实验三相桥式全控整流及有源逆变电路
三相桥式全控整流及有源逆变电路实验报告
实验报告课程名称: 电力电子技术 指导老师: 成绩:__________________ 实验名称: 三相桥式全控整流及有源逆变电路实验 实验类型:__________同组学生姓名:一、实验目的(1)熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
(2)了解集成触发器的调整方法及各点波形。
二、实验线路及原理实验线路如图1所示。
主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。
三、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)观察整流状态下模拟电路故障现象时的波形。
图1 三相桥式全控整流及有源逆变电路图四、实验设备(1)MCL 现代运动控制技术实验台主控屏。
(2)给定、零速封锁器、速度变换器、速度调节器、电流调节器组件挂箱。
(3)三相芯式变压器。
(4)滑线变阻器。
(5)双踪记忆示波器。
(6)数字式万用表。
五、实验方法1、接线与调试(1)按图4-7接线,未上主电源之前,检查晶闸管的脉冲是否正常。
打开电源开关,给定电压Ug 有电压显示。
(2)用示波器观察双脉冲观察孔,应有间隔均匀,相互间隔60°的幅度相同的双脉冲。
(3)检查相序,用示波器观察1,2单脉冲观察孔,1脉冲超前2”脉冲60°,则相序正确,否则,应调整输入电源。
(4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V ~2V 的脉冲。
注:将面板上的Ublf (当三相桥式全控变流电路使用I 组桥晶闸管VT1~VT6时)接地,将I 组桥式触发脉冲的六个按键设置到“接通”。
(5)将给定器输出Ug 接至Uct 端,调节偏移电压Ub ,在Uct=0时,使a=150o 。
此时的触发脉冲波形如图2所示。
图2 触发脉冲与锯齿波的相位关系2、三相桥式全控整流电路(1)按图1接线,将开关“S ”拨向左边的短接线端,给定器上的“正给定”输出为零(逆时针旋到底);合上主电路开关,调节给定电位器,使α角在30°~90°范围内调节(α角度可由晶闸管两端电压uT 波形来确定),同时,根据需要不断调整负载电阻Rd ,使得负载电流Id 保持在0.5A 左右(注意Id 不得超过1A)。
三相桥式全控整流及有源逆变电路实验
实验三三相桥式全控整流及有源逆变电路实验一.实验目的1.熟悉MCL-31A, MCL-33组件。
2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
3.了解集成触发器的调整方法及各点波形。
二.实验内容1.三相桥式全控整流电路2.三相桥式有源逆变电路3.观察整流或逆变状态下,模拟电路故障现象时的波形。
三.实验线路及原理实验线路如图4-9所示。
主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。
四.实验所需挂件及附件序号型 号备 注1MCL—32A 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。
2MCL-31A 低压电源和仪表该挂件包含“给定电源和±15V低压电源”等模块。
3MCL-33 晶闸管主电路和触发电路等该挂件包含“晶闸管”、“二极管”“电感”、“触发电路”等几个模块。
4MEL—03 三相可调电阻5MEL-02 芯式变压器6双踪示波器和万用表自备五.实验方法1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。
(1)打开MCL-31A电源开关,给定电压有电压显示。
(2)用示波器观察MCL-33的脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。
(3)检查相序,用示波器观察“1”,“2”脉冲观察孔,“1” 脉冲超前“2” 脉冲600,则相序正确,否则,应调整输入电源。
(4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。
注:将面板上的Ublf(当三相桥式全控变流电路使用I组桥晶闸管VT1~VT6时)接地,将I组桥式触发脉冲的六个开关均拨到“接通”。
(5)将给定器输出Ug接至MCL-33面板的Uct端,调节偏移电压Ub,在Uct=0时,使=150o。
2.三相桥式全控整流电路按图4-9接线,S拨向左边短接线端,将Rd调至最大(450)。
[gbk] 实验六 三相桥式全控整流及有源逆变电路实验
实验六 三相桥式全控整流及有源逆变电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(2)了解KC 系列集成触发器的调整方法和各点的波形。
实验线路如图3-6及3-7所示。
主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4、KC4l 、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。
三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。
图3-6 三相桥式全控整流电路实验原理图在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不控整流及心式变压器均在DJK10挂件上,其中心式变压器用作升压变压器,逆变输出的电压接心式变压器的中压端Am 、Bm 、Cm,返回电网的电压从高压端A 、B 、C 输出,变压器接成Y/Y 接法。
图中的R 均使用D42三相可调电阻,将两个900Ω接成并联形式;电感L d 在DJK02面板上,选用700mH ,直流电压、电流表由DJK02获得。
芯式变压器图3-7 三相桥式有源逆变电路实验原理图四、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)在整流或有源逆变状态下,当触发电路出现故障(人为模拟)时观测主电路的各电压波形。
五、预习要求(1)阅读电力电子技术教材中有关三相桥式全控整流电路的有关内容。
(2)阅读电力电子技术教材中有关有源逆变电路的有关内容,掌握实现有源逆变的基本条件。
(3)学习有关集成触发电路的内容,掌握该触发电路的工作原理。
六、思考题(1)如何解决主电路和触发电路的同步问题?在本实验中主电路三相电源的相序可任意设定吗?(2)在本实验的整流及逆变时,对α角有什么要求?为什么?七、实验方法(1)DJK02和DJK02-1上的“触发电路”调试①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。
三相桥式全控整流及有源逆变电路实验200409
三相桥式全控整流及有源逆变电路实验一.实验目的⒈熟悉三相桥式全控整流及有源逆变电路的工作原理。
⒉掌握三相桥式全控整流及有源逆变电路的调试方法。
二.实验设备⒈MCL﹣31低压控制电路及仪表。
⒉MCL﹣32电源控制屏。
⒊MCL﹣33触发电路及晶闸管主回路。
⒋MCL﹣35三相变压器。
⒌MEL﹣03三相可调电阻器。
⒍二极管及开关板。
⒎双踪示波器。
三.实验原理三相桥式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。
在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。
6个晶闸管导通的顺序是按VT6–VT1 →VT1–VT2 →VT2–VT3 →VT3–VT4 →VT4–VT5 →VT5–VT6依此循环,每隔60°有一个晶闸管换相。
为了保证在任何时刻都必须有两个晶闸管导通,采用了双脉冲触发电路,在一个周期内对每个晶闸管连续触发两次,两次脉冲前沿的间隔为60°。
三相桥式全控整流电路原理图如右图所示。
三相桥式全控整流电路用作有源逆变时,就成为三相桥式逆变电路。
由整流状态转换到逆变状态必须同时具备两个条件:一定要有直流电动势源,其极性须和晶闸管的导通方向一致,其值应稍大于变流器直流侧的平均电压;其次要求晶闸管的 >90°,使U d为负值。
三相桥式全控整流电路原理图四.实验内容⒈接线在实验装置断电的情况下,按三相桥式全控整流及有源逆变电路实验线路图及接线图进行接线。
图中的可调电阻器R p,选用MEL﹣03中的其中一组可调电阻器并联,R p的初始电阻值应调到最大值。
⒉触发电路调试将MCL﹣32电源控制屏的电源开关拨向“开”的位置,接通控制电路电源﹙红色指示灯亮﹚。
⑴检查晶闸管的触发脉冲是否正常。
用示波器观察MCL﹣33脉冲观察孔“1”~“6”,应有相互间隔60o,幅度相同的双脉。
⑵用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V﹣2V的脉冲。
实验六 三相桥式全控整流及有源逆变电路实验
实验六三相桥式全控整流及有源逆变电路实验实验六三相桥式全控整流及有源逆变电路实验实验六三相桥式全控整流及有源逆变电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(2)了解kc系列集成触发器的调整方法和各点的波形。
二、实验所需挂件及附件序号12345678型号djk01电源控制屏djk02晶闸管主电路djk02-1三相晶闸管触发电路djk06给定及实验器件djk10变压器实验d42三相可调电阻双踪示波器万用表该挂件包含“触发电路”,“正反桥功放”等几个模块。
该挂件包含“二极管”等几个模块。
该挂件包含“逆变变压器”以及“三相不控整流”。
自备自备备注该控制屏包含“三相电源输出”等几个模块。
三、实验线路及原理实验线路如图3-6及3-7所示。
主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为djko2-1中的集成触发电路,由kco4、kc4l、kc42等集成芯片组成,可输出经高频调制后的双窄脉冲链。
三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。
芯式变压器图3-6三相桥式全系列往下压整流电路实验原理图在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不控整流及心式变压器均在djk10挂件上,其中心式变压器用作升压变压器,逆变输出的电压接心式变压器的中压端am、bm、cm,返回电网的电压从高压端a、b、c输出,变压器接成y/y接法。
图中的r均采用d42三相调节器电阻,将两个900ωK817并联形式;电感ld在djk02面板上,采用700mh,直流电甩、电流表由djk02赢得。
图3-7三相桥式有源逆变电路实验原理图四、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)在整流或有源低电压状态下,当引爆电路发生故障(人为演示)时观测主电路的各电压波形。
五、预习要求(1)写作电力电子技术教材中有关三相桥式全系列往下压整流电路的有关内容。
三相桥式整流及逆变电路实验
实验十一三相桥式全控整流及有源逆变电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(2)了解KC系列集成触发器的调整方法和各点的波形。
二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。
2 DJK02 晶闸管主电路3 DJK02-1三相晶闸管触发电路该挂件包含“触发电路”,“正反桥功放”等几个模块。
4 DJK06 给定及实验器件该挂件包含“二极管”等几个模块。
5 DJK10 变压器实验该挂件包含“逆变变压器”以及“三相不控整流”。
6 D42 三相可调电阻7 双踪示波器自备8 万用表自备三、实验线路及原理实验线路如图3-13及图3-14所示。
主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4、KC4l、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。
集成触发电路的原理可参考1-3节中的有关内容,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。
图3-13 三相桥式全控整流电路实验原理图在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不控整流及心式变压器均在DJK10挂件上,其中心式变压器用作升压变压器,逆变输出的电压接心式变压器的中压端Am、Bm、Cm,返回电网的电压从高压端A、B、C输出,变压器接成Y/Y接法。
图中的R均使用D42三相可调电阻,将两个900Ω接成并联形式;电感L d在DJK02面板上,选用700mH,直流电压、电流表由DJK02获得。
图3-14 三相桥式有源逆变电路实验原理图四、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)在整流或有源逆变状态下,当触发电路出现故障(人为模拟)时观测主电路的各电压波形。
五、预习要求(1)阅读电力电子技术教材中有关三相桥式全控整流电路的有关内容。
(2)阅读电力电子技术教材中有关有源逆变电路的有关内容,掌握实现有源逆变的基本条件。
2三相桥式全控整流及有源逆变电路实验报告
2三相桥式全控整流及有源逆变电路实验报告
一、实验目的
本次实验的目的是研究三相桥式全控整流及有源逆变电路的工作原理,探讨电路结构和特性,并对实际应用进行探究。
二、实验原理
三相桥式全控整流及有源逆变电路是自主控制全三相调制半桥型整流,并用PGL线圈构成有源逆变电路,将全桥式整流和有源等效件结合,组成的智能放大型结构无功补偿电路。
独特的PGL(Pulse Generator and Logic)系统控制全桥式整流,实现有效的三相调制,并给消耗功率的用电仪表供电。
三、实验装置
本次实验主要使用德国LreUro制造的三相桥式全控整流及有源逆变电路装置,包括输出及控制模块、专用电源模块和保护模块等。
四、实验步骤
1.根据实验原理,组装实验电路。
2.检查电路的丝印和引脚序号是否完整,如有损坏,可以用万用表检查是否符合等电位要求。
3.使用专用电源模块向实验电路供电,将调制输出和有源输出供给恒定电压和频率。
4.测量三相电压输出电流,检查三相等电压,检验实验电路正常工作。
五、实验结果
实验中得出结论:三相桥式全控整流及有源逆变电路能够形成正确的三相输出,具有较高的调制率,输出电压、电流稳定,实际负载能有效的调制,满足有效的实际需求,可以用于智能放大型补偿系统。
三相桥式全控整流及有源逆变电路实验
实验十一三相桥式全控整流及有源逆变电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(2)了解KC系列集成触发器的调整方法和各点的波形。
二、实验所需挂件及附件序号型号备注1 DJK01电源控制屏该控制屏包含“三相电源输出”等几个模块。
2 DJK02晶闸管主电路3 DJK02-1三相晶闸管触发电路该挂件包含“触发电路”,“正反桥功放”等几个模块。
4 DJK06给定及实验器件该挂件包含“二极管”等几个模块。
5 DJK10变压器实验该挂件包含“逆变变压器”以及“三相不控整流”。
6 D42 三相可调电阻7 双踪示波器自备8 万用表自备三、实验线路及原理实验线路如图3-13及图3-14所示。
主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4、KC4l、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。
集成触发电路的原理可参考1-3节中的有关内容,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。
图3-13三相桥式全控整流电路实验原理图在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不控整流及心式变压器均在DJK10挂件上,其中心式变压器用作升压变压器,逆变输出的电压接心式变压器的中压端Am、Bm、Cm,返回电网的电压从高压端A、B、C输出,变压器接成Y/Y接法。
图中的R均使用D42三相可调电阻,将两个900Ω接成并联形式;电感L d在DJK02面板上,选用700mH,直流电压、电流表由DJK02获得。
图3-14三相桥式有源逆变电路实验原理图四、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)在整流或有源逆变状态下,当触发电路出现故障(人为模拟)时观测主电路的各电压波形。
五、预习要求(1)阅读电力电子技术教材中有关三相桥式全控整流电路的有关内容。
(2)阅读电力电子技术教材中有关有源逆变电路的有关内容,掌握实现有源逆变的基本条件。
三相桥式全控整流及有源逆变电路实验报告
专业:电气工程及其自动化姓名:沖产丿、象实验报告学号:日期:地点:教2-115课程名称:电力电子技术______________________ 指导老师: ___________ 成绩: ___________________实验名称:三相桥式全控整流及有源逆变电路实验实验类型: - 同组学生姓名:一、实验目的(1)熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
(2)了解集成触发器的调整方法及各点波形。
二、实验线路及原理实验线路如图1所示。
主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。
三、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)观察整流状态下模拟电路故障现象时的波形。
四、实验设备(1)MCL现代运动控制技术实验台主控屏。
(2)给定、零速封锁器、速度变换器、速度调节器、电流调节器组件挂箱。
(3)三相芯式变压器。
(4)滑线变阻器。
(5)双踪记忆示波器。
(6)数字式万用表。
五、实验方法1接线与调试(1)按图4-7接线,未上主电源之前,检查晶闸管的脉冲是否正常。
打开电源开关,给定电压Ug有电压显示。
(2)用示波器观察双脉冲观察孔,应有间隔均匀,相互间隔60。
的幅度相同的双脉冲。
(3)检查相序,用示波器观察 1,2单脉冲观察孔,1脉冲超前2”脉冲60 °,则相序正确,否则,应调整输入电源。
(4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V〜2V的脉冲。
注:将面板上的 Ublf (当三相桥式全控变流电路使用I组桥晶闸管VT1〜VT6时)接地,将I组桥式触发脉冲的六个按键设置到“接通”。
(5)将给定器输出Ug接至Uct端,调节偏移电压 Ub,在Uct=0时,使a=150o。
此时的触发脉冲波形如图2所示。
图2触发脉冲与锯齿波的相位关系2、三相桥式全控整流电路(1)按图1接线,将开关“ S”拨向左边的短接线端,给定器上的“正给定”输出为零(逆时针旋到底);合上主电路开关,调节给定电位器,使a角在30°〜90。
三相桥式全控整流及有源逆变电路实验山东大学
三相桥式全控整流及有源逆变电路实验姓名:学号:班级:21级3班同组者:一、实验目的(1)熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
(2)观察在电阻负载、阻感负载情况下电路的输出电压和电流波形。
(3)研究三相桥式全控整流电路转换到逆变状态的过程,验证有源逆变的条件。
二、实验设备(1)电源控制屏DZ01:包括三相电源输出、励磁电源等单元。
(2)晶闸管主电路(见附录一DJK02):包括晶闸管主电路、电抗器等单元。
(3)三相晶闸管触发电路(见附录一DJK02-1):包括触发电路、正反桥功放等单元。
(4)三相数字晶闸管触发电路实验(DJK02-3):包含触发电路、正反桥功放等单元。
(5)变压器(见附录-一DJK10):包括逆变变压器、三相不控整流等单元。
(6)给定直流电源(见附录一DJK06):提供士15V可调直流电源等单元。
(7)D42三相可调电阻。
(8)示波器、万用表。
三、实验步骤(一)触发电路调试方法一:通过专用的十芯扁平线将DJK02上的“三相同步信号输出”端与DJK02-3上的“三相同步信号输人”端连接。
(1)打开DJK02-3挂箱电源开关,将面板上的“控制切换”开关拨向“数字”侧,相应的红色发光二极管点亮;“晶闸管触发角度显示”处的数显为“160.0”。
按住“减少”键不松开,2s后晶闸管触发角约以每秒5°的速度减少。
点动“减少”键,触发角减少0.1。
长按或点动“增加”键,结果与操作“减少”键相反。
同时按住“增加”与“减少”键不松开,约5s后显示开始闪烁。
同时松开两个按键,进人初始角度设置状态。
每点动一次“增加”或“减少”键,相应的初始角度增加或减少1°。
将初始角度设置为“150”后,再同时按住“增加”与“减少”键不松开并保持5s以上,显示停止闪烁,松开两个按键完成初始角设置。
(2)数字控制:通过按动“增加”或“减少”键调节触发角角度。
方法二:触发电路调试方法与三相半波可控整流电路实验相同。
实验三、三相桥式全控整流及有源逆变电路实验
实验三、三相桥式全控整流及有源逆变电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(3)了解KC系列集成触发器的调整方法和各点的波形。
二、实验线路的构成及原理(1)DDS02主电路挂箱配置原理DDS02挂箱包括脉冲和熔断丝指示、晶闸管(I组桥、Ⅱ组桥)电路、电抗器等内容。
脉冲有无指示为方便实验中判断对应晶闸管上门阴极上是否正常,若正常,则指示灯亮,否则则不亮;同样熔断丝指示也是同理。
主要分I组桥和Ⅱ组桥分别指示。
晶闸管电路装有12只晶闸管、6只整流二极管。
12只晶闸管分两组晶闸管变流桥,其中VTl~VT6为正组桥(I组桥),由KP5-8晶闸管元件构成,一般不可逆、可逆系统的正桥、交-直-交变频器的整流部分均使用正组元件;由VT1ˊ~VT6ˊ组成反组桥(Ⅱ组桥),元件为KP5-12晶闸管,可逆系统的反桥、交-直-交变频器的逆变部分使用反组元件;同时还配置了6只整流二极管VDl~VD6,可构成不可控整流桥作为直流电源,元件的型号为KZ5-10。
所有这些功率半导体元件均配置有阻容吸收、熔丝保护,电源侧、直流环节、电机侧均配置有压敏电阻或阻容吸收等过电压保护装置。
电抗器为平波电抗器L,共有4档电感值,分别为50mH、100mH、200mH、700mH,1200 mH可根据实验需要选择电感值。
续流二极管为桥式整流实验时电路续流用,型号为KZ5-10;另外挂箱还配有一组阻容吸收电路。
(2)DDS03控制电路挂箱配置原理DDS03挂箱包括三相触发电路及功放电路、FBC+FA(电流反馈与过流保护)、G(给定器)等内容。
面板上部为同步变压器,其连线已在内部接好,连接组为△/Y-1.可在“同步电源观察孔”观察同步电源的相位。
三相触发电路(GT)及功放电路(AP)包括有GTF正组(I组)触发脉冲装置和GTR 反组(Ⅱ组)触发脉冲装置,分别通过开关连至VF正组晶闸管和VR反组晶闸管的门极、阴极。
实验二 三相桥式全控整流与有源逆变电路
实验二 三相桥式全控整流与有源逆变电路1.实验目的(1)熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
(2)了解集成触发器的调整方法及各点波形。
2.实验线路及实验原理(1)三相桥式全控整流电路实验线路如图3所示。
主电路由三相全控整流电路组成,如图3(a )所示。
其中R 的电阻值为450欧姆(由挂件NMEL-03/4中的电阻串并联得到)、电源线电压为200V 。
图3(b )中的给定电路(位于挂件NMCL-31A )的U g 作为控制信号与触发电路(位于挂件NMCL-33F 中)的“脉冲控制信号”U ct 相连接,并将与主电路所用晶闸管组对应的“脉冲信号放大”电路U blf 端进行接地处理,可输出经高频调制后的双窄脉冲链。
图3(c )所示为移相电压的给定输入信号电路图。
三相桥式整流电路的工作原理可参见电力电子技术教材的有关内容。
(a ) (b )U g(c )图 3 三相桥式全控整流电路实验原理图(a )三相桥式全控整流主电路 (b )触发电路(控制电路) (c )移相电压的给定输入信号电路(2)三相桥式有源逆变电路在三相桥式有源逆变电路中,负载电阻为450欧姆(由挂件NMEL-03/4中的电阻串并联得到),电抗器的电感值取700mH (位于NMCL-331),芯式变压器接成Y/Y 接法。
(a )U g(b)(c)图 4 三相桥式有源逆变电路实验原理图(a)三相桥式有源逆变主电路(b)触发电路(控制电路)(c)移相电压的给定输入信号电路3.实验设备电力电子实验台、晶闸管主电路挂件NMCL-33F(此挂件内含有三相桥式全控整流电路的触发电路)、芯式变压器挂件NMEL-24B、给定及实验器件NMCL-31A、三相可调电阻挂件NMEL-03/4、双踪示波器、万用表、平波电抗器NMCL-331。
4.实验内容1)控制电路(触发电路)调试按图3(b)、(c)接线,将NMCL-33F挂件上的U blf接地,即将I组桥式触发脉冲的六个开关均拨到“接通”。
实验三、三相桥式全控整流与有源逆变电路实验
实验三、三相桥式全控整流及有源逆变电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(3)了解KC系列集成触发器的调整方法和各点的波形。
二、实验线路的构成及原理(1)DDS02主电路挂箱配置原理DDS02挂箱包括脉冲和熔断丝指示、晶闸管(I组桥、Ⅱ组桥)电路、电抗器等内容。
脉冲有无指示为方便实验中判断对应晶闸管上门阴极上是否正常,若正常,则指示灯亮,否则则不亮;同样熔断丝指示也是同理。
主要分I组桥和Ⅱ组桥分别指示。
晶闸管电路装有12只晶闸管、6只整流二极管。
12只晶闸管分两组晶闸管变流桥,其中VTl~VT6为正组桥(I组桥),由KP5-8晶闸管元件构成,一般不可逆、可逆系统的正桥、交-直-交变频器的整流部分均使用正组元件;由VT1ˊ~VT6ˊ组成反组桥(Ⅱ组桥),元件为KP5-12晶闸管,可逆系统的反桥、交-直-交变频器的逆变部分使用反组元件;同时还配置了6只整流二极管VDl~VD6,可构成不可控整流桥作为直流电源,元件的型号为KZ5-10。
所有这些功率半导体元件均配置有阻容吸收、熔丝保护,电源侧、直流环节、电机侧均配置有压敏电阻或阻容吸收等过电压保护装置。
电抗器为平波电抗器L,共有4档电感值,分别为50mH、100mH、200mH、700mH,1200 mH可根据实验需要选择电感值。
续流二极管为桥式整流实验时电路续流用,型号为KZ5-10;另外挂箱还配有一组阻容吸收电路。
(2)DDS03控制电路挂箱配置原理DDS03挂箱包括三相触发电路及功放电路、FBC+FA(电流反馈与过流保护)、G(给定器)等内容。
面板上部为同步变压器,其连线已在内部接好,连接组为△/Y-1.可在“同步电源观察孔”观察同步电源的相位。
三相触发电路(GT)及功放电路(AP)包括有GTF正组(I组)触发脉冲装置和GTR 反组(Ⅱ组)触发脉冲装置,分别通过开关连至VF正组晶闸管和VR反组晶闸管的门极、阴极。
实验六 三相桥式全控整流及有源逆变电路实验
实验六三相桥式全控整流及有源逆变电路实验实验六三相桥式全控整流及有源逆变电路实验实验六三相桥式全控整流与有源逆变电路实验一、实验目的(1)加深对三相桥式全控整流和有源逆变电路工作原理的理解。
(2)了解KC系列集成触发器的调整方法及各点的波形。
2、实验所需的挂件和附件序列号为12345678型djk01电源控制面板djk02晶闸管主电路djk02-1三相晶闸管触发电路djk06设定和实验装置djk10变压器实验d42三相可调电阻双道示波器万用表。
挂件包括“触发电路”、“正负桥功率放大器”等模块。
挂件包含几个模块,如“二极管”。
挂件包括“逆变变压器”和“三相非受控整流器”。
自备备注控制面板包括“三相电源输出”等几个模块。
3、实验电路和原理如图3-6和3-7所示。
主电源电路由三相全控整流电路和三相不控整流电路组成,作为逆变直流电源。
触发电路是djko2-1中的集成触发电路,由kco4、kc4l、kc42等集成芯片组成,经高频调制后可输出双窄脉冲链。
三相桥式整流器和逆变电路的工作原理见电力电子技术教材的相关内容。
芯式变压力装置图3-6三相桥式全控整流电路实验原理图在三相桥式有源逆变电路中,电阻和电感与整流器一致,而三相非受控整流器和铁芯变压器位于djk10悬挂式支架上。
铁芯变压器用作升压变压器,逆变器输出的电压连接到铁芯变压器的中压端子am、BM和cm,返回电网的电压从高压端子a、B和C输出,变压器连接成Y/Y连接。
图中的r均使用d42三相可调电阻,将两个900ω接成并联形式;电感ld在djk02面板上,选用700mh,直流电压、电流表由djk02获得。
图3-7三相桥式有源逆变电路实验原理图四、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)在整流或有源逆变状态下,当触发电路出现故障(人为模拟)时观测主电路的各电压波形。
五、预览需求(1)阅读电力电子技术教材中有关三相桥式全控整流电路的有关内容。
电力电子实验报告(三相桥式全控整流和有源逆变电路实验)docx
实验报告课程名称:电力电子技术指导老师:成绩:实验名称:三相桥式全控整流和有源逆变电路实验实验类型:探索验证同组学生姓名:三相桥式全控整流和有源逆变电路实验一、实验目的(1)熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
(2)了解集成触发器的调整方法及各点波形。
二、实验线路及原理实验线路如图4-7所示。
主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。
三、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)观察整流状态下模拟电路故障现象时的波形。
图4-7三相桥式全控整流及有源逆变电路图四、实验设备(1)MCL现代运动控制技术实验台主控屏。
(2)给定、零速封锁器、速度变换器、速度调节器、电流调节器组件挂箱。
(3)三相芯式变压器。
(4)滑线变阻器。
(5)双踪记忆示波器。
(6)数字式万用表。
五、思考题(1)如何解决主电路和触发电路的同步问题?本实验中,主电路三相电源的相序能任意确定吗?从同一个三相电源接出两路,一路接到整流变压器,由整流变压器得到主电路电压,这就是晶闸管两端电实验名称:三相桥式全控整流和有源逆变电路实验姓名:学号:装订线压;而另一路接到同步变压器,通过同步变压器再结合阻容滤波器得到触发电路的输入电压。
通过整流变压器连接组与同步变压器连接组配合,再结合阻容滤波器产生的移相效应得到相匹配的主电路电压和触发脉冲。
一般来说采用宽脉冲触发或双窄脉冲触发,而本实验采用的是双窄脉冲触发不能任意确定三相电源相序,因为三相全控整流电路由六只晶闸管控制,按一定顺序导通。
若三相电源相序发生变化,触发脉冲无法同步,则电路不能正常工作。
(2)本实验中,在整流向逆变切换时,对α角有什么要求?为什么?α角要大于90°,因为只有这样,才有Ud=Ud0(α=0时的Ud值)*cosα<0,从而使变流电路工作在逆变状态,实现逆变功能。
三相桥式全控整流及有源逆变电路实验报告
实验报告课程名称: 电力电子技术 指导老师: 成绩:__________________ 实验名称: 三相桥式全控整流及有源逆变电路实验 实验类型:__________同组学生姓名: 一、实验目的(1)熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
(2)了解集成触发器的调整方法及各点波形。
二、实验线路及原理实验线路如图1所示。
主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。
三、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)观察整流状态下模拟电路故障现象时的波形。
图1 三相桥式全控整流及有源逆变电路图四、实验设备(1)MCL 现代运动控制技术实验台主控屏。
(2)给定、零速封锁器、速度变换器、速度调节器、电流调节器组件挂箱。
(3)三相芯式变压器。
(4)滑线变阻器。
(5)双踪记忆示波器。
(6)数字式万用表。
五、实验方法1、接线与调试(1)按图4-7接线,未上主电源之前,检查晶闸管的脉冲是否正常。
打开电源开关,给定电压Ug 有电压显示。
(2)用示波器观察双脉冲观察孔,应有间隔均匀,相互间隔60°的幅度相同的双脉冲。
(3)检查相序,用示波器观察1,2单脉冲观察孔,1脉冲超前2”脉冲60°,则相序正确,否则,应调整输入电源。
(4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V ~2V 的脉冲。
注:将面板上的Ublf (当三相桥式全控变流电路使用I 组桥晶闸管VT1~VT6时)接地,将I 组桥式触发脉冲的六个按键设置到“接通”。
(5)将给定器输出Ug 接至Uct 端,调节偏移电压Ub ,在Uct=0时,使a=150o 。
此时的触发脉冲波形如图2所示。
图2 触发脉冲与锯齿波的相位关系2、三相桥式全控整流电路(1)按图1接线,将开关“S ”拨向左边的短接线端,给定器上的“正给定”输出为零(逆时针旋到底);合上主电路开关,调节给定电位器,使α角在30°~90°范围内调节(α角度可由晶闸管两端电压uT 波形来确定),同时,根据需要不断调整负载电阻Rd ,使得负载电流Id 保持在0.5A 左右(注意Id 不得超过1A)。
2三相桥式全控整流及有源逆变电路实验报告(精)
实验报告课程名称:现代电力电子技术实验项目:三相桥式全控整流及有源逆变电路实验实验时间:实验班级:总份数:指导教师:***自动化学院电力电子实验室二〇〇年月日广东技术师范学院实验报告学院:自动化学院专业:电气工程及其自动化班级:成绩:姓名:学号:组别:组员:实验地点:电力电子实验室实验日期:指导教师签名:预习情况操作情况考勤情况数据处理情况实验(二)项目名称:三相桥式全控整流及有源逆变电路实验1. 实验目的和要求(1加深理解三相桥式全控整流及有源逆变电路的工作原理。
(2了解KC系列集成触发器的调整方法和各点的波形。
2. 实验原理实验线路如图3-13及图3-14所示。
主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4、KC4l、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。
集成触发电路的原理可参考1-3节中的有关内容,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。
图3-13 三相桥式全控整流电路实验原理图在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不控整流及心式变压器均在DJK10挂件上,其中心式变压器用作升压变压器,逆变输出的电压接心式变压器的中压端Am、Bm、Cm,返回电网的电压从高压端A、B、C输出,变压器接成Y/Y接法。
图中的R均使用D42三相可调电阻,将两个900Ω接成并联形式;电感Ld在DJK02面板上,选用700mH,直流电压、电流表由DJK02获得。
3. 主要仪器设备序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。
2 DJK02 晶闸管主电路3 DJK02-1三相晶闸管触发电路该挂件包含“触发电路”,“正反桥功放”等几个模块。
4 DJK06 给定及实验器件该挂件包含“二极管”等几个模块。
5 DJK10 变压器实验该挂件包含“逆变变压器”以及“三相不控整流”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三相桥式全控整流及有源逆变电路
1加深了解三相桥式全控整流及有源逆变电路的工作原理。
2了解一系列集成触发器的调整方法和各点的波形。
一、实验目的
1加深了解三相桥式全控整流及有源逆变电路的工作原理。
2了解一系列集成触发器的调整方法和各点的波形。
二、实验设备
晶闸管KP5/10 6只
可变电阻器0~900Ω/250W 1个
电抗器100~700mH 1个
控制及触发电路1套
直流数字电流表0~2A 1台
直流数字电压表0~500V 1台
交流数字电压表0~500V 1台
数字示波器 1台
三、知识准备
1、了解三相桥式全控整流电路的构成及其工作原理;
2、了解三相桥式全控整流电路对触发电路的要求;
3、了解三相桥式全控整流电路输出电压和晶闸管两端的电压波形。
四、实验内容及方法
1、按图3-1原理接线。
给定
触发控制
同步
脉冲移相
正
桥
反
桥
扁平电缆
放大隔离
+15V
-15V
S1
S2
窄
宽
脉冲开关1--6
G1K1G6K6
VT2
VT6
VT4
VT5
VT3
VT1
G1G3G5
G4G6G2
L
R L
分合A
m
B m
C m
A
B
C
A
V
主控屏
变压器
x m
y m
z m
X
Y
Z
Ug
Uct
Ulf Ulr
图3-1 三相桥式全控整流电路原理图
2、把触发控制模块的脉冲选择开关拨向“窄”位置
3、接完线后,必须经老师检查正确,并把负载电阻逆时针调至阻值最
大后,方可合作通电。
4、逐渐缓慢调节给定电位器,改变α角的大小,在300、600、900时,分别:
(1)、测量记录R、R-L负载情况下的整流输出电压u d、晶闸管两端电压u VT、整流输出电流i d的波形;
(2)、测量记录R、R-L负载情况下的整流输出电压Ud、交流输入电压U2的值于下表中
表1-1 R负载Ud、U2的值
300600900
U2
Ud
U2Ud
Ud计算值
锯齿波
30º时
60
90º时。