=1.075*0.66*5~7电动机额定电流,当取近似值时,变压器的容量≈8.5电动机额定功率。
3.数(N)台相同电动机同时直接启动场合降压变压器容量的选择:变压器的容量=1.075*N*每台电动机占用变压器次级容量=N (1.075*0.66)Iq=0.71*N* Iq,通常可取Iq,=12电动机额定功率(KW数),于是变压器的容量≈8.5*N*电动机额定功率。
按此原理,数台电动机功率不同时,可以分别计算,然后相加;不同时启动时,按同时启动电动机计算,再加上正常运行的电动机,求得两类电动机所占用变压器次级容量,再计算出变压器的容量。
4.单台电动机采纳变频器启动场合降压变压器容量的选择:与2項相比只是启动电流掌握在额定电流的2倍,于是变压器的容量=(1+0.075)*变压器次级容量=1.075*0.66Iq=2.838电动机额定功率,即变压器的容量≈2.8电动机额定功率。
5.同理,数(N)台相同电动机采纳变频器同时启动场合降压变压器容量的选择:变压器的容量≈2.8N单台电动机额定功率。
按此原理,数台电动机功率不同时,可以分别计算,然后相加。
变压器容量、短路、电流计算
1.变压器容量计算P=√3×U×I×COS¢在你的问题中,630KVA变压器一次侧:I=630000÷10000÷1.732=36.37A(你看变压器铭牌验证) 二次侧:I=630000÷380÷1.732÷COS¢≈1064A(COS¢按0.9计算)二次侧:I=630000÷400÷1.732÷COS¢≈1010.39A(COS¢按0.9计算)那么,二次侧也就是低压侧的可容纳负载为1000多一点,按一般推算,大约可以带动500KW的负载!由上面的计算可以看出,630的变压器可以带500KW的负载.就是说:变压器容量×80%得出的数字,就是它较为理想的负载量!2、一次侧额定电流:I=630000÷10000÷1.732=36.37A二次侧额定电流:I=630000÷400÷1.732=909A最大输出功率 P=630*0.95=599KW(COS¢按0.95)最大输出功率 P=630*0.9=567KW(COS¢按0.93、1、变压器的额定容量,应该是变压器在规定的使用条件下,能够保证变压器正常运行的最大载荷视在功率;2、这个视在功率就是变压器的输出功率,也是变压器能带最大负载的视在功率;3、变压器额定运行时,变压器的输出视在功率等于额定容量;4、变压器额定运行时,变压器的输入视在功率大于额定容量;5、由于变压器的效率很高,一般认为变压器额定运行时,变压器的输入视在功率等于额定容量,由此进行的运算及结果也是基本准确的;6、所以在使用变压器时,你只要观察变压器输出的电流、电压、功率因数及其视在功率等于或小于额定容量就是安全的(使用条件满足时);7、有人认为变压器有损耗,必须在额定容量90%以下运行是错误的!8、变压器在设计选用容量时,根据计算负荷要乘以安全系数是对的:4、在功率因数等于一时,1KVA就是1KW.所以630KVA的变压器在功率因数等于1时可以带630KW的负荷.功率如小于1,就乘以这个数值,是用变压器的额定容量乘以功率因数,所得的数值就是可以带的KW数.如何计算变压器容量_变压器容量计算公式-变压器的功(2009-02-27 09:54:43)变压器的功率是决定于负载的,既:P2=U2I I2I+U2II I2II+......+U2n I2In(VA)P1=P2/η(VA)式中:P2变压器次级功率计算值。
计算变压器电流公式
计算变压器电流公式选取铜蕊大小需查表,设备本身的功率(KW)或者是电流量(A).现给你计算公式如下: 1:220V计算公式I=P/VP=IV比如:W电热水器220VA=W/220V=13A电流,就用15A电制.2.380V计算公式(I=A=电流,P=功率=W,V=volt=电压,√3/cosØ-1=功率因数=1.73;n=0.8-0.85电机额定效率常数)I=P/V/(√3/cosq-1)/n例如:一部110t啤机W,380VI=/380/1.73/085=20A电流,就用30A电制.比如:地下生产部整体用电量300KW,380VI=/380/1.73/0.85=537A电流,就用600A总制.变压器容量:100KVA=152A=/380/1.73=152A(380V,25KW)I=p/v/√3/cos¢-1/n=/1.73/0.8=47.53A(铜蕊挑6mm2)用电费计算公式:工业用电(高峰:¥1.4元,平常:¥0.86元,低谷:¥0.444元)以990W为基准:W=PT=(990/)*1小时=0.99*1=0.99*¥0.86元=0.85元/hr除了个题型大概就是说道:以言导线截面积,导线长度,用电器功率大小,电压大小,谋容许通过的最小电流就是多少?该怎么算是?1、串联电路电流和电压有以下几个规律:(如:R1,R2串联)①电流:I=I1=I2(串联电路中各处的电流成正比)②电压:U=U1+U2(总电压等于各处电压之和)③电阻:R=R1+R2(总电阻等同于各电阻之和)如果n个阻值相同的电阻串联,则存有R 总=nR2、并联电路电流和电压有以下几个规律:(如:R1,R2并联)①电流:I=I1+I2(干路电流等同于各支路电流之和)②电压:U=U1=U2(干路电压等于各支路电压)③电阻: (总电阻的倒数等同于各并联电阻的倒数和)或。
如果n个阻值相同的电阻并联,则有R总= R特别注意:并联电路的总电阻比任何一个支路电阻都大。
变压器计算公式
变压器计算公式已知变压器容量,求其各电压等级侧额定电流口诀a :容量除以电压值,其商乘六除以十。
说明:适用于任何电压等级。
在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。
将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀:容量系数相乘求。
已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。
口诀b :配变高压熔断体,容量电压相比求。
配变低压熔断体,容量乘9除以5。
说明:正确选用熔断体对变压器的安全运行关系极大。
当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。
这是电工经常碰到和要解决的问题。
已知三相电动机容量,求其额定电流口诀(c):容量除以千伏数,商乘系数点七六。
说明:(1)口诀适用于任何电压等级的三相电动机额定电流计算。
由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。
若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。
三相二百二电机,千瓦三点五安培。
常用三百八电机,一个千瓦两安培。
低压六百六电机,千瓦一点二安培。
高压三千伏电机,四个千瓦一安培。
高压六千伏电机,八个千瓦一安培。
(2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。
(3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。
功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。
这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。
高中物理变压器公式总结
高中物理变压器公式总结篇一:变压器是电学中的重要设备,在高中物理中也是一个重要的考点。
变压器的工作原理基于电磁感应定律,其公式如下:F = B * A * sinθ其中:F 表示转矩(单位为 N·m);B 表示磁感应强度(单位为特斯拉);A 表示磁通量(单位为 A·m^2);θ表示磁感线和法向量之间的夹角。
在变压器中,磁通量发生变化时会产生感应电动势,进而产生感应电流,这个感应电流又会产生磁场,这两个磁场相互感应、相互排斥,从而产生转矩,也就是变压器的电能输出。
变压器的负载大小取决于输入功率和变压器的容量,输入功率越大,变压器的容量也越大。
变压器的容量可以通过公式:C = Q/T计算得出。
其中,C 表示变压器的容量(单位为 W),Q 表示输入功率(单位为W),T 表示变压器的负载时间(单位为 s)。
除了基本的变压器公式,还可以利用这些公式进行变压器的分析和设计。
例如,可以利用变压器的磁通量变化和感应电动势大小来计算变压器的损耗和电能损失,从而优化变压器的性能和设计。
变压器在实际应用中发挥着重要的作用,例如在电力系统中用于输电、配电和调频等。
了解变压器的工作原理和公式,对于理解和分析变压器的行为和性能都具有重要意义。
篇二:变压器是电学中的一个重要设备,它利用原动机(如电机)产生的电压和电流,通过变压器的线圈产生不同的电压和电流输出,以满足各种电路的需求。
在高中物理中,变压器的公式掌握对于理解变压器的原理和应用非常重要。
本文将对高中物理变压器公式进行总结和拓展。
一、变压器的工作原理变压器是利用电磁感应的原理来实现电能的转换的。
具体来说,变压器的工作原理可以分为三个步骤:1. 初级线圈产生磁场:当电流通过变压器的初级线圈时,会在线圈内部产生一个磁场。
这个磁场由原动机的电流产生,并通过变压器的初级线圈进入次级线圈。
2. 次级线圈产生感应磁场:当磁场穿过次级线圈时,会在线圈内部产生一个感应磁场。
变压器功率计算公式
变压器功率=输出电压X输出电流
单相变压器功率由用电总功率*120%获得(效率按80%计算力
三相变压器功率计算如下(以相电压220V,线电压380V 为例):
变压器功率怎么算?如何估算变压器功率
1.三相额定功率=1.732*额定电流*额定线电压(380V)=3*额定电流*额定相电压(220VI
2、三相功率不同,按最大功率的一相乘3计算,如,A 相9KW,B相IOKW,C相IlKW,P=3*ll=33KW o
3、变压器功率因素一般为0.8(也有0.7的),则,上
例中,变压器总功率=33/0.8=41.25KW。
变压器的功率=输出电压*输出电流(如果有多组就每组功率相加)
得到的结果要除以变压器的效率,否则输出功率不足。
100W以下除0.75,100W-300W除0.9,300W以上除0.95.事实上变压器的骨架不一定很合适计算结果,所以这只是要设计变压器的功率。
为何要用自耦变压器?还买得到吗?用软启动器不就行了?
我们套用公式来算一下:
,式1
式1中,Km是电动机起动系数,Sn是变压器容量,Pm 是电动机功率。
若Km大于6,可直接起动;若Km在4到6之间,可用星角起动或者自耦变压器起动;若Km小于4,则必须用软启
动器起动。
我们把数据代入:
这个值太低了,根本就不能用自耦变压器,只能用软起动器起动。
2024年电气专业常用计算公式及计算规则总结(2篇)
2024年电气专业常用计算公式及计算规则总结在____年,电气专业的常用计算公式和计算规则将根据当时的技术和应用领域而有所变化。
以下是一些可能在____年电气专业中常用的计算公式及计算规则的总结:1. 直流电路计算公式:- 电压和电流的关系:U = I * R- 电流和电阻的关系:I = U / R- 电压和电阻的关系:U = P * I2. 交流电路计算公式:- 电压和电流的关系:V = I * Z- 电流和阻抗的关系:I = V / Z- 电压和阻抗的关系:V = P * I^2 * R3. 电阻计算规则:- 串联电阻的计算规则:R = R1 + R2 + R3 + ...- 并联电阻的计算规则:1/R = 1/R1 + 1/R2 + 1/R3 + ...4. 电感计算公式:- 电感和电流的关系:L = V / (ω * I)- 电感和频率的关系:L = V / (2π * f * I)5. 电容计算公式:- 电容和电压的关系:C = Q / V- 电容和电荷量的关系:C = Q / (V * t)6. 三相电路计算公式:- 三相电流的计算公式:I = P / (√3 * V * cos(θ))- 三相功率的计算公式:P = √3 * V * I * cos(θ)- 三相功率因数的计算公式:cos(θ) = P / (√3 * V * I)7. 变压器计算公式:- 变压器的变比计算公式:N1 / N2 = V1 / V2 = I2 / I1- 变压器的功率计算公式:P1 = P28. 电磁场计算公式:- 磁感应强度和磁场强度的关系:B = μ * H- 洛伦兹力的计算公式:F = q * (v × B)9. 电机功率计算公式:- 电机功率的计算公式:P = V * I * η总结:在____年,电气专业常用的计算公式和计算规则可能会根据当时的技术和应用领域有所调整和更新。
以上提供的公式和规则仅仅是一些可能的例子,电气专业学生需要根据当时的最新知识和技术来学习和运用相关的计算公式和规则。
电机学三相变压器公式
电机学三相变压器公式英文回答:Three-phase transformers are widely used in electrical power systems to transfer electrical energy between different voltage levels. The primary winding of a three-phase transformer is connected to a three-phase power source, while the secondary winding is connected to the load. The primary and secondary windings are wound on a common magnetic core, which allows for the efficient transfer of energy between the two windings.The basic formula for a three-phase transformer is as follows:Vp/Vs = Np/Ns.Where:Vp is the primary voltage.Vs is the secondary voltage.Np is the number of turns in the primary winding.Ns is the number of turns in the secondary winding.This formula relates the turns ratio of the transformer to the voltage ratio. By adjusting the number of turns in the primary and secondary windings, the desired voltage transformation can be achieved. For example, if the primary voltage is 480V and the desired secondary voltage is 240V, and the turns ratio is 1:2, then the number of turns in the primary winding (Np) would be twice the number of turns in the secondary winding (Ns).It is important to note that the turns ratio is not the same as the voltage ratio. The turns ratio determines the voltage transformation, while the voltage ratio is the actual ratio of the voltages. The voltage ratio can be calculated using the turns ratio and the formula:Vs/Vp = Ns/Np.In addition to the turns ratio and voltage ratio,three-phase transformers also have a phase shift between the primary and secondary voltages. This phase shift is determined by the winding configuration and the connection of the windings. The most common configuration for three-phase transformers is the delta-wye configuration, where the primary winding is connected in a delta configuration and the secondary winding is connected in a wye configuration. This configuration results in a 30-degree phase shift between the primary and secondary voltages.In conclusion, the formula for a three-phase transformer relates the turns ratio to the voltage ratio, allowing for the efficient transfer of electrical energy between different voltage levels. The turns ratio determines the voltage transformation, while the voltage ratio is the actual ratio of the voltages. The phase shift between the primary and secondary voltages is determined by the winding configuration. By understanding these concepts and using the appropriate formulas, engineers can designand operate three-phase transformers to meet the specific voltage requirements of electrical power systems.中文回答:三相变压器广泛应用于电力系统中,用于在不同电压级别之间传输电能。
电机变压器计算公式
电机变压器计算公式电机变压器在工业生产中有着广泛的应用,特别是在实际电气控制系统中,它被广泛应用于电压和电流的调节。
本文将介绍一些常用的电机变压器计算公式,以便更好地理解和应用电机变压器。
1. 标称电压标称电压(Un)是指所需的稳态电压,即正常运行时电压的额定值。
在电机变压器设计和选型时,需要根据不同的应用场景确定标称电压。
2. 额定容量额定容量是指电机变压器所能调节的最大功率。
其单位通常为千瓦(kW)或千伏安(kVA)。
在电机变压器的安装和使用中,需要确保所选配的电机变压器额定容量可以满足实际功率需求,避免过载或低效运行。
3. 变比变比是指电机变压器的输入电压和输出电压之间的比值。
变比通常采用“N1/N2”的表示方法,其中N1是输入线圈的匝数,N2是输出线圈的匝数。
对于理想的电机变压器,输入和输出电压之间的变化是完全成反比的关系。
4. 输电损耗输电损耗是指电能在输送过程中的损失,包括正常电路中电阻和电感引起的电功率和磁耗损耗。
输电损耗常用下列公式计算,其中P是输电损耗,U是输入电压,I是输出电流,R是电阻,L是电感。
P=I2R+U12(1−k)2/(kL)其中k是电机变压器的变比,即输出电压与输入电压的比值。
5. 电容电容是指在电路中存储电荷以及吸收和释放能量的能力。
在电机变压器的设计和应用中,电容常用于补偿变压器中的电感压降,从而达到流量和电压的稳定调节。
电容的计算公式如下:$$ C = I \\cdot dt / dv $$其中,I是输出电流,dt是输出电流上升或下降的时间,dv是电压上升或下降的值。
6. 绝缘耐压绝缘耐压是指电气设备在正常工作状态下可以承受的最大电场强度,通常以伏特(V)为单位。
电机变压器的绝缘耐压要求应满足国家或地区相关的标准要求。
7. 总结以上是常见的电机变压器计算公式,这些公式通常在设计和选择电机变压器以及安装和使用电机变压器时使用。
以上公式不仅适用于电机变压器,而且也适用于其他电力设备。
小型变压器的计算公式
小型变压器的计算公式首先,根据输入电压和输出电压的大小关系可以确定变压器的变比。
变比是指变压器的输出电压与输入电压的比值。
对于小型变压器,往往是通过变压器的绕组比例来实现变比的。
变压器的变比等于输出电压除以输入电压,即:变比=输出电压/输入电压其次,功率是指变压器输入电流和输出电流的乘积,即:功率=输入电流×输入电压=输出电流×输出电压由于变压器是一个能量转换设备,根据能量守恒定律,我们可以得到:输入功率=输出功率×变压器效率变压器的效率是指变压器的输出功率与输入功率的比值。
效率通常是以百分比表示的。
变压器的效率主要由变压器的损耗决定,损耗包括铁损耗和铜损耗。
铁损耗是指变压器主磁路中的磁滞损耗和涡流损耗。
磁滞损耗是由于铁芯的磁化和去磁化过程中产生的能量损耗,通常用功率因素进行表示;涡流损耗是由于铁芯中的感应电流在铁芯上形成环流而产生的能量损耗,通常用电阻值进行表示。
铜损耗是指变压器绕组中电流通过导线时产生的电阻损耗。
铜损耗通常用功率因素和电阻值的平方进行表示。
综上所述,小型变压器的计算公式如下:1.变压器的变比计算公式:变比=输出电压/输入电压2.功率计算公式:功率=输入电流×输入电压=输出电流×输出电压3.输入功率与输出功率之间的关系:输入功率=输出功率×变压器效率4.变压器效率计算公式:变压器效率=输出功率/输入功率×100%5.铁损耗计算公式:铁损耗=磁滞损耗+涡流损耗6.铜损耗计算公式:铜损耗=电流的平方×电阻值根据上述公式,可以进行小型变压器的计算。
需要注意的是,变压器的计算过程中还需要考虑到其它因素,如变压器的冷却方式、温升限制等。
因此,在实际应用中,还需要根据具体情况进行合理选择和调整。
电机与拖动第四节变压器的基本方程等效电路和相量图
电机与拖动上节课第三节变压器的负载运行1111U E I Z =−+ 2222U E I Z =−一、变压器的基本方程第四节变压器的基本方程、等效电路和相量图•基本方程式组•按照方程的类别列1U 1I mφ 2I 2U 1E 2E 1E σ2E σ•原端电压方程式•副端电压方程式•原副端电势联系•原副端磁势联系•激磁方程•负载方程•六个基本方程式111122221212122/1mm m LU E I Z U E I Z EE k I I I k E I Z UI Z =−+=−=+=−== 1U •已知:,Z 1,Z 2,k ,Z m ,Z L•求解:I 1, I 2, E 1, E 2, I m , U 2•正好可以求出来唯一解二、归算1U 1I mφ 2I 2U 1E 2E 1E σ2E σ目的:-原来的电路复杂,想办法去掉变压器→纯电路问题方法:-线性变换-用一个假想的和原方匝数N 1 一样的绕组N 2´代替N 2原则:-电磁本质不变-磁势,磁通,功率………归算过程:-注意归算前匝数N2,归算以后:'21N N=.''2222N I N I=(1)电流-磁势不变(2)电势-磁通不变(3)电阻-有功功率不变.'221I Ik=2..'12E E k E== ()E N∝22''2222I r I r=2'22r k r='222x k x σσ='222Z k Z =(4)漏抗-无功功率不变-可以有多种方法理解(5)漏阻抗2x Nσ∝.''22221,E k E I I kσσ==(1)物理概念(2)电势电流(3)量纲:与电阻相同'''222Z r xσ=+..''2222U I U I =.'22U kU =.2.2L U Z I =(6)负载电压-输出功率不变(7)负载阻抗-根据定义'2LLZ k Z =...1111U E I Z =−+..''''2222U E I Z=−...'12m I I I=+..'12E E=..1m mE I Z −=..'''22LU I Z =k 归算匝数归算系数原匝数=21k k k 电压、电势归算值实际值 电流 阻抗⎧⎪⎪⎪⎪⎪=×⎨⎪⎪⎪⎪⎪⎩•其中: 归算以后的方程式:三、变压器的等值电路1N 1U 1I 1E 1Zm Z'2I '2Z '2E A BDC'2N'2U 采用逐步简化的方法k=1 的理想变压器1U 1I 1Z m Z'2I '2Z '2U 1、T 型等值电路1U 1I 1Z m Z-'2I '2Z-'2U d Z1、T 型等值电路1、T型等值电路命名的方法,拿掉电源和负载的拓扑命名法注意正方向的调整验证了副端感性负载的去磁效应性质,即有负载后必须增大电流才能维持磁通不变从能量上讲,验证了副方能量肯定来自原方,可以画出能量图..11dU I Z =121211''111()''md L m L Z Z Z Z Z Z Z Z Z =+=++++¾等效阻抗:¾优点:物理意义清楚¾缺点:并联支路多求解麻烦1U 1I 1Z m Z-'2I '2Z -'2U d Z11m m mE U I Z Z =≈1Z •很小2、Г型等值电路•可以移出励磁回路,误差在允许范围内1U 1I 1Z m Z-'2I '2Z-'2U '12''12LU I Z Z Z −=++电力变压器中电流↑↑,相对地I m 的比例更小 略去不计1U 1I 1Z-'2I '2Z -'2U 1U 1I =-'2I kZ '2U −3、最简化等值电路'1112'''12L k LU U I I Z Z Z Z Z =−==+++'12k Z Z Z=+k k kZ r jx =+¾定性分析时常用¾短路参数的概念¾定义短路阻抗: 物理意义(2)短路阻抗对负载来说,相当于变压器的“内阻”(1)由于很小,所以变压器稳定短路时电流↑↑3、最简化等值电路'12k r r r=+'12k x x x σσ=+第一部分电机原理第三章变压器四、相量图1、画相量图的依据(2)不同量之间的相位关系,如电势和磁通(1)基本方程式组:相量之间的关系,如何叠加(3)不同元件的电压和电流的关系-电阻、电容、电感-相位角,电阻时=0,电容时<0、电感时>0(4)基本相量关系--11,I jI jI E E −如和和-2、T 型等值电路的相量图2I 2U 2cos ϕ.1U .1I 最常见的,已知,,求: 步骤:(1)按比例画出,,-依据:'2U 2ϕ'22/I I k='22U kU ='2I'2U '2I2、T型等值电路的相量图(2)求出来,,,并按比例画出-依据:2..''''222...'''''22222E U I Z U I r j I x=+=++.1E −'21E E =.'2E .1E (3)求-方向:超前E 1相量90 度-大小:4.44公式.mΦ'2U'2I ''22I r ''22jI xσ'21E E = mφ 1E −2、T型等值电路的相量图(4)求I m 相量-方向:-大小:1m mr tgx α−=1m mE I Z =...'12()m I I I =+−(5)求I 1相量-依据:'2U '2I '21E E = mI '2I− 1I mφ 1E − ''22jI x σ''22I r2、T型等值电路的相量图(6)求U 1相量-依据:..1111..11111U E I Z E I r j I x =−+=−++'2U '2I''22I r''22jI xσ'21E E = mI '2I − 1I mφ 1E − 11I r 11jI x σ1U3、对应简化等值电路的相量图方程:...'112kU U I Z =−+12I I ′=− 2U ′− 1kI r 1kjI x 1U 2ϕ1U 1I =-'2I kZ '2U −五、变压器的分析方法比较¾基本方程式组-原始;准确-定量计算¾等值电路-简化;场→路,-定量计算、定性分析¾相量图-对应于等值电路-定性分析思考问题:1、变压器为什么要采用归算的方法处理?归算完了以后计算结果会不会有误?2、何时可以用最简化等效电路计算?。
变压器z接法计算
变压器z接法计算一、变压器Z接法的基本概念变压器Z接法,又称三角形接法或Y接法,是指将三相变压器的三个绕组分别连接成三角形。
在这种接法下,每个绕组的两端分别连接在一起,形成一个闭合的三角形。
这种接法在我国电力系统中得到广泛应用。
二、变压器Z接法的计算方法1.计算变压器匝数比匝数比是变压器高压绕组与低压绕组的匝数之比。
用公式表示为:N1/N2 = U1/U2。
其中,N1为高压绕组匝数,N2为低压绕组匝数,U1为高压侧电压,U2为低压侧电压。
2.计算电压比电压比是变压器高压侧电压与低压侧电压之比。
用公式表示为:U1/U2 = N1/N2。
这个比值决定了变压器对电压的调整能力。
3.计算电流比电流比是变压器高压侧电流与低压侧电流之比。
用公式表示为:I1/I2 = N2/N1。
这个比值反映了变压器对电流的传输能力。
4.计算功率比功率比是变压器高压侧功率与低压侧功率之比。
用公式表示为:P1/P2 = (U1I1)/(U2I2) = (N1/N2) * (U1/U2) * I1/I2。
这个比值说明了变压器对功率的转换效率。
三、Z接法在实际应用中的优点和缺点优点:1.结构简单,可靠性高,维护方便。
2.输电能力较强,适用于长距离输电。
3.能够实现电压的变换,满足不同电压等级的需求。
缺点:1.占地面积较大,土地资源有限的情况下,不利于节约空间。
2.线路损耗较大,能源利用率较低。
四、注意事项1.在选用变压器Z接法时,应根据实际需求合理选择变压器容量、电压等级和匝数比。
2.注意变压器的负载能力,避免长时间过载运行。
3.定期检查和维护变压器,确保其正常运行。
4.做好绝缘和防护措施,防止意外事故发生。
总之,变压器Z接法在电力系统中具有广泛的应用。
通过合理计算和选用,可以实现电压、电流和功率的变换,满足不同电压等级和负载需求。
变压器试验计算公式汇总
变压器试验计算公式汇总变压器试验计算版第⼀部分直流电阻的计算第⼆部分绝缘特性的计算第三部分⼯频外施耐压试验的计算第四部分空载试验的计算第五部分负载试验与短路阻抗的计算第六部分零序阻抗的计算第七部分温升试验的计算第⼋部分声级测定的计算第九部分计算案例⼀、直流电阻的计算1.电阻(Ω)=电阻率(Ω/m)×长度(m)/截⾯积(mm2)2.电阻温度的换算铜 R T=R t×(235+T)/(235+t)铝 R T=R t×(225+T)/(225+t)R T:需要被换算到T℃的电阻值(Ω)R t:t℃下的测量电阻值(Ω)T :温度,指绕组温度(℃)t :温度,指测量时绕组的温度(℃)3.绕组相电阻与线电阻的换算R a=1/2(R ab+R ac-R bc)R b=1/2(R ab+R bc-R ac)R c=1/ 2(R bc+R ac-R ab)D接,且a-y、b-z、c-xR a=(R ac-R p)-(R ab R bc)/(R ac-R p)R b=(R ab-R p)-(R ac R bc)/(R ab-R p)R c=(R bc-R p)-(R ab R ac)/(R bc-R p)R p=(R ab+ R bc + R ac)/2R ab=R a(R b+R c)/(R a+R b+R c)R L=2R p/3R AB、R BC、R AC、R ab、R bc、R ac、:绕组线电阻值(Ω)R a、R b、R c、 R AN、R BN、R CN:绕组相电阻值(Ω)R p:三相电阻平均值(Ω)4.三相绕组不平衡率计算β=(R MAX-R min)/R(三相平均值)β:三相绕组电阻值的不平率(%)R MAX:测量电阻的最⼤值(Ω)R min:测量电阻的最⼩值(Ω)5.测量直阻时所需的直流电流计算I Y =1.41×K×i oI D =1.22×K×i oK :系数,取3-10i o :空载电流,A6.试品电感的计算L=ф/I=K×I×n×S/(l×I)=K×n×S×µ/lL:试品电感(H)K:k=0.4π×10-6 (H/m)S:铁⼼截⾯(cm2)l:铁⼼回路长度(m)µ:导磁系数n :匝数7.测量直阻对所需充电稳定时间的计算T=L/RT : 充电时间常数(S)当I1=I O时,t≥5T时才能稳定L : 试品测量绕组电感(L) I1 :测量充电电流(A)R :试品测量绕组电阻(R) I O :试品空载电流(A)8.试品磁场强度的计算H=nI/lH :磁场强度(A/m) I :流经绕组的电流(A)n :匝数 l :铁⼼回路长度(m)⼆、绝缘特性的计算1.吸收⽐的计算吸收⽐=R60s/R15S S:秒2.极化指数的计算极化指数=R10min/R1min min:分3.位移电流衰减时间的计算T d=RC×10-6T d :衰减时间(S)R :绝缘电阻值,MΩC :变压器的⼏何电容值(PF)4.吸收电流的估算I a(t)=BCUt-nI a(t):吸收电流(A)B :因数,与绝缘材料的性质、状态、温度有关C :绝缘体的等效电容n :常数,0<n<15.绝缘电阻值不同温度的换算R2=R1×1.5(t1-t2)10R2 : 温度为t2℃时的绝缘电阻值R1:温度为t1℃时的绝缘电阻值6.绝缘介质损耗的计算P=UIcosφ=ωCU2tanσP :绝缘内部消耗的功率U :施加于绝缘介质两端的电压C :绝缘介质的等效电容7.介质损耗不同温度下的换算tanσ2=tanσ1×1.3(t2-t1)/10tanσ2 :温度为t2℃时的tanσ值tanσ1 :温度为t1℃时的tanσ值三.⼯频外施耐压试验的计算1.同步发动机组未带电抗器不⾃激的计算X c>X d+X2+X kX c :折算到发电机端的负载容抗Xc=1/ωc (Ω) C :试品电容X d :发电机的同步阻抗(Ω)X2 :发电机的逆序阻抗(Ω)X k :试验变压器的短路阻抗(Ω)2.同步发电机带电抗器不⾃激的计算X c>(X d+X2)X L /(X d+X2+ X L) + X k X L :并联补偿电抗器的感抗(Ω)3.试验变压器容升的计算△U=I1/I N[e r cosφ1±e x sinφ1+1/2(e x cosφ1±e r sinφ1)2]△U :电压变化%值I1 :试验变压器低压侧电流(A)I N :试验变压器低压侧额定电流(A)e r :试验变压器短路阻抗的有功分量 e r=P kt/10S N (%)e x :试验变压器短路阻抗的⽆功分量 e x=U xt2 - e r2 (平⽅根)cosφ1:电压与电流的功率因数,等同于变压器介损测量值tanφsinφ1 :sinφ=1-tanφ(cosφ1)2 (平⽅根)4.补偿电抗器容量选择的计算S C<S X≤S G+S CS X :补偿电抗器50HZ的容量(KVA)S C :被试变压器在⼯频耐压时的试验容量,S C=U2ωcS G :发电机容量(KVA)5.电容分压器分压⽐的计算K c=(C2+C1)/C1K c :分压⽐C1 :⾼压臂电容(F)C2 :低压臂电容(F)6.变压器漏抗的计算X S=(U H/I H)×U K%X S :变压器漏抗(Ω)U H :变压器额定电压(V)U H :变压器额定电流(A)U K :变压器短路阻抗(%)四.空载试验的计算1.空载损耗的计算P o1=P o〃- P WV - P sP o1:空载损耗(W)P o〃:实测损耗(W)P WV :仪表损耗(W)P s :测量电缆损耗(W)2.空载电流的计算I o=(I ao+I bo+I co)/3I rI o :空载电流(%)I ao、I bo、I co :三相实测空载电流(A)I r :励磁绕组额定电流(A)3.空载损耗校正的计算P o =P o1[1+(U1- U r)/U1]P o :校正后的空载损耗值(W)P o1 :校正前的空载损耗值(W)U1 :平均值电压表测量值(V)U r:有效值电压表测量值(V)4.空载试验电源容量的计算S o=0.01× K ×i o ×S nS o :试验电源容量(KVA)K :系数,1≤K≤10,基本取K≥5可满⾜波形要求。
常用变压器容量计算方法
施工临时供电变压器容量计算方法一(估算)变压器容量计算公式:P =K0(K1∑P1/ (cosø×η)+K2∑P2 +K3∑P3+K4∑P4)P 施工用电变压器总容量(KVA)∑P1 电动机额定功率(KW)∑P2 电焊机(对焊机)额定容量(KVA)∑P3 室内照明(包括空调)(KW)∑P4 室外照明(KW)K1、K2、K3、K4为需要系数,其中:K1:电动机:3~10台取0.7,11~30台取0.6,30台以上取0.5。
K2:电焊机:3~10台取0.6,10台以上取0.5。
K3:室内照明:0.8K4:室外照明:1.0。
cosø:电动机的平均功率因素,取0.75η:各台电动机平均效率,取0.86照明用电量可按动力用电总量的10%计算。
有效供电半径一般在500m以内。
施工用电量及变压器容量计算书实例一.编制依据《施工现场临时用电安全技术规范》JGJ46-2005《工程建设标准强制性条文》《建筑工程施工现场供电安全规范》GB50194--93《建筑施工现场安全规范检查标准》JGJ59-99《电力工程电缆设计规范》GB50217《简明施工计算手册》第三版(江正荣、朱国梁编著)二.施工现场用电初步统计1)计算公式工地临时供电包括施工及照明用电两个方面,参照《简明施工计算手册》第三版(江正荣、朱国梁编著)计算公式(17-17)如下:P =η(K1∑P1/ cosø+K2∑P2 +K3∑P3+K4∑P4)其中η─用电不均衡系数,取值1.1;P─计算用电量(kW),即供电设备总需要容量;ΣP1 ──全部电动机额定用电量之和;ΣP2 ──电焊机额定用电量之和;ΣP3 ──室内照明设备额定用电量之和;ΣP4 ──室外照明设备额定用电量之和;K1 ──全部动力用电设备同时使用系数,取0.6;K2 ──电焊机同时使用系数,取0.6;K3 ──室内照明设备同时使用系数,取0.8;K4 ──室外照明设备同时使用系数,取1.0;cosφ──用电设备功率因数,取0.75。
变压器计算公式口诀
变压器计算公式口诀已知变压器容量,求其各电压等级侧额定电流口诀a:容量除以电压值,其商乘六除以十。
说明:适用于任何电压等级。
在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。
将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀:容量系数相乘求。
已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。
口诀b:配变高压熔断体,容量电压相比求。
配变低压熔断体,容量乘9除以5。
说明:正确选用熔断体对变压器的安全运行关系极大。
当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。
这是电工经常碰到和要解决的问题。
已知三相电动机容量,求其额定电流口诀(c):容量除以千伏数,商乘系数点七六。
说明:(1)口诀适用于任何电压等级的三相电动机额定电流计算。
由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。
若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。
三相二百二电机,千瓦三点五安培。
常用三百八电机,一个千瓦两安培。
低压六百六电机,千瓦一点二安培。
高压三千伏电机,四个千瓦一安培。
高压六千伏电机,八个千瓦一安培。
(2)口诀c使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。
(3)口诀c中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。
功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。
这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。