八年级数学下册 16.3 二次根式的加减(第2课时)学案新人教版
八年级数学下册16.3二次根式的加减法(第2课时)教案(新版)新人教版
八年级数学下册16.3二次根式的加减法(第2课时)教案(新版)新人教版16.3 二次根式的加减法(第2课时)教学目标1、知识与技能:(1)含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用。
(2)复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算。
2、过程与方法:(1)经历思考、探究过程、发展总结归纳能力,能有条理地、清晰地阐述自己的观点。
(2)体会解决问题能力,发展实践能力与创新意识。
3、情感态度与价值观:(1)积极参与数学活动,对其产生好奇心和求知欲。
(2)形成合作交流、独立思考的学习习惯。
教学重点难点重点: 含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用。
难点:含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用教学过程一、创设情境自学课本第14页的内容。
二、自主探究1、计算:(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy2、计算:(1)(2x+3y)(2x-3y) (2)(2x+1)2+(2x-1)2思考:如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?3、计算: (1) (2)(3) (4)例1 计算: (1) (2)例2 计算: (1) (2)三、尝试应用1、计算: (1) (2)(3) (4)(5) (6)2、已知x=,y=;求下列各式的值:(1)x2+2xy+y2 (2)x2-y2四、课堂小结1、如何计算二次根式加减混合运算.2、计算结果中的二次根式必需是最简二次根式五、作业布置:习题16.3 第4,6、8题六、课后反思:。
(精品)最新八年级下册16.3二次根式的加减第2课时二次根式的混合运算导学案新人教版
探究点 2:利用乘法公式进行二次根式的运算 问题 1 整式乘法运算中的乘法公式有哪些?
问题 2 整式的乘法公式对于二次根式的运算也适用吗?
典例精析 例 3(教材 P14 例 4 变式题)计算:
(1)( 3 2)2;(2) 3 2 48 18 4 3 ; (3) a3 a2b a b . a ab a b
方法总结进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根 据题目的特点确定合适的运算方法,同时要灵活运用乘法公式,因式分解等简化运算. 【变式题】计算:
(1)(2 2 3)2018 (2 2 3)2018(; 2)(2 - 3)201(7 2 3)2019 2 3 . 2
)
B.( 12- 27) 3 1 D. 3( 2 3) 6 2 3
.ቤተ መጻሕፍቲ ባይዱ
3.设 a 1 ,b 10 3, 则 a 10 3
b(填“>”“ < ”或“= ”).
4.计算:
(1) 32 2 2 ; ( 2 ) 1 1 ; 2 3 2- 3
( 3 ) 3 3 3- 3 ;
内容
运算顺序
二次根式的加、减、乘、除混合运算与整式运算一样,体现在:运算 律、运算顺序、乘法法则仍然适用.(注意乘法公式的运用)
化简求值 先将代数式化简,再代入求值,结果要是最简形式.
当堂检测
1.下列计算中正确的是(
A. 3( 3 1 ) 3 3
C. 32 1 2 2 2
2.计算( 2+ 3)2 24
第十六章 二次根式
教学备注
16.3 二次根式的加减 第 2 课时 二次根式的混合运算
16.3 二次根式的加减(第2课时)(课件)八年级数学下册(人教版)
他算一算,他的金色细彩带够用吗?如果不够用,还需买多少厘米的金色细
彩带?( 2≈1.414,结果保留整数)
解:镶壁画所用的金色彩带的长为:
4×( 800+ 450)
=4×(20 2+15 2)
=140 2≈197.96(cm),
因为1.2m=120cm<197.96cm,
整式乘法法则与整式乘法公式进行计算。运用的乘法公式主要是:平方
差公式与完全平方公式。
(a b)(a b) a 2 b 2 ,(a b) 2 a 2 2ab b 2
练一练
1、某居民小区有块形状为矩形的绿地,长为 128米,宽为 50
米,现在要矩形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部
分),每个长方形花坛的长为 13 + 1 米,宽为 13 − 1 米.
(1)求矩形的周长.(结果化为最简二次根式)
(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/
1.
3 11
32
3.设实数 3的整数部分为m,小数部分为n,则(2m+n)(2m﹣n)的值是( A )
A.2 3
B.−2 3
C.2 3 − 2
D.2 − 2 3
4.化简( 3 − 2)2002 · ( 3 + 2)2003 的结果为(B )
A.-1
B. 3 + 2
C. 3 − 2
m a n b 的式子,构成平方差公式,可以使分母不含
根号.
课堂练习
1.计算:
1
2 3
16.3.2二次根式的混合运算作业课件++2023-2024学年人教版八年级数学下册
解:(2)因为 4<5<9,所以 2< 5 <3,即-3<- 5 <-2,所以 2<5- 5 <3, 所以 a=2,b=5- 5 -2=3- 5 ,则 4ab-b2=4×2×(3- 5 )-(3- 5 )2=24-8 5 -9+6 5 -5=10-2 5
10.(教材 P14 练习 T2 变式)计算: (1)(2 7 +3 3 )(2 7 -3 3 ); 解:原式=(2 7 )2-(3 3 )2=28-27=1
(2)( 5 +2)2-( 5 -2)2; 解:原式=( 5 +2+ 5 -2)( 5 +2- 5 +2)=2 5 ×4=8 5
(3)(2 6 +5)2023(2 6 -5)2023-( 2 -1)2. 解:原式=[(2 6 +5)(2 6 -5)]2023-[( 2 )2-2 2 +1]=(24-25)2023-3+2 2 = -1-3+2 2 =2 2 -4
C.(2 2 - 3 )( 2 + 3 )=(2 2 )2-( 3 )2=5
D.( 3 - 1 )2=3-2+1 =4
3
33
7.若 a= 3 + 2 ,b= 3 - 2 ,则 a 与 b 之间的关系是( C )
A.a+b=0 B.a-b=0
C.ab=1 D.ab=-1
8.计算: (1)(2023·山西)( 6 + 3 )( 6 - 3 )的结果为__3__; (2)( 3 + 2 )2- 24 =__5__. 9.已知长方形的长为(2 5 +3 2 ) cm,宽为(2 5 -3 2 ) cm,则长方形的面积 为__2__cm2.
解:原式=( 5 )2-( 2 )2+( 3 )2-2 3 +1=5-2+3-2 3 +1=7-2 3
16.在一个边长为( 3 + 2 )cm 的正方形内部挖去一个边长为( 3 - 2 )cm 的正 方形(如图),求剩余部分(阴影)的面积.
人教版数学八年级下册16.3《二次根式的加减》说课稿
人教版数学八年级下册16.3《二次根式的加减》说课稿一. 教材分析人教版数学八年级下册16.3《二次根式的加减》这一节,是在学生已经掌握了二次根式的性质和运算法则的基础上进行讲解的。
本节内容主要让学生学会如何进行二次根式的加减运算,进一步培养学生的运算能力和数学思维能力。
教材通过例题和练习题的形式,让学生在实际操作中掌握二次根式加减的计算方法,并能够灵活运用。
二. 学情分析在教学这一节之前,学生已经学习了二次根式的性质,包括根号下的数可以分为完全平方数和非完全平方数,以及二次根式的乘除运算。
但是,对于二次根式的加减运算,学生可能还存在一定的困难,特别是在处理含有同类项和非同类项的二次根式加减时,容易出错。
因此,在教学过程中,需要引导学生理清思路,明确二次根式加减的规则。
三. 说教学目标1.让学生掌握二次根式的加减运算法则,能够正确进行二次根式的加减运算。
2.培养学生的运算能力和数学思维能力,使学生在解决实际问题时,能够灵活运用二次根式的加减运算法则。
3.通过二次根式的加减运算,让学生体会数学的规律性和逻辑性,提高学生的数学素养。
四. 说教学重难点1.教学重点:让学生掌握二次根式的加减运算法则,能够正确进行二次根式的加减运算。
2.教学难点:如何引导学生理解并处理含有同类项和非同类项的二次根式加减问题。
五. 说教学方法与手段1.采用启发式教学法,引导学生通过观察、分析、归纳总结,发现二次根式加减的规律。
2.使用多媒体教学手段,通过动画、图片等形式,直观地展示二次根式的加减过程,帮助学生理解。
3.学生进行小组讨论和合作交流,让学生在讨论中解决问题,提高学生的团队协作能力。
六. 说教学过程1.导入:通过一个实际问题,引出二次根式的加减运算,激发学生的学习兴趣。
2.新课讲解:讲解二次根式的加减运算法则,并通过例题演示如何进行二次根式的加减运算。
3.学生练习:让学生独立完成一些二次根式的加减运算题目,巩固所学知识。
16.3二次根式的加减(第2课时)
(1)(4 7 )(4 7 ) 解 : 原式
练习2
(2)( 6 2 )( 6 2 ) 解 : 原式
42 ( 7 )2 16 7 9
(3)( 3 2) 2
( 6 )2 ( 2 )2 62 4 (4)(2 5 2 ) 2
解 : 原式 ( 3) 2 3 2 ( 2 )
3 (2). 3 3 6 8 3 解 : 原式 6 3 3 6 8 9 3 18 4 3 9 2 2
(3).( 48 27 ) 3 解 : 原式 48 3 27 3 16 9 43 1
复习回顾
同类二次根式的概念?
怎样合并同类二次根式?二次
根式的加减运算的步骤? 四则混合运算的顺序怎样?
知识回顾: 二次根式加减运算的步骤:
(1)把各个二次根式化成最简二次根式.
(2)把各个同类二次根式合并.
几个二次根式化成最简二次根式后, 如果被开方数相同,这几个二次根式就叫 做同类二次根式.
3 3
2
2
8 27 19
(2)解:原式 6 4 2 3 2 4
2 2
练习1
(1). 27 3 6 2 3 6 (2). 3 3 8
1、注意运算顺序 2、运用运算律
ห้องสมุดไป่ตู้
(3).( 48 27 ) 3
(1). 27 3 6 2 解 : 原式 3 3 3 12 3 3 6 3 3 3
在二次根式的运算 中,多项式乘法法则 和乘法公式仍然适用。
=am+an+bm+bn
练习1
(1) 2 ( 3 5 )
八年级数学下册 16 二次根式 16.3 二次根式的加减(第2课时)导学案(新版)新人教版
八年级数学下册 16 二次根式 16.3 二次根式的加减(第2课时)导学案(新版)新人教版
16、3二次根式的加减(2)主备:
审核:
时间:
班级:
姓名:学习目标:
1、熟练地进行二次根式的混合运算,乘法公式在二次根式运算中的运用;
2、通过二次根式混合运算,进一步掌握二次根式的几种运算及其运算技巧;
3、通过对二次根式混合运算的学习,并与四则混合运算及整式的混合运算进行比较,理解知识间的相互关系、学习重点:二次根式的混合运算、学习难点:二次根式混合运算的顺序、乘法公式的综合运用,学习过程:
一、预习内容计算(1)(2x+y)zx (2)(2x2y+3xy2)xy (3)(2x+3y)(2x-3y)(4)(2x+1)2+(2x-1)2
二、数学概念(1)()(2)
1、以前学过的运算法则在二次根式的混合运算中依然成立;
2、计算结果最后一定要化成最简形式、
三、例题讲解例
1、计算: (1)(+)(2)(4-3)2 例
2、计算(1)(+6)(3-)(2)(+)(-)
四、总结反思(1)本节课我收了什么?(2)还有哪些不懂的问题?
5、反馈练习
1、计算(+)(-)的值是()、
A、2
B、3
C、4
D、1
2、(-+)2的计算结果(用最简根式表示)是________、
3、(1-2)(1+2)-(2-1)2的计算结果是_______、六、能力提升
1、已知a=3+2,b=3-2,则a2b-ab2=_________、
2、已知,,求下列各式的值:(1);(2)、七、作业布置(1)(2)(-)(--)(3);(4)、。
16.3 二次根式的加减(第2课时)
5 2
2
45赛开始!请同学们在10分钟内完成 课本第14页的练习。
当堂训练
必做题: 1、计算 1 3
3 6 2 6 3;
6 8;
24
3 3 6 2 3
7 5 7
53
a b 2 (a, b为有理数) 2、如果 2 , 那么a+b=( ) 选做题: 3、先化简,再求值:当 a 2 1, b 2 1, b a 2 2 求: 1a b ab 的值; 2 的值.
课题:16.3 二次根式的加减 (第二课时)
学习目标
1、能正确的进行二次根式的加减乘除混 合运算; 2、巧用多项式乘法法则、公式进行二次 根式的混合运算.
自学指导
请同学们默读课本第14页练习上的内容,熟 看例3和例4,掌握二次根式的加减乘除混合运算 方法,并回答下面三个问题(请在5分钟内完成): 1.二次根式的加减乘除混合运算顺序是什么? 2.在二次根式的运算中,多项式的乘法法则和乘 法公式适用吗? 3.例3(1)运用了什么运算律?例4(1)、(2) 运用了什么呢?
16.3.2二次根式的加减2
求
x y y x
a 23 1 时,求代数式
a 1
2
a 23 a 1
的值。
4、已知
3x 1 2 x
2
3x 1 2 x
化简
x 4 9x 6x 1 x 2
观察题目的特点 是否能应用 乘法公式
已知a 3 2 , b 3 2, 求a ab b 的值.
2 2
解:原式
3 2 3 2 3 2 5 2 6 3 2 5 2 6
2
3 2
2
5 2 6 1 5 2 6 9
2)(2 2)
2
(3 5 5 2)
2.求当a= 2 时,代数式(a -1)2 - (a+ 2 )(a-1) 的值.
1已知x 3 2 3的值
3,求代数式 x 2 x 2 x 2
2
课外拓展 1、已知
7 3 7 3 x ,y 2 2
求3x2-4xy+3y2的值 2、已知 的值。 3、当
4
1
4
计算
1、注意运算顺序 2、运用运算律
(1). 27 3 6 2 3 6 (2). 3 3 8 (3).( 48 27) 3
计算
( 1 )( 2 3) ( 2 5)
(2)( 5 3) ( 5 3)
(3)( 3 2 5)
2
想一想:还有其他方法吗?
已知a 3 2 , b 3 2, 求a ab b 的值.
2 2
解二:a ab b
新人教版数学初中八年级下册16.3《二次根式的加减》公开课优质课教学设计
1《16.3二次根式的加减》本课在学习二次根式乘除运算及化简的基础上,本课在学习二次根式乘除运算及化简的基础上,从算术平方根的运算出发,从算术平方根的运算出发,研究二次根式的加减运算.二次根式的运算方法与数的运算方法本质上是一致的.二次根式的运算方法与数的运算方法本质上是一致的.实数的运算律对二次根式的运算仍实数的运算律对二次根式的运算仍然适用.结合二次根式的化简、乘除和加减运算,利用交换律、结合律、分配律及多项式乘法公式进行二次根式的混合运算.进行二次根式的混合运算.1. 1. 探索二次根式加减运算的方法和步骤;探索二次根式加减运算的方法和步骤;2.2. 会进行二次根式的加减运算.会进行二次根式的加减运算.3.3. 通过探究二次根式的加减运算体会数学中的类比思想通过探究二次根式的加减运算体会数学中的类比思想. .4.4. 类比有理数混合运算和整式混合运算,探索二次根式的加、减、乘、除混合运算顺序的步骤和方法方法. .5.5. 能熟练地进行二次根式的加、减、乘、除混合运算能熟练地进行二次根式的加、减、乘、除混合运算. .6.6. 通过学习二次根式的加、减、乘、除混合运算的学习,培养学生的运算能力、推理能力.1.1. 在化简二次根式的基础上,应用分配律进行二次根式的加减运算.在化简二次根式的基础上,应用分配律进行二次根式的加减运算.2.2. 熟练并准确地进行二次根式的加、减、乘、除混合运算熟练并准确地进行二次根式的加、减、乘、除混合运算. .课件课件◆ 教材分析 ◆ 教学目标◆ 教学重难点 ◆◆ 课前准备◆◆ 教学过程第一课时一、复习引入:一、复习引入:问题1:什么叫最简二次根式?你能将18,8,23化为最简二次根式吗?化为最简二次根式吗? 问题2:现有一块长7.5dm,7.5dm,宽宽5dm 的木板的木板,,能否采用如图的方式能否采用如图的方式,,在这块木板上截出两个面积分别是8dm 2和18dm 2的正方形木板的正方形木板? ? 提问提问::①大、小正方形木板的边长分别为18dm 和8dm,dm,木板是木板是否够宽否够宽??②木板是否够长呢②木板是否够长呢??③怎样计算818+的结果呢的结果呢? ?问题3:计算下列各式:(1)a+2a a+2a;;(2)3x-2x 3x-2x;;解:(1)a+2a=(1+2)a=3a a+2a=(1+2)a=3a;;(2)3x-2x=(3-2)x=x 3x-2x=(3-2)x=x;;【设计意图】回顾整式的加减及合并同类项法则,为后续学习二次根式的合并做准备【设计意图】回顾整式的加减及合并同类项法则,为后续学习二次根式的合并做准备. .二、新课讲解:1.1.探究二次根式的加法探究二次根式的加法探究二次根式的加法. .问题4:请类比整式的加减,计算下列各式::请类比整式的加减,计算下列各式:(1)323+;(2)52-53.解:(1)333)21(323=+=+;(2)55)23(52-53=-=.【点拨】最简二次根式中,被开方数相同的二次根式的加减,直接把系数相加减,根号和根号内的数不变内的数不变. .问题5:53+能合并吗?为什么?82+呢?呢?解:53+不能合并,因为它们被开方数不相同;不能合并,因为它们被开方数不相同;232)21(22282=+=+=+.【小结】(1)二次根式能够进行合并的条件:①首先将二次根式化成最简二次根式;②观察被开方数是否相同开方数是否相同. .(2)二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式合并式合并. .练习1:下列各组二次根式中,能够合并的一组二次根式是(:下列各组二次根式中,能够合并的一组二次根式是( )A .xy 与y x 2B .22y x +与22y x - C .mn 与n m + D.ab 2与ba 2 练习练习:2:2:2::(教材P13练习)下列计算是否正确?为什么?练习)下列计算是否正确?为什么?(1)3838-=-;(2)9494+=+;(3)22223=-.解:(1)∵228=和3的被开方数不相同,的被开方数不相同,∴不能合并∴不能合并,,故错误故错误. .(2)∵53294=+=+,1394=+,故9494+¹+,故错误;,故错误;(3)∵22)23(2223=-=-,故正确故正确. .[点拨点拨]]化为最简二次根式后,只有被开方数相同的二次根式才能合并化为最简二次根式后,只有被开方数相同的二次根式才能合并. .2.2.二次根式加法的运用二次根式加法的运用二次根式加法的运用. .问题7:(教材例题)计算:(1)4580-;(2)a a 259+;(3)483316122+-;(4))53()2012(-++.解:(1)553-544580==-; (2)a a a a a 853259=+=+;(3)3102831232-28483316122+=+=+-; (4)533535232)53()2012(+=-++=-++.练习3:(教材P13练习2)计算:(1)4580-;(2)a a 9194+; (3)52080+-;(4))2798(18-+;(5))681()5.024(--+.解:(1)553-544580==-; (2)a a a a a =+=+31329194; (3)535525452080=+-=+-;(4)33210332723)2798(18-=-+=-+;.42636422262)642()2262()681()5.024(5+=+-+=--+=--+)(问题6:前面问题2中,怎样计算818+的结果呢的结果呢??木板长7.5dm,7.5dm,宽宽5dm 5dm,是否够长?,是否够长?,是否够长?解:818+=2223+···化为最简二次根式·化为最简二次根式=2)23(+···乘法分配率·乘法分配率=25≈7.077.07<<7.5故木板够长故木板够长. .练习4:(教材P13练习3)如果两个圆的圆心相同,他们的面积分别是12.56和25.1225.12,求圆环的,求圆环的宽度d (π取3.143.14,结果保留小数点后两位),结果保留小数点后两位),结果保留小数点后两位). .解:∵解:∵S S 圆=πr 2,∴d=r 大圆-r 小圆小圆=2224814.356.1214.312.25-=-=-=-ππ小圆大圆S S ≈0.83 答:圆环的宽度d 为0.83.三、课堂小结:三、课堂小结:1.1. 知识梳理:(1)二次根式合并的前提:化成最简二次根式之后,被开方数相同)二次根式合并的前提:化成最简二次根式之后,被开方数相同. .(2)二次根式加减的实质:合并被开方数相同的最简二次根式)二次根式加减的实质:合并被开方数相同的最简二次根式. .2.2.二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:①化成最简二次根式后,如果被开方数不相同,则不能进行合并;①化成最简二次根式后,如果被开方数不相同,则不能进行合并;②合并被开方数相同的最简二次根式时,②合并被开方数相同的最简二次根式时,只合并根式外的因式,即系数相加减,被开方数和根指数只合并根式外的因式,即系数相加减,被开方数和根指数不变不变. .3.3. 二次根式加减运算的步骤:①去括号;②化简;③判断并合并.二次根式加减运算的步骤:①去括号;②化简;③判断并合并.4.4.二次根式的加减法与二次根式的乘除法的区别二次根式的加减法与二次根式的乘除法的区别二次根式的加减法与二次根式的乘除法的区别运算运算二次根式的乘除法二次根式的乘除法 二次根式的加减法二次根式的加减法 系数系数系数相乘除系数相乘除 系数相加减系数相加减被开方数被开方数 被开方数相乘除被开方数相乘除 被开方数不变被开方数不变化简化简 结果化成最简二次根式结果化成最简二次根式先化成最简二次根式先化成最简二次根式,,再合并被开方数相同的二次根式的二次根式((同类二次根式同类二次根式) )四、随堂测试:四、随堂测试:1.1.下列各式计算正确的是下列各式计算正确的是下列各式计算正确的是 ( () A.532=+ B.13334=- C.363332=´ D.3327=¸ 解析解析:A.:A.:A.不是同类二次根式,不能合并,故错误;不是同类二次根式,不能合并,故错误;不是同类二次根式,不能合并,故错误;B.B.合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;C.C.应为应为18363332=´=´´,故错误;,故错误;D.39327327==¸=¸,故正确,故正确. .故选D.2.2.以下二次根式以下二次根式以下二次根式::①12,②22,③32,④27中, 化简后能合并成一项的是化简后能合并成一项的是化简后能合并成一项的是( ( ( )A.A.①和②①和②①和②B. B.②和③②和③②和③C. C.①和④①和④D.D.③和④③和④③和④解析:①3212=;②222=;③3632=;④3327=. 3.3. 计算:2-23的值是(的值是() A.2 B.3 C.2 D.22 解析:解析:..222)13(2-23=-=.4.4. 一个等腰三角形的两边长分别为2332,, 则三角形的周长为则三角形的周长为则三角形的周长为. . 解析:分两种情况讨论:(1)当32为腰长,23为底边长时,周长为3423+;(2)当23为腰长,为32底边长时,周长为3226+.5.5. 若最简二次根式若最简二次根式14232+a 与16322-a 的被开方数相同的被开方数相同,,则a= a= . 解析:由题意得4a 2+1=6a 2-1-1,解得,解得a=a=±±1.6.6. 计算:(1)233-2332++; (2)101015-40+.第二课时一、复习引入:一、复习引入:1.1.计算:(1)728+;(2)68´;(3)324¸. 解:(1)282622728=+=+;(2)34486868==´=´;(3)228324324==¸=¸.【设计意图】复习二次根式的加减、乘除法则,为下面研究四则混合运算做准备【设计意图】复习二次根式的加减、乘除法则,为下面研究四则混合运算做准备. .2.2. 计算:(1)(2x-y)(2x-y)··zx zx;;(2)(2x 2y+3xy 2)÷xy xy;;(3)(2x+y)(x-3y) (3)(2x+3y)(2x-3y);(2x+3y)(2x-3y);((4)(2x+1)2+(2x-1)2.解:(1)(2x-y)(2x-y)··zx=2x 2z-xyz z-xyz;;(2)(2x 2y+3xy 2)÷xy=2x 2y ÷xy+3xy 2÷xy=2x+2y xy=2x+2y;;(3)(2x+y)(x-3y)=2x 2-6xy+xy-3y 2=2x 2-5xy-3y 2;(4)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x 2-9y 2;(5)(2x+1)2+(2x-1)2=4x 2+4x+1+4x 2-4x+1=8x 2+2.提问:上面的运算用到了哪些法则和公式?提问:上面的运算用到了哪些法则和公式?学生回顾:多项式乘单项式,多项式除以单项式、多项式乘多项式法则和平方差、完全平方公式学生回顾:多项式乘单项式,多项式除以单项式、多项式乘多项式法则和平方差、完全平方公式. .【设计意图】复习整式的四则运算和乘法公式,类比学习二次根式的混合运算【设计意图】复习整式的四则运算和乘法公式,类比学习二次根式的混合运算. .二、新课讲解:二、新课讲解:问题1:如果把上面的x ,y ,z 改成二次根式呢?以上的运算法则是否仍然成立?改成二次根式呢?以上的运算法则是否仍然成立?例1.1.(教材(教材P14例题3)计算:(1)6)38(´+;(2)226324¸-)(.解:(1)6)38(´+=6368´+´=1848+=2334+;(2)2263-24¸)( =22632224¸-¸=3232-.【点拨】类比多项式乘单项式和多项式除以单项式法则计算,这里运用了分配率【点拨】类比多项式乘单项式和多项式除以单项式法则计算,这里运用了分配率. . 练习1:(教材P14练习1)计算:(1))53(2+;(2)5)4080(¸+; 解:(1))53(2+=5232´+´=106+;(2)5)4080(¸+=540580¸+¸=816+=224+.【小结】(1)与有理数、实数运算一样,在混合运算中先乘除,后加减;)与有理数、实数运算一样,在混合运算中先乘除,后加减;(2)最终的结果一定要化为最简二次根式)最终的结果一定要化为最简二次根式. . .问题2.2.(教材(教材P14面例4)例2.2. 计算:(1))52()32(-×+;(2))35)(35(-+. 解:(1))52()32(-×+=152523)2(2--+=15222--=2213--;(2))35)(35(-+=22)3()5(-=5-3=2.提问:你能说出上面两道题中每一步的依据是什么吗?提问:你能说出上面两道题中每一步的依据是什么吗?【小结】乘法公式使计算准确、简便,因此能用运算公式的,尽可能用运算公式.因为二次根式表示数,二次根式的运算也是实数的运算.根式表示数,二次根式的运算也是实数的运算.练习2:计算:(1))17(72--=;(2))2332)(2332(+-=.答案为:7214+-;6.练习3:计算2)322215324(×+-的结果是(的结果是( ) A. A. 303-3320 B.30-3320 C.332303- D.332302- 练习3 计算:(1))2762)(6227(-+;(2)2)377(-;(3)22)632()632(-+--+解:(1))2762)(6227(-+=222762)()(-=24-98=-74=-74;;(2)2)377(-=22)37(3772)7(+´´-=2114154-;(3)22)632()632(++--+=)]632()632)][(632()632[(++--++++-+ =)62()3222(-×+=21238--.练习4:已知4x 2+y 2-4x-6y+10=0-4x-6y+10=0,求下面式子的值,求下面式子的值,求下面式子的值. . )1()(2y x y x y x y y xx +-+解:由4x 2+y 2-4x-6y+10=0得到得到(2x-1)(2x-1)2+(y-3)2=0,∴2x-1=0,y-3=0.解得,解得,x=x=21,y=3. )1()(2yx y x y x y y xx +-+ =yx x y y x 12--+ =y y x x y y y x--+=x y -当x=21,y=3时,时, 原式原式==223213-=-. 三、课堂小结:三、课堂小结:师生共同回顾本节课所学主要内容师生共同回顾本节课所学主要内容: :关于二次根式的四则混合运算关于二次根式的四则混合运算,,实质上就是实数的混合运算.(1)(1)运算顺序与有理式的运算顺序相运算顺序与有理式的运算顺序相同;(2);(2)运算律仍然适用运算律仍然适用运算律仍然适用;(3);(3);(3)与多项式的乘法和因式分解类似与多项式的乘法和因式分解类似与多项式的乘法和因式分解类似,,可以利用乘法公式与因式分解的方法来简化二次根式的有关运算.四、随堂检测:1. 下列二次根式中可以进行合并的是下列二次根式中可以进行合并的是( ) ( )A. ab 与2abB. 22n m + 与22n m -C. mn 与nm 11+ D. 438b a 与432b a 【知识点:同类二次根式】【知识点:同类二次根式】【参考答案】D【思路点拨】先化简成最简二次根式,再看被开方数是否相同【思路点拨】先化简成最简二次根式,再看被开方数是否相同. .2.2.计算:计算:)12)(12(-+的结果是(的结果是(). A.23+ B.23- C.1D.3 【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】【参考答案】C C【思路点拨】在整式运算中使用的公式在二次根式运算中照样适用,因此,【思路点拨】在整式运算中使用的公式在二次根式运算中照样适用,因此,本题利用平方差公式直本题利用平方差公式直接计算即可接计算即可. .3.3.若矩形相邻两边长分别是若矩形相邻两边长分别是cm 20和cm 125,则它们的周长是,则它们的周长是. .【知识点:二次根式混合运算】【知识点:二次根式混合运算】【参考答案】cm 514【思路点拨】矩形的周长【思路点拨】矩形的周长==(长(长++宽)×宽)×2 24. 计算:)4831375(12-+´的结果是(的结果是() A.23 B.32 C. 6D. 12 【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】【参考答案】D D【思路点拨】123232)34335(12)4831375(12=´=-+´=-+´5. 计算:3)4841311527(¸+-【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】1-【解析】原式=1333)33533(-=¸-=¸+-略。
人教版八年级数学下册16.3二次根式的加减教案
(4)混合运算的顺序:学生在面对含有多个二次根式的混合运算时,容易混淆运算顺序。
举例:计算2√3 + √5 × √2,学生应先进行乘法运算,得到√10,再进行加法运算。
在教学过程中,教师需针对以上重点和难点内容进行有针对性的讲解和强调,通过实例分析和练习,帮助学生理解并掌握核心知识,突破学习难点。
举例:化简二次根式√24,学生需要找到24的因数4,并将其分解为√4 × √6,进一步化简为2√6。
(2)二次根式的加减运算:学生在进行二次根式加减运算时,容易忽略合并同类项的步骤。
举例:计算√3 + √5 - √3,学生需要意识到两个√3可以相互抵消,最终结果为√5。
(3)实际问题的应用:学生往往难以将实际问题抽象为二次根式的加减问题。
实践活动环节,学生们分组讨论和实验操作都表现得积极主动,但部分小组在讨论过程中还是偏离了主题。我应该在引导讨论时,更加明确主题,确保学生的讨论能紧扣教学内容。
学生小组讨论环节,我尝试作为一个引导者,发现学生们在面对开放性问题时,思维非常活跃,能提出很多有创意的想法。但在成果分享时,有些学生表达不够清晰,这需要我在今后的教学中加强对学生表达能力的培养。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的定义和性质。二次根式是形如√a的表达式,其中a是非负实数。它是解决平方根相关问题的重要工具,广泛应用于几何、物理等多个领域。
2.案例分析:接下来,我们来看一个具体的案例。计算√9 + √16,通过这个案例,展示二次根式在实际中的加减运算方法。
(2)熟练运用二次根式的加减法则,进行混合运算。
最新人教版八年级数学下册十六章二次根式16.3二次根式的加减教学设计
16.3 二次根式的加减(1)第一课时教学内容二次根式的加减教学目标理解和掌握二次根式加减的方法.先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学过程一、问题引入现有一块长为7.5dm ,宽为5dm 的木板,能否采用如图16.3-1的方式,在这块木板上戳出两个面积分别是8dm 3和18dm 3的正方形木板?二、探索新知1.学生活动:列出代数式8+18 利用前面所学知识将其化简得到2+32.教师提问同类项以及合并同类项的知识,学生复习回答问题老师点评:所以如果被开方数相同,则这样的二次根式可以利用分配律合并一般地,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.所以上面问题2+3=25,由2<1.5可知52<7.5,即两个正方形的边长的和小于木板的长,因此可以用这块木板按要求截出所需要的木板。
例1.计算(1)80-45 (2)a 9+a 25 (3)+(4)+分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.、例2.计算(1)483316-122+ (4)(2012+)+(5-3)比较二次根式的加减与整式的加减,你能得到什么结论?三、展示交流教材P13练习1、2.四、堂清巩固例3.已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.解:∵4x2+y2-4x-6y+10=0∵4x2-4x+1+y2-6y+9=0∴(2x-1)2+(y-3)2=0∴x=,y=3原式=+y2-x2+5x=2x+-x+5=x+6当x=,y=3时,原式=×+6=+3五、课堂小结本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.六、布置作业1.教材P21习题21.3 1、2、3、5.2.选作课时作业设计.3.课后作业:《同步训练》七、板书设计16.3 二次根式的加减(1)先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.八、课后回顾16.3 二次根式的加减(2)第二课时教学内容含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用. 复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算. 重难点关键重点:二次根式的乘除、乘方等运算规律;难点关键:由整式运算知识迁移到含二次根式的运算.教学过程一、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y )·zx (2)(2x 2y+3xy 2)÷xy2.计算(1)(2x+3y )(2x-3y ) (2)(2x+1)2+(2x-1)2老师点评:这些内容是对整式运算的再现.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.二、探索新知如果把上面的x 、y 、z 改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立. 整式运算中的x 、y 、z 是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)(+)× (2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.例2.计算(1)()()5-232+ (2)()()3-535+ 分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.三、展示交流课本P 14练习1、2.四、堂清巩固例3.已知=2-,其中a 、b 是实数,且a+b ≠0,化简+,并求值.分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.解:原式=+=+=(x+1)+x-2+x+2=4x+2∵=2-∴b(x-b)=2ab-a(x-a)∴bx-b2=2ab-ax+a2∴(a+b)x=a2+2ab+b2∴(a+b)x=(a+b)2∵a+b≠0∴x=a+b∴原式=4x+2=4(a+b)+2五、课堂小结本节课应掌握二次根式的乘、除、乘方等运算.六、布置作业1.教材P21习题16.3 4、6、8、9.2.课后作业:《练习册》七、板书设计16.3 二次根式的加减(2)八、课后回顾作业设计一、选择题1.(-3+2)×的值是().A.-3 B.3-C.2- D.-2.计算(+)(-)的值是().A.2 B.3 C.4 D.1二、填空题1.(-+)2的计算结果(用最简根式表示)是________.2.(1-2)(1+2)-(2-1)2的计算结果(用最简二次根式表示)是_______.3.若x=-1,则x2+2x+1=________.4.已知a=3+2,b=3-2,则a2b-ab2=_________.三、综合提高题1.化简2.当x=时,求+的值.(结果用最简二次根式表示)课外知识1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.练习:下列各组二次根式中,是同类二次根式的是().A.与 B.与C.与 D.与2.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式:如x+1-与x+1+就是互为有理化因式;与也是互为有理化因式.练习:+的有理化因式是________;x-的有理化因式是_________.--的有理化因式是_______.3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,达到化去分母中的根号的目的.练习:把下列各式的分母有理化(1);(2);(3);(4).4.其它材料:如果n是任意正整数,那么=n理由:==n练习:填空=_______;=________;=_______.答案:一、1.A 2.D二、1.1- 2.4-24 3.2 4.4三、1.原式====-(-)=-2.原式==== 2(2x+1)∵x==+1 原式=2(2+3)=4+6.。
新人教版八年级数学下册《16.3二次根式的加减(第2课时)》学案-学习文档
新人教版八年级数学下册《16.3二次根式的加减(第2课时)》学案一、自主学习(一)、复习引入上节课,我们已经学习了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,(二)、探索新知例1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)分析:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,•根据三角形面积公式就可以求出x的值.解:设x后△PBQ的面积为35平方厘米.则有PB=x,BQ=2x 依题意,得:求解得:x=所以秒后△PBQ的面积为35平方厘米.答:秒后△PBQ的面积为35平方厘米,PQ的距离为5厘米.例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,•只需知道这四段的长度.解:由勾股定理,得AB=BC=所需钢材长度为:AB+BC+AC+BD==二、巩固练习教材P19练习3三、学生小组交流解疑,教师点拨、拓展1、例3.若最简根式与根式是同类二次根式,求a、b的值.(•同类二次根式就是被开方数相同的最简二次根式)分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同的根式;2、本节课应掌握运用最简二次根式的合并原理解决实际问题.四、课堂检测(一)、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式)A.5B.C.2D.以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.13B.C.10D.5(二)、填空题(结果用最简二次根式)1.有一长方形鱼塘,已知鱼塘长是宽的2倍,面积是1600m2,•鱼塘的宽?。
八年级数学下册 16.3 二次根式的加减(第2课时)导学案3(新版)新人教版
第十六章 二次根式
16.3二次根式加减(2) 班级 姓名 学习目标: 1、理解二次根式的运算方法,整式的运算律、运算法则及乘法公式在二次根式的运算中仍然适用。
(重点) 2、能运用二次根式的性质及运算法则,进行二次根式的混合运算。
(重点、难点) 预习导学: 1、在二次根式中:(a +b )(a —b )= (a ≥0, b ≥0); (a ±b )2= (a ≥0, b ≥0)
2、二次根式的混合运算顺序:先算 ,再算 ,最后算 ,有括号的先算 。
合作研讨
探究一 二次根式的混合运算
1、18—
21÷34×36 2、2(26—3)—(3—1)2
3、(318+51
50—421)÷32 4、(5
1)1-+(1—3)(1+3)—12
探究二 用乘法公式进行二次根式的混合运算
1、(6+2)(6—3)
2、(2—3)(2+3)
3、(23—2)2
探究三 二次根式的求值
1、先化简,再求值:
y x -1÷(y 1—x
1),其中x=3+2,y=3—2.
2、已知a +a 1=5,求a —a 1的值. 小结与反思: 巩固提高:
1、计算:⑴ (46—4
21+38)÷22 ⑵121-+3(3—6)+8
⑶(32—6)(—3
2—6) ⑷(3+2)2 —(3—2)2
⑸(3—2)2(3+2)+(3+2)2 (3—2) ⑹解方程: 6x +32=3x +6
2、已知x +x 1=5,求1
242++x x x 的值.。
八年级数学下册 16.3 二次根式的加减(第2课时)教案 (新版)新人教版-(新版)新人教版初中八年
16.3 二次根式的加减第2课时教学目标1. 理解和掌握二次根式加减的方法.2. 会进行二次根式的加减运算.教学重点难点二次根式化简为最简根式.会判定是否是最简二次根式.教学过程一、导入新课学生活动:计算下列各式.(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3.教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减.二、新课教学问题现有一块长为、宽为5dm的木板,能否采用如图的方式,在这块木板上截出两个面积分别是8dm2和18dm2的正方形木板?因为大、小正方形木板的边长分别为18dm和8dm,显然木板够宽.下面考虑木板是否够长.由于两个正方形的边长的和为(8+18) dm.这实际上是求8,18这两个二次根式的和,我们可以这样来计算:8+18=22+32 (化成最简二次根式)=(2+3)2 (分配率)=52. 由2<可知52<,即两个正方形的边长的和小于木板的长,因此可以用这块木板按要求截出两个面积分别是8dm 2和18dm 2的的正方形木板. 分析上面计算8+18的过程,可以看到,把8和18化成最简二次根式22和32后,由于被开方数相同(都是2),可以利用分配律将22和32进行合并.总结:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并. 三、实例探究例1计算:(1)80-45; (2)a 9+a 25.分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.解:(1)80-45=45-35=5;(2)a 9+a 25=3a +5a =8a .例2计算:(1)212-631+348; (2)(12+20)+(3-5).解:(1)212-631+348=43-23+123=143; (2)(12+20)+(3-5)=23+25+3-5=33+5.四、巩固练习教材第13页练习1、2.五、归纳小结1. 不是最简二次根式的,应化成最简二次根式;2. 相同的最简二次根式进行合并.六、布置作业习题16.3第1、2、3、5题.教学反思。
最新八年级下册16.3二次根式的加减第2课时二次根式的混合运算教案新人教版(精编)
第2课时 二次根式的混合运算1.会熟练地进行二次根式的加减乘除混合运算,进一步提高运算能力;(重点)2.正确地运用二次根式加减乘除法则及运算律进行运算,并把结果化简.(难点)一、情境导入如果梯形的上、下底边长分别为22cm ,43cm ,高为6cm ,那么它的面积是多少?毛毛是这样算的:梯形的面积:12(22+43)×6=(2+23)×6=2×6+23×6=2×6+218=23+62(cm 2).他的做法正确吗? 二、合作探究探究点一:二次根式的混合运算 【类型一】 二次根式的四则运算计算: (1)12223×9145÷35; (2)⎝ ⎛⎭⎪⎫312-213+48÷23+⎝⎛⎭⎪⎫132;(3)2-(3+2)÷ 3.解析:先把各二次根式化为最简二次根式,再把括号内合并后进行二次根式的乘法运算,然后进行加法运算.解:(1)原式=12×9×83×145×53=12×9×229=2;(2)原式=⎝ ⎛⎭⎪⎫63-233+43÷23+13=2833×123+13=143+13=5; (3)原式=2-(3+2)÷13=2-3+23=2-1-233. 方法总结:二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.探究点二:利用乘法公式及运算律进行二次根式混合运算计算:(1)(2+3-6)(2-3+6);(2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎪⎫6-1332-3424×(-26). 解析:(1)利用平方差公式展开然后合并即可;(2)先利用完全平方公式和平方差公式展开然后合并即可;(3)利用乘法分配律进行计算即可.解:(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+62;(2)原式=2-22+1+22×(3-2)=2-22+1+22=3;(3)原式=⎝ ⎛⎭⎪⎫6-66-326×(-26)=-236×(-26)=8. 方法总结:利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.探究点三:二次根式混合运算的综合运用 【类型一】 与二次根式的混合运算有关的新定义题型对于任意的正数m 、n 定义运算※为m ※n =⎩⎨⎧m -n (m ≥n ),m +n (m <n ).计算(3※2)×(8※12)的结果为( )A .2-46B .2C .2 5D .20解析:∵3>2,∴3※2=3-2.∵8<12,∴8※12=8+12=2(2+3),∴(3※2)×(8※12)=(3-2)×2(2+3)=2.故选B.方法总结:弄清新定义中的运算法则,转化为代数式的运算,正确运用运算律及公式是解题的关键.【类型二】二次根式运算的拓展应用 请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰似斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解析:分别把n =1、2代入式子化简即可. 解:第1个数,当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15[1+52-1-52]=15×5=1;第2个数,当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15×1×5=1.方法总结:此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.三、板书设计1.二次根式的四则运算先算乘方(开方),再算乘除,最后算加减,有括号的先算括号内的.2.运用乘法公式和运算律进行计算 在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.本节课以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的加减
【学习目标】
1.会类比合并同类项进行二次根式的加减运算;
2.能综合运用法则进行有关实数混合四则运算.
【学习重点】能熟练、正确地进行二次根式的加减法运算.
【学习难点】能熟练、正确地把加减运算的最后结果化成最简二次根式.
【学前准备】认真阅读课本P12---P14,完成练习
一、复习引入
1.把下列二次根式化为最简二次根式
(1)8= ; (2)12= ; (3)20= ; (4)27= ;
(5)32= ; (6)40= ; (7)54= ; (8)75= ;
(9)21= ; (10)34= ; (11)125= ; (12)3
2= . 2.计算下列各式. (1)x x 32+; (2)222532x x x +-; (3)y x x 32++;
(4)3532+; (5)252423-+; (6)32253423--+.
想一想:如何进行二次根式的加减运算?
一般地,二次根式加减时,可以先将二次根式化成 ,再将被开方数相同的二次根式 .
试一试,计算:(1)188+; (2)4580-; (3)a a 259+;
(4)451227+-; (5))53()2012(-++.
【课堂探究】
例1 计算:(1)125278012+--; (2)4833
16
122+-.
例2 现有一块长为7.5dm 、宽为5dm 的木板,能否采用如右图的方式,
在这块木坂上截出两个面积分别是82dm 和182
dm 的正方形木板?
因为大,小正方形木板的边长分别为 dm 和 dm , 所以两个正方形的边长的和为 . 试计算两正方形的边长和并将其与木板长、木板宽进行比较,看木板的长、
宽是否够长?
例3 计算:(1)6)38(⨯+; (2)22)6324(÷-; (3)3530⨯÷.
例4 计算:
(1)()()5232-+; (2)()()3535-+; (3)()2
32-.
【课堂检测】
1.计算:(1))53(2+; (2))25)(35(++; (3))26)(26(-+.
2.计算:(1))74)(74(-+; (2)))((b a b a -+; (3)2)23(+.
【课堂小结】怎样进行二次根式的加减运算?
课后作业1606--二次根式 (课时6)
班级: 座号: 姓名:
1.下列计算正确的是( )
A .549=-
B .835=+
C .2222=-
D . 2818=- 2.下列计算正确的是( )
A .532=+
B .2222=+
C .22223=-
D .
1492
818=-=- 3.下列计算正确的是( ) A .3838-=- B .9494+=+
C .33233=-
D . 22223=-
4.计算:(1)52080+-; (2))2798(18-+; (3))68
1()5.024(--+.
5.计算:(1)23218+-; (2)x x x 4259+-;
(3))1258()1845(--+; (4)32481812+--;
(5)318102245-⨯-+; (6)155
4812+-;
(7)5)40(÷+80; (8)2543
122÷⨯.
6.计算:(1)205124÷⨯; (2))5(2-3; (3)2)252(-.
7.一个圆柱体的高为10,体积为V .求它的底面半径为r (用含V 的代数式表示),并分别求当π5=V ,
π10和π20时,底面半径r 的大小.
8.如图,从一个大正方形中裁去面积为215cm 和224cm 的两个小正方形,
求留下部分的面积.
9.如图,两个圆的圆心相同,它们的面积分别是56.12和12.25.求圆环的宽度d (π取14.3,结果保留小数点后两位).
10.观察下列各式,把不是最简二次根式的化成最简二次根式.
同理可得34
341-=+
, ……从计算结果中找出规律,并利用这一规律计算下面式子的值.
(第8题图)
24cm 2
15cm
21=
=
;
==
11++++
⋅ )。