济南大学2013——2014高等数学(二)A试卷
济南大学大一上学期高等数学试题
济南大学大一上学期高等数学试题1(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高等数学(上)模拟试卷一一、 填空题(每空3分,共42分)1、函数lg(1)y x =-的定义域是 ;2、设函数20() 0x x f x a x x ⎧<=⎨+≥⎩在点0x =连续,则a = ;3、曲线45y x =-在(-1,-4)处的切线方程是 ;4、已知3()f x dx x C =+⎰,则()f x = ;5、21lim(1)x x x →∞-= ;6、函数32()1f x x x =-+的极大点是 ;7、设()(1)(2)2006)f x x x x x =---……(,则(1)f '= ;8、曲线x y xe =的拐点是 ;9、201x dx -⎰= ;10、设32,a i j k b i j k λ=+-=-+,且a b ⊥,则λ= ;11、2lim()01x x ax b x →∞--=+,则a = ,b = ; 12、311lim xx x -→= ;13、设()f x 可微,则()()f x d e = 。
二、 计算下列各题(每题5分,共20分)1、011lim()ln(1)x x x →-+2、y =,求y '; 3、设函数()y y x =由方程xy e x y =+所确定,求0x dy =;4、已知cos sin cos x t y t t t =⎧⎨=-⎩,求dy dx 。
三、 求解下列各题(每题5分,共20分)1、421x dx x +⎰2、2sec x xdx ⎰3、40⎰4、2201dx a x +四、 求解下列各题(共18分):1、求证:当0x >时,2ln(1)2x x x +>- (本题8分)2、求由,,0x y e y e x ===所围成的图形的面积,并求该图形绕x 轴旋转一周所形成的旋转体的体积。
济南大学2009~2010学年第一学期课程考试试卷(A卷)答案
概念 极限 性质 计算方法
概念 连续 基本结论 性质 初等函数的连续性 闭区间上连续函数的性质
左右极限
第二章主要内容回顾
导数的概念、几何意义 定义求导 导数 求导方法 基本公式、四则运算、复合求导 反函数求导 特殊函数求导 隐函数求导 高阶导数
0
证明至少存在一点 (0,1) ,使得 f ( )(1 ) f ( x)dx
证:
令F ( x) (1 x) f (t )dt
0
x
F ( x) f (t )dt (1 x) f ( x)
0
x
显然,F ( x)在[0,1]上连续,在 0,1)内可导,且 (0) F (1), ( F
原积分
xdf ( x )
2
2
xf ( x)
f ( x)dx
2
4
1
五、解答题(8分)
y f ( x)
的极值。
dy t 2 1 2 0 dx t 1
由参数方程
x t 3 3t 1 3 y t 3t 1
确定,求
f ( x)
3 1 x 3 2 x x
x0 x0
5.设
x ln(1 t an t )dt 0 f ( x) x2 a
2
在原点处连续,则
a
0
lim
x 0
x2 0
ln( tan t )dt 1 x
2
2 x ln( tan | x |) 1 lim x 0 2x
济南大学高数考试试题0405高等数学A(二)参考答案
一、二题:选择题:ABCAC ,DACDA填空题:1、0)3()1(4)1(2=---+-z y x ;2、dy y x f dx x ⎰⎰010),(3、⎰⎰⎰3042020sin dr r d d ϕϕθππ 4、R x n x n x x x x n n n n n ∈+-=++-+-+-∑∞=++,)!12()1()!12()1(!5!30121253 5、x x e C e C y 221+=-三、四题:三、求偏导数1、22yx x x z +=∂∂……………………………………………………………….3分 2222)(2y x xy y x z +-=∂∂∂………………………………………………………3分 2、方程两边分别求x 的导数得:033=--x x z xyz yz z e ………………….2分 xye yz z z x 33-=……………………………2分 e xy e yz z z z x333,1)1,0()1,0()1,0(=-==……………………..2分 四、解:xQ y P x Q xy P ∂∂=∂∂==22故曲线积分与路径无关……………………………..3分 设A )0,2(π 选折线段,原积分=⎰⎰+ABOA …………………………………….2分 42π=………………………………………………..3分 (其他方法参考本过程给分)五、六题:五、解:n n n n nx a x n ∑∑∞=∞==+11))12( 112321−−→−++=∞→+n n n n n a a 收敛半径R=1………………………………………………..2分由于1±=x 时级数发散,故收敛区间为(-1,1)………………..2分 在区间(-1,1)上,设和函数为)(x s ,则∑∞=+=1))12()(n n x n x s∑∑∑∑∞=∞=-∞=∞=+=+1111122n n n n n nn n x nx x x nx ∑∑∞=∞=+'11)(2n n n nx x x =xx x x x -+'-=1)1(2………………………………3分 )11(,)1(31)1(2222<<---=-+-=x x x x x x x x …………………………………….3分 (其他方法参考本过程给分)六、解:设容器的底两边分别为x 、y ,高为z ,则无盖长方体容器的容积为为xyz V = 其中0,,36223>=++z y x yz xz xy …………………………….4分令 )36223(-+++=yz xz xy xyz F λ362230)22(,0)23(,0)23(=++=++==++==++=yz xz xy x y yx F z x xz F z y yz F z y x λλλ …………………………………….3分 得唯一驻点,(2,2,3),由问题最值的存在性,知该点为最值点,即当容器的长宽高分为2、2、3米时,容器体积最大。
2013-2014高数IIB试卷A
第1页/共3 页 考试类别[学生填写](□正考 □补考 □重修 □补修 □缓考 □其它)《高等数学IIB 》期末考试试卷A适用专业:食工、化工 本试卷共六大题, 100分一、单项选择题(每小题3分,共15分)1、二元函数),(y x f 在点),(00y x 处的两个偏导数),(00y xf x ',),(00y x f y '存在是),(y x f 在该点连续的( )(A) 充分条件非必要条件; (B) 必要条件非充分条件;(C) 充分必要条件; (D) 既非充分条件又非必要条件。
2、设函数()f x 在(0,)+∞内连续,且22(t)x f dt x =⎰,则(2014)f =( ).(A) 0 (B) 1 (C) 2 (D) 无法确定。
3、 设简单闭曲线L 所围区域的面积为S ,其中L 的方向取正向,则S =( ). (A)12L xdx ydy -⎰Ñ (B) 12L ydy xdx -⎰Ñ (C) 12L ydx xdy -⎰Ñ (D) 12L xdy ydx -⎰Ñ4、、 若∑∞=-1)1(n n nx a在1-=x 收敛,则此级数在2=x 处( )(A) 条件收敛 ; (B) 绝对收敛 ; (C) 发散 ; (D) 收敛性不能确定 。
5、已知曲面224yx z --=在点(,,)P x y z 处的切平面平行于平面0122=-++z y x ,则点P 的坐标是( )(A )(1,1,2)-; (B )(1,1,2)-; (C )(1,1,2); (D )(1,1,2)--.二、填空题(每小题3分,共15分)1、 (x,y)(1,1)lim→= .2、 设函数(,)ln (1)xf x y y xy y e =+-,则(,)x f x y = .3、 设Ω是由0,0,0x y z ===及1x y z ++=围成的空间立体,则dv Ω⎰⎰⎰=4、 微分方程0)sin()()(4225333=++xy dx dy y x dxy d y 的阶数为 .5、 设11lim 4n n na a +→∞=,则级数11n n n a x ∞-=∑的收敛半径为 .三、解答题(每小题7分,共49分)1、 已知函数(,)z f xy x y =-,且(),z f u v =可微,求dz ..线 订 装郑州轻工业学 2013 — 2014 学年 第二学期 高等数学 试卷专业年级及班级 姓名 学号第2页/共3 页2、交换积分次序10xydx dy y⎰⎰,并求其值.3、计算曲线积分⎰,其中L 为ln y x =上点(1,0)与点(,1)e 间的弧段.4、计算2 2Ly dx xydy +⎰,其中L :2y x =从()0,0O 到()1,1A .5. 判定级数2123n n n n ∞=∑的敛散性..6.计算二重积分()22Dx y dxdy +⎰⎰,其中D :221x y +≤.7.求微分方程56x y y y e '''-+=通解第3页/共3 页四、解答题(本题9分)求幂级数2121n n x n +∞=+∑的收敛域及和函数五、应用题(本题满分9分)计算由曲面22x y z +=与2z =所围成立体的体积.六、证明题(本题满分3分)设函数()f x 在[0,1]上连续, 证明1112001()()[()]2xdx f x f y dy f x dx =⎰⎰⎰.线订装第4页/共3 页。
参考答案A卷
1 3 1 3
12 01, 02 11,
(1) A1 [1,1, 0]T 0 3 1 2 11,
1 1 0 故 M 1 0 1.
0 1 1
(3)
解法 1
(1 ) (2 )
A1 A2
[2, 2, 2]T , [0, 2, 0]T
(3) A3 [2, 0, 0]T ,
1
b
4
0 0 0 0
0
通解为
[x1 , x2 , x3 , xT4 ]
b[ 2
,34b 4
,b1 T ,0k] [ 1 ,T 2 , 0k, 1.] , 4
P
3
1 1 1
五、解 (1) 由基(I)到(II)的过渡矩阵为 S 1
1
1
;
1 1 1
(2)
( (
3 2
) )
A 3 A 2
[0,1,1]T [1, 0,1]T
a 1b ,
或
1,
1 b a
解得 1, a b .
故 0 1 0.
a 又1 A 4
1 a
1 a 3 2 a 2, 0 a
故 a b 3.
1
四、(12 分)解 对其增广矩阵施行初等行变换,得
1 1 5 1 1 1 1
5 1 1
A 1 1 1 3 2 a 2
3 3 0 2
A 0 1 3 2 1 0 1 3 0 1
0 0 0 1 0 0 0 0 1 0
对增广矩阵初等行变换,得
0 0 0 0 0 0 0 0 0 0
同解方程组为
x1 2x3 x2 3x 3
2, 1,
x4 0.
通解为
x1 2 2
13级《高等数学I、II》(上)期末考试卷及答案
2013—2014学年第一学期《高等数学I 、II 》考试试卷(A 卷)一、填空题(每小题3分,共48分)1. 2()ln(1)f x x =-, 已知 000()(2)3lim2h f x f x h h →--=, =0x 13- .2. 2sin 10()0ax x e x f x x a x ⎧+-≠⎪=⎨⎪=⎩在0x =处连续,则a = 1- . 3. 函数32()391f x x x x =--+的既递减又上凸的区间是 (1,1)- .4. 21tx t y e ⎧=+⎨=⎩,则22d d y x 4t t. 5. 设)(x f 在0=x 点处连续,且0()lim12x f x x→=,那么(0)f '= 2 6. 222||2x x dx x -++⎰ ln3 .7.x y dye dx+=的通解为 y x e e c --=+ 8. 设3(1)f x x +=,则(1)f x '-= 23(2)x - .9. 方程2610y e xy x ++-=确定隐函数()y y x =,则(0)y '= 0 。
10. 若函数)(x f 具有二阶连续导数,,0)()(21='='x f x f ),(0)( 21x f x f ''<<''则12(),().f x f x 的大小关系为 ).()(21x f x f >11. 变上限函数⎰21sin x tdt 的导数等于 2sin 2x x12. 设x ,x e ,x e -是二阶非齐次线性微分方程)()()(x f y x b y x a y =+'+''的三个特解,则该方程的通解为x x e C x e C y x x +-+-=-)()(21。
得 分13. 广义积分21(ln )edx x x +∞⎰= 1 。
14. 微分方程052=+'-''y y y 的通解为12(cos 2sin 2)x y e c x c x =+ 15. ⎰⎰'+=dx x f x c x dx x f )( ,sin )(2 2sin 2sin x x x C -+ .16. 函数x e x f -=)(的四阶麦克劳林公式是)(!!!443243211x o xx x x ++-+-二、计算题(满分24分,每小题6分)17.求020()lim (0,0)ln(1)xt t xx a b dt a b t dt→->>+⎰⎰)(b a ≠原式=-+→limln()x x x a b x 0212 3分=-+→lim ln ln x x x a a b b x 0412=14lna b 3分18、求曲线xex y 12-+=)(的渐近线。
高等数学A(二)试卷及答案
高等数学A (二)考试试卷一、 填空题(每小题5分,共25分)1. 设2u 1sin ,2xu e x y x y π-=∂∂∂则在(,)处的值为_________。
2. 改变二次积分10(,)x I dx f x y dy =⎰⎰的积分次序,则I=_______________。
3. 设平面曲线Γ为下半圆周y =22()x y ds Γ+⎰=___________。
4. 若级数1n n u∞=∑的前n 项部分和是:1122(21)n S n =-+,则n u =______________。
5. 设)2,5,3(-=a ,(2,1,4)b =,(1,1,1)c =,若c b a ⊥+μλ,则λ和μ满足 。
二、 计算题(每小题10分,共70分)1. 求由方程xyz =(,)z z x y =在点(1,0,1)-处的全微分。
(10分)2. 设21()x t f x e dx -=⎰,求10()f x dx ⎰。
(10分) 3. 计算xzdxdydz Ω⎰⎰⎰,其中Ω是由平面0,,1z z y y ===以及抛物柱面2y x =所围成的闭区域。
(10分)4. 计算dy xy ydx x L22+⎰,其中积分路径L 是xoy 平面上由点(2,0)A -顺次通过点(0,2)B 、(2,2)C 到点(2,4)D 的折线段。
(10分) 5. 把函数xx f 431)(+=展为1-x 的幂级数,并确定其收敛域。
6. 求点)3,2,1(-关于平面014=-++z y x 的对称点。
(10分)7. 要建造一个表面积为108平方米的长方形敞口水池,尺寸如何才能容积最大.。
(10分)三、证明题(5分)若0lim =∞→n n na ,且∑∞=+-+11])1[(n n n na a n 收敛于常数A ,试证明级数∑∞=1n n a 收敛。
答案课程名称:高等数学A(二) 试卷编号:5一、填空题。
(每小题5分,共25分)1.22e π,2.101(,)y dy f x y dx ⎰⎰,3.π,4.1(21)(21)n n -+, 5. 076=+μλ二、 计算题。
济南大学高等数学下历年考题答案
L
是抛物线 2 x y
解
2
上从点 (0, 0) 到点 ( 2 ,1) 的一段弧.
2
Q x
P 2 y cos x 6 xy y
L1
积分与路径无关
L2 : x
选取积分路径 O(0,0) A( ,0) B( ,1) 2 2
L2
L1 : y 0, x [0, ] 2
得f x ( x, x) f x ( x, x) x 2
y( x) -2e 2 x f ( x, x) x 2e 2 x
一阶线性微分方程
P( x) 2
Q( x ) x 2e 2 x
P ( x ) dx
ye
P ( x ) dx
[C Q( x )e
x y (0 z 1) 取下侧.
2 2
解:
2 2 x dydz y dzdx ( z x )dxdy
1 2
1
影 为0 对于 1 : z 1. 向yoz和xoz投
x 2 dydz y 2 dzdx ( z x )dxdy
1
( z x )dxdy
2 2
曲面不是封闭曲面, 为利用高斯公式 解:
1
补充 1 : z 1 ( x 2 y 2 1) (上侧)
1围成空间区域 . 在上使用高斯公式,
1 2 2 x dydz y dzdx ( z x )dxdy ( 2 x 2 y 1)dv
2
4
y c1e x c2e 2 x
r2 r 2 0
2
2
2013年高考济南二模数学理科试题
启用前绝密高三巩固训练 理 科 数 学参考公式:统计中2χ的公式:21212211222112)(++++-=n n n n n n n n n χ,其中21111n n n +=+,22122n n n +=+,12111n n n +=+,22212n n n +=+,22122111n n n n n +++=一、选择题:(本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的)1. 已知集合2{12},{log 2}A x x B x x =-<=<,则A B =A .(1,3)-B .(0,4)C .(0,3)D .(1,4)-2. 若复数iia 213-+(i R a ,∈为虚数单位)是纯虚数,则实数a 的值为 A .2- B .4 C .6- D .63. 函数)22sin(2x y -=π是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数4. 等差数列{}n a 中,已知112a =-,130S =,使得0n a >的最小正整数n 为A .7B .8C .9D .105. 为了解疾病A 是否与性别有关,在一医院随机的对入院50人进行了问卷调查得到了如下的列联表:请计算出统计量,你有多大的把握认为疾病A 与性别有关下面的临界值表供参考:A. 95%6.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且a sin A +c sin C sin C =b sin B .则B ∠=A.6π B. 4π C. 3π D. 34π7.某学校周五安排有语文、数学、英语、物理、化学、体育六节课,要求体育不排在第一节课,数学不排在第四节课,则这天课表的不同排法种数为A. 600B. 288C. 480D. 504 8. 设,m n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确...的是 A .当α⊂m 时,“//n α”是“n m //”的必要不充分条件 B .当α⊂m 时,“m ⊥β”是“βα⊥”的充分不必要条件 C .当n ⊥α时,“n ⊥β”是“α∥β”成立的充要条件 D .当α⊂m 时,“α⊥n ”是“n m ⊥”的充分不必要条件 9. 函数2ln ||x y x x=+的图象大致为10.定义某种运算⊗,a b ⊗的运算原理如图 所示. 设x x f ⊗=1)(.()f x 在区间[2,2]-上的最大值为. A -2 B -1 C 0 D 211. 已知ABC ∆的外接圆半径为1,圆心为O ,且3450OA OB OC ++=,则 OC AB ⋅的值为A 15- B15C 65-D 6512. 若椭圆1C :1212212=+b y a x (011>>b a )和椭圆2C :1222222=+b y a x (022>>b a )的焦点相同且12a a >.给出如下四个结论:① 椭圆1C 和椭圆2C 一定没有公共点; ②1122a b a b >; ③ 22212221b b a a -=-; ④1212a a b b -<-. 其中,所有正确结论的序号是A ①③B ①③④C ①②④D ②③④16题图第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4个小题,每小题4分,共16分)13.不等式组2000x x y x y -≤⎧⎪+≥⎨⎪-≥⎩表示平面区域为Ω,在区域Ω内任取一点(),P x y ,则P 点的坐标满足不等式222x y +≤的概率为 .14.已知某几何体的三视图如图所示,则该几何体的体积为 .15. 设dx x )12(20-⎰,则二项式4⎪⎭⎫ ⎝⎛+x a x 的展开式中的常数项为 .16.如图,F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,过F 1的直线与双曲线的左、右两支分别交于A ,B 两点.若 | AB | : | BF 2 | : | AF 2 |=3 : 4 : 5,则双曲线的离心率为 .三、解答题:(本大题共6小题,共74分)17(本题满分12分)已知函数)()4sin cos 03f x x x πωωω⎛⎫=+> ⎪⎝⎭的最小正周期 为π.⑴求)(x f 的解析式;(2)求)(x f 在区间⎥⎦⎤⎢⎣⎡-6,4ππ上的最大值和最小值及取得最值时x 的值. 18(本题满分12分)已知数列{}n a 满足13a =,*133()n n n a a n N +-=∈,数列{}n b 满足3nn na b =. (1)证明数列{}n b 是等差数列并求数列{}n b 的通项公式; (2)求数列}{n a 的前n 项和n S .19. (本题满分12分) 某企业计划投资A ,B 两个项目, 根据市场分析,A ,B 两个项目的利润率分别为随机变量X 1和X 2,X 1和X 2的分布列分别为:(1)若在A ,B 两个项目上各投资1000万元,Y 1和Y 2分别表示投资项目A 和B 所获得的利润,求利润的期望()()12,E Y E Y 和方差()()12,D Y D Y ;(2)由于资金限制,企业只能将x (0≤x ≤1000)万元投资A 项目,1000-x 万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.20.(本题满分12分)已知四边形ABCD 是菱形,060BAD ∠= 四边形BDEF 是矩形 ,平面BDEF ⊥平面ABCD ,G H 、分别是CE CF 、的中点.(1)求证 : 平面//AEF 平面BDGH(2)若平面BDGH 与平面ABCD 所成的角为060, 求直线CF 与平面BDGH 所成的角的正弦值21. (本题满分12分)设),(),,(2211y x Q y x P 是抛物线px y 22=)0(>p 上相异两点,P Q 、到y 轴的距离的积为4且0=⋅OQ OP .(1)求该抛物线的标准方程.(2)过Q 的直线与抛物线的另一交点为R ,与x 轴交点为T ,且Q 为线段RT 的中点,试求弦PR 长度的最小值. 22.(本题满分14分)设1ln )()(++=x xa x x f ,曲线)(x f y =在点))1(,1(f 处的切线与直线012=++yx 垂直.(1)求a 的值;(2) 若),1[+∞∈∀x ,)1()(-≤x m x f 恒成立,求m 的范围.(3)求证:*21.().41ni in N i=∈-∑20题图2013.4济南市高三理科数学参考答案一、选择题: :(本大题共12个小题,每小题5分,共60分)二、填空题:(本大题共4个小题,每小题4分,共16分)13 .8π14. 4163π+ 15. 24 16. 三、解答题:(本大题共6小题,共74分) 17.解()4sin cos cos sin sin 33f x x x x ππωωω⎛⎫=-+ ⎪⎝⎭分22sin cos x x x ωωω=-sin 2x x ωω= -----------------------------------------------------------3分2sin 23x πω⎛⎫=+ ⎪⎝⎭ -----------------------------------------------------4分2,12T ππωω==∴= -----------------------------------------5分⎪⎭⎫ ⎝⎛+=∴32sin 2)(πx x f ---------------------------------------------------------6分(2)46x ππ-≤≤,22633x πππ∴-≤+≤1sin 2123x π⎛⎫∴-≤+≤ ⎪⎝⎭,即()12f x -≤≤,-------------------9分当2,36x ππ+=-即4x π=-时,()min 1f x =-,当2,32x ππ+=即12x π=时,()max 2f x =. ---------------------------------12分18.解(1)证明:由3n n n a b =,得1113n n n a b +++=, ∴1111333n n n n n n a a b b +++-=-= ---------------------2分所以数列{}n b 是等差数列,首项11b =,公差为13-----------4分 ∴121(1)33n n b n +=+-=------------------------6分(2)13(2)3n n n n a b n -==+⨯ -------------------------7分n n a a a S +++=∴ 2113)2(3413-⨯+++⨯+⨯=n n ----①n n n S 3)2(343332⨯+++⨯+⨯=∴ -------------------②----------9分①-②得n n n n S 3)2(33313212⨯+-++++⨯=--n n n 3)2(3331212⨯+-+++++=-n n n 3)2(233⨯+-+=-----------------------------------11分23)2(433nn n n S +++-=∴------------------------------------------12分19. 解: (1)由题设可知Y 1和Y 2的分布列为--------------2分E (Y 1)=50×0.8+100×0.2=60,----------------------------------3分D (Y 1)=(50-60)2×0.8+(100-60)2×0.2=400,------------------------4分E (Y 2)=20×0.2+80×0.5+120×0.3=80,---------------------------------------5分 D (Y 2)=(20-80)2×0.2+(80-80)2×0.5+(120-80)2×0.3=1200.-------------------6分 (2) ()()()()22121261000110001000100010x x f x D Y D Y x D Y x D Y -⎛⎫⎛⎫⎡⎤=+=+- ⎪ ⎪⎣⎦⎝⎭⎝⎭=4410 [x 2+3(1000-x )2]=4410(4x 2-6000x +3×106).--------------------------------10分 当600075024x ==⨯时,f (x )=300为最小值.-------------------------------12分 20. 解:(1)G H 、分别是CE CF 、的中点所以//EF GH ------------① ---------------1分 连接AC 与BD 交与O ,因为四边形ABCD 是菱形,所以O 是AC 的中点连OG ,OG 是三角形ACE 的中位线//OG AE ---------② --------------3 分由①②知,平面//AEF 平面BDGH --------------4分 (2),BF BD ⊥平面BDEF ⊥平面ABCD ,所以BF ⊥平面ABCD ----------------------------5分取EF 的中点N ,//ON BF ON ∴⊥平面ABCD ,建系{,,}OB OC ON 设2AB BF t ==,,则()()()100,0,10B C F t ,,,,122t H ⎛⎫ ⎪ ⎪⎝⎭-----------------------------------------------------------6分 ()11,0,0,,222t OB OH ⎛⎫== ⎪ ⎪⎝⎭设平面BDGH 的法向量为()1,,n x y z =1101022n OB x tn OH x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,所以(10,n t =- 平面ABCD 的法向量()20,0,1n = ---------------------------9分121|cos ,|2n n <>==,所以29,3t t == -------------------------------10分所以(1,CF =,设直线CF 与平面BDGH 所成的角为θ13133321336|,cos |sin 1=⨯=〉〈=n θ -------------------------------12分 21. 解:(1)∵ OP →·OQ →=0,则x 1x 2+y 1y 2=0,--------------------------1分又P 、Q 在抛物线上,故y 12=2px 1,y 22=2px 2,故得 y 122p ·y 222p+y 1y 2=0, y 1y 2=-4p 2222212144)(||p py y x x ==∴--------------------------3分 又|x 1x 2|=4,故得4p 2=4,p =1.所以抛物线的方程为: 22y x =-------------4分 (2)设直线PQ 过点E (a ,0)且方程为x =my +a联立方程组⎩⎨⎧=+=xy amy x 22消去x 得y 2-2my -2a =0∴ ⎩⎨⎧-==+ay y m y y 222121 ① --------------------------------6分设直线PR 与x 轴交于点M (b ,0),则可设直线PR 方程为x =ny +b ,并设R (x 3,y 3),同理可知,⎩⎨⎧-==+by y n y y 223131 ② --------------------------7分由①、②可得32y by a= 由题意,Q 为线段RT 的中点,∴ y 3=2y 2,∴b =2a 分 又由(Ⅰ)知, y 1y 2=-4,代入①,可得 -2a =-4 ∴ a =2.故b =4.-----------------------9分 ∴831-=y y∴3123123124)(1||1|PR |y y y y n y y n -+⋅+=-+= 2481222≥+⋅+=n n .当n =0,即直线PQ 垂直于x 轴时|PR |取最小值24--------------------12分 22.解:(1)2)1(ln )()1)(ln ()(++-+++='x x a x x x x ax x f -----------------------2分由题设21)1(='f ,2142)1(=+∴a 11=+∴a ,0=∴a . -------------------------------4分(2) 1ln )(+=x xx x f ,),1(+∞∈∀x ,()(1)f x m x ≤-,即1ln ()x m x x≤-设1()ln ()g x x m x x=--,即0)(),,1(≤+∞∈∀x g x .22211()(1)mx x mg x m x x x-+-'=-+=-------------------------------------6分 ①若0,()0m g x '≤>,0)1()(=≥g x g ,这与题设0)(≤x g 矛盾.-----------------8分 ②若0m >方程20mx x m -+-=的判别式214m ∆=- 当0≤∆,即12m ≥时,0)(≤'x g .)(x g ∴在)(0,+∞上单调递减,0)1()(=≤∴g x g ,即不等式成立. ----------------------------------------------------------------------9分当102m <<时,方程20m x x m -+-=,其根10x =>,1112x m+=>,当0)(),,1(2>'∈x g x x ,)(x g 单调递增,0)1()(=>g x g ,与题设矛盾.综上所述,12m ≥ .------------------------------------------------------------------------10分 (3) 由(2)知,当1>x 时, 21=m 时,11ln 2x x x ⎛⎫<- ⎪⎝⎭成立.不妨令*21,21k x k N k +=∈- 所以221121214ln 212212141k k k k k k k k ++-⎛⎫<-= ⎪--+-⎝⎭, ()()*21[ln 21ln 21],441kk k k N k +--<∈-----------------------11分()()()()()22211ln 3ln1441112ln 5ln 344211ln 21ln 21,441n n n n ⎧-<⎪⨯-⎪⎪-<⎪⨯-⎨⎪⎪⎪+--<⎪⨯-⎩ ---------------------12分 累加可得*211ln(21).().441ni in n N i =+<∈-∑*21.().41ni i n N i =∈-∑------------------------14分。
2013-2014年高数2试卷A考试参考答案及评分标准_28849
( A卷)
适用专业年级:理工科类2013级考试时间:120分钟
命题人:肖海青
一、选择题(每题4Байду номын сангаас,共20分)
1、B;2、C;3、D;4、C;5、A
二、填空题(每题4分,共20分)
1、 ;2、 ;3、 ;
4、 ;5、 (或者 )
三、计算题(每题7分,共42分)
1、 (3分)
1、解:两曲面投影区域为: (2分)
(9分)
2、解: 约束条件为 ,
(3分)
(6分)
,因为只有唯一驻点,此点即为 的最大点,最大值为54,即甲原料购进6吨,乙原料购进9吨,可使企业的效用达到最大值5400元(9分)
第1页共1页
(7分)
2、由对称性.
(7分)
3、在直线上取点 ,与已知点 构成向量 ,
直线的方向向量为 ,取 (5分)
所以平面方程为 即
4、取 ,逆时针方向,
=
= =
5、半球面和锥面在 面的投影区域为 (2分)
(4分)
= (7分)
6、 (2分)当 时,级数发散,收敛域为 (4分)
, (7分)
四、应用题(共18分)
高数A二B二近四年期末解答A卷 课件
2014级本科高等数学A (二)期末试题解答与评分标准A (理工类多学时)一、单项选择题(本大题6小题,每小题3分,共计18分) 1. (A ,B )函数(,)z f x y =在点00(,)x y 处的偏导数(,)x f x y 和(,)y f x y 存在是函数在点00(,)x y 的全微分存在的( B ).A. 充分条件;B. 必要条件;C. 充要条件;D. 无关条件.2. (A ,B )设级数1(2)nn n a x ∞=-∑在2x =-处收敛,则级数在5x =处( C ).A. 发散;B. 条件收敛;C. 绝对收敛;D. 无法确定敛散性.3. (A ,B )二阶微分方程224468e xy y y x '''-+=+的特解应具有形式( C ),其中,,,a b C E 为常数.A. 22+e xax bx C +; B. 22+e xax bx C E ++; C. 222+e xax bx C Ex ++; D. 22+e xax bx C Ex ++.4. (A ,B )与两平面43x z -=和251x y z --=的交线平行且过点(3,2,5)-的直线方程为( A ).A. 325431x y z +--==; B .325431x y z +--==-; C. 325134x y z +--==; D .325431x y z -++==.5. (A ,B )设闭区域D :229x y +≤,221:9,0D x y y +≤≥,则下列等式中错误的是( D ). A.22221e d 2e d x y xy DD σσ++=⎰⎰⎰⎰;B.2222122e d 2e d x y xy DD y y σσ++=⎰⎰⎰⎰;C. 22e d 0xy Dx σ+=⎰⎰;D. 1e d 2e d x y x y DD σσ++=⎰⎰⎰⎰.6. (A )Ω由不等式2221,x y z z ++≤≥确定,则zdxdydz Ω⎰⎰⎰求解过程错误的是( B ).A.2212x y dxdy +≤⎰⎰;B.22210x y z dzzdxdy +≤⎰⎰⎰;C.20rd πθ⎰⎰⎰;D.2134001sin 22d d r dr ππθϕϕ⎰⎰⎰.二、填空题(本大题6小题,每小题3分,共计18分) 7.(A ,B )直线234112x y z ---==与平面260x y z ++-=的交点为 (1,2,2).8.(A ,B )已知二阶齐次线性微分方程有两个特解312e x y =,2e x y -=,则该微分方程为 230y y y '''--=.9. (A ,B )设函数4sin y z x xy xy =++,则(1,0)zy ∂=∂ 5.10. (A ,B )交换二次积分的积分次序:2220(,)y ydy f x y dx =⎰⎰402(,)x dx f x y dy ⎰⎰.11. (A )L 为圆周229x y +=,则对弧长的曲线积分=⎰18π.12. (A )计算曲线积分(3)(2)LI x y dx y x dy =++-⎰Ñ,其中L 是沿椭圆2214y x +=正向的边界,则I =4p -.三、解答题(本大题6小题,每小题8分,共计48分) 13. (A ,B )计算二重极限00x y →→.解:00x y →→0x y →→= (4分)0x y →→= (2分)14=-. (2分)14. (A ,B )设函数),()(y x y g y x f z -++=,其中f 二阶可导,),(v u g 有连续的二阶偏导数,求yx z∂∂∂2.解:2zf g x∂''=+∂, (4分) 221222122(1)z f g g f g g x y∂''''''''''''=++-=+-∂∂. (4分)(或写为221221222(1)zf g g f g g x y∂''''''''''''=++-=+-∂∂ )15. (A ,B )设函数(,)z f x y =由方程e 0z y xz x y x ----+=所确定,在点(0,1,1)处,求d z .解:令(,,)ez y xF x y z z x y x --=--+, (2分)1e e 1e z y x z y x x z y x z F zx x F x ------∂-+=-=∂+, (2分) 1e 1ez y x y z y xz F zx y F x ----∂+=-=∂+, (2分) (0,1,1)(0,1,1)(0,1,1)d d d zz z x y dy xy∂∂=+=∂∂. (2分)16. (A ,B )求幂级数2121n n x n +∞=+∑的收敛域与和函数,并求数项级数201(21)2nn n ∞=+∑的值. 解:收敛域(1,1)-, (注:在端点处发散) (2分)2121220001(),(0)0,()21211n n n n n n x x S x S S x x n n x ++∞∞∞==='⎛⎫'===== ⎪++-⎝⎭∑∑∑ (2分)所以200111()(0)()d d ln ||121x xxS x S S x x x x x+'-====--⎰⎰,故11()ln ||21xS x x+=-,(11)x -<< (2分) 2210011122()ln 3(21)2(21)22n n n n S n n ∞∞+=====++∑∑. (2分)17. (A ,B )计算二重积分(32)d d DI x y x y =+⎰⎰,其中D 为由y 轴与直线1x y +=,1x y -=所围成的闭区域. 解: (32)d d 3d d DDI x y x y x x y =+=⎰⎰⎰⎰ (3分)11013xx dx xdy --=⎰⎰(3分)1206()1x x d x =-=⎰. (2分)18. (A ) 计算2(31)xdydz ydzdx z dxdy ∑+++⎰⎰,其中∑为上半球面z =.解:取1∑为xoy 面上的圆盘22:4xy D x y +≤,取下侧,记∑与1∑围成的闭区域为Ω,从而由高斯公式,得 (2分)12(31)xdydz ydzdx z dxdy ∑+∑+++⎰⎰6dv Ω=⎰⎰⎰3262323ππ=⋅⋅=, (2分)而12(31)xdydz ydzdx z dxdy ∑+++⎰⎰1(31)4xyD z dxdy dxdy π∑=+=-=-⎰⎰⎰⎰, (2分)故 原式=32(4)36πππ--=. (2分)四、解答题(本题10分) 19. (A ,B )设函数()y f t =满足2222()t x y tf t e fdxdy π+≤=+⎰⎰,(1) 求()f t 所满足的微分方程; (2) 求()f t . 解:(1) 2()2()tt f t ef r rdr ππ=+⎰, (2分)求导,得2()22()t f t te tf t πππ'=+,即2()2()2t f t tf t te πππ'-=, (2分) (2)此为一阶线性微分方程,其通解为:22()()tf t e t Cππ=+(C 为任意常数) (3分) 由(0)1f =得1C =, (2分)故22()(1)tf t et ππ=+ . (1分)五、证明题(本题6分)20. (A ,B )证明:二次曲面222Ax By Cz D ++=上任一点000(,,)x y z 处的切平面为000Ax x By y Cz z D ++=.证:令222(,,)F x y z Ax By Cz D =++-,则0000(,,)2x F x y z Ax =,0000(,,)2y F x y z By =,0000(,,)2z F x y z Cz =, (2分) 故曲面(,,)0F x y z =上点000(,,)x y z 处的切平面方程为:0000002()2()2()0Ax x x By y y Cz z z -+-+-=,(2分) 又222000Ax By Cz D ++=,从而222Ax By Cz D ++=上任一点000(,,)x y z 处的切平面为:000Ax x By y Cz z D ++=. (2分)2014级本科高等数学(二)期末试题解答与评分标准A(理工类少学时)一、单项选择题(本大题共6小题,每小题3分,共18分) 1. (B )由曲线2cos a ρθ=所围图形的面积为( B ). A. 22a π; B.2a π; C. 24a π; D. 22a π.2. (A ,B )下列级数收敛的是( C ).A.112n n∞=∑; B.21ln n n∞=∑; C. 112nn ∞=∑;D. 1n ∞=3. (A ,B )微分方程224468e x y y y x '''-+=+的一个特解应具有形式( C ),其中,,,a b C E 为常数.A.22+e xax bx C +; B.22+e xax bx C E ++; C.222+e xax bx C Ex ++; D.22+e xax bx C Ex ++.4. (A ,B )与两平面43x z -=和251x y z --=的交线平行且过点(3,2,5)-的直线方程为( A ).A. 325431x y z +--==; B .325431x y z +--==-; C. 325134x y z +--==; D .325431x y z -++==.5. (A ,B )设二元函数(,)f x y 在2R 上有(,)0,(,)0x y f x y f x y ><,设1212,x x y y ><,则下列结论正确的是( B ).A. 1122(,)(,)f x y f x y <;B. 1122(,)(,)f x y f x y >;C.1112(,)(,)f x y f x y <;D.1121(,)(,)f x y f x y <.6. (A ,B )设()f x 为连续函数,1()()t tyF t dy f x dx =⎰⎰,则(2)F '=( D ).A.2(2)f ;B.(2)f -;C.0;D.(2)f .二、填空题(本大题共6小题,每小题3分,共18分)7. (B )由曲线x y e =,直线0,1x x ==和x 轴所围成的平面图形,绕y 轴旋转一周所形成旋转体的体积为2π.8. (A ,B )设(,)z f x y =由方程e 0z y x z x y x ----+=所确定,则zx∂∂在点(0,1,1)处的值为 0 .9. (A ,B )2211(2),lim()nn n n x y aa d πσ∞→∞=+≤-+=∑⎰⎰设级数收敛则3π .10. (A ,B )已知二阶齐次线性微分方程有两个特解312e x y =,2e x y -=,则该微分方程为230y y y '''--=.11. (A ,B )曲线2z y =绕z 轴旋转一周所得旋转曲面的方程为22z x y =+.12. (A ,B )函数2yz xe =在点A (1,0)处沿点A 指向点B (2,1)-的方向导数为2- .三、解答题(本大题共6小题,每小题8分,共48分) 13. (A ,B )计算二重极限00x y →→.解:(法一)原式= 0x y →→ (4分)00x y →→= (2分)=14-(2分) (法二) 原式=00x y →→ (4分) 001224limx y xy xy →→-⋅⋅= (2分) =14-(2分)14. (A ,B )计算函数yz x =在(2,1)的全微分. 解: 1,ln y y x y z yx z x x -== (4分)(2,1)1,(2,1)2x yz z == (2分) (2,1)d 2l n 2z d x d y =+ (2分)15. (A ,B )设函数()f u 可微, ()ln xx z f x y =+,求222,z z x x y∂∂∂∂∂.解:()ln xz f x x y =+ ,1()ln 1z xf x x y y∂'=++∂ (2分) 22211()z x f x y y x ∂''=+∂ (3分) 2231()()z x x x f f x y y y y y∂'''=--∂∂ (3分)16. (A ,B )求幂级数21021n n x n +∞=+∑的收敛域与和函数,并求数项级数201(21)2nn n ∞=+∑的值. 解: 收敛域为(1,1)- (2分)令210()21n n x S x n +∞==+∑,(0)0S =2122001()211n n n n x S x x n x +∞∞=='⎛⎫'=== ⎪+-⎝⎭∑∑, (2分) 所以200111()(0)()d d ln ||121x x xS x S S x x x x x+'-===--⎰⎰, 故11()ln ||21xS x x+=-, (11x -<<) (2分)2210011122()ln 3(21)2(21)22n n n n S n n ∞∞+=====++∑∑. (2分)17. (A ,B )计算二重积分(32)d d DI x y x y =+⎰⎰,其中D 为由y 轴与直线1x y +=,1x y -=所围成的闭区域. 解: (32)d d 3d d DDI x y x y x x y =+=⎰⎰⎰⎰ (3分)11013xx dx xdy --=⎰⎰(3分)126()1x xd x =-=⎰ (2分)18. (A ,B )求表面积为2a 而体积为最大的长方体的体积. 解:设长方体的长宽高为,,x y z ,则问题转化为在条件2(,,)2220x y z x y y z x za ϕ=++-= 下求函数(0,0,0)V xyz x y z =>>>的最大值. (3分) 设拉格朗日函数2(,,)(222)L x y z xyz xy yz xz a λ=+++-,解方程组22()02()02()0222yz y z xz x z xy y x xy yz xz aλλλ++=⎧⎪++=⎪⎨++=⎪⎪++=⎩得x y z ===, (4分) 这是唯一的可能极值点,也是所求问题的最大值点.故表面积为2a3(1分)四、解答题(本题10分)19. (A ,B )设函数()y f t =满足2222()t x y tf t e fdxdy π+≤=+⎰⎰,(1) 求()f t 所满足的微分方程; (2) 求()f t . 解:(1) 2()2()tt f t ef r rdr ππ=+⎰ (2分)求导得 2()22()t f t te tf t πππ'=+即 2()2()2t f t tf t te πππ'-= (2分) (2) 此为一阶线性微分方程,其通解为22()()tf t et Cππ=+ (C 为任意常数) (3分) 由(0)1f =得1C = (2分)故22()(1)tf t et ππ=+ (1分)五、解答题(本题6分)20. (A ,B )设2,(,)(,)0,(,)x y Df x y x y D ∈⎧=⎨∉⎩,[0,1][0,1]D =⨯,求函数()(,)d d x y tF t f x y x y +≤=⎰⎰的表达式.解:0t ≤时,()0F t = (1分)01t ≤≤时,221()22F t t t =⋅= (2分)12t <≤时,221()21(2)422F t t t t ⎡⎤=--=--⎢⎥⎣⎦(2分)2t >时,()2F t = (1分)2013级高等数学(二)期末试卷解答A理工类 多、少学时1. (A ,B )下列函数中有且仅有一个间断点的函数为( B ). (A )x x y +; (B )22e ln()x x y -+; (C )xy; (D )||1xy +.2. (A ,B )曲线:23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线( B ).(A ) 有一条; (B )有两条; (C )有三条; (D )不存在.3. (A ,B )设222{(,)|()}D x y x a y a =-+≤,则二重积分22e d x y Dσ--=⎰⎰( C )(A )22cos 0d d a re r r πθθ-⋅⎰⎰; (B )22cos 0d d a re r πθθ-⎰⎰;(C )22cos 22d d a r er r πθπθ--⋅⎰⎰;(D )22cos 202d d a re r πθπθ--⎰⎰4. (A ,B )微分方程x y y cos =+''的特解具有形式( B )(A )cos sin A x B x + (B )sin cos Ax x Bx x + (C )cos A x (D )cos Ax x5. (A ,B )已知函数(,)f x y 在点00(,)x y 处的偏导数存在,则( D ).(A )(,)f x y 在00(,)x y 可微;(B )(,)f x y 在00(,)x y 沿任意方向方向导数存在; (C )(,)f x y 在00(,)x y 连续; (D )0(,)f x y 在00(,)x y 连续.6. 多(A )设221:1l x y +=,222:2l x y +=,223:12y l x +=, 224:12x l y +=为四条逆时针封闭曲线,记曲线积分33()d (2)d 63ii l y x I y x x y =++-⎰,1,2,3,4I =,则max{}i I =( C )(A ) 1I ; (B )2I ; (C )3I ; (D )4I6. 少(A ,B )下列各选项正确的是( C ) A . 若正项级数∑∞=1n n u 发散,则nu n 1≥; B . 若级数∑∞=1n nu收敛,且),2,1( =≥n v u n n ,则级数∑∞=1n nv收敛.C . 若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n nv u收敛;D . 若||1nn n vu ∑∞=收敛, 则∑∞=12n n u 与∑∞=12n n v 都收敛;二、 填空题(本大题共6小题,每小题3分,共18分)7. (A ,B )幂级数1(3)3n nn x n ∞=-⋅∑的收敛域为[0,6).8. (A ,B )已知级数1nn us ∞==∑,则11()n n n u u ∞+=+=∑12s u -.9.(A ,B )设函数()f u 可微,且(2)1f '=,则函数()z f x y =+在点(1,1)处的全微分(1,1)d |z =d d x y +.10.(A ,B )微分方程yy x'=-满足初始条件24x y =-=的特解为8xy =-.11.多(A )设L 为上半圆周:222x y R +=,(0,0R y >>),则曲线积分22()d Lx y s +=⎰3R π.11. 少(A ,B )设(){},01,11D x y x y =≤≤-≤≤,则二重积分()cos 1d d Dy xy x y +=⎡⎤⎣⎦⎰⎰ 2 .12.多(A )设∑是球面2222()x y z R R ++-=的外侧,则曲面积分d d x y ∑=⎰⎰ 0 .12.少(B )2d 11A x x +∞-∞=+⎰,则 A = 1π.三、 解答题(本大题共6小题,每小题8分,共48分)13.(A ,B )设函数2(,)sin()z f x y xy ==,求(,1)2xx f π,(,1)2xy f π.解:22(,)cos()x f x y y xy =,42(,)sin()xx f x y y xy =-, 232(,)2cos()2sin()xy f x y y xy xy xy =- (6分)(,1)12xx f π=-,(,1)2xy f ππ=- (2分)14.(A ,B )设函数()y x z z ,=由方程23z e xy z +-=所确定,求(2,1,0)x z 及(2,1,0)y z .解:令(,,)23z F x y z e xy z =+--, (1分) y F x =,x F y =,2z z F e =- (3分)所以2z z y x e ∂=∂-,2zz xy e ∂=∂- (2分) (2,1,0)1x z =,(2,1,0)2y z =. (2分)15.(A ,B )求幂级数0(1)1nnn x n ∞=-+∑的收敛域与和函数.解:收敛半径为1R =,收敛域为(1,1]- (2分)令0()(1)1nnn x S x n ∞==-+∑,0x =时,(0)1S =, (1分)0x ≠时,1000()(1)(1)d 1n x nn n n n x xS x x x n +∞∞===-=-+∑∑⎰001()d d ln(1)1x xnn x x x x x∞==-==++∑⎰⎰所以ln(1),0()1,0x x S x xx +⎧≠⎪=⎨⎪=⎩ (5分)16.(A ,B )计算二重积分2e d d y DI x y -=⎰⎰,其中D 是以(0,0),(0,1),(1,1)为顶点的三角形所围的闭区域.解:21e d d yy I y x -=⎰⎰ (4分)21101e d (1e )2y y y --==-⎰ (4分)17. 多(A )验证曲线积分(2,1)423(1,0)(23)d (4)d xy y x x xy y -++-⎰在XOY 平面内积分与路径无关,并计算该曲线积分. 解:324Q x y x ∂=-∂,324Px y y∂=-∂,且连续,所以积分与路径无关 (4分)(2,1)423(1,0)(23)d (4)d xy y x x xy y -++-⎰(2,0)(2,1)423(1,0)(2,0)(23)d (4)d xy y x x xy y =-++-⎰⎰21313d (48)d x y y =+-⎰⎰ (2分) 325=+= (2分)17. 少(A ,B )计算二重极限22222001cos()lim sin ()x y x y x y →→-++.解:222222222220000()1cos()2lim lim sin ()()x x y y x y x y x y x y →→→→+-+=++ (4分) 12=(4分)18. 多(A )计算曲面积分3d d 2d d d d x y z y z x z x y ∑++⎰⎰,其中∑为锥面z =介于平面0z =与平面2z =之间部分的下侧.解:补充曲面221:2,4z x y ∑=+≤,取上侧, (2分) 由高斯公式13d d 2d d d d x y z y z x z x y '∑∑∑+=++⎰⎰⎰⎰⎰⎰6d V Ω=⎰⎰⎰ (2分)16π= . (2分) 其中,113d d 2d d d d d d 2d d 8Dx y z y z x z x y z x y x y π∑∑++===⎰⎰⎰⎰⎰⎰,所以3d d 2d d d d 8x y z y z x z x y π∑++=⎰⎰ (2分)18. 少(A ,B )判断级数1!n n n a n n∞=∑的敛散性,其中0,e a a >≠.解:111(1)!lim lim lim (1)!(1)e n n n n n n n n n n nu a n n a n au n a n n +++→∞→∞→∞+⋅=⋅==++ (4分) 所以0e a <<时,级数收敛;e a >时,级数发散。
2013-14-2高等数学试题答案A
2013-14-2高等数学(A )期末考试试题A 卷答案及评分标准一、填空题 (本大题分5小题,每小题4分,共20分)1、()()()1211ln 11y y xy dz y xy dx xy xy dy xy -⎛⎫=+++++ ⎪+⎝⎭ 2、30x y z ---=3、1 4、313h π 5、()1,3x ∈二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,共20分) 1、C 2、A 3、B 4、D 5、B三、解答下列各题(本大题共3小题,每小题8分,共24分)1、解:方程两端同时对,x y 分别求偏导数,有00z z zz e yz xy xx z z e xz xy y y ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪--=∂∂⎪⎩,………………6分解得:,z z z yz z z xz zx e xy xz x y e xy yz y∂∂====∂--∂--.…………………………………………8分2、解:作图(略). 原式=()()2220x t y t π⎡+⎣⎰………………………2分()()()()()2223240cos sin sin cos 22a t t t a t t t atdt a πππ⎡⎤=++-=+⎣⎦⎰.………………………8分 3、解:经计算,该级数的收敛域为()1,1x ∈-.…………………………………………2分 其次计算该级数的和函数. 设()()23421111234(1)()()1,1nnn n n n s x nx x x x x n x x s x s x x ∞∞∞=====++++=+-=-∈-∑∑∑ ,…4分 ()2321(1)234n n s x n x x x x ∞==+=+++∑ ,则()()()()()22234222211x x x s x s x dx x x x x x '⎛⎫-''==++== ⎪--⎝⎭⎰ ,11()1nn x s x x x ∞===-∑.………7分 综上所述,()()()22212()1,1111nn x x x xs x nx x x x x ∞=-==-=∈----∑………………………………8分四、解答下列各题(本大题共3小题,每小题8分,总计24分)1、解:作图(略).设内接长方体在第一卦限的内接点坐标为(),,P x y z ,有如下结论:(),,P x y z 一定在球面上面,满足球面方程;其次,长方体的长宽高一定分别为2,2,2x y z .因此,可建立如下数学模型:2222max 8..,,0V xyz x y z a s t x y z =⎧++=⎨>⎩…………………………………………………………4分 利用Lagrange 乘数法进行求解,构造辅助函数为:()22228L xyz x y z a λ=+++-,有:22228208208200x yz L yz x L xz y L xy z L x y z a λλλλ=+=⎧⎪=+=⎪⎨=+=⎪⎪=++-=⎩………………………………6分 解得唯一驻点(),,x y z ⎫=⎪⎭,因该问题一定存在最大值,故该唯一驻点一定是该问题的最大值点,最大值为3max V =.……………………………………………8分2、解:作图(略).原式=()()221222D x y x y xy dxdy ⎡⎤+++++⎣⎦⎰⎰=()221D x y dxdy ++⎰⎰…4分 =()22224200011121242d d πθρρρπρρπ⎛⎫+=+= ⎪⎝⎭⎰⎰……………………………………………8分3、解:作图(略). 原式=()(,xyx y z x y ∑++⎰⎰,其中,5z y =-,(){}22,25,,xy x y xy x y R ∑=+≤∈.………………………………………………………………4分故原式=(5xyx ∑+=⎰⎰……………………………………………………………8分 五、解答下列各题 (本大题共2小题,每小题6分,总计12分)1、解:作图(略). 本题利用第二类曲线积分的定义或格林公式均可以处理. 这里利用格林公式处理. 添加辅助有向直线段:0,0AO y x π→=≤≤,从而构成封闭平面区域D .设()()()2,sin 2,,21P x y x Q x y x y ==-,显然,,P Q 在区域D 内满足格林公式.…………1分=4D L AO AO DQ P d Pdx Qdy Pdx Qdy xyd x y σσ→→+⎛⎫∂∂-=-+=-+ ⎪∂∂⎝⎭⎰⎰⎰⎰⎰⎰ 原式-…………………3分 故原式=2sin 00044sin 22x D AO xyd Pdx Qdy dx xydy xdx πππσ→--+=--=-⎰⎰⎰⎰⎰⎰.………………6分2、解:因()()222324421()2211,1141t x t x f x t t t t x t ==-'==-=--+-+∈-++=()()2244662201121222212,22nn nn x x x x x ∞=⎛⎫--+-+=--∈- ⎪⎝⎭∑ …………………………3分 故()()246357012222()arctan 2012357x x f x f x dx x x x x f x ⎛⎫-'===--+-++ ⎪+⎝⎭⎰()22121121,42122n nn n x x n π∞+=⎛⎫=--∈- ⎪+⎝⎭∑………………………………………………………5分 故()22112211()arctan 21,1242122n n n n x f x x x x n π∞+=-⎛⎤==--∈- ⎥++⎝⎦∑(因为()f x 在12x =处连续,而级数在该点处收敛).……………………………………………………………………………6分。
2013-2014高等数学(上)期末考试(B2卷)
河北科技大学理工学院2013---2014学年第一学期高等数学(上)期末考试试题(B2卷) 考试日期: 2014.1说明:1、将所有答案写在答题纸相应位置上,否则无效.2、考试结束后将试卷和答题纸分开交给监考老师.一、填空题(每小题3分,共15分)1、极限0lim x x →= .2、设函数222,0()ln(),0x a x f x x e x ⎧+≤⎪=⎨+>⎪⎩在(,)-∞+∞内连续,则a 的值为. 3、设函数()f x 连续,0x ≥且20()xf t dt x =⎰,则(1)f = .4、积分(131x dx -=⎰ .5、曲线y =()1,2处的切线方程为 .二、单项选择题(每小题3分,共15分)1、积分()1sin d x -=⎰ ( )..1sin A x -;.sin B x C -+;C.cos x x +;D.sin x x C ++.2、微分方程230y y y '''--=所对应的特征方程的根为( ).12.3,1A r r =-=-;12B.3,1r r =-=;12C.3,1r r ==-;12.3,1D r r ==.3、0x =是函数1()arctan f x x =的( )..A 连续点;B.可去间断点;C.第二类间断点;.D 跳跃间断点.4、设连续曲线()y f x =,若0()=0f x ''且()f x ''在0x 的左右两侧邻近异号,则().00.(,())A x f x 必为曲线的拐点; 00B.(,())x f x 必为曲线的驻点;0C.()x f x 为的极值点; 0.()D x f x 必定不是的极值点.5、方程3310x x -+=在区间(0,1)内( )..A 无实根; B.有唯一实根; C.有两个实根; D.有三个实根.三、计算下列各题(每小题6分,共30分)1、求积分()(),012ln dx x x x >+⎰.2、求积分.3、设函数()y y x =由参数方程2211t t x e y e -⎧=-⎪⎨=+⎪⎩确定,求0t dy dx =.4、求极限1lim 1x x x x →∞-⎛⎫ ⎪+⎝⎭.5、设函数()sin cos ,0,2x y x x y π'=<<求.四、解答下列各题(每小题8分,共32分)1、讨论,a b 为何值时,极限2lim12x ax b x →+=-.2、求微分方程x dy y e dx-+=满足初始条件01x y ==的解.3、设平面图形D 由曲线2y x =和2x y =所围成,求(1)D 的面积S ;(2)D 绕x 轴旋转一周所形成的立体的体积V .4、求函数32()26187f x x x x=--+的单调区间和极值.五、(8分)设函数[](),f x a b在上连续,在(),a b内可导,证明存在一点(),a bξ∈,使得()()()()bf b af af fb aξξξ-'=+-.。
2013山东高考济南二模文科数学(含答案)
绝密★启用并使用完毕前高三巩固性训练文 科 数 学本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 考试时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:1.锥体的体积公式: Sh V 31=,其中S 是锥体的底面积,h 是锥体的高; 2. 统计中2χ的公式:21212211222112)(++++-=n n n n n n n n n χ,其中21111n n n +=+,22122n n n +=+,12111n n n +=+,22212n n n +=+,22122111n n n n n +++=.第I 卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1. 复数=-+2013)11(ii A. 1- B. 1 C. i - D. i2. 设集合{}1|(),|12x M y y N y y ⎧⎫===≥⎨⎬⎩⎭,则集合M ,N 的关系为A.M N =B.M N ⊆C.N M ≠⊂ D.N M ≠⊃3. 执行如图所示的程序框图,则输出的n 的值为 A.5 B.6 C.7 D.84. 已知圆04222=-+-+my x y x 上两点M 、N 关于直线2x +y =0对称,则圆的半径为A .9B .3 C.23 D .25. 一空间几何体的三视图如图所示,则此几何体的直观图为第3题图6. 设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z =x +2y 的最大值为A.1B.4C.5D.6 7. 在等比数列{}n a 中,531=+a a ,1042=+a a ,则=7aA .64B .32C .16D .128 8. 为了解疾病A 是否与性别有关,在一医院随机的对入院50人进行了问卷调查得到了如下的列联表:请计算出统计量,你有多大的把握认为疾病A 与性别有关下面的临界值表供参考:A. 95% 99.9%9. 函数)22sin(2x y -=π是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数10. 设,m n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确...的是 A .当α⊂m 时,“//n α”是“n m //”的必要不充分条件 B .当α⊂m 时,“m ⊥β”是“βα⊥”的充分不必要条件 C .当n ⊥α时,“n ⊥β”是“α∥β”成立的充要条件 D .当α⊂m 时,“α⊥n ”是“n m ⊥”的充分不必要条件 11. 函数sin x xy e-=的图象大致为A. B. C. D.12. 已知函数⎩⎨⎧>+-≤<-=0,1)1(01,)(3x x f x x x f ,若函数x x f x g -=)()(的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为A .2)1(-=n n a n B .)1(-=n n a n C .1-=n a n D .22-=n n a 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题4分,共16分.13. 若向量)3,2(-=a ,),4(m b =, //a b ,则实数=m .14. 已知双曲线)0,0(12222>>=-b a b y a x 的焦点F 到一条渐近线的距离为||23OF ,点O 为坐标原点,则此双曲线的离心率为 .15. 在ABC ∆中,1=AB ,2=AC ,21=∆ABC S ,则=BC .16. 对大于或等于2的自然数m 的n 次方幂有如下分解方式:2213=+ 3235=+ 23135=++ 337911=++241357=+++ 3413151719=+++2513579=++++ 292725232153++++=根据上述分解规律,若3*()m m N ∈的分解中最小的数是73,则m 的值为 .三、解答题:本大题共6小题,共74分. 17. (本小题满分12分)设函数()sin()sin()33f x x x x ππωωω=++- (其中ω>0),且函数f (x )图象的两条相邻的对称轴间的距离为2π. (1)求ω的值;(2)将函数)(x f y =的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到函数)(x g y =的图象,求函数)(x g 在区间[0,]2π的最大值和最小值.18. (本小题满分12分)为了宣传今年10月在济南市举行的“第十届中国艺术节”, “十艺节”筹委会举办了“十艺节”知识有奖问答活动,随机对市民15~65岁的人群抽样n 人,回答问题统计结果如下图表所示:(1)分别求出a ,x 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“十艺节”筹委会决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.19. (本小题满分12分)如图,斜三棱柱111A B C ABC -中,侧面11AA C C ⊥底面ABC ,底面ABC 是边长为2的等边三角形,侧面11AA C C 是菱形,160A AC ∠= ,E 、F 分别是11AC 、AB 的中点. 求证:(1)EC ABC ⊥平面;(2)求三棱锥1A EFC -的体积.20. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-,数列{}n b 满足11b =,且12n n b b +=+. (1)求数列{}n a ,{}n b 的通项公式;(2)设1(1)1(1)22n nn n n c a b --+-=-,求数列{}n c 的前2n 项和2n T . 21.(本小题满分13分) 已知函数31()(2)3f x ax a x c =+-+的图象如右图所示. (1)求函数)(x f y =的解析式; (2)若()()2l n k f x g x x x'=-在其定义域内为增函数,求实数k 的取值范围.22. (本小题满分13分)已知点F 1)0,3(-和F 2)0,3(是椭圆M :)0(12222>>=+b a by a x 的两个焦点,且椭圆M经过点)21,3(.(1)求椭圆M 的方程;(2)过点P (0,2)的直线l 和椭圆M 交于A 、B 两点,且53=,求直线l 的方程; (3)过点P (0,2)的直线和椭圆M 交于A 、B 两点,点A 关于y 轴的对称点C ,求证:直线CB 必过y 轴上的定点,并求出此定点坐标.12013年4月济南市高三巩固性训练文科数学参考答案1.D2.D3.C4.B5.A6.D7.A8. C9.B 10. A 11.B 12.C 13. 6- 14.2 15. 1或5 16.917.解:(1)()sin f x x x ωω==2sin()3x πω+. ………………………………3分∵函数f (x )图象的两条相邻的对称轴间的距离为2π, ∴2T ππω==. ………………………………5分∴2ω=. ………………………………6分 (2)由(1)得()f x =2sin(2)3x π+,∴()g x =2sin()3x π+. ………………………………8分 由x ∈[0,]2π可得5336x πππ≤+≤, ……………………………10分 ∴当=32x ππ+,即x =6π时,()g x 取得最大值()2sin 262g ππ==;当5=36x ππ+,即x =2π时,()g x 取得最小值5()2sin126g ππ==. …………12分 18. 解:(1)由频率表中第1组数据可知,第1组总人数为5100.5=, 再结合频率分布直方图可知1001001.010=⨯=n . ………………………………2分 ∴a =100×0.020×10×0.9=18, ………………………………4分270.91000.0310x ==⨯⨯, ………………………………6分(2)第2,3,4组中回答正确的共有54人.∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:618254⨯=人,第3组:627354⨯=人,第4组:69154⨯=人. ………………………………8分 设第2组的2人为1A 、2A ,第3组的3人为1B 、2B 、B 3,第4组的1人为C ,则从6人中抽2人所有可能的结果有:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()1,A C ,()21,A B ,()22,A B ,()23,A B ,()2,A C ,()12,B B ,()13,B B ,()1,B C ,()23,B B ,()2,B C ,()3,B C ,共15个基本事件, ………………………………10分 其中第2组至少有1人被抽中的有()12,A A ,()11,A B ,()12,AB ,()13,A B ,()1,AC ,()21,A B ,()22,A B ,()23,A B ,()2,A C 这9个基本事件.∴第2组至少有1人获得幸运奖的概率为93155=. ………………………………12分 19. 证明:(1) 在平面11AA C C 内,作1AO AC ⊥,O 为垂足. 因为0160A AC ∠=,所以11122AO AA AC ==,即O 为AC 的中点,所以1OC A E ∥.……3分因而1EC AO ∥.因为侧面11AA C C ⊥底面ABC ,交线为AC ,1AO AC ⊥,所以1AO ⊥底面ABC . 所以EC ⊥底面ABC . ……6分(2)F 到平面1A EC 的距离等于B 点到平面1A EC 距离BO 的一半,而BO ……8分所以111111111113232324A EFC F A EC A EC V V S BO A E EC --=====V g g g g g . ……12分20.解:(1)当1=n ,21=a ; …………………………1分当2≥n 时,1122n n n n n a S S a a --=-=- ,∴ 12n n a a -=. ……………2分 ∴{}n a 是等比数列,公比为2,首项12a =, ∴2n n a =. ………3分 由12n n b b +=+,得{}n b 是等差数列,公差为2. ……………………4分又首项11=b ,∴ 21n b n =-. ………………………………6分(2)2(21)n n c n ⎧=⎨--⎩ 为偶数为奇数n n ……………………8分3212222[37(41)]n n T n -=+++-+++- ……………10分2122223n n n +-=--. ……………………………12分21.解:(1)∵()22f x ax a '=+-, …………………………………………2分由图可知函数)(x f 的图象过点()0,3,且()10f '=. 得3220c a =⎧⎨-=⎩ , 即31c a =⎧⎨=⎩. ………………………………………………4分∴31()33f x x x =-+. ………………………………………………5分(2)∵()()2ln 2ln kf x kg x x kx x x x'=-=--, ………………………………6分 ∴ ()22222k kx k xg x k x x x+-'=+-=. …………………………………………8分 ∵ 函数()y g x =的定义域为),0(+∞, …………………………………………9分 ∴若函数()y g x =在其定义域内为单调增函数,则函数()0g x '≥在),0(+∞上恒成立,即220kx k x +-≥在区间),0(+∞上恒成立. ……………………………10分 即122+≥x xk 在区间),0(+∞上恒成立. 令22()1xh x x =+,),0(+∞∈x , 则222()111x h x x x x==≤++(当且仅当1=x 时取等号). …………………12分 ∴ 1≥k . …………………………………………………………………………13分22.解:(1)由条件得:c =3,设椭圆的方程132222=-+a y a x ,将)21,3(代入得 1)3(41322=-+a a ,解得42=a ,所以椭圆方程为1422=+y x . --------4分 (2)斜率不存在时,31=不适合条件;----------------------5分 设直线l 的方程2+=kx y ,点B (x 1,y 1), 点A (x 2,y 2), 代入椭圆M 的方程并整理得:01216)41(22=+++kx x k .0)34(16)41(48)16(222>-=+-=∆k k k ,得432>k . 且1412,1416221221+=+-=+k x x k k x x . -------------------7分因为53=,即)2,(53)2,(2211-=-y x y x ,所以2153x x =.代入上式得1420,141022222+=+-=k x k k x ,解得1±=k , 所以所求直线l 的方程:2+±=x y . --------------------9分(3)设过点P (0,2)的直线AB 方程为:2+=kx y ,点B (x 1,y 1), 点 A (x 2,y 2), C (-x 2,y 2).将直线AB 方程代入椭圆M : 1422=+y x ,并整理得: 01216)41(22=+++kx x k ,0)34(16)41(48)16(222>-=+-=∆k k k ,得432>k . 且1412,1416221221+=+-=+k x x k kx x .设直线CB 的方程为:)(212122x x x x y y y y +---=-,令x =0得:2221212121122112222++=++=+--=x x x kx x x y x y x x x y x x y y y .----------11分将1412,1416221221+=+-=+k x x k kx x 代入上式得: 21223214161412222=+-=++-+=k k k ky . 所以直线CB 必过y 轴上的定点,且此定点坐标为)21,0(. ---------12分 当直线斜率不存在时,也满足过定点的条件。
1314高等数学A(二)试题答案 济南大学
1 发散, n=1 n
(n 1, 2,
n=1
1 1 un发散. un ln(1 n) ln(1 n 1) un 1,
1 且 lim un 0, n ln(1 n )
);
由莱布尼茨定理知
原级数收敛, 从而知其条件收敛.
目录 上页 下页 返回 结束
偏导数存在
可微分
偏导数连续
目录
上页
下页
返回
结束
3. 若z=f (x,y)在(x0,y0)处取得极大值, 则g(y)=f(x0,y) 则(
A. g(y)在y0取得最大值; C. y0是g(y)的驻点
B
) B. g(y)在y0取得极大值
T
D.以上都不对.
M
目录
上页
下页
返回
结束
4. 下列级数中,绝对收敛的是(
时级数收敛 时级数发散 故收敛半径为 R 3 .
目录
上页
下页
返回
结束
5.
设函数 f ( x) 是以 2 为周期的周期函数,
在区间 [ , ) 上的表达式为 f ( x) x ,则 f ( x) 的傅里叶级数在 x 处收敛于 . 分析.
1 端点处收敛于 [ f ( ) f ( )] 2 1 ( ) 0. 2
解: 看作任意项级数,直接由 比值审敛法求收敛半径.
(n 2) x n1 3n1
(n 1) x n 3n
un1 ( x) lim lim n u ( x ) n n
n2 1 lim x x n 3( n 1) 3
1 当 x 1, 3 1 当 x 1, 3
1112高等数学A(二)试题答案 济南大学
当 q 1时,收敛 n aq n 0 当 q 1时, 发散
1 当p 1时,收敛 p n n 0 当p 1时,发散
1 ( 1)n1 发散 , 收敛 , n n 0 n 0 n
是抛物线 2 x y2上从点(0, 0) 到点 ( 2 ,1) 的一段弧. 解: 设P 2 xy 3 y 2 cos x, Q 1 2 y sin x 3 x 2 y 2 , 则 P Q 2 6 xy 2 y cos x . 所以曲线积分与路径无关. y x ( 取折线积分路径OBA,其中B 2 , 0) ,则
三、计算题(每小题10分,共40分) 1. 设
2 2 z z z z 2 z x sin y , 求 , , . 2 x y y x y
解:
2.
求函数
的极值.
解: 第一步 求驻点. 解方程组 得驻点:
2x 2
B
f x y ( x, y ) e2 x (4 y 4),
1 分析. 间断点处收敛于 [ f (0 ) f (0 )] 2 1 1 (0 1) . 2 2
.
二.选择题(每小题2分,共10分)
1. 函数 f ( x, y ) 在点 ( x0 , y0 )处的全微分存在的 充分条件是(
C
)
(A) f ( x, y ) 在点 ( x0 , y0 )处的两个一阶偏导数都存在. (B) f ( x, y ) 在点 ( x0 , y0 ) 处连续. (C) f ( x, y ) 在点 ( x0 , y0 ) 处的两个一阶偏导数都连续 . (D) f ( x, y ) 在点 ( x0 , y0 ) 处连续并且两个一阶. 一阶偏导数都存在.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
济南大学2013~2014学年第二学期课程考试试卷(A 卷) 课 程 高等数学A (二) 考试时间 2014 年 6 月 24 日
………………注:请将答案全部答在答题纸上,直接答在试卷上无效。
………………
一、填空题(每小题2分,共10分)
(1) 微分方程044=+'-''y y y 的通解为 .
(2) 极限=+-→22)1,0(),(1lim
y x xy y x . (3) 设二元函数)sin(y x z +=,则=z d .
(4) 幂级数∑∞
=+131n n n
x n 的收敛半径为 . (5) 设函数)(x f 是以π2为周期的周期函数,在区间),[ππ-上的表达式为x x f =)(,则)(x f 的傅里叶级数在π=x 处收敛于 .
二、选择题(每小题2分,共10分)
(1) 极限=→x
xy y x )sin(lim )2,0(),( (A) 0. (B) 1. (C) 2. (D) 不存在.
(2) 二元函数),(y x f 在点),(00y x 处的全微分存在是它在该点两个一阶偏导数都存在的
(A) 充分条件. (B) 必要条件.
(C) 充分必要条件. (D) 既非充分也非必要条件.
(3) 若),(y x f z =在),(00y x 处取得极大值,令),()(0y x f y g =. 则
(A) )(y g 在0y 取得最大值. (B) )(y g 在0y 取得极大值.
(C) 0y 是)(y g 的驻点. (D) 以上都不对.
(4) 下列级数中,绝对收敛的是
(A) ∑∞=+--111)1(n n n n . (B) ∑∞=-1)1(n n n . (C) ∑∞=-12)1(n n n . (D) ∑∞
=-1)1(n n n . (5) 微分方程x e y y y -=-'-''42的特解形式应设为
(A) x e Ax -2. (B) x e Ax -+)4(2. (C) x Axe -. (D) x Ae -.
三、计算题(每小题8分,共40分)
(1) 设2
23cos xy y x z -=,求x z ∂∂,y z ∂∂,22x z ∂∂和y x z ∂∂∂2.
(2) 设),(y x z z =是由方程01=--xyz e z 所确定的隐函数,求
x z ∂∂和y z ∂∂. (3) 求微分方程
21d d y x x
y -=的通解. (4) 求微分方程x e y y 2121=-'满足初始条件10==x y 的特解. (5) 判定级数∑∞
=-+-11
)1ln()1(n n n 的敛散性,并指出是绝对收敛还是条件收敛? 四、计算下列积分(每小题10分,共20分)
(1) ⎰⎰⎰Ω
++z y x z y x d d d )(222,其中Ω是由球面1222=++z y x 所围成的闭区域.
(2) ⎰⎰∑
+y x z y x d d )(22,其中∑是旋转抛物面22y x z +=介于平面0=z 和1=z 之间部分的下侧.
五、综合题(每小题10分,共20分)
(1) 证明曲线积分⎰+-+L y y
x x x y x xy d d 2242
24在右半平面0>x 上与路径无关,并计算积分 ⎰+-+)
4,2()0,1(24224d d 2y y
x x x y x xy . (2) 设平面区域D 是由曲线)(x y y =和直线0=y ,1=x 所围成的闭区域,其中)(x y 是幂级数
∑∞
=--11)1(n n n x n ,11≤<-x 的和函数.计算二重积分⎰⎰D
y x x d d .。