2010年山东省普通高中学业水平考试数学试题
2010年山东高考数学试卷
2010年普通高等学校招生全国统一考试(山东卷)文科数学注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证号条形码粘贴在答题卡上的指定位置,用2B铅笔将答题卡上试卷类型B后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第I卷(共60分)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知全集,集合,则=A. B.C. D.(2)已知,其中为虚数单位,则A. B. 1 C. 2 D. 3(3)函数的值域为A. B. C. D.(4)在空间,下列命题正确的是A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行(5)设为定义在上的奇函数,当时,(为常数),则(A)-3 (B)-1 (C)1 (D)3(6)在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A)92 , 2 (B) 92 , 2.8(C) 93 , 2 (D) 93 , 2.8(7)设是首项大于零的等比数列,则“ ”是“数列是递增数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(8)已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为(A)13万件(B)11万件(C) 9万件(D)7万件(9)已知抛物线,过其焦点且斜率为1的直线交抛物线与、两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为(A)(B)(C) (D)(10)观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则= (A)(B) (C) (D)(11)函数的图像大致是(12)定义平面向量之间的一种运算“ ”如下:对任意的,,令,下面说法错误的是(A)若a与b共线,则(B)(C)对任意的,有(D)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右图所示的程序框图,若输入,则输出y的值为 .(14)已知,且满足,则xy的最大值为 .(15)在中,角A,B,C所对的边分别为a,b,c,若,, ,则角A的大小为 . (16)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:被该圆所截得的弦长为,则圆C的标准方程为 .三、解答题:本大题共6小题,共74分.(17)(本小题满分12分)已知函数()的最小正周期为,(Ⅰ)求的值;(Ⅱ)将函数的图像上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图像,求函数在区间上的最小值.(18)(本小题满分12分)已知等差数列满足:, . 的前n项和为 .(Ⅰ)求及;(Ⅱ)令(),求数列的前n项和 .(19)(本小题满分12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.(20)(本小题满分12分)在如图所示的几何体中,四边形是正方形,平面,,、、分别为、、的中点,且 .(I)求证:平面平面;(II)求三棱锥与四棱锥的体积之比.(21)(本小题满分12分)已知函数(I)当时,求曲线在点处的切线方程;(II)当时,讨论的单调性.(22)(本小题满分14分)如图,已知椭圆过点.,离心率为,左、右焦点分别为、.点为直线上且不在轴上的任意一点,直线和与椭圆的交点分别为、和、,为坐标原点.(I)求椭圆的标准方程;(II)设直线、的斜线分别为、 .(i)证明:;(ii)问直线上是否存在点,使得直线、、、的斜率、、、满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.。
2010山东高考数学试题及答案(文科)word版
绝密★启用并使用完毕前2010年普通高等学校招生全国统一考试(山东卷)文 科 数 学本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式: 锥体的体积公式:Sh V 31=。
其中S 是锥体的底面积,h 是锥体的高。
如果事伯A 、B 互斥,那么P (A+B )=P (A )+P (B ); 如果事件A 、B 独立,那么)()()(B P A P AB P ⋅=第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集R =U ,集合{}240M x x =-≤ ,则U M =ð(A ){}22x x -<< (B ){}22x x -≤≤(C ){}22x x x <->或(D ) {}22x x x ≤-≥或(2) 已知2a ib ii+=+(,)a b R ∈,其中i 为虚数单位,则a b +=(A )-1(B )1 (C )2 (D )3(3) )13(log )(2+=xx f 的值域为(A )(0,)+∞(B )[)0,+∞(C )(1,)+∞(D )[)1,+∞(4)在空间,下列命题正确的是(A )平行直线的平行投影重合 (B )平行于同一直线的两个平面(C )垂直于同一平面的两个平面平行 (D )垂直于同一平面的两个平面平行(5)设()f x 为定义在R 上的函数。
2010山东高考数学试题及答案
2010山东高考数学试题及答案一、选择题1. 若函数f(x)在区间[a, b]上连续,并且在开区间(a, b)内可导,那么下列结论中正确的是()。
A. f(x)在开区间(a, b)内有极大值和极小值B. f(x)在区间[a, b]上有无穷多个极大值和极小值C. f(x)在开区间(a, b)内必有极大值和极小值D. f(x)在区间[a, b]上必有极值2. 设函数f(x)满足f(\frac{1}{x})=x^3+2x^2+x+1,当x>0时,f(x)=()A. x^3+2x^2+x+1B. 1-x-x^2-x^3C. x^3-2x^2-x-1D. 1+x+x^2+x^33. 离散型随机变量的概率分布规律表达式是()。
A. 分布函数B. 累积分布函数C. 概率密度函数D. 概率函数4. 已知某种电子元件的寿命X(单位:小时)服从正态分布N(8,16),下列说法正确的是()。
A. 该种电子元件的平均寿命为8小时B. 该种电子元件的方差为16C. 该种电子元件的寿命超过16小时的概率为0.5D. 该种电子元件的寿命在32小时以上的概率为0.55. 解方程\log_2(x+6)+\log_6(x+2)=1得正解x=()。
A. 14B. 2C. -2D. -14二、填空题6. 已知ΔABC的内角α,β,γ的对边分别为a,b,c,则有 \frac{a^2+b^2}{c^2} =()。
7. 若函数y=log_a(\sqrt{x}+\sqrt{x+1})在(0,+∞)内有定义,那么(a,x)∈ R^2()。
8. ()干涉的现象不依赖于光程差的大小。
9. 已知函数 f(x)=\ln(ax), |a| < 1,x∈[-m,m],则f(x)≥-2时,x∈()10. 设集合M={1,2,3,...,n},n ∈ N. 下列说法中错误的是()。
A. 1∈MB. n-1 ∈ MC. 0 ∉ MD. n+1 ∉ M三、解答题11. 计算 :\sqrt{(\frac {2009-2007}{2+x}+\frac {2009-2007}{2-x})(\frac {2009+2007}{2-x}+\frac {2009+2007}{2+x})}的值。
山东省济南市2010届高三数学期末检测考试(文)新人教版
2009-2010学年度普通高中阶段性监测高 三 数 学(文科) 2010.02本试卷共4页,分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑。
(特别强调:为方便本次阅卷,每位考生在认真填涂 “数学”答题卡的前提下,再将Ⅰ卷选择题答案重涂在另一答题卡上。
)如需改动,用橡皮擦干净后,再改涂在其它答案标号。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若:,sin 1,p x x ∀∈≤R 则(A) :,sin 1p x x ⌝∃∈>R (B) :,sin 1p x x ⌝∀∈>R (C) :,sin 1p x x ⌝∃∈≥R (D) :,sin 1p x x ⌝∀∈≥R 2. “2a =”是“直线20ax y +=与直线1x y +=平行”的(A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件3. 已知I 为实数集,2{|20},{|M x x x N x y =-<=,则()I MN =(A) {|01}x x << (B) {|02}x x << (C) {|1}x x < (D) ∅4. 一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为 (A)18 (B) 116 (C) 127 (D) 385. 函数2sin 2y x =是 (A) 周期为π的奇函数 (B ) 周期为π的偶函数 (C) 周期为2π的奇函数 (D ) 周期为2π的偶函数 6. 已知焦点在x 轴上的双曲线的渐近线方程是4y x =±,则该双曲线的离心率是(A) (B) (C)4 (D)47. 给出下面的程序框图,那么输出的数是 (A) 2450 (B) 2550 (C) 5050 (D) 49008. 已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是 (A) 若α⊥γ,α⊥β,则γ∥β (B) 若m ∥n ,m ⊂α,n ⊂β,则α∥β (C) 若m ∥n ,m ∥α,则n ∥α (D) 若m ∥n ,m ⊥α,n ⊥β,则α∥β9. 若圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,则该圆的标准方程是 (A) 1)37()3(22=-+-y x (B) 1)1()2(22=-+-y x(C) 1)3()1(22=-+-y x (D) 1)1()23(22=-+-y x10. 在22y x = 上有一点P ,它到(1,3)A 的距离与它到焦点的距离之和最小,则点P 的坐标是(A)(-2,1) (B) (1,2) (C) (2,1) (D ) (-1,2) 11. 设曲线1()n y xn +=∈*N 在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201012010220102009log log log x x x +++的值为(A) 2010log 2009- (B) 1- (C) 2010(log 2009)1- (D) 1 12. 已知0,0x y >>,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是(A) 4m ≥或2m ≤- (B) 2m ≥或4m ≤-(C)24m -<< (D) 42m -<<第Ⅱ卷 (非选择题 共90分)注意事项:1.第Ⅱ卷包括填空题和解答题共两个大题.2.第Ⅱ卷所有题目的答案考生需用黑色签字笔答在 “数学”答题卡指定的位置. 二、填空题:本大题共4个小题,每小题4分,共16分.13. 已知平面向量(13)=-,a ,(42)=-,b ,λ+a b 与a 垂直,则λ=_________. 14. 已知等差数列}{n a 的公差0≠d ,它的第1、5、17项顺次成等比数列,则这个等比数列的公比是___________.15. 某中学部分学生参加市高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,满分120分),并且绘制了“频数分布直方图”(如图),如果90分以上(含90分)获奖,那么该校参赛学生的获奖率为16. 若222250(,)|30{(,)|(0)}0x y x y x x y x y m m x y ⎧-+≥⎫⎧⎪⎪⎪-≥⊆+≤>⎨⎨⎬⎪⎪⎪+≥⎩⎭⎩,则实数m 的取值范围是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)现有7名数理化成绩优秀者,其中123A A A ,,数学成绩优秀,12B B ,物理成绩优秀,12C C ,化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛.(Ⅰ)求1C 被选中的概率;(Ⅱ)求1A 和1B 不全被选中的概率.18.(本小题满分12分)已知函数()()231sin 2cos ,22f x x x x =--∈R . (I )求函数()f x 的最小值和最小正周期;(II )设ABC ∆的内角A B C 、、的对边分别为a b c 、、,且()3,0c f C ==,若向量()1,sin A =m 与向量()2,sin B =n 共线,求,a b 的值.19.(本小题满分12分)直棱柱1111ABCD A B C D -中,底面ABCD 是直角梯形,∠BAD =∠ADC =90°,222AB AD CD ===.(Ⅰ)求证:AC ⊥平面BB 1C 1C ; (Ⅱ)在A 1B 1上是否存一点P ,使得DP 与平面BCB 1与平面ACB 1都平行?证明你的结论.20.(本小题满分12分)已知数列{}n a 的各项均是正数,其前n 项和为n S ,满足2(1)n n p S p a -=-,其中p 为正常数,且 1.p ≠(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1()2log n p n b n a =∈-N *,数列{}2n n b b +的前n 项和为n T ,求证:3.4n T <21.(本小题满分12分)某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率P 与每日生产产品件数x (x ∈N*)间的关系为450042002x P -=,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%)(Ⅰ)将日利润y (元)表示成日产量x (件)的函数;(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值.22.(本小题满分14分)设)0(1),(),,(22222211>>=+b a bx a y y x B y x A 是椭圆上的两点,已知向量11(,)x y b a =m ,22(,)x yb a=n ,若0=m n 且椭圆的离心率,23=e 短轴长为2,O 为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值; (Ⅲ)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.高三数学(文科)试题参考答案 2010.02一、选择题:本大题共12小题,每小题5分,共60分.ACACD AADBB BD 二、填空题:本大题共4个小题,每小题4分,共16分.13. -1 14. 3 15.71616. 5≥m 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)从7人中选出数学、物理、化学成绩优秀者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122()A B C ,,, 211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,,322().A B C ,,} …………3分由12个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1C 恰被选中”这一事件,则M ={111()A B C ,,,121()A B C ,,,211()A B C ,, ,221()A B C ,,,,311()A B C ,,,321()A B C ,,}.事件M 由6个基本事件组成,因而61()122P M ==. ………………6分 (Ⅱ)用N 表示“11,A B 不全被选中”这一事件, 则其对立事件N 表示“11,A B 全被选中”这一事件,由于N ={111112()()A B C A B C ,,,,,},事件N 有2个基本事件组成, 所以21()126P N ==, 由对立事件的概率公式得15()1()166P N P N =-=-=. ………………12分 18.(本小题满分12分)解:(I )1cos 21()2222x f x x +=--=sin(2)16x π-- …………3分 则()f x 的最小值是-2,最小正周期是22T ππ==. ……………………6分 (II )()sin(2)106f C C π=--=,则sin(2)6C π-=1,0,022C C ππ<<∴<<,112666C πππ∴-<-<, 26C π∴-=2π, 3C π=, ………………………………………………8分向量()1,sin m A =与向量()2,sin n B =共线∴1sin 2sin AB=, ……………………………………………………10分 由正弦定理得,12a b = ①由余弦定理得,2222cos3c a b ab π=+-,即3=22a b ab +- ②由①②解得1,2a b ==. ……………………………………………………12分 19.(本小题满分12分) 证明:(Ⅰ) 直棱柱1111ABCD A B C D -中,BB 1⊥平面ABCD ,∴BB 1⊥AC . …2分 又∠BAD =∠ADC =90°,222AB AD CD ===,∴AC ∠CAB =45°,∴BC =∴ BC ⊥AC . …………………4分 又1BB BC B =,1,BB BC ⊂平面BB 1C 1C ,∴ AC ⊥平面BB 1C 1C . ……6分(Ⅱ)存在点P ,P 为A 1B 1的中点. ………………………………………………7分 证明:由P 为A 1B 1的中点,有PB 1‖AB ,且PB 1=12AB . ……………………8分 又∵DC‖AB ,DC =12AB ,∴DC ∥PB 1,且DC = PB 1, ∴DC B 1P 为平行四边形,从而CB 1∥DP . …………… …………………10分 又CB 1⊂面ACB 1,DP ⊄面ACB 1,∴DP‖面ACB 1. ……………………11分 同理,DP‖面BCB 1. …………………………………………………………12分 20.(本小题满分12分)解:(Ⅰ)由题设知211(1)p a p a -=-,解得1a p =. …………2分由2211(1),(1),n n n n p S p a p S p a ++⎧-=-⎪⎨-=-⎪⎩ 两式作差得1 1.(1)()n n n n p S S a a ++--=- 所以11(1)n n n p a a a ++-=-,即11n n a a p+=, ………………4分 可见,数列{}n a 是首项为p ,公比为1p的等比数列。
2010山东高考数学试题及答案
2010山东高考数学试题及答案一、选择题(共15小题,每小题3分,共45分)1.设函数f(x)= |x – 2| + |2x – 5| ,则f(-3)+ f(6)的值是()。
A. 22B. 20C. 18D. 162.已知直角三角形ABC,∠B=90°,AB=3,BC=4,CD=1,DE过A与BC的延长线交于点E,如图1所示.AC的垂直平分线与AB延长线交于点M,则AM:MB=().(图1,请自行拟合几何图形,此处省略图形描述)A. 3:2B. 2:3C. 4:3D. 3:43.若log5(log3x)=0,则x=().A. 3B. eC. 5D.指无定义4.在四边形ABCD中,AB=2,AD=1,BC=4,∠DAB≌∠CBA.则四边形ABCD的面积等于().A. 2B. 3C. 4D. 65.已知等差数列的前3项之和为27,公差为3,则这个等差数列的第7项的值是().A. 6B. 12C. 18D. 246.已知a,b在第一象限,且a+2b=8 ,3a+b=14 ,则a=().A. 4B. 8C. 10D. 147.已知空间直角坐标系中,斜线与平面z=1相交于点P(1,2,5),且满足向量3i – 2j – 2k∥△OPQ∥△ABC ,其中,O是坐标原点,Q,C分别在z=0,z=1上,若△ABC是由线段AB所确定的平面与z=0所围成的圆柱体,圆柱体的体积是().A. 3B. 6C. 9D. 128.甲乙两车从相距120km的甲地同时向乙地开,开出1小时后相遇,甲车行一小时所行的路程是乙车行两小时所行的路程.已知甲车速度是乙车速度的3/4,则甲车每小时行驶的路程是().A. 10kmB. 15kmC. 20kmD. 25km9.等差数列{an}的前n项和为Sn,在S8 = 30的条件下,S11=().A. 44B. 48C. 52D. 5610.设复数z的实部和虚部分别是a,b,(a>0,b>0),则复数z的最小的辐角是().A. π/2B. 0C. πD. -π/211.若函数y=f(x)= ax2+2bx+c (a≠0)的图象经过点(1,4)和(2,4),则().A. a=1, b=1, c=2B. a=1, b=1, c=3C. a=1, b=2, c=2D. a=2, b=1, c=112.已知函数y=loga3x(a>0,a≠1),Dy = A时,x满足的条件为().A. 0<x<1B. x>3C. x<1/3D. x>113.在△ABC中,∠B=60°,△ABE是△ABC中角B的平分线,且BE=BC ,则∠ACB的度数是()A. 60°B. 75°C. 90°D. 120°14.在三角形ABC中,已知cotA=1/√3 ,sinB=2/3 ,则sinC等于()A. 1/6B. 1/3C. 1/2D. 2/315.已知loga2=log2a3 ,则a的值是()A. 2/3B. 2/5C. 3/2D. 3/5二、解答题(共7小题,每小题6分,共42分)1.已知函数f(x)= ax+2,其中a为常数,f(x)= 0在区间[1,3]上有两个不同的解,则a的值为()2.设集合A={x | 1 ≤ x ≤ 4},B={x | x=(1+2ab)1/3,a,b∈Z} ,C={x | x=2am+n,a,m,n∈Z},则A ∩ B ∩ C的元素个数为()3.已知函数y = 4x(0≤ x ≤ 2),平面区域R是由曲线y = 4x、直线x = 0、x = 2和x轴所围成的图形,则R的面积为()。
2010年山东省高考数学理科试卷
2010年普通高等学校招生全国统一考试(山东卷)数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟,考试结束后将本试卷和答题卡一并交回注意事项:答题前,考生务必用0.5毫米黑色签字笔将自已的姓名、准考证号、县区和科类填写在答填写答题卡上和试卷规定的位置上。
2.第Ⅰ卷小题选出答案后,用2B 铅笔把答题卡上对应题目上的答案号涂黑;如需改动,用像皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:锥体的体积公式:V=13Sh,其中S 是锥体的底面各,h 是锥体的高。
如果事件A 、B 互斥,那么P(A+B)=P(A)+P (B ):如果事件A 、B 独立,那么P (AB )=P(A )P (A )·P (B )。
(1)已知全集U R =,几何M ={}|1|2xx -≤,则,U C M = (A )}{13x x -<< (B) }{13x x -≤≤ (C) }{13x x x <->或 (D) }{13x x x ≤-≥或(2)已知2a i i+=b i +(.a b R ∈),其中i 为虚数单位,则a b += (A )1- (B )1 (C )2 (D )3(3)在空间,下列命题正确的是(A )平行直线的平行投影重合(B )平行于同一直线的两个平面平行(C )垂直于同一平面的两个平面平行(D )垂直于同一平面的两条直线平行(4)设()f x 为定义在R 上的奇函数。
当x ≥0时,()f x =2x+2x+b (b 为常数),则(1)f -=(A )3 (B )1 (C )-1 (D )-3(5).已知随机变量ξ服从正态分布N(0,2σ),若P(ξ>2)=0.023。
山东省2010年学业水平测试题
试卷类型A山东省二○一○年夏季普通高中学生学业水平考试化学试题本试题共分三卷,第Ⅰ卷为必修内容的选择题,共48分;第II卷为必修内容的非选择题,共28分;第Ⅰ卷和第II卷为全体考生必做题。
第Ⅲ卷为选修内容的试题,每个模块24分。
共六个模块,考生只能任选一个模块作答。
请将第II卷和第Ⅲ卷的答案答在答题纸上。
考试结束,试题、答题纸和答题卡一并收回。
全卷满分为100分,考试时间为90分钟。
可能用到的相对原子质量:H:1 C:12 N:14 O:16 Cl:35.5 Fe:56 Cu:64第Ⅰ卷(选择题共48分)注意事项:1.考生在答第Ⅰ卷前务必将自己的姓名、考号、考试科目、试卷类型涂写在答题卡上。
2.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应的答案标号(A、B、C、D)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。
以下1~16小题每小题只有一个选项符合题意。
每小题3分,共48分。
1.近年来,我国许多城市实行了生活垃圾分类投放,其中塑料袋、废纸、旧橡胶制品等属于A.无机物B.盐类C.有机物D.非金属单质2.19世纪中叶,门捷列夫的突出贡献是A.提出原子学说B.发现元素周期律C.提出分子学说D.发现氧气3.最新报道,科学家又发现了某元素的一种原子,它的原子核内有161个中子,质量数为272。
该元素的原子序数为A.111 B.161 C.272 D.4334.若从溴水中把溴萃取出来,可选用的萃取剂是A.水B.无水酒精C.四氯化碳D.氢氧化钠溶液5.下列实验操作或事故处理正确的是A.金属Na着火,立即用水扑灭B.实验结束后,用嘴吹灭酒精灯C.皮肤上不慎沾上NaOH溶液,立即用盐酸冲洗D.稀释浓硫酸时,将浓硫酸沿器壁慢慢注入水中,并不断搅拌6.元素周期表中某区域的一些元素多用于制造半导体材料,它们是A.左下方区域的金属元素B.右上方区域的非金属元素C.金属元素和非金属元素分界线附近的元素D.稀有气体元素7.下列说法不正确的是A.液化石油气和天然气的主要成分都是甲烷B.使用溴水或酸性KMnO4溶液都可鉴别乙烯和甲烷C.在加热或加入重金属盐的情况下,蛋白质都可发生变性D.淀粉水解的最终产物是葡萄糖8.下列实验操作中属于过滤的是A B C D 9.下列关于胶体的叙述不正确的是A.胶体分散质颗粒的直径在1nm~100nm之间B.向胶体中加入蔗糖溶液,产生聚沉现象C.一束可见光透过胶体时,发生丁达尔现象D.采用渗析的方法可以净化胶体10.下列离子方程式书写正确的是A.氢氧化钠溶液和稀盐酸反应:H++OH-===H2OB.大理石与盐酸反应制取二氧化碳:CO32-+ 2H+=== H2O + CO2↑C.铁粉投入FeCl3溶液中:Fe + Fe3+===2Fe2+D.用小苏打治疗胃酸过多:CO32-+ 2H+===CO2↑+H2O11.设N A表示阿伏加德罗常数的值,下列叙述正确的是A.1molH2O所含有的原子数为N AB.32gO2含有的氧原子数为2N AC.常温常压下,11.2 LCl2 所含的分子数为0.5N AD.1L0.1mol·L-1 NaCl溶液中所含的Na+数为N A12.下列变化需加入氧化剂才能实现的是A.Fe3+→Fe2+B.CuO→CuC.Cl- →Cl2D.H2SO4→BaSO413.下列关于化学反应与能量的说法正确的是A.中和反应是吸热反应B.燃烧属于放热反应C.化学键断裂放出能量D.反应物总能量与生成物总能量一定相等14.下列关于化学反应速率的说法错误的是A.化学反应速率是用于衡量化学反应进行快慢的物理量B.决定化学反应速率的主要因素是反应物本身的性质C.可逆反应达到化学平衡状态时,反应停止,正、逆反应速率都为零D.增大反应物浓度或升高反应温度都能加快化学反应速率15.下列物质与Fe反应后的生成物,能与KSCN溶液作用使溶液变红色的是A.Cl2B.盐酸C.CuSO4溶液D.稀H2SO416.将3.2 gCu投入到一定浓度的HNO3溶液中,恰好完全反应,产生NO2和NO的混合气体共0.08 mol。
2010年高考_山东卷文科数学试题及答案
绝密★启用前 试卷类型:B2010年普通高等学校招生全国统一考试(山东卷)文科数学注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第I 卷(共60分)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知全集U R =,集合{}240M x x =-≤,则U C M = A. {}22x x -<< B. {}22x x -≤≤ C .{}22x x x <->或 D. {}22x x x ≤-≥或 (2)已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b += A. 1- B. 1 C. 2 D. 3 (3)函数()()2log 31x f x =+的值域为A. ()0,+∞B. )0,+∞⎡⎣C. ()1,+∞D. )1,+∞⎡⎣ (4)在空间,下列命题正确的是 A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行(5)设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b =++(b 为常数),则(1)f -= (A )-3 (B )-1 (C )1 (D)3 (6)在某项体育比赛中,七位裁判为一选手打出的分数如下: 90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 (A )92 , 2 (B) 92 , 2.8 (C) 93 , 2 (D) 93 , 2.8(7)设{}n a 是首项大于零的等比数列,则“12a a <”是“数列{}n a 是递增数列”的 (A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(8)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的幻术关系式为31812343y x x =-+-,则使该生产厂家获得最大年利润的年产量为(A )13万件 (B)11万件 (C) 9万件 (D)7万件(9)已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 (A )1x = (B)1x =- (C)2x = (D)2x =-(10)观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= (A )()f x (B)()f x - (C) ()g x (D)()g x - (11)函数22xy x =-的图像大致是(12)定义平面向量之间的一种运算“e ”如下:对任意的(,)a m n =,(,)b p q =,令a b mq np =-e ,下面说法错误的是(A)若a 与b 共线,则0a b =e (B)a b b a =e e(C)对任意的R λ∈,有()()a b a b λλ=e e (D)2222()()||||a b a b a b ++=e二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右图所示的程序框图,若输入2n m <+4x =,则输出y 的值为 .(14)已知,x y R +∈,且满足134x y+=,则xy 的最大值为 . (15) 在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2a =2b =,sin cos 2B B +=则角A 的大小为 . (16) 已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :1y x =-被该圆所截得的弦长为22C 的标准方程为 .三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)已知函数2()sin()cos cos f x x x x πωωω=-+(0ω>)的最小正周期为π, (Ⅰ)求ω的值;(Ⅱ)将函数()y f x =的图像上各点的横坐标缩短到原来的12,纵坐标不变,得到函数()y g x =的图像,求函数()y g x =在区间0,16π⎡⎤⎢⎥⎣⎦上的最小值.(18)(本小题满分12分)已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令211n n b a =-(n N +∈),求数列{}n b 的前n 项和n T .(19)(本小题满分12分)一个袋中装有四个现状大小完全相同的球,球的编号分别为1,2,3,4. (Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率.(20)(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形, MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==.(I )求证:平面EFG ⊥平面PDC ;(II )求三棱锥P MAB -与四棱锥P ABCD -的体积 之比.(21)(本小题满分12分) 已知函数1()ln 1()af x x ax a R x-=-+-∈ (I )当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;(II )当12a ≤时,讨论()f x 的单调性. (22)(本小题满分14分)如图,已知椭圆2222 1 (0)x y a b a b +=>>过点.2(1,)2,离心率为22,左、右焦点分别为1F 、 2F .点P 为直线:2l x y +=上且不在x 轴上的任意一点,直线1PF 和2PF 与椭圆的交点分别为A 、B和C 、D ,O 为坐标原点. (I )求椭圆的标准方程;(II )设直线1PF 、2PF 的斜线分别为1k 、2k .(i )证明:12132k k -=;(ii )问直线l 上是否存在点P ,使得直线OA 、OB 、OC 、OD 的斜线OA k 、OB k 、OC k 、OD k 满足0OA OB OC OD k k k k +++=?若存在,求出所有满足条件的点P 的坐标;若不存在,说明理由..;.。
2010年山东高考数学理科卷带详解
2010年普通高等学校招生全国统一考试(山东卷)理 科 数 学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U =R ,集合{||1|2}M x x =-…,则U M =ð ( ) A.}31|{<<-x x B.{|13}x x-剟C.{|1x x <-或3}x >D.{|1x x -…或3}x …【测量目标】集合的基本运算.【考查方式】给出集合M (描述法),求解M 的补集. 【难易程度】容易 【参考答案】C【试题解析】因为集合=M {}|1|2x x -=…{}|13x x-剟,全集=U R ,所以=U M ð{}|<1>3x x x -或,故选C. 2.已知2ii(,)i a b a b +=+∈R ,其中i 为虚数单位,则=+b a ( )A.1-B.1C.2D.3【测量目标】复数代数形式的四则运算.【考查方式】化简含参量的复数恒等式,求出未知参量. 【难易程度】容易 【参考答案】B 【试题解析】由+2i=+i ia b 得+2i=i 1a b -,所以由复数相等的意义知:=1,=2a b -,所以+=a b 1,故选B.3.在空间,下列命题正确的是 ( ) A.平行直线的平行投影重合 B.平行于同一直线的两个平面平行 C.垂直于同一平面的两个平面平行 D.垂直于同一平面的两条直线平行 【测量目标】线面平行的判定,线面垂直的判定.【考查方式】给出线面、线线关系,判断线线、面面之间的关系. 【难易程度】容易 【参考答案】D 【试题解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以很容易得出答案.4.设)(x f 为定义在R 上的奇函数,当0x …时,b b x x f x(22)(++=为常数),则=-)1(f ( )A.3B.1C.1-D.3-【测量目标】函数的奇偶性的综合应用.【考查方式】给出含参量的奇函数解析式,利用奇函数性质,求解某一函数值. 【难易程度】容易 【参考答案】D【试题解析】因为()f x 为定义在R 上的奇函数,所以有0(0)2200,f b =+⨯+=解得1,b =-(步骤1)所以当0x …时,()221x f x x =+-,即1(1)(1)(2211)3,f f -=-=-+⨯-=-故选D .(步骤2)5.已知随机变量ξ服从正态分布2(0,)N σ,若023.0)2(=>ξP ,则(22)P ξ-=剟( )A.0.477B.0.628C.0.954D.0.977【测量目标】正态分布.【考查方式】利用正态分布求解事件概率. 【难易程度】容易 【参考答案】C【试题解析】因为随机变量ξ服从正态分布2(0,)N σ,所以正态曲线关于直线0x =对称,(步骤1)又(2)0.023,P ξ>=所以(2)0P ξ<-=所以(22P ξ-=剟1(2)(P P ξξ->-<-120.02=-⨯=故选C.(步骤2)6.样本中共有五个个体,其值分别为3,2,1,0,a ,若该样本的平均值为1,则样本方差为( )A.56B.56 C.2D.2【测量目标】用样本数字特征估计总体数字特征. 【考查方式】给出一组样本及其平均值求解样本方差. 【难易程度】容易 【参考答案】D【试题解析】由题意知1(0123)1,5a ++++=解得1,a =-所以样本方差为2222221[(11)(01)(11)(21)(31)]2,5S =--+-+-+-+-=故选D.7.由曲线32,x y x y ==围成的封闭图形面积为 ( )A.121 B.41 C.31 D.127【测量目标】定积分的几何意义.【考查方式】由定积分求曲线围成封闭图形的面积. 【难易程度】中等 【参考答案】A【试题解析】由题意得:所求封闭图形的面积为1230)d =x x x ⎰-(11111=3412⨯-⨯,故选A. 8.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( )A.36种B.42种C.48种D.54种 【测量目标】排列组合及其应用,分布计数原理.【考查方式】给出实际事例,利用排列组合及计数原理讨论编排方案种类. 【难易程度】中等 【参考答案】B【试题解析】分两类:第一类:甲排在第一位,共有44A 24=种排法;(步骤1) 第二类:甲排在第二位共有1333A A 18= 种排法,所以共有编排方案24+18=42种,故选B.(步骤2)9.设}{n a 是等比数列,则“321a a a <<”是“数列}{n a 是递增数列”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【测量目标】充分、必要条件.【考查方式】给出两个命题,判断两者的关系. 【难易程度】容易 【参考答案】C【试题解析】若已知123,a a a <<则设数列{}n a 的公比为q ,因为123,a a a <<,所以有2111,a a q a q <<解得1,q >且10,a >所以数列{}n a 为递增数列;(步骤1) 反之,若数列{}n a 是递增数列,则公比1,q >且10,a >所以2111,a a q a q <<即123,a a a <<所以123,a a a <<是数列{}n a 是递增数列的充分必要条件.(步骤2)10.设变量y x ,满足约束条件20,5100,80,x y x y x y -+⎧⎪-+⎨⎪+-⎩………则目标函数y x z 43-=的最大值和最小值分别为 ( ) A.3,11- B.3-,11- C.11,3- D.11,3 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出二元不等式组,画出可行域,求目标函数的最值. 【难易程度】中等【参考答案】A【试题解析】画出平面区域如图所示:(步骤1)可知当直线=34z x y -平移到点(5,3)时,目标函数=34z x y -取得最大值3;当直线=34z x y -平移到点(3,5)时,目标函数=34z x y -取得最小值11-,故选A.(步骤2)第10题图11.函数22x y x -=的图象大致是 ( )ABCD【测量目标】函数图象的判断.【考查方式】给出混合函数解析式,判断函数图象. 【难易程度】较难 【参考答案】A【试题解析】因为当x =2或4时,220xx -=,所以排除B 、C ;(步骤1) 当x =2-时,22xx -=14<04-,故排除D ,所以选A.(步骤2) 12.定义平面向量之间的一种运算“⊙”如下:对任意的(,),(,)m n p q ==a b .令a ⊙.mq np =-b 下面说法错误的是 ( )A.若a 与b 共线,则a ⊙0=bB.a ⊙=b b ⊙aC.对任意的,()λλ∈a 有R ⊙(λ=b a ⊙)bD.(a ⊙222)()||||2+= b a b a b【测量目标】平面向量的数量积运算.【考查方式】在平面向量的基础上,给出新定义,考查平面向量的基础知识.【难易程度】较难 【参考答案】B【试题解析】若a 与b 共线,则有==0mq np -a b ,故A 正确;(步骤1)因为pn qm =-b a ,而=mq np -a b ,所以有≠a b b a ,故选项B 错误,故选B.(步骤2)第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。
2010年山东高考题文科数学(word修改版)
2010年普通高等学校招生全国统一考试(山东卷)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集R =U ,集合{}240M x x =-≤ ,则U M =ð(A ){}22x x -<< (B ){}22x x -≤≤ (C ){}22x x x <->或 (D ) {}22x x x ≤-≥或 (2) 已知2a i b i i +=+(,)a b R ∈,其中i 为虚数单位,则a b += (A )-1 (B )1 (C )2 (D )3(3))13(log )(2+=x x f 的值域为 (A )(0,)+∞ (B )[)0,+∞ (C )(1,)+∞ (D )[)1,+∞(4)在空间,下列命题正确的是(A )平行直线的平行投影重合 (B )平行于同一直线的两个平面(C )垂直于同一平面的两个平面平行 (D )垂直于同一平面的两个平面平行(5)设()f x 为定义在R 上的函数。
当0x ≥时,()22()x f x x b b =++为常数,则(1)f -= (A ) -3 (B ) -1 (C ) 1 (D ) 3(6)在某项体育比赛中一位同学被评委所打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均分值为和方差分别为(A ) 92,2 (B ) 92 ,2.8(C ) 93,2 (D )93,2.8(7)设{}n a 是首项大于零的等比数列,则“12a a p ”是“数列{}n a 是递增数列”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分而不必要条件 (D )既不充分也不必要条件(8)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为21812343y x x =-+-,则使该生产厂家获取最大年利润的年产量为 (A )13万件 (B )11万件 (C )9万件 (D )7万件(9)已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的标准方程为(A )1x = (B )1x =-(C )2x = (D )2x =-(10)观察2'()2x x =,4'2()4x x =,(cos )'sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()()g x f x 为的导函数,则()g x -(A )()f x (B )()f x - (C )()g x (D )()g x -(11)函数22x y x =-的图像大致是(12)定义平面向量之间的一种运算“e ”如下:对任意的(,)a m n =,(,)b p q =,令a b mq mp =-e .下面说法错误的是(A )若a b 与共线,则0a b =e(B )a b b a =e e(C )对任意的,R a a λλλ∈e e 有()b=(b)(D )2222()()a b a b a b +⋅=e 第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分(13)执行右图所示流程框图,若输入4x =,则输出y 的值为____________________.(14) 已知(,)x y R +∈,且满足134x y +=,则xy 的最大值为____________________. (15)在ABC ∆中,角A B C 、、所对的边分别为a 、b 、c .若,2,2==b a 2c o s s i n =+B B ,,则角A 的大小为____________________.(16)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线1:-=x y l 被该圆所截得的弦长为C 的标准方程为____________三、解答题:本题共6小题,共74分 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年山东省普通高中学业水平考试数学试题
第一卷(选择题共45分)
一、选择题(15’×3=45’)
1、已知角的终边经过点(-3,4),则tanx等于
A B C D
2、已知lg2=a,lg3=b,则lg 等于
A a-b
B b-a
C D
3、设集合M= ,则下列关系成立的是
A 1∈M
B 2∈M
C (1,2)∈M
D (2,1)∈M
4、直线x-y+3=0的倾斜角是
A 300
B 450
C 600
D 900
5、底面半径为2,高为4的圆柱,它的侧面积是
A 8π
B 16π
C 20π
D 24π
6、若b<0<a(a,b∈R),则下列不等式中正确的是
A b2<a2
B
C -b<-a
D a-b>a+b
7、已知x∈(- ,o),cosx= ,则tanx等于
A B C D
8、已知数列的前n项和sn= ,则a3等于
A B C D
9、在ΔABC中,sinA sinB-cosA cosB<0则这个三角形一定是
A 锐角三角形
B 钝角三角形
C 直角三角形
D 等腰三角形
10、若函数,则f(x)
A 在(-2,+ ),内单调递增
B 在(-2,+ )内单调递减
C 在(2,+ )内单调递增
D 在(2,+ )内单调递减
11、在空间中,a、b、c是两两不重合的三条直线,α、β、γ是两两不重合的三个平面,下列命题正确的是
A 若两直线a、b分别与平面α平行, 则a∥b
B 若直线a与平面β内的一条直线b平行,则a∥β
C 若直线a与平面β内的两条直线b、c都垂直,则a⊥β
D 若平面β内的一条直线a垂直平面γ,则γ⊥β
12、不等式(x+1)(x+2)<0的解集是
A B C D
13、正四棱柱ABCD-A1B1C1D1中,A1 C1与BD
所在直线所成角的大小是
A 300
B 450
C 600
D 900
14、某数学兴趣小组共有张云等10名实力相当的组员,
现用简单随机抽样的方法从中抽取3人参加比赛,
则张云被选中的概率是
A 10%
B 30%
C 33.3%
D 37.5%
15、如图所示的程序框图,如果输入三个实数a,b,c,
要求输出这三个数中最大的数,那么在空白处的判断框中,
应该填入下面四个选项中的
(注:框图中的赋值符号“=”也可以写成“ ”或“:=”)
A c>x
B x>c
C c>b
D b>c
第二卷(非选择题共55分)
二、填空题(5’ ×4=20’)
16、已知a>0,b>0,a+b=1则ab的最大值是____________
17、若直线2ay-1=0与直线(3a-1)x+y-1=0平行,则实数a等于____________
18、已知函数,
那么f(5)的值为____________
19、在[-π,π]内,函数为增函数的区间是____________
20、设┃a┃=12,┃b┃=9,a b=-54 ,
则a和b的夹角θ为____________
三、解答题(共5小题,共35分)
21、已知a =(2,1)b=(λ,-2),若a⊥b,求λ的值
22、(6’)已知一个圆的圆心坐标为(-1,2),且过点P(2,-2),求这个圆的标准方程
23、(7’)已知是各项为正数的等比数列,且a1=1,a2+a3=6,求该数列前10项的和Sn
24、(8’)已知函数
求f(x)的最大值,并求使f(x)取得最大值时x 的集合
25、(8’)已知函数f(x)满足xf(x)=b+cf(x),b≠0,f(2)=-1,且f(1-x)=-f(x+1)对两边都有意义的任意x都成立
(1)求f(x)的解析式及定义域
(2)写出f(x)的单调区间,并用定义证明在各单调区间上是增函数还是减函数?。