人教版九年级上册数学实际问题与一元二次方程课件
合集下载
人教版九年级上册实际问题与一元二次方程课件
解:设增长率为x,根据题意,得 20(1+x)2=24.2.
解得x1=-2.1(舍去),x2=0.1=10%. 答:增长率为10%.
注意 增长率不可为负,但可以超过1.
变化率与销售问题
1.某商场第一季度的利润是82.75万元,其中一月份 的利润是25万元,若利润平均每月的增长率为x, 则依题意所列方程为( D ) A.25(1+x)2=82.75 B.25+50x=82.75 C.25+25(1+x)2=82.75 D.25[1+(1+x)+(1+x)2]=82.75
心志要坚,意趣要乐。
器让大自者 己声的个必内闳心.,藏志着已高一者条知意巨必龙每远,。既个是一种玩苦刑具,也的是一固种乐定趣。成本为360元,问这种玩具的销
售单价为多少元时,厂家每天可获利润20 不要志气高大,倒要俯就卑微的人。不要自以为聪明。
燕雀安知鸿鹄之志哉。
000元?
志当存高远。
人不可以有傲气,但不可以无傲骨
思考:什么是下降额? 什么是下降率?
下降额=下降前的量-下降后的量 增长额=增长后的量-增长前的量
解:设甲种药品成本的年平均下降率为x,则一年后甲种 药品成本为5000(1-x)元,两年后甲种药品成本为 5000(1-x)2元,于是有
解方程,得: 5000(1-x)2=3000
x1≈0.225,x2≈1.775 根据问题的实际意义,甲种药品成本的年平均下降率
2有0志00不0元在?年高根,无据志空活问百岁题。 的实际意义,甲产品成本的年平均下降
例:两年前生产1t甲种药品的成本是5000元,生产1t乙种药品的成本是6000元.
率约为30%.
注意 下降率不可为负,且不大于1.
2、为做好延迟开学期间学生的在线学习服务工作, 盐城市教育局推出“中小学延迟开学期间网络课堂”, 为学生提供线上学习,据统计,第一批公益课受益学 生20万人次,第三批公益课受益学生24.2万人次.如 果第二批,第三批公益课受益学生人次的增长率相同, 求这个增长率.
解得x1=-2.1(舍去),x2=0.1=10%. 答:增长率为10%.
注意 增长率不可为负,但可以超过1.
变化率与销售问题
1.某商场第一季度的利润是82.75万元,其中一月份 的利润是25万元,若利润平均每月的增长率为x, 则依题意所列方程为( D ) A.25(1+x)2=82.75 B.25+50x=82.75 C.25+25(1+x)2=82.75 D.25[1+(1+x)+(1+x)2]=82.75
心志要坚,意趣要乐。
器让大自者 己声的个必内闳心.,藏志着已高一者条知意巨必龙每远,。既个是一种玩苦刑具,也的是一固种乐定趣。成本为360元,问这种玩具的销
售单价为多少元时,厂家每天可获利润20 不要志气高大,倒要俯就卑微的人。不要自以为聪明。
燕雀安知鸿鹄之志哉。
000元?
志当存高远。
人不可以有傲气,但不可以无傲骨
思考:什么是下降额? 什么是下降率?
下降额=下降前的量-下降后的量 增长额=增长后的量-增长前的量
解:设甲种药品成本的年平均下降率为x,则一年后甲种 药品成本为5000(1-x)元,两年后甲种药品成本为 5000(1-x)2元,于是有
解方程,得: 5000(1-x)2=3000
x1≈0.225,x2≈1.775 根据问题的实际意义,甲种药品成本的年平均下降率
2有0志00不0元在?年高根,无据志空活问百岁题。 的实际意义,甲产品成本的年平均下降
例:两年前生产1t甲种药品的成本是5000元,生产1t乙种药品的成本是6000元.
率约为30%.
注意 下降率不可为负,且不大于1.
2、为做好延迟开学期间学生的在线学习服务工作, 盐城市教育局推出“中小学延迟开学期间网络课堂”, 为学生提供线上学习,据统计,第一批公益课受益学 生20万人次,第三批公益课受益学生24.2万人次.如 果第二批,第三批公益课受益学生人次的增长率相同, 求这个增长率.
实际问题与一元二次方程 初中九年级数学教学课件PPT 人教版
成本
药品
两年前的成本
现在的成本
甲
5000元 3000元
乙
6000元 3600元
知识讲解
难点突破成本Fra bibliotek药品两年前的成本
现在的成本
年平均下降额
年平均下降率
甲
5000元 3000元 1000元
?
乙
6000元 3600元 1200元
?
知识讲解
难点突破
本年成本=前一年成本-前一年成本×年下降率 =前一年成本×(1-年下降率)
解:设水稻每公顷产量的年平均增长率为x
2011年平均每公顷产量为 2012年平均每公顷产量为
7200(1+x) kg 7200(1+x)2 kg
由此可列方程: 7200(1+x)2=8450
知识讲解
难点突破
探究:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的 成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是 3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下 降率较大?
由题意得
5000(1-x)2=3000
年平均下降 率应为小于1
解方程,得
(1-x)2=0.6
的正数
1 x 0.6
x1 1 0.6, x2 1 0.6
x1 0.225, x2 1.775
根据问题的实际意义,甲种药品成本的年平均下降率约为22.5%.
知识讲解
难点突破
成本
药品
两年前的成本
现在的成本
知识讲解
难点突破
成本
药品
年平均下降额
年平均下降率
甲
1000元 22.5%.
人教版九年级数学上册《实际问题与一元二次方程》课件(共6张PPT)
某水果批发商城经销一种高档水果,如果每千克盈利 10元,每天可售出500kg。经市场调查发现,在进货 不变的情况下,若每千克涨价1元,日销售量就减少 20kg,现该商场要保证每天盈利6000元,同时又要顾 客得到实惠,那么每千克应涨价多少元?
拓展提高:
某西瓜经营户以2元/千克的价格购进一批小型 西瓜,以3元/千克的价格出售,每天可售出 200千克,为了促销,该经营户决定降价销售, 经调查发现,这种小型西瓜每降价0.1元/千克, 每天可多售出40千克,另外,每天的房租等固定 成本共24元,该经营户要想每天盈利200元,应 将每千克小桃,进价每千克40元,按每千克60元出 售,平均每天可售出100千克,后来经调查发现,单 价每降低2元,商场平均每天可多售出20千克。若商 场平均每天销售核桃的盈利要达到2240元, 请回答:
(1)每千克核桃应降价多少元?
(2)在每天获利不变的情况下,为尽可能让利于顾 客,应按原售价的几折出售?
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
实际问题与一元二次方程
营销问题
解一元二次方程应用题的一般步骤?
(1)审题 (2)设未知数 (3)列方程 (4)解方程 (5)答
初三上数学课件(人教版)-实际问题与一元二次方程(第一课时)
1.会根据具体问题(按一定传播速度传播问题、数字问 题和利润问题)中的数量关系列一元二次方程并求解。
2.能根据问题的实际意义,检验所得结果是否合理。 3.进一步掌握列方程解应用题的步骤和关键。
重点:列一元二次方程解决实际问题 . 难点:找出实际问题中的等量关系 .
未知量
间接设
实际意义
问题:有一人患了流感,经过两轮传染后,有121人患了 流感,每轮传染中平均一个人传染了几个人?
B
9
解:设3月份到5月份营业额的月平均增长率为x, 根据题意得,400×(1+10%)(1+x)2=633.6, 解得,x =0.2=20%,x =2.2(不合题意舍去).答:(略)
解:设这个两位数的个位数字为x,
则十位数字为x-2,这个两位数为10(x-2)+x,
依题意得10(x-2)+x=3x(x-2)
分析:设每轮传染中平均一个人传染x个人,
⑴开始有一人患了患流感,第一轮的传染源就是这个
人,他传染了x个人,用代数式表示第一轮后,共有___人
患了流感;第二轮传染中,这些人中每一个人又传染了x人
,用代数式表示
,第二轮后,共有
人患流感
。
⑵根据等量关系列方程:_______.
⑶解这个方程得:_______.
(2)设未知数(几种设法) .设较小的奇数为x,则另 一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设 较小的奇数为2x-1,则另一个奇数2x+1. 解法二:
设较小的奇数为x-1,则较大的奇数为x+1
据题意,得(x-1)(x+1)=323. 整理后,得x2=324. 解这个方程,得x1=18,x2=-18. 当x=18时,18-1=17,18+1=19.
2.能根据问题的实际意义,检验所得结果是否合理。 3.进一步掌握列方程解应用题的步骤和关键。
重点:列一元二次方程解决实际问题 . 难点:找出实际问题中的等量关系 .
未知量
间接设
实际意义
问题:有一人患了流感,经过两轮传染后,有121人患了 流感,每轮传染中平均一个人传染了几个人?
B
9
解:设3月份到5月份营业额的月平均增长率为x, 根据题意得,400×(1+10%)(1+x)2=633.6, 解得,x =0.2=20%,x =2.2(不合题意舍去).答:(略)
解:设这个两位数的个位数字为x,
则十位数字为x-2,这个两位数为10(x-2)+x,
依题意得10(x-2)+x=3x(x-2)
分析:设每轮传染中平均一个人传染x个人,
⑴开始有一人患了患流感,第一轮的传染源就是这个
人,他传染了x个人,用代数式表示第一轮后,共有___人
患了流感;第二轮传染中,这些人中每一个人又传染了x人
,用代数式表示
,第二轮后,共有
人患流感
。
⑵根据等量关系列方程:_______.
⑶解这个方程得:_______.
(2)设未知数(几种设法) .设较小的奇数为x,则另 一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设 较小的奇数为2x-1,则另一个奇数2x+1. 解法二:
设较小的奇数为x-1,则较大的奇数为x+1
据题意,得(x-1)(x+1)=323. 整理后,得x2=324. 解这个方程,得x1=18,x2=-18. 当x=18时,18-1=17,18+1=19.
人教版九年级数学上册21.3 第2课时 实际问题与一元二次方程(2)课件
函数解析式;(2)利用“干果销售量×每
克60元的价格销售,
千克的利润=总利润”建立方程并求解.
为了让顾客得到更大
解:(1)设y关于x的函数解析式为y=kx+b.
的实惠,现决定降价销售,已知这种干果
根据题意,得
销售量y(单位:kg)与每千克降价x(单位:
2k+b=120,解得 k=10,
元)(0<x<20)之间满足一次函数关系,其图
B.2×8(1+x)= 11.52
C.8(1+x)2= 11.52
D.8(1+x2)= 11.52
2.某商品经过两次降价,售价由原来的每件25元降到每件
16元,已知两次降价的百分率相同,则每次降价的百分率
为( A )
A.20%
B.25%
C.30%
D.36%
3.某网络学习平台2020年的新注册用户数为100万,2022 年的新注册用户数为169万,设新注册用户数的年平均增 长率为x(x>0),则x= ___3_0_%___(用百分数表示).
2.直播购物逐渐走进了人们的生活.某电商在平台上对一款成本 价为40元的小商品进行直播销售,如果按每件60元销售,每天 可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日 销售量增加10 件.若日销售利润保持不变,商家想尽快销售完该 款商品,每件售价应定为多少元?
解:设每件售价应定为x元,
(2)由题意,得(60-40-x) (10x+100)=2090.
整理,得x2-10x+9=0.
解得x1=1, x2=9.
隐含价格低这一条件
因为要让顾客得到更大的实惠,所以x=9.
答:商贸公司要想获利2090元,则这种干
人教版九年级上册数学 21.3 实际问题与一元二次方程 课件
4.三个连续偶数,已知最大数与最小数的
平方和比中间一个数的平方大332,求这三 个连续偶数.
1.偶数个连续偶数(或奇数),一般可设中间两个为 (x1)和(x 1). 2.奇数个连续偶数(或奇数,自然数),一般可设中 间一个为x.如三个连续偶数,可设中间一个偶数为x, 则其余两个偶数分别为(x2)和(x+2)又如三个连续自 然数,可设中间一个自然数为x,则其余两个自然数 分别为(x1)和(x 1).
解这个方程得:x1 x2 4
CQ
B
答:当AP 4cm时,四边形面积为16cm2
小结 拓展
回味无穷
• 列方程解应用题的一般步骤是: • 1.审:审清题意:已知什么,求什么?已,未知之间有什么关系? • 2.设:设未知数,语句要完整,有单位(同一)的要注明单位; • 3.列:列代数式,列方程; • 4.解:解所列的方程; • 5.验:是否是所列方程的根;是否符合题意; • 6.答:答案也必需是完事的语句,注明单位且要贴近生活. • 列方程解应用题的关键是: • 找出相等关系. • 关于两次平均增长(降低)率问题的一般关系: • a(1±x)2=A(其中a表示基数,x表表示增长(或降低)率,A表示新数)
数字与方程
实际问题与一元二次方程 (三)
1. 两个数的差等于4,积等于45,求这两个数.
2. 一个两位数,它的十位数字比个位数字小3,而 它的个位数字的平方恰好等于这个两位数.求这 个两位数.
3.有一个两位数,它的十位数字与个位数字的和是5. 把这个两位数的十位数字与个位数字互换后得到 另一个两位数,两个两位数的积为736.求原来的 两位数.
则 x(18 x) 81
化简得,x2 18x 81 0 (x9)2 0 x1 x2 9
上册实际问题与一元二次方程人教版九年级数学全一册课件
5.【例3】在一次酒会上,每两人都只碰一次杯,如果一共碰 杯105次,则参加酒会的人数为 15 . 小结:问题中若两个人进行了1次活动(单循环),则x人进行 了12x(x-1)次活动.
上册第21章 第10课时 实际问题与一元二次方程(3)-2020 秋人教 版九年 级数学 全一册 课件( 共24张P PT)
共互送110份.若参加聚会的同学有x名,依题意,可列出方
程为( B )
A.x(x+1)=110
B.x(x-1)=110
C.21x(x+1)=110
D.21x(x-1)=110
上册第21章 第10课时 实际问题与一元二次方程(3)-2020 秋人教 版九年 级数学 全一册 课件( 共24张P PT)
上册第21章 第10课时 实际问题与一元二次方程(3)-2020 秋人教 版九年 级数学 全一册 课件( 共24张P PT)
对点训练
1.填空: (1)两个连续的整数之积为56,则这两个整数为 7和8或-7和 -8 ; (2)一个两位数,十位上的数字与个位上的数字之和为5,设 十位数字为x,则这个两位数可用含x的式子表示为 9x+5.
上册第21章 第10课时 实际问题与一元二次方程(3)-2020 秋人教 版九年 级数学 全一册 课件( 共24张P PT)
上册第21章 第10课时 实际问题与一元二次方程(3)-2020 秋人教 版九年 级数学 全一册 课件( 共24张P PT)
上册第21章秋人教 版九年 级数学 全一册 课件( 共24张P PT)
小结:解此类数字问题的关键是用代数式表示出这个数,常 采取间接设未知数的方法求解.比如本题的关键是用 10a+b 的形式表示两位数.
上册第21章 第10课时 实际问题与一元二次方程(3)-2020 秋人教 版九年 级数学 全一册 课件( 共24张P PT)
上册第21章 第10课时 实际问题与一元二次方程(3)-2020 秋人教 版九年 级数学 全一册 课件( 共24张P PT)
共互送110份.若参加聚会的同学有x名,依题意,可列出方
程为( B )
A.x(x+1)=110
B.x(x-1)=110
C.21x(x+1)=110
D.21x(x-1)=110
上册第21章 第10课时 实际问题与一元二次方程(3)-2020 秋人教 版九年 级数学 全一册 课件( 共24张P PT)
上册第21章 第10课时 实际问题与一元二次方程(3)-2020 秋人教 版九年 级数学 全一册 课件( 共24张P PT)
对点训练
1.填空: (1)两个连续的整数之积为56,则这两个整数为 7和8或-7和 -8 ; (2)一个两位数,十位上的数字与个位上的数字之和为5,设 十位数字为x,则这个两位数可用含x的式子表示为 9x+5.
上册第21章 第10课时 实际问题与一元二次方程(3)-2020 秋人教 版九年 级数学 全一册 课件( 共24张P PT)
上册第21章 第10课时 实际问题与一元二次方程(3)-2020 秋人教 版九年 级数学 全一册 课件( 共24张P PT)
上册第21章秋人教 版九年 级数学 全一册 课件( 共24张P PT)
小结:解此类数字问题的关键是用代数式表示出这个数,常 采取间接设未知数的方法求解.比如本题的关键是用 10a+b 的形式表示两位数.
上册第21章 第10课时 实际问题与一元二次方程(3)-2020 秋人教 版九年 级数学 全一册 课件( 共24张P PT)
人教版九年级数学上册《实际问题与一元二次方程》PPT课件
感悟新知
知4-练
1 一个两位数,它的十位数字比个位数字小4,若 把这两个数字调换位置,所得的两位数与原两 位数的乘积等于765,求原两位数. 15
2 两个相邻偶数的积是168.求这两个偶数.
12和14
课堂小结
一元二次方程
1. 列一元二次方程解实际应用问题有哪些步骤? 2. 列方程解实际问题时要注意以下两点:
感悟新知
乙种药品成本的年平均下降率是多少?请比较
两种药品成本的年平均下降率.
知1-练
解:设乙种药品的年平均下降率为y,列方程得
6000(1 - y )2=3600.
解方程,得 y1≈0.225,y2≈1.775. 根据问题的实际意义,乙种药品成本的年平均下降率
约为22.5%. 综上所述,甲乙两种药品成本的年平均
感悟新知
知2-练
解:(1) 设每轮分裂中每个有益菌可分裂出x个有益菌, 根据题意,得 60(1+x)2=24 000. 解得x1=19,x2=-21(不合题意,舍去). 答:每轮分裂中每个有益菌可分裂出19个有益菌.
(2) 60×(1+19)3=60×203=480 000(个). 答:经过三轮培植后共有480 000个有益菌.
知识点 2 营销策划问题
知2-练
例2 某特产专卖店销售核桃,其进价为每千克40元, 按每
千克60元出售,平均每天可售出100千克, 后来经过市 场调查发现,单价每降低2元,则平均每天的销售可增 加20千克,若该专卖店销售这种核桃要想平均每天获 利2240元,请回答:
在平均每天获利不变的情况下,为尽可能让利于顾客, 赢得市场, 该店应按原售价的几折出售?
是否正确、作答前验根是否符合实际.
感悟新知
九年级上册数学实际问题与一元二次方程课件PPT
分析:此题属于经营问题,若设每件衬衫应降价x元,则每件所得利 润为(40-x)元,但每天多售出2x件,即售出件数为(20+2x)件,因此每天 赢利为(40-x)(20+2x)元,进而可根据题意列出方程求解.
14
教材新知精讲
综合知识拓展
拓展点一 拓展点二 拓展点三 拓展点四 拓展点五
解:(1)设每件衬衫应降价x元, 根据题意得(40-x)(20+2x)=1 200, 整理得2x2-60x+400=0,解得x1=20,x2=10. 因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快, 故每件衬衫应降价20元. 答:每件衬衫应降价20元. (2)设商场平均每天盈利y元, 则y=(20+2x)(40-x)=-2x2+60x+800 =-2(x2-30x-400)=-2[(x-15)2-625] =-2(x-15)2+1 250.
13
教材新知精讲
综合知识拓展
拓展点一 拓展点二 拓展点三 拓展点四 拓展点五
拓展点四列一元二次方程解商品销售问题 例4 (2015·岳池县模拟)某商场销售一批名牌衬衫,平均每天可 售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商 场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元, 商场平均每天可多售出2件; (1)若商场平均每天要盈利1 200元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天盈利最多?
4x)=
9 1- 25
×20×30,
解得x1=1,x2=9.
∵4×9=36>20,
∴x=9舍去,
∴横彩条的宽度是2 cm,竖彩条的宽度是3 cm.
12
拓展点一 拓展点二 拓展点三 拓展点四 拓展点五
14
教材新知精讲
综合知识拓展
拓展点一 拓展点二 拓展点三 拓展点四 拓展点五
解:(1)设每件衬衫应降价x元, 根据题意得(40-x)(20+2x)=1 200, 整理得2x2-60x+400=0,解得x1=20,x2=10. 因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快, 故每件衬衫应降价20元. 答:每件衬衫应降价20元. (2)设商场平均每天盈利y元, 则y=(20+2x)(40-x)=-2x2+60x+800 =-2(x2-30x-400)=-2[(x-15)2-625] =-2(x-15)2+1 250.
13
教材新知精讲
综合知识拓展
拓展点一 拓展点二 拓展点三 拓展点四 拓展点五
拓展点四列一元二次方程解商品销售问题 例4 (2015·岳池县模拟)某商场销售一批名牌衬衫,平均每天可 售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商 场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元, 商场平均每天可多售出2件; (1)若商场平均每天要盈利1 200元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天盈利最多?
4x)=
9 1- 25
×20×30,
解得x1=1,x2=9.
∵4×9=36>20,
∴x=9舍去,
∴横彩条的宽度是2 cm,竖彩条的宽度是3 cm.
12
拓展点一 拓展点二 拓展点三 拓展点四 拓展点五
2021-2022学年人教版九年级数学上册实际问题与一元二次方程课件 (3)
解得
x1≈0.41=41%,x2≈-2.41(不合题意,舍去).
答:该省每年秸秆合理利用量的增长率约为41%.
PART 4
课堂小结
课堂小结
传播问题
实际问 题与一 元二次 方程解 应题
增长率问题
设开始数量为a,每轮感染的数量为x, 经n轮感染后的数量为b,则所列方程 为a(1+x)n=b.
若基数为a,平均增长率为x,则一次 增长后的值为a(1+x),两次增长后的 值为a(1+x)2. 若基数为a,平均降低率为x,则一次 降低后的值为a(1-x),两次降低后的 值为a(1-x)2.
分析:甲种药品成本的年平均下降额为 _(_5_0_0_0-__3_0_0_0_)÷_2_=__1_0_0_0_(元__) __,乙种药品成本的年平均下降额为 _(_6_0_0_0-__3_6_0_0_)÷_2_=__1_2_0_0_(元__) __,乙种药品成本的年平均下降额较大。 但是,年平均下降额不等同于年平均下降率(百分数)。
传播问题
问题1:有一人患了流感,经过两轮传染后共有121人患 了流感,每轮传染中平均一个人传染了几个人?
分析:设每轮传染中平均一个人传染了x个人,开始有一个人患了 流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示, 第一轮后共有_(_1_+_x_)人患了流感,第二轮传染中,这些人中的每一 个人又传染了x个人,用代数式表示,第二轮后共有 [1+x+x(1+x)] ______________人患了流感.
7.某种植物的主干长出若干数目的支干,每个支干又长出 相同数目的小分支,若小分支、支干和主干的总数量是73, 求每个支干长出的小分支数目.
解 设每个支干长出x个小分支,依题意,得 1+x+x2=73,
人教版数学九年级上册2实际问题与一元二次方程(面积问题)课件
21.3 实际问题与一元二次方程 面积问题2
人教版 九年级上册
学习目标
1.会分析实际问题(面积问题)中的数量关系并会列 一元二次方程. 2.理解栅栏问题中的等量关系. 3.通过用一元二次方程解决面积问题,体会数学知识 应用的价值.
知识回顾
列方程解实际问题的一般步骤:
1.审:分清已知未知,明确数量关系; 2.设:设未知数 ;3.列:列方程; 4.解:解方程; 5.验:验方程、验实际;
EF
则BC=29-2x+1=30-2x
解:设AB为xm,AD长为(30-2x)m 矩形ABCD的面积x(30-2x)=112,
解得x1=7, x2=8 当x=7时,AD=30-2x7=16>15(不合题意,舍去) 当x=8时,AD=30-2x8=14 ∴猪圈的长为14m,宽为8m.
如图,某养猪户想用29米长的围栏设计一个矩形的 养猪圈,其中猪圈一边靠墙MN,另外三边用围栏围 住,在AB,BC边各开个门(宽度都为1米),MN的长 度为15m,为了让围成的猪圈(矩形ABCD)面积到达 112m2,请你帮忙计算一下猪圈的长与宽分别是多少 若设AB=xm则可列方程为 x(31-2x)=112 .
1.如图,一农户要建一个矩形花圃,花圃的一边利用长 为12m的住房墙,另外三边用25m长的篱笆围成,为方便 进出,在垂直于住房墙的一边留一个1m宽的门,花圃面
积为80m2,设与墙垂直的一边长为xm(已标注在图中), 则可以列出关于x的方程是( )
2.在美化校园的活动中,某兴趣小组想借助如图所示的直角 墙角DA和DC(两边足够长),再用28m长的篱笆围成一个面 积为192m2矩形花园ABCD(篱笆只围AB、BC两边),在P处有 一棵树与墙CD、AD的距离分别是15m和6m,现要将这棵树也 围在花园内(含边界,不考虑树的粗细),则AB的长为 (A.12) B.16或12 C.16 D.8或12
人教版 九年级上册
学习目标
1.会分析实际问题(面积问题)中的数量关系并会列 一元二次方程. 2.理解栅栏问题中的等量关系. 3.通过用一元二次方程解决面积问题,体会数学知识 应用的价值.
知识回顾
列方程解实际问题的一般步骤:
1.审:分清已知未知,明确数量关系; 2.设:设未知数 ;3.列:列方程; 4.解:解方程; 5.验:验方程、验实际;
EF
则BC=29-2x+1=30-2x
解:设AB为xm,AD长为(30-2x)m 矩形ABCD的面积x(30-2x)=112,
解得x1=7, x2=8 当x=7时,AD=30-2x7=16>15(不合题意,舍去) 当x=8时,AD=30-2x8=14 ∴猪圈的长为14m,宽为8m.
如图,某养猪户想用29米长的围栏设计一个矩形的 养猪圈,其中猪圈一边靠墙MN,另外三边用围栏围 住,在AB,BC边各开个门(宽度都为1米),MN的长 度为15m,为了让围成的猪圈(矩形ABCD)面积到达 112m2,请你帮忙计算一下猪圈的长与宽分别是多少 若设AB=xm则可列方程为 x(31-2x)=112 .
1.如图,一农户要建一个矩形花圃,花圃的一边利用长 为12m的住房墙,另外三边用25m长的篱笆围成,为方便 进出,在垂直于住房墙的一边留一个1m宽的门,花圃面
积为80m2,设与墙垂直的一边长为xm(已标注在图中), 则可以列出关于x的方程是( )
2.在美化校园的活动中,某兴趣小组想借助如图所示的直角 墙角DA和DC(两边足够长),再用28m长的篱笆围成一个面 积为192m2矩形花园ABCD(篱笆只围AB、BC两边),在P处有 一棵树与墙CD、AD的距离分别是15m和6m,现要将这棵树也 围在花园内(含边界,不考虑树的粗细),则AB的长为 (A.12) B.16或12 C.16 D.8或12
人教版数学九年级上册21.3.2一元二次方程和实际问题-薄利多销问题 课件(共19张PPT)
解:设每件服装应 x元降 ,根价 据题,得 意 (4 4 x )(2 0 5 x )Fra bibliotek1 6 0 0 .
整理 :x2 4得 x0 14 0 .4 解这个方程,得
x13,6x24. 答:每件服装应3降 6元价 或 4元.
解应用题的一般步骤?
第一步:设未知数(单位名称); 第二步:根据相等关系列出列出方程; 第三步:解这个方程,求出未知数的值; 第四步:检查求得的值是否符合实际意义; 第五步:写出答案(及单位名称)。
1.进价:购进商品时的价格(有时也叫成本价) 2.售价:在销售商品时的售出价(有时也叫成交价,卖出价) 3.标价:在销售时标出的价(有时称原价,定价) 4.利润:在销售商品的过程式中的纯收入,在教材中,我们就
规定 : 利润 = 售价 - 进价 5.利润率:利润占进价的百分率,即利润率 = 利润÷进价×100﹪ 6.打折:卖货时,按照标价乘以十分之几或百分之几十,则称
实际问题与一元二次方程 薄利多销问题
销售利润问题
基本关系
利润=售价 - 成本 总利润=每件平均利润×总件
自主探究活动一 一元二次方程解应用题的六个步骤
1.审——审清题意,找出等量关系. 2.设——直接设未知数或间接设未知数. 3.列——根据等量关系列出一元二次方程. 4.解——解方程,得出未知数的值. 5.验——既要检验是否是所列方程的解,又要检验是否符合实 际情况. 6.答——完整地写出答案,注意单位.
降价
定价
x
290x0
销售量
每台利润
x2500
总利润
842900x 50
(x25)08 ( 0429 0x0 ) 50
课堂作业 1、某商场销售一批名牌衬衫,平均每天 可销售出20件,每件盈利40元,经调查发 现,如果每件衬衫每降价1元,商场平均 每天可多售出2件.若商场平均每天要盈 利1200元,每件衬衫应降价多少元?
整理 :x2 4得 x0 14 0 .4 解这个方程,得
x13,6x24. 答:每件服装应3降 6元价 或 4元.
解应用题的一般步骤?
第一步:设未知数(单位名称); 第二步:根据相等关系列出列出方程; 第三步:解这个方程,求出未知数的值; 第四步:检查求得的值是否符合实际意义; 第五步:写出答案(及单位名称)。
1.进价:购进商品时的价格(有时也叫成本价) 2.售价:在销售商品时的售出价(有时也叫成交价,卖出价) 3.标价:在销售时标出的价(有时称原价,定价) 4.利润:在销售商品的过程式中的纯收入,在教材中,我们就
规定 : 利润 = 售价 - 进价 5.利润率:利润占进价的百分率,即利润率 = 利润÷进价×100﹪ 6.打折:卖货时,按照标价乘以十分之几或百分之几十,则称
实际问题与一元二次方程 薄利多销问题
销售利润问题
基本关系
利润=售价 - 成本 总利润=每件平均利润×总件
自主探究活动一 一元二次方程解应用题的六个步骤
1.审——审清题意,找出等量关系. 2.设——直接设未知数或间接设未知数. 3.列——根据等量关系列出一元二次方程. 4.解——解方程,得出未知数的值. 5.验——既要检验是否是所列方程的解,又要检验是否符合实 际情况. 6.答——完整地写出答案,注意单位.
降价
定价
x
290x0
销售量
每台利润
x2500
总利润
842900x 50
(x25)08 ( 0429 0x0 ) 50
课堂作业 1、某商场销售一批名牌衬衫,平均每天 可销售出20件,每件盈利40元,经调查发 现,如果每件衬衫每降价1元,商场平均 每天可多售出2件.若商场平均每天要盈 利1200元,每件衬衫应降价多少元?
人教版九年级数学上册2实际问题与一元二次方(互赠问题、握手问题)课件
感染问题:总次数=1+x+x(1+x) =(1+x)²(x≥2,且x为整数)
主 干 问 题 : 总 次 数 = 1 + x + x ²( x ≥ 2 , 且 x 为 整 数 )
区分在于传播源是否进入下一轮传播!
谢谢
一、互赠问题 练1 双节期间,某微信群规定,群内的每个人都要发一个红 包,并保证群内其他人都能抢到且自己不能抢自己发的红包, 若此次抢红包活动,群内所有人共收到156个红包,该群一共 有多少人?
解:设该群一共有 x 人. 依题意,得 x(x-1)=156. 解得 x1=-12(不合题意,舍去),x2=13. 答:这个群一共有 13 人.
解:(1)根据题意,得n(1+n) =300. 2
整理,得 n2+n-600=0. 解得 n1=-25,n2=24. ∵n 为正整数,∴n=24. ∴300 是前 24 行的点数的和.
拓展 (2)三角点阵前n行的点数和能是600吗?
如果能,求出n;如果不能,试用一元二次方程,说明理由.
(2)不能.理由如下:
二、握手问题(1种) 练2 参加一次足球联赛的每两队之间都进行一场比赛,共有比 赛55场,求总共有多少支球队参加比赛.
解:设总共有 x 支球队参加比赛. 根据题意,得12 x(x-1)=55. 整理,得 x2-x-110=0. 解得 x1=-10(不合题意,舍去),x2=11. 答:总共有 11 (n≥2,且n为正整数)
R版九年级全一册
互赠、握手(单循环比赛)问题解题技巧: (1)互赠问题:总次数=n(n-1)(n≥2,且 n 为正整数); (2)握手(单循环比赛)问题:总次数=n(n2-1)
(n≥2,且 n 为正整数).
人教版九年级数学上册2实际问题与一元二次方程第5课时几何图形与一元二次方程课件
图形面积问题
斜边的 长呢?
解:设较短的直角边为xcm,则较长的直角边为(x+5)cm
解得 x1=2,x2=-7(不符合题意,舍去) ∴ x+5=2+5=7 答:两条直角边的长分别为2米cm、7cm
图形面积问题
2、有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正 方形,然后将四周凸出部分折起,就能制作一个无盖方盒,如果要 制作的方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方 形?请根据题意列出方程.
32 2x
20 20-xx
在宽为20m, 长为32m
的矩形地面上修筑同样宽的道 20
x
路,余下的部分种上草坪,要使
x
草坪的面积为540m2,求这种种
32
方案下的道路的宽为多少?
解:设道路的宽为 x 米 可列方程为 (32-2x)(20-2x)=540
2x 20
2x 20-2x
32-2x
CQ =2t, 则,
1 2 (6-t)×2t =
9
t2 -6t +9 = 0
解得 t=3
答:点P,Q出发3秒后△PCQ的面积等于9cm²。
17
解:设切去的正方形的边长为xcm, 则盒底的长为(100-2x)cm,宽为 (50-2x)cm,根据方盒的底面积为 x
3600cm2,得(100 2x)(50 2x) 3600
整理,得 4 x 2 3 0 0 x 1 4 0 0 0
3600cm2 100cm
化简,得 x2 7 5 x 3 5 0 0①
作业布置:(202X.9.19)
基础作业:1、课本P21第3题,P22第四题
能力提升作业:如图所示,在△ABC中,∠C=90°, AC=6cm,BC=8cm.
人教版九年级数学上册《实际问题与一元二次方程——增长率问题》PPT
乙种药品成本的年平均下降额为 (6000-3600)÷2=1200(元)
乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下 降率(百分数)
解:设甲种药品成本的年平均下降率为x,则一年后
甲种药品成本为5000(1-x)元,两年后甲种药品成本 为 5000(1-x)2 元,依题意得
x 解,设原价为 a 元,每次升价的百分率为 ,
根据题意,得 a(1 x)2 1.2a
解这个方程,得 x 1 30 5
由于升价的百分率不可能是负数,
所以 x 1 30 不合题意,舍去
5
x 1 30 9.5%
5
答:每次升价的百分率为9.5%.
1.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x,
21.3实际问题与一元二 次方程(二)
增长率问题
11/9/2022
两年前生产 1吨甲种药品的成本是5000元,生产 1吨乙种药品的成本是6000元,随着生产技术的进 步,现在生产 1吨甲种药品的成本是3000元,生产1 吨乙种药品的成本是3600元,哪种药品成本的年 平均下降率较大?
分析:甲种药品成本的年平均下降额为 (5000-3000)÷2=1000(元)
B 列方程(
)
A.500(1+2x)=720
B.500(1+x)2=720 C.500(1+x2)=720
D.720(1+x)2=500
2.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若
设该校今明两年在实验器材投资上的平均增长率是x,则可列方程
2(1 x) 2(1x)2 8
经过计算,成本下降额较大的药品,它的成本 下降率不一定较在,有一定的模式
乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下 降率(百分数)
解:设甲种药品成本的年平均下降率为x,则一年后
甲种药品成本为5000(1-x)元,两年后甲种药品成本 为 5000(1-x)2 元,依题意得
x 解,设原价为 a 元,每次升价的百分率为 ,
根据题意,得 a(1 x)2 1.2a
解这个方程,得 x 1 30 5
由于升价的百分率不可能是负数,
所以 x 1 30 不合题意,舍去
5
x 1 30 9.5%
5
答:每次升价的百分率为9.5%.
1.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x,
21.3实际问题与一元二 次方程(二)
增长率问题
11/9/2022
两年前生产 1吨甲种药品的成本是5000元,生产 1吨乙种药品的成本是6000元,随着生产技术的进 步,现在生产 1吨甲种药品的成本是3000元,生产1 吨乙种药品的成本是3600元,哪种药品成本的年 平均下降率较大?
分析:甲种药品成本的年平均下降额为 (5000-3000)÷2=1000(元)
B 列方程(
)
A.500(1+2x)=720
B.500(1+x)2=720 C.500(1+x2)=720
D.720(1+x)2=500
2.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若
设该校今明两年在实验器材投资上的平均增长率是x,则可列方程
2(1 x) 2(1x)2 8
经过计算,成本下降额较大的药品,它的成本 下降率不一定较在,有一定的模式
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
700台?
解:设每轮传染x台电脑,则由题意得 1+x+x(x+1)=81 解得: x1 10(舍去)x2 8 所以平均一台电脑会感染8台电脑
第三轮感染中被 感染电脑为 81+81 8=729 700 所以被感染的电脑会 超过700台
两年前生产 1吨甲种药品的成本是5000元, 生产1吨乙种药品的成本是6000元,随着生 产技术的进步,现在生产 1吨甲种药品的成 本是3000元,生产1吨乙种药品的成本是 3600元,哪种药品成本的年平均下降率较
a(1 x)n b
其中增长取+,降低取-
人教版九年级上册数学实际问题与一 元二次 方程课 件
人教版九年级上册数学实际问题与一 元二次 方程课 件
练习:
1.某厂今年一月的总产量为500吨,三月的总产量为
720吨,平均每月增长率是x,列方程( B )
A.500(1+2x)=720 B.500(1+x)2=720 C.500(1+x2)=720 D.720(1+x)2=500
答:甲种药品成本的年平均下降率约为22.5%.
算一算:乙种药品成本的年平均下降率是多少?
22.5% 比较:两种药品成本的年平均下降率
(相同)
人教版九年级上册数学实际问题与一 元二次 方程课 件
经过计算,你能得出什么结论?成本下降 额较大的药品,它的成本下降率一定也 较大吗 ?应怎样全面地比较对象的变化 状况?
有一人患了流感,经过两轮传染后 共有121人患了流感,每轮传染中平均一 个人传染了几个人?
分析 :
第一轮传染
1
后
第二轮传染后
1+x
1+x+x(1+x)
解:设每轮传染中平均一个人传染了x个人.
开始有一人患了流感,第一轮的传染源就是这个人, 他传染了x个人,用代数式表示,第一轮后共有 _(x_+__1_) 人患了流感;第二轮传染中,这些人中的每个 人又传染了x个人,
解一元一次方程应用题的一般步骤?
第一步:弄清题意和题目中的已知数、未知 数,用字母表示题目中的一个未知数;
第二步:找出能够表示应用题全部含义的相 等关系;
第三步:根据这些相等关系列出需要的代数 式(简称关系式)从而列出方程;
第四步:解这个方程,求出未知数的值;
第五步:在检查求得的答数是否符合应用题 的实际意义后,写出答案(及单位名称)。
有多少人患流感?
121+121×10=1331人
你能快 速写出
吗?
1.要组织一场篮球联赛,赛制为单循环形式, 即每两队之间都赛一场,计划安排15场比赛, 应邀请多少个球队参加比赛?
解:设应邀请x支球队参赛
由题有:
x(x 1) 15 2
化简为
x2 x 30 解得:
答:应邀请6支球队参赛
x1 6,x2 =-( 5 舍去)
分析:本题பைடு நூலகம்的相等关系为第一年培训人数+第二年 培训人数+第三年培训人数=95万。
解: 20 20(1 x) 20(1 x)2 95
整理得: 4x2 12x 7 0 即 (2x 7)(2x 1) 0
7 x1 2
舍去 x2 0.5
答:每年接受科技培训的人次的平均增长率为50%
人教版九年级上册数学实际问题与一 元二次 方程课 件
用代数式表示,第二轮后共有__1_+_x_+_x_(1_+_x_)__人患 了流感.
1+x+x(1+x)=121
x x 解方程,得 10, 12. (不合题意,舍去)
1
2
答:平均一个人传染了___10_____个人.
通过对这个问题的探究,你对类似的传播问题中 的数量关系有新的认识吗?
如果按照这样的传染速度,三轮传染后
2.要组织一场篮球联赛, 每两队之间都赛2场,
计划安排90场比赛,应邀请多少个球队参加
比赛?
解:设应邀请x支球队参赛
由题有: x(x 1) 90
答:应邀请10支球队参赛
化简为
x2 x 90 解得: x1 10,x2 =-( 9 舍去)
3.参加一次聚会的每两人都握了一次手,所有
人共握手10次,有多少人参加聚会?
大?
分析:甲种药品成本的年平均下降额为 (5000-3000)÷2=1000(元) 乙种药品成本的年平均下降额为 (6000-3600)÷2=1200(元)
乙种药品成本的年平均下降额较大. 但是,年平均下降额(元)不等同于 年平均下降率(百分数)
解:设甲种药品成本的年平均下降率为x,则
一年后甲种药品成本为5000(1-x)元,两年 后甲种药品成本为 5000(1-x)2 元,依题意 得 5000 (1 x)2 3000 x1 解0方.2程25,得, x2 1.775(不合题意,舍去)
解:设应邀请x支球队参赛
由题有:
x(x 1) 10 2
化简为
x2 x 20 解得:
答:有5人参加聚会
x1 5,x2 =-4(舍去)
4.某种电脑病毒传播非常快,如果有一台电脑被感
染,经过两轮感染后就会有81台电脑被感染。请解
释:每轮感染中平均一台电脑会感染几台电脑?若
病毒得不到有效控制,被感染的电脑会不会超过
人教版九年级上册数学实际问题与一 元二次 方程课 件 人教版九年级上册数学实际问题与一 元二次 方程课 件
人教版九年级上册数学实际问题与一 元二次 方程课 件
2.某校去年对实验器材的投资为2万元,预计今明两年 的投资总额为8万元,若设该校今明两年在实验器材投
资上的平均增长率是x,则可列方程
为 2(1 x) 2(1 x)2 8.
人教版九年级上册数学实际问题与一 元二次 方程课 件
人教版九年级上册数学实际问题与一 元二次 方程课 件
综合练习:惠州市开展“科技下乡”活动三年 来,接受科技培训的人员累计达95万人次,其 中第一年培训了20万人次,设每年接受科技培 训的人次的平均增长率都为x,根据题意列出的 方程是_ _ _ _ _ _ _ _
经过计算,成本下降额较大的药品,它的成本 下降率不一定较大,应比较降前及降后的价 格.
人教版九年级上册数学实际问题与一 元二次 方程课 件
人教版九年级上册数学实际问题与一 元二次 方程课 件
类似地 这种增长率的问题在实际生活 普遍存在,有一定的模式
若平均增长(或降低)百分率为x,增长(或降低) 前的是a,增长(或降低)n次后的量是b,则它们 的数量关系可表示为