湖南省怀化市2020年八年级下学期第一次月考数学试卷B卷

合集下载

2020版八年级下学期数学第一次月考试卷

2020版八年级下学期数学第一次月考试卷

2020版八年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(3分×10=30分) (共10题;共29分)1. (3分) (2019八上·清镇期中) 下列计算正确的是()A .B .C .D .2. (3分)下列计算正确的是A .B .C .D .3. (3分)某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A . 19%B . 20%C . 21%D . 22%4. (3分)要使代数式有意义,则x应满足()A . x≠1B . x>-2且x≠1C . x≥-2D . x≥-2且x≠15. (3分) (2016八上·鹿城期中) 若三边长满足,则是()A . 等腰三角形B . 等边三角形C . 直角三角形D . 等腰直角三角形6. (3分)如图,等边三角形OAB的顶点O在坐标原点,顶点A在x轴上,OA=2,将等边三角形OAB绕原点顺时针旋转105°至OA′B′的位置,则点B′的坐标为()A . (, -)B . (-,)C . (-,)D . (, -)7. (3分)如图,△ABC是边长为6的等边三角形,AD=2,AE∥BC,直线BD交AE于点E,则BE的长为()A . 3B . 4C . 3D . 58. (3分) (2015八下·武冈期中) 下列几组数中,能作为直角三角形三边长度的是()A . 3,5,6B . 1,1,C . 5,8,11D . 5,12,159. (3分) (2020八下·海安月考) 下列各组数据为边的三角形中,是直角三角形的是()A . 、、7B . 5、4、8C . 、2、1D . 、3、10. (2分)下面的等式总能成立的是()A . =aB . =a2C . =D . =二、填空题(4分×6=24分) (共6题;共26分)11. (4分)求代数式a()2-+c+1的值是________.12. (8分)在日常生活中,取款、上网都要密码.为了保密,有人发明了“二次根式法”来产生密码,如对于二次根式,计算结果为13,中间加一个数字0,于是就得到一个六位数的密码“169013”,对于二次根式,用上述方法产生的六位数密码是________.13. (4分)如图,防洪大堤的横断面是梯形,坝高AC=6米,背水坡AB的坡度i=1:2,则斜坡AB的长为________米(精确到0.1米).14. (2分) (2016八下·鄄城期中) 命题“在角的内部,到角的两边距离相等的点在角的平分线上”的逆命题是:________.15. (4分)(2019·上海模拟) 在直角坐标系中,O是坐标原点,点P(m , n)在反比例函数的图象上.(1)若m=k,n=k﹣2,则k=________;(2)若m+n=k,OP=2,且此反比例函数,满足:当x>0时,y随x的增大而减小,则k=________.16. (4分) (2020八上·滨州期末) 已知实数a、b在数轴上的位置如图所示,则化简的结果为________.三、解答题(66分) (共9题;共60分)17. (6分) (2018八上·江海期末) 计算:18. (6分) (2017七下·江都期中) 计算(1) 30﹣2﹣3+(﹣3)2﹣()﹣1(2)(2x﹣3y)2﹣(y+3x)(3x﹣y)19. (6分)试说明代数式的值与的值无关。

2020年怀化市初二数学下期中一模试题(及答案)

2020年怀化市初二数学下期中一模试题(及答案)

2020年怀化市初二数学下期中一模试题(及答案)一、选择题1.下列运算中,正确的是( )A .235+=;B .2(32)32-=-;C .2a a =;D .2()a b a b +=+. 2.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF⊥AE 交AE 于点F ,则BF 的长为( )A .3102B .3105C .105D .3553.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,它是菱形B .当AC BD ⊥时,它是菱形 C .当90ABC ︒∠=时,它是矩形D .当AC BD =时,它是正方形 4.如图,在5×5的正方形网格中,从在格点上的点A ,B ,C ,D 中任取三点,所构成的三角形恰好是直角三角形的个数为( )A .1B .2C .3D .4 5.把式子1a a -号外面的因式移到根号内,结果是( ) A .a B .a - C .a - D .a --6.如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A 231-B .2212aC 231-D .2214a7.如图,在Rt ABC ∆中,90ACB ∠=︒,CD ,CE 分别是斜边上的高和中线,30B ∠=︒,4CE =,则CD 的长为( )A .25B .4C .23D .58.有一个直角三角形的两边长分别为3和4,则第三边的长为( ) A .5B .7C .5D .5或7 9.如图,在菱形ABCD 中,AB=5,对角线AC=6.若过点A 作AE⊥BC,垂足为E,则AE 的长为( )A .4B .2.4C .4.8D .510.已知直角三角形中30°角所对的直角边长是23cm ,则另一条直角边的长是( ) A .4cm B .43 cm C .6cm D .63 cm11.下列运算正确的是( )A .235+=B .3262=C .235=gD .1333÷= 12.如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .6二、填空题13.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b +a b ,如3※2=325+=12※4=_____. 14.当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.15.如图,点E 在正方形ABCD 的边AB 上,若1EB =,2EC =,那么正方形ABCD 的面积为_.16.如图在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB ,当AD =_____,平行四边形CDEB 为菱形.17.一组数据4、5、a 、6、8的平均数5x =,则方差2s =________.18.若实数,,x y z 满足()22130x y z -+++-=,则x y z ++的平方根是______.19.将函数31y x =+的图象平移,使它经过点()1,1,则平移后的函数表达式是____.20.如图,四边形ABCD 为菱形,8AC =,6DB =,DH AB ⊥于点H ,则BH =__________.三、解答题21.已知a ,b ,c 在数轴上如图:化简:()22a a b c a b c -++-++.22.如图,已知一次函数y kx b =+的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)△ABC 的面积.23.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S△COD=13S△BOC,求点D的坐标.24.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长的对应数值:鞋长16192427鞋码22283844(1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数;(2)设鞋长为x,“鞋码”为y,求y与x之间的函数关系式;(3)如果你需要的鞋长为26cm,那么应该买多大码的鞋?25.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型, B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】 A. 23与不是同类二次根式,不能合并,故错误; B.()23223-=-,故错误;C. 2a a =,故错误; D. ()2a b a b +=+,正确;故选D. 2.B解析:B【解析】【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22AD DE +2231+10, ∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=3105. 故选:B .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.3.D【解析】【分析】根据特殊平行四边形的判定方法判断即可.【详解】解:有一组邻边相等的平行四边形是菱形,A选项正确;对角线互相垂直的平行四边形是菱形,B选项正确;有一个角是直角的平行四边形是矩形,C选项正确;对角线互相垂直且相等的平行四边形是正方形,D选项错误.故答案为:D【点睛】本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.4.C解析:C【解析】【分析】先求出每边的平方,得出AB2+AC2=BC2,AD2+CD2=AC2,BD2+AB2=AD2,根据勾股定理的逆定理得出直角三角形即可.【详解】理由是:连接AC、AB、AD、BC、CD、BD,设小正方形的边长为1,由勾股定理得:AB2=12+22=5,AC2=22+42=20,AD2=12+32=10,BC2=52=25,CD2=12+32=10,BD2=12+22=5,∴AB2+AC2=BC2,AD2+CD2=AC2,BD2+AB2=AD2,∴△ABC、△ADC、△ABD是直角三角形,共3个直角三角形,故选C.【点睛】本题考查了勾股定理的逆定理,解题的关键是掌握勾股定理.5.D解析:D【解析】【分析】先根据二次根式有意义的条件求出a的范围,再把根号外的非负数平方后移入根号内即可.Q 要使1a -有意义 10a∴-≥ 0a ∴<211a a a a a∴-=--⨯=-- 故选D .【点睛】本题考查了二次根式的意义,解题的关键是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.如果根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.6.C解析:C【解析】【详解】 如图,作MG ⊥BC 于G ,MH ⊥CD 于H , 则BG=GC ,AB ∥MG ∥CD ,∴AM=MN ,∵MH ⊥CD ,∠D=90°,∴MH ∥AD ,∴NH=HD ,由旋转变换的性质可知,△MBC 是等边三角形,∴MC=BC=a ,∠MCD=30°,∴MH=12MC=12a ,3, ∴DH=a ﹣32a , ∴CN=CH ﹣3﹣(a 3)=3﹣1)a , ∴△MNC 的面积=12×2a ×3﹣1)31-a 2.7.C解析:C【解析】【分析】由直角三角形斜边上的中线求得AB 的长度,再根据含30°角直角三角形的性质求得AC 的长度,最后通过解直角△ACD 求得CD 的长度.【详解】Q 如图,在Rt ABC ∆中,90ACB ∠=︒,CE 是斜边上的中线,4CE =,28AB CE ∴==.30B Q ∠=︒,60A ∴∠=︒,142AC AB ==. CD Q 是斜边上的高,30ACD ∠=︒Q122AD AC ∴== 22224223CD AC AD ∴=-=-=故选:C .【点睛】考查了直角三角形斜边上的中线、含30度角直角三角形的性质.直角三角形斜边上的中线等于斜边的一半.8.D解析:D【解析】【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边2234+,当4是斜边时,另一条直角边22473-=故选:D .本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.9.C解析:C【解析】【分析】连接BD ,根据菱形的性质可得AC ⊥BD ,AO=12AC ,然后根据勾股定理计算出BO 长,再算出菱形的面积,然后再根据面积公式BC•AE=12AC•BD 可得答案. 【详解】连接BD ,交AC 于O 点,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =5,∴1,22AC BD AO AC BD BO ⊥==,, ∴90AOB ∠=o ,∵AC =6,∴AO =3, ∴2594BO =-=, ∴DB =8,∴菱形ABCD 的面积是11682422AC DB ⨯⋅=⨯⨯=, ∴BC ⋅AE =24, 245AE =, 故选C.10.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm ,由勾股定理得:22AB AC -,故选C . 11.D解析:D【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A 、原式23+B 3622=,故错误; C 、原式6,故C 错误;D 1333=,正确; 故选:D .【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.12.B解析:B【解析】【分析】由折叠的性质可得DN CN =,根据勾股定理可求DN 的长,即可求BN 的长.【详解】D Q 是AB 中点,6AB =,3AD BD ∴==,根据折叠的性质得,DN CN =,9BN BC CN DN ∴=-=-,在Rt DBN V 中,222DN BN DB =+,22(9)9DN DN ∴=-+,5DN ∴=4BN∴=,故选B.【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.二、填空题13.【解析】试题解析:根据题意可得:故答案为解析:1 2【解析】试题解析:根据题意可得:41 124.124882 ====-※故答案为1 . 214.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b 过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直解析:y=2x﹣4【解析】【分析】根据两直线平行可得出k=2,再根据直线y=kx+b过点(3,2)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程,解方程即可求出b值,即可求y=kx+b.【详解】解:∵直线y=kx+b与直线y=2x-2平行,∴k=2.又∵直线y=kx+b过点(3,2),∴2=2×3+b,解得:b=-4.∴y=kx+b=2x-4.故答案为y=2x-4.【点睛】本题考查的知识点是两直线相交或平行问题已经一次函数图像上点的坐标特征,解题关键是求出k和b的值.15.【解析】【分析】根据勾股定理求出BC根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab斜边长为c那么a2+b2解析:3.【解析】【分析】根据勾股定理求出BC ,根据正方形的面积公式计算即可.【详解】 解:由勾股定理得,223BC EC EB =-=, ∴正方形ABCD 的面积23BC ==,故答案为:3.【点睛】 本题考查了勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 16.【解析】【分析】首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分邻边相等推知OD=OBCD=CB ;最后Rt△BOC 中根据勾股定理得OB 的值则【详解】解:如图连接CE 交AB 于点O∵Rt△解析:75【解析】【分析】首先根据勾股定理求得AB =5;然后利用菱形的对角线互相垂直平分、邻边相等推知OD =OB ,CD =CB ;最后Rt △BOC 中,根据勾股定理得,OB 的值,则2AD AB OB =-.【详解】解:如图,连接CE 交AB 于点O .∵Rt △ABC 中,90ACB ∠=︒,AC =4,BC =3∴225AB AC BC =+= (勾股定理)若平行四边形CDEB 为菱形时,CE ⊥BD ,且OD =OB ,CD =CB .∵1122AB OC AC BC ⋅=⋅, ∴12.5OC = ∴在Rt △BOC 中,根据勾股定理得,2222129355OB BC OC ⎛⎫=-=-= ⎪⎝⎭, ∴725AD AB OB =-=故答案是:75. 【点睛】本题考查菱形的判定与性质,解题的关键是熟记菱形的判定方法.17.4【解析】【分析】首先根据其平均数为5求得a 的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s解析:4【解析】【分析】首先根据其平均数为5求得a 的值,然后再根据方差的计算方法计算即可.【详解】解:根据题意得(4+5+a+6+8)=5×5, 解得a=2,则这组数据为4,5,2,6,8的平均数为5,所以这组数据的方差为s 2=15[(4-5)2+(5-5)2+(2-5)2+(6-5)2+(8-5)2]=4. 故答案为:4【点睛】本题考查方差的定义、意义、计算公式,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 18.【解析】【分析】根据二次根式平方绝对值的非负性即可得出xyz 的值求和后再求平方根即可【详解】解:由题意可得:解得:∴∴4的平方根是故答案为:【点睛】本题考查的知识点求代数式的平方根解此题的关键是根据 解析:2±【解析】【分析】根据二次根式、平方、绝对值的非负性即可得出x 、y 、z 的值,求和后再求平方根即可.【详解】解:由题意可得:20,10,30x y z -=+=-=解得:2,1,3x y z ==-=∴4x y z ++=∴4的平方根是2±.故答案为:2±.【点睛】本题考查的知识点求代数式的平方根,解此题的关键是根据二次根式的非负性、绝对值的非负性、平方数的非负性,求出x 、y 、z 的值.19.y =3x ﹣2【解析】【分析】根据函数图象平移的性质得出k 的值设出相应的函数解析式再把经过的点代入即可得出答案【详解】解:新直线是由一次函数y=3x+1的图象平移得到的∴新直线的k=3可设新直线的解析解析:y=3x﹣2【解析】【分析】根据函数图象平移的性质得出k的值,设出相应的函数解析式,再把经过的点代入即可得出答案.【详解】解:新直线是由一次函数y=3x+1的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=﹣2,∴平移后图象函数的解析式为y=3x﹣2;故答案为y=3x﹣2.【点睛】此题考查了一次函数图形与几何变换,求直线平移后的解析式时要注意平移时k和b的值的变化.20.【解析】【分析】由四边形ABCD是菱形AC=8BD=6可推出AD=AB=5由面积的可列出关于DH的方程求出DH的长度利用勾股定理即可求出BH的长度【详解】∵四边形ABCD是菱形AC=8BD=6∴AO解析:18 5.【解析】【分析】由四边形ABCD是菱形,AC=8,BD=6可推出AD=AB=5,由ABD∆面积的可列出关于DH的方程,求出DH的长度,利用勾股定理即可求出BH的长度.【详解】∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,OD=3,AC⊥BD,∴2234+,∵DH⊥AB,∴12⨯AO×BD=12⨯DH×AB , ∴4×6=5×DH , ∴DH=245, ∴BH=222465⎛⎫- ⎪⎝⎭=185 . 【点睛】本题考查的考点是菱形的性质及勾股定理,灵活运用菱形的性质及勾股定理是解题的关键.三、解答题21.a -【解析】【分析】直接利用数轴得出a <0,a+b <0,c-a >0,b+c <0,进而化简得出答案. 【详解】解:如图所示:∴a <0,a+b <0,c-a >0,b+c <0,()22a a b c a b c +-+ =-+++---a a b c a b c =a -;【点睛】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键.22.(1)4533y x =+;(2)52. 【解析】【分析】(1)利用待定系数法即可求出一次函数解析式;(2)求出点D 坐标,根据ABC AOD BOD S S S =+V V V 即可求解.【详解】(1)把A (-2,-1),B (1,3)代入y =kx +b 得 213k b k b -+=-⎧⎨+=⎩,解得4353kb⎧=⎪⎪⎨⎪=⎪⎩,所以一次函数解析式为4533y x=+;(2)把x=0代入4533y x=+得y=53,∴D点坐标为(0,53 ),∴15155=21=23232 ABC AOD BODS S S=+⨯⨯+⨯⨯V V V.【点睛】(1)待定系数法是求函数解析式的一种常用方法,要深刻领会,其实质是根据题意设出函数关系式,把点的坐标代入解析式构造方程,求解,回代,最后确定解析式;(2)平面直角坐标系中如果图形的面积不易直接求,则一般采用割补法求解.23.(1)k=-1,b=4;(2)点D的坐标为(0,-4).【解析】【分析】【详解】分析:(1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A、C的坐标,利用待定系数法即可求出k、b的值;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设点D的坐标为(0,m)(m<0),根据三角形的面积公式结合S△COD=13S△BOC,即可得出关于m的一元一次方程,解之即可得出m的值,进而可得出点D的坐标.详解:(1)当x=1时,y=3x=3,∴点C的坐标为(1,3).将A(﹣2,6)、C(1,3)代入y=kx+b,得:263k bk b-+=⎧⎨+=⎩,解得:14kb=-⎧⎨=⎩.(2)当y=0时,有﹣x+4=0,解得:x=4,∴点B的坐标为(4,0).设点D的坐标为(0,m)(m<0),∵S△COD=13S△BOC,即﹣12m=13×12×4×3,解得:m=-4,∴点D 的坐标为(0,-4).点睛:本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k 、b 的值;(2)利用三角形的面积公式结合结合S △COD =13S △BOC ,找出关于m 的一元一次方程.24.(1)一次函数;(2)y =2x ﹣10;(3)应该买42码的鞋.【解析】【分析】(1)由表格可知,给出了四对对应值,鞋长每增加3cm ,鞋码增加6,即鞋码与鞋长之间的关系是一次函数关系;(2)设y kx b =+,把表中任意两对值代入即可求出y 与x 的关系;(3)当26x cm =时,代入函数关系式即可计算出鞋码的值.【详解】解:(1)根据表中信息得“鞋码”与鞋长之间的关系是一次函数;(2)设y kx b =+则由题意得 22162819k b k b =+⎧⎨=+⎩解得:210k b =⎧⎨=-⎩∴210y x =-;(3)当26x cm =时,2261042y =⨯==答:应该买42码的鞋.【点睛】本题考查了识表能力、利用待定系数法求一次函数解析式、利用函数解决实际问题的能力,难度不大属于简单题型.25.(1)每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米; (2)共有三种调配方案.方案一: A 型挖据机7台,B 型挖掘机5台;方案二: A 型挖掘机8台,B 型挖掘机4台;方案三: A 型挖掘机9台,B 型挖掘机3台.当A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用. 详解:(1)设每台A 型,B 型挖掘机一小时分别挖土x 立方米和y 立方米,根据题意,得 35165,47225,x y x y +=⎧⎨+=⎩解得30,15.x y =⎧⎨=⎩所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米.(2)设A 型挖掘机有m 台,总费用为W 元,则B 型挖据机有()12m -台.根据题意,得 43004180W m =⨯+⨯ ()124808640m m -=+,因为()()430415121080430041801212960m m m m ⎧⨯+⨯-≥⎪⎨⨯+⨯-≤⎪⎩,解得69m m ≥⎧⎨≤⎩, 又因为12m m ≠-,解得6m ≠,所以79m ≤≤.所以,共有三种调配方案.方案一:当7m =时,125m -= ,即A 型挖据机7台,B 型挖掘机5台;方案二:当8m =时,124m -= ,即A 型挖掘机8台,B 型挖掘机4台;方案三:当9m =时,123m -= ,即A 型挖掘机9台,B 型挖掘机3台.4800Q >,由一次函数的性质可知,W 随m 的减小而减小,当7m =时,=4807+8640=12000W ⨯最小,此时A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.。

(汇总3份试卷)2020年怀化市中考数学一模数学试题及答案

(汇总3份试卷)2020年怀化市中考数学一模数学试题及答案

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.某青年排球队12名队员年龄情况如下:年龄18 19 20 21 22 人数 1 4 3 2 2则这12名队员年龄的众数、中位数分别是( )A .20,19B .19,19C .19,20.5D .19,20 【答案】D【解析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202+=1. 故选D .【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义. 2.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用x 张铝片制作瓶身,则可列方程( )A .1645(100)x x =-B .1645(50)x x =-C .21645(100)x x ⨯=-D .16245(100)x x =⨯- 【答案】C【解析】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,可作瓶身16x 个,瓶底()45100x -个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,依题意可列方程()21645100x x ⨯=-故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.3.如图,点C 、D 是线段AB 上的两点,点D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则线段DB 的长等于( )A .2cmB .3cmC .6cmD .7cm 【答案】D【解析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.4.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.125B.95C.65D.165【答案】A【解析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【详解】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM= 22AB BM-= 2253-=4,又S△AMC=12MN•AC=12AM•MC,∴MN=·AM CM AC = 125. 故选A .【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.5.如图,点A 、B 、C 都在⊙O 上,若∠AOC=140°,则∠B 的度数是( )A .70°B .80°C .110°D .140°【答案】C 【解析】分析:作AC 对的圆周角∠APC ,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC 的度数.详解:作AC 对的圆周角∠APC ,如图,∵∠P=12∠AOC=12×140°=70° ∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C .点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.已知二次函数y =﹣(x ﹣h)2+1(为常数),在自变量x 的值满足1≤x≤3的情况下,与其对应的函数值y 的最大值为﹣5,则h 的值为( )A .36或6B .36或6C .6或16D .16或6【答案】C【解析】∵当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小,∴①若h <1≤x≤3,x=1时,y 取得最大值-5,可得:-(1-h )2+1=-5,解得:h=1-6或h=1+6(舍);②若1≤x≤3<h ,当x=3时,y 取得最大值-5,可得:-(3-h )2+1=-5,解得:h=3+6或h=3-6(舍).综上,h 的值为1-6或3+6,故选C .点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.7.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( )A .20cm2B .20πcm2C .10πcm2D .5πcm2【答案】C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C8.如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18, 1.5OE =,则四边形EFCD 的周长为( )A .14B .13C .12D .10【答案】C 【解析】∵平行四边形ABCD ,∴AD ∥BC ,AD=BC ,AO=CO ,∴∠EAO=∠FCO ,∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO ,∴AE=CF ,EO=FO=1.5,∵C 四边形ABCD =18,∴CD+AD=9,∴C 四边形CDEF =CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF 的周长进行转化.9.如图,直线AB 与直线CD 相交于点O ,E 是∠COB 内一点,且OE ⊥AB ,∠AOC=35°,则∠EOD 的度数是( )A .155°B .145°C .135°D .125°【答案】D 【解析】解:∵35AOC ∠=,∴35BOD ∠=,∵EO ⊥AB ,∴90EOB ∠=,∴9035125EOD EOB BOD ∠=∠+∠=+=,故选D.10.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A .80°B .50°C .30°D .20°【答案】D 【解析】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D .考点:平行线的性质;三角形的外角的性质.二、填空题(本题包括8个小题)11.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk =<的图象经过点C ,则k 的值为 .【答案】-6【解析】分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0x k =<的图象上, ∴23k =-,解得k=-6. 【详解】请在此输入详解!12.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为______. 【答案】1【解析】首先设黄球的个数为x 个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x 个,根据题意得:88x+=2/3解得:x=1. ∴黄球的个数为1.13.计算:2(a -b )+3b =___________.【答案】2a+b .【解析】先去括号,再合并同类项即可得出答案.【详解】原式=2a-2b+3b=2a+b .故答案为:2a+b .14.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC =,那么矩形ABCD的周长_____________cm.【答案】36.【解析】试题分析:∵△AFE和△ADE关于AE对称,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC ==,∴可设EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC =8x.∵∠EFC+∠AFB=90°, ∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周长=8×2+10×2=36.考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.15.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG=_____.【答案】55°【解析】由翻折性质得,∠BOG=∠B′OG,根据邻补角定义可得.【详解】解:由翻折性质得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=12(180°﹣∠AOB′)=12(180°﹣70°)=55°.故答案为55°.【点睛】考核知识点:补角,折叠.16.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.【答案】22.5°【解析】四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∴∠EAO=∠AOE,AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.17.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.【答案】4 5 .【解析】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为4 5 .【点睛】本题考查概率公式,掌握图形特点是解题关键,难度不大.18.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)【答案】甲【解析】由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S2甲<S2乙,即两人的成绩更加稳定的是甲.故答案为甲.三、解答题(本题包括8个小题)19.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.【答案】(1)26°;(2)1.【解析】试题分析:(1)根据垂径定理,得到AD DB=,再根据圆周角与圆心角的关系,得知∠E=12∠O,据此即可求出∠DEB的度数;(2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长.试题解析:(1)∵AB是⊙O的一条弦,OD⊥AB,∴AD DB=,∴∠DEB=12∠AOD=12×52°=26°;(2)∵AB是⊙O的一条弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,22OA OC-2253-,则AB=2AC=1.考点:垂径定理;勾股定理;圆周角定理.20.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B 处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).【答案】CE的长为(4+)米【解析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan∠CAH ,∴CH=AH•tan∠CAH=6tan30°=6×33=23(米),∵DH=1.5,∴CD=23+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=CD CE,∴CE=23 1.53=(4+3)(米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题21.由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?【答案】(1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.【解析】(1)根据题中条件可得390,1-5x,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w.【详解】(1)依题意得:y=200+50×40010x-.化简得:y=-5x+1.(2)依题意有:∵300 52200450 xx≥⎧⎨-+≥⎩,解得300≤x≤2.(3)由(1)得:w=(-5x+1)(x-200)=-5x2+3200x-440000=-5(x-320)2+3.∵x=320在300≤x≤2内,∴当x=320时,w最大=3.即售价定为320元/台时,可获得最大利润为3元.【点睛】本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.22.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m=;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为;已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.【答案】(1)150,(2)36°,(3)1.【解析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【详解】(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×15150=36°;(4)1200×20%=1人,答:估计该校约有1名学生最喜爱足球活动.故答案为150,36°,1.【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.23.如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.【答案】(1),;(2)点的坐标为;(3)点的坐标为和【解析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.【详解】解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去),(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.24.如图,点D在O的直径AB的延长线上,点C在O上,且AC=CD,∠ACD=120°.求证:CD是O 的切线;若O的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)图中阴影部分的面积为2 3π.【解析】(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【详解】(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切线;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC=2602360π⨯=23π.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD22OD OC-23∴S Rt △OCD =12OC×CD =12×2×23=23. ∴图中阴影部分的面积为:23-23π. 25.如图,有四张背面相同的卡片A 、B 、C 、D ,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.【答案】(1)14;(2)16. 【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可; (2)画出树状图,然后根据概率公式列式计算即可得解.【详解】(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形, ∴抽到的卡片既是中心对称图形又是轴对称图形的概率是14; (2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B 、C 共有2种情况,所以,P (抽出的两张卡片的图形是中心对称图形)21126=. 【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.如图,△ABC 是等腰三角形,AB =AC ,点D 是AB 上一点,过点D 作DE ⊥BC 交BC 于点E ,交CA 延长线于点F .证明:△ADF 是等腰三角形;若∠B =60°,BD =4,AD =2,求EC 的长,【答案】(1)见解析;(2)EC=1.【解析】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【详解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=12BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示,ABC △的顶点是正方形网格的格点,则sin A 的值为( )A .12B .5C .25D .10 【答案】B【解析】连接CD ,求出CD ⊥AB ,根据勾股定理求出AC ,在Rt △ADC 中,根据锐角三角函数定义求出即可.【详解】解:连接CD (如图所示),设小正方形的边长为1,∵BD=CD=2211+=2,∠DBC=∠DCB=45°,∴CD AB ⊥,在Rt △ADC 中,10AC =,2CD =,则25sin 510CD A AC ===.故选B .【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.2.如图,二次函数y=ax 2+bx+c (a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab <0,②b 2>4a ,③0<a+b+c <2,④0<b <1,⑤当x >﹣1时,y >0,其中正确结论的个数是A .5个B .4个C .3个D .2个【答案】B【解析】解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵抛物线的对称轴在y轴右侧,∴bx2a=-,x>3.∴a与b异号.∴ab<3,正确.②∵抛物线与x轴有两个不同的交点,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正确.④∵抛物线开口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正确.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正确.⑤抛物线y=ax3+bx+c与x轴的一个交点为(﹣3,3),设另一个交点为(x3,3),则x3>3,由图可知,当﹣3<x<x3时,y>3;当x>x3时,y<3.∴当x>﹣3时,y>3的结论错误.综上所述,正确的结论有①②③④.故选B.3.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A 3B3C3D3【答案】B【解析】试题解析:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=3BC=3x,根据题意得:AD=BC=x,AE=DE=AB=3x,作EM⊥AD于M,则AM=12AD=12x,在Rt△AEM中,cos∠EAD=13263xAMAE x==;故选B.【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°【答案】A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.5.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A .k >12B .k≥12C .k >12且k≠1 D .k≥12且k≠1 【答案】C【解析】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k >12且k≠1. 故选C 【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac ,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 6.一元二次方程210x x --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判断【答案】A【解析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况.【详解】21,1,14145a b c b ac ==-=-∴∆-=+=∴方程有两个不相等的实数根.故选A. 【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口.7.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP,CP 分别平分∠EDC 、∠BCD ,则∠P 的度数是( )A .60°B .65°C .55°D .50°【答案】A【解析】试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数. 解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°, ∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=(∠BCD+∠CDE )=120°, ∴∠P=180°﹣120°=60°. 故选A .考点:多边形内角与外角;三角形内角和定理.8.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺【答案】B【解析】根据同一时刻物高与影长成正比可得出结论. 【详解】设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺, ∴1.5150.5x =, 解得x=45(尺), 故选B .【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.9.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元 B .200元C .225元D .259.2元【答案】A【解析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A. 【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 10.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2ky x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <;③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确; ∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题. 二、填空题(本题包括8个小题)11.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____. 摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484 601 摸到白球的频率m/n 0.580.640.580.590.6050.601【答案】0.1【解析】根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率. 【详解】解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右, 则P 白球=0.1. 故答案为0.1.【点睛】本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.12.观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_____(用含n的代数式表示)【答案】3n+1【解析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律.【详解】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+1.【点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.13.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为1003米,点A、D、B在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)【答案】100(3【解析】分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得3,然后计算AD+BD即可.详解:如图,∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt △ACD 中,∵tanA=CDAD, ∴AD=1003tan 60=100, 在Rt △BCD 中,BD=CD=1003, ∴AB=AD+BD=100+1003=100(1+3). 答:A 、B 两点间的距离为100(1+3)米. 故答案为100(1+3).点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形. 14.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____. 【答案】2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1. 故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.15.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m .水面下降2.5m ,水面宽度增加_____m .【答案】1.【解析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【详解】解:建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半1米,抛物线顶点C 坐标为(0,1),设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,∴抛物线解析式为y=-0.5x1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=±3,1×3-4=1,所以水面下降1.5m,水面宽度增加1米.故答案为1.【点睛】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.16.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.【答案】4 3【解析】试题分析:1204=2180rππ⨯,解得r=43.考点:弧长的计算.17.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=__.【答案】1.【解析】由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可.【详解】∵BD⊥CD,BD=2,∴S△BCD=12BD•CD=2,即CD=2. ∵C (2,0), 即OC=2,∴OD=OC+CD=2+2=1,∴B (1,2),代入反比例解析式得:k=10, 即y=10x, 则S △AOC =1. 故答案为1. 【点睛】本题考查了反比例函数系数k 的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解答本题的关键.18.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则BE :BC 的值为_________.【答案】1:4【解析】由S △BDE :S △CDE =1:3,得到 BE 1CE 3=,于是得到 41BE BC =. 【详解】解::1:3BDECDESS,= 两个三角形同高,底边之比等于面积比.13BE CE ∴=, :1:4.BE BC ∴=故答案为1:4. 【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.三、解答题(本题包括8个小题)19.海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.。

湖南省怀化市2020版八年级下学期数学期末考试试卷B卷

湖南省怀化市2020版八年级下学期数学期末考试试卷B卷

湖南省怀化市2020版八年级下学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若分式的值为0,则的值等于()A . 1B . 2C . 1或2D . 32. (2分) 2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A . 1.2×10﹣9米B . 1.2×10﹣8米C . 12×10﹣8米D . 1.2×10﹣7米3. (2分)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A .B .C .D .4. (2分) (2019八下·莘县期中) 已知四边形ABCD,有以下四个条件:⑴AB=AD,AB=BC;(2)∠A=∠B,∠C=∠D;(3)AB∥CD,AB=CD;(4)AB∥CD,AD∥BC.其中能判定四边形ABCD是平行四边形的个数为().A . 1B . 2C . 3D . 45. (2分) (2020八下·鄞州期末) 如图,平行四边形ABCD的对角线相交于点O,若AD⊥BD,AB=10,BC=6,则对角线AC的长是()A . 4B . 12C . 2D . 46. (2分)如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A . 4B . 7C . 3D . 127. (2分)数名射击运动员第一轮比赛成绩如下表所示,则他们本轮比赛的平均成绩是()A . 7.8环B . 7.9环C . 8.l环D . 8.2环8. (2分) (2020八下·潮安期末) 如图所示,以的三边为边向外作正方形,其面积分别为,且,,则()A . 4B . 8C . 12D . 329. (2分) (2017九上·萍乡期末) 双曲线y= 与直线y=x没有交点,则k的取值范围是()A . k<1B . k>1C . k<﹣1D . k>﹣110. (2分)已知点P(a,b)且ab=0,则点P在()A . x轴上B . y轴上C . 坐标原点D . 坐标轴上二、填空题 (共5题;共5分)11. (1分) (2020七下·陈仓期末) 计算的结果是________.12. (1分) (2019七下·衢州期末) 某学生化简分式出现了错误,解答过程如下:原式= 第一步,= .(第二步)= (第三步)该学生解答过程是从第________步开始出错的,其错误原因是________.13. (1分) (2020八下·瑞安期末) 甲、乙两人各进行10次射击比赛,平均成绩均为9环,方差分别是:S2甲,S2乙,则射击成绩较稳定的是________(选填“甲”或“乙”).14. (1分) (2020九上·大丰期末) 如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为________.15. (1分) (2017九上·乐昌期末) 如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为________.三、解答题 (共8题;共71分)16. (5分)当x=1984,y=1916,计算.17. (5分)(1)计算:(12a3﹣6a2)÷3a﹣2a(2a﹣1);(2)解分式方程:﹣=1.18. (7分)(2017·建昌模拟) 某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有________人,在扇形统计图中,“乒乓球”的百分比为________ %,如果学校有800名学生,估计全校学生中有________人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.19. (6分)(体验探究题)如图所示,已知在▱ABCD中,各个内角的平分线相交于点E、F、G、H.(1)猜想EG与FH之间的关系;(2)试说明你猜想的正确性.20. (8分)(2017·新泰模拟) 已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1) k的值是________;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y= 图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若 = ,则b的值是________.21. (10分) (2019七下·眉山期末) 某医药研究所开发一种新药,在做药效试验时发现,如果成人按规定剂量服用,那么服药后,每毫升血液中含药量y(μg)随时间t(h)的变化图象如图所示,根据图象回答:(1)服药后几时血液中含药量最高?每毫升血液中含多少微克?(2)在服药几时内,每毫升血液中含药量逐渐升高?在服药几时后,每毫升血液中含药量逐渐下降?(3)服药后14h时,每毫升血液中含药量是多少微克?(4)如果每毫升血液中含药量为4微克及以上时,治疗疾病有效,那么有效时间为几时?22. (15分) (2020八上·银川期中) 如图所示,已知等腰的底边是腰上一点,且 .(1)判断的形状,并说明理由;(2)求的周长.23. (15分) (2020九上·临泽期中) 如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程的两个根,且OA>OB.(1)求OA、OB的长;(2)若点E为x轴上的点,且S△AOE=,求经过D、E两点的直线解析式,并判断△AOE与△AOD是否相似;(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共5分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共71分)答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、答案:18-3、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、答案:21-4、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:第21 页共21 页。

人教版2019-2020学年度第二学期八年级第一次月考数学试卷

人教版2019-2020学年度第二学期八年级第一次月考数学试卷

试卷第1页,总4页绝密★启用前人教版2019-2020学年度第二学期八年级第一次月考数学试卷一、单选题1.(3分)下列二次根式是最简二次根式的是( ) A B C D2.(3分)由下列条件不能判定△ABC 为直角三角形的是( ) A .∠A+∠C =∠B B .a =13,b =14,c =15C .(b+a )(b ﹣a )=c 2D .∠A :∠B :∠C =5:3:23.(3分)下列计算正确的是( ) A B .C .D 2=4.(3分)在△ABC 中,AB =7,AC =8,BC =9,则这个三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.(3x 的取值范围是( ) A .x≠2B .x≥2C .x>2D .x≤26.(3分)若一个直角三角形的三边长分别为a ,b ,c ,且a 2=9,b 2=16,则c 2为( ) A .25B .7C .7或25D .9或167.(3分)计算201820193)3)的值为( ) A .1 B 3 C 3 D .38.(3分)如图,△ABC 中,∠BAC =90°,以AB 、AC 为斜边向三角形外作两个等腰直角三角形,这两个直角三角形的面积分别为2和3,则△ABC 的三条边之比为( )试卷第2页,总4页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .2:3:5B .2:3:5C .4:9:25D .2:3:69.(3分)化简二次根式3x -的结果是( ) A .x x -B .﹣x xC .x xD .﹣x x -10.(3分)如图是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm.A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为( )A .481 dmB .20dmC .25dmD .35dm评卷人 得分二、填空题11.(4分)已知a <2,则2(2)a -=________.12.(4分)一木杆在离地面3米处折断,木杆顶端落在离木杆底端4米处,木杆折断之前高______米. 13.(4分)化简:的结果是______.14.(4分)如图,三个正方形围成一个直角三角形,字母C 所表示的正方形面积是100,字母B 所表示的正方形面积是36,则字母A 所表示的正方形面积为_____.15.(4分)已知实数a 在数轴上的位置如图所示,则化简2|1|a a --=___________.试卷第3页,总4页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………16.(4分)如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于 .17.(4分)《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC 中,∠ACB =90°,AC +AB =10,BC =3,求AC 的长,如果设AC =x ,则可列方程求出AC 的长为____________.18.(4分)如图,在ABC V 中,6AB AC BC cm ===,AD 、CE 是ABC V 的两条中线,P 是AD 上一个动点,当点P 运动到某一位置时,可使△PBE 的周长最小,则这个最小值为_____cm .评卷人 得分三、解答题19.(10分)计算 (1))15332325(21232683试卷第4页,总4页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………20.(10分)已知x=2+1,y=2-1,求x yy x-的值.21.(12分)如图,AB ⊥BC ,AB =3,BC =4,CD 75=,AD =10,求四边形ABCD 的面积.22.(12分)已知如图,长方体的长20BE cm =,宽10AB cm =,高15AD cm =,点M 在CH 上,且5CM cm =,一只蚂蚁如果沿沿着长方体的表面从点A 爬到点M ,需要爬行的最短距离是多少?23.(14分)如图,隧道的截面由半圆和长方形构成,长方形的长BC 为8m ,宽AB 为1m ,该隧道内设双向行驶的车道(共有2条车道),若现有一辆货运卡车高4m ,宽2.3m .则这辆货运卡车能否通过该隧道?说明理由.本卷由系统自动生成,请仔细校对后使答案第1页,总1页参考答案1.D 2.B 3.C 4.A 5.B 6.C 7.B 8.B 9.D 10.C 11.2-a 12.8. 13.14.64 15.1 16.8. 17.9120. 18.(333)19.(1)2;(2)2. 20.4221.2536. 22.需要爬行的最短距离是2. 23.能通过该隧道,理由见解析.。

湖南省怀化市2020年中考数学一模试卷B卷

湖南省怀化市2020年中考数学一模试卷B卷

湖南省怀化市2020年中考数学一模试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2018八上·茂名期中) 下列四个实数中,其中最小的数是为()A . 0B . -3C .D .2. (2分)(2019·沈阳) 2019年1月1日起我国开始贯彻《国务院关于印发个人所得税专项附加扣除暂行办法的通知》的要求,此次减税范围广,其中有6500万人减税70%以上,将数据6500用科学记数法表示为()A . 6.5×102B . 6.5×103C . 65×103D . 0.65×1043. (2分)(2017·眉山) 下列运算结果正确的是()A . ﹣ =﹣B . (﹣0.1)﹣2=0.01C . ()2÷ =D . (﹣m)3•m2=﹣m64. (2分)(2020·朝阳模拟) 在如下放置的立体图形中,其主视图与左视图不相同的是()A .B .C .D .5. (2分)不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A .B .C .D .6. (2分)满足下列条件的△ABC不是直角三角形的是()A . BC=8,AC=15,AB=17B . BC:AC:AB=3:4:5C . ∠A+∠B=∠CD . ∠A:∠B:∠C=3:4:57. (2分) (2020九上·高平期末) 如图,A , B , C是⊙O上的三个点,若∠C=35°,则∠OAB的度数是()A . 35°B . 55°C . 65°D . 70°8. (2分)(2017·昌平模拟) 如图,点A是反比例函数y= (x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比函数图象上移动时,点B也在某一反比例函数图象y= 上移动,k的值为()A . 2B . ﹣2C . 4D . ﹣4二、填空题 (共8题;共8分)9. (1分)(2017·东平模拟) 因式分解2x4﹣2=________.10. (1分) (2018九上·建瓯期末) 有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x的分式方程+2=有正整数解的概率为________.11. (1分)小明从每月的零花钱中拿出x元钱捐给希望工程,则一年下来小明给希望工程捐款________元.12. (1分) (2019七下·红塔期中) 如图,在线段AC,BC,CD中,线段________最短,理由是________.13. (1分) (2017九上·云南月考) 如图交AB于点于点A,若,则________度14. (1分) (2019八下·乐清月考) 直角坐标系内有一点M(- ,)。

湖南省2020年八年级下学期第一次月考数学试卷

湖南省2020年八年级下学期第一次月考数学试卷

成都市二O一七高中阶段教育学校统一招生考试(含成都市初三毕业会考)英语注意事项:1.全卷分A卷和B卷,A 卷满分100分,B卷满分50分;考试时间120分钟。

2.在做答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3.选择题部分必须使用2B铅笔填涂,非选择题部分必须使用0.5毫米黑色的签字笔书写,字体工整、笔迹清楚。

4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

5.保持答题卡清洁,不得折叠、污染、破损等。

A卷 (共100分)第一部分听力(共30小题;计30分)一、听句子,根据所听到的内容选择正确答案。

每小题念两遍。

(共5小题,每小题1分;计5分)1.A. Yes,she can. B. Yes,she does. C.Yes,she is.2.A. It is. B. I see. C. Thank yo u.3.A. You’re welcome. B. You’re right. C. You’re kind.4.A. For an hour. B. Once a week. C. In a week.5.A. Sure. It’s my magazine. B. Sure, you could. C. Sure. Here you are.二、听句子,选择与所听句子内容相符合的图片,并将代表图片的字母填涂在答题卡的相应位置。

每小题念两遍。

(共5小题,每小题1分;计5分)A. B. C. D. E.6.______7.______8.______9.______ 10.______三、听对话,根据对话内容及问题选择正确答案。

每小题念两遍。

(共10小题,每小题1分;计10分)11.A. She is short. B. She has curly hair. C. She wears glasses.12.A. At 10:00 pm. B. At 10:30 pm. C. At 11:00 pm.13.A. One. B. Two. C. Three.14.A. Wonderful. B. Cute. C. Excited.15.A. Big Screen. B. Town China. C. Movie World.16.A. In the bookstore. B. In the reading room. C. In the library.17.A. The nature museum. B. The art museum. C. The science museum.18.A. She went to the water park.B. She went to the countryside.C. She went to her grandparents.19.A. Twenty. B. Fifteen. C. Five.20.A. He’s cleaning his room. B. He’s playing a game. C. He’s watching TV.四、听短文,根据短文内容选择正确答案。

湖南省怀化市八年级下学期第一次月考数学试卷

湖南省怀化市八年级下学期第一次月考数学试卷

湖南省怀化市八年级下学期第一次月考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2017七下·陆川期末) 下列调查中,适宜采用全面调查方式的是()A . 调查一架“歼20”战机各零部件的产品质量B . 调查某品牌圆珠笔芯的使用寿命C . 调查市场上酸奶的质量情况D . 调查我市市民对上届巴西奥运会吉祥物的知晓度3. (2分) (2017八下·射阳期末) 不透明的袋子中装有10个黑球、1个白球,它们除颜色外无其它差别,随机从袋子中摸出一个球,则()A . 这个球一定是黑球B . 事先能确定摸到什么颜色的球C . 这个球可能是白球D . 摸到黑球、白球的可能性大小一样4. (2分)下列等式中正确的是()A . =B . =C . =D . =5. (2分)如图,在平行四边形ABCD中,AB=3,AD=2,则CD=()A . 3B . 2C . 1D . 56. (2分)如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么tan∠BAD′等于()A . 1B .C .D .二、填空题 (共10题;共10分)7. (1分) (2017九上·松北期末) 函数y= 中,自变量x的取值范围是________.8. (1分)已知四边形ABCD中,对角线相互平分,再加一个条件使这个四边形为菱形,那么这个条件是________.9. (1分)若分式的值为0,则x的值为________ .10. (1分)化简的结果是________ .11. (1分) (2015八下·泰兴期中) 有同品种的工艺品20件,其中一等品16件、二等品3件、三等品1件,从中任取1件,取得________等品的可能性最大.12. (1分)(2016·广安) 某市为治理污水,需要铺设一段全长600m的污水排放管道,铺设120m后,为加快施工进度,后来每天比原计划增加20m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设xm管道,那么根据题意,可列方程________.13. (1分) (2019八下·嘉陵期中) 如图,以Rt△ABC的三边向外作正方形,若最大正方形的边长为7cm,以AC为边的正方形的面积为25cm2 ,则正方形M的面积为________cm2 .14. (1分) (2018八上·大石桥期末) 若,则的值为________.15. (1分) (2015八下·伊宁期中) 如图,正方形OABC的边长为6,点A、C分别在x轴,y轴的正半轴上,点D(2,0)在OA上,P是OB上一动点,则PA+PD的最小值为________.16. (1分)(2017·武汉模拟) 如图,在▱ABCD中,对角线AC、BD相交于点O.如果AC=8,BD=14,AB=x,那么x的取值范围是________.三、解答题 (共10题;共97分)17. (5分)(2016·防城) 化简:().18. (5分)(2018·泰州) 为了改善生态环境,某乡村计划植树4000棵,由于志愿者的支援,实际工作效率提高了,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?19. (15分)(2017·黑龙江模拟) 为评估九年级学生的学习成绩状况,以应对即将到来的中考做好教学调整,某中学抽取了部分参加考试的学生的成绩作为样本分析,绘制成了如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)求本中学成绩类别为“中”的人数;(2)求出扇形图中,“优”所占的百分比,并将条形统计图补充完整;(3)该校九年级共有1000人参加了这次考试,请估算该校九年级共有多少名学生的数学成绩达到优秀?20. (5分)若(x2+3mx﹣)(x2﹣3x+n)的积中不含x和x3项,(1)求m2﹣mn+n2的值;(2)求代数式(﹣18m2n)2+(9mn)﹣2+(3m)2014n2016的值.21. (15分)(2018·肇庆模拟) 为开展“学生每天锻炼1小时”的活动,我市某中学根据学校实际情况,决定开设A:毽子,B:篮球,C:跑步,D:跳绳四种运动项目.为了了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图统计图.请结合图中信息解答下列问题:(1)该校本次调查中,共调查了多少名学生?(2)计算本次调查学生中喜欢“跑步”的人数和百分比,并请将两个统计图补充完整;(3)在本次调查的学生中随机抽取1人,他喜欢“跑步”的概率有多大?22. (10分)(2013·贺州) 如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.(1)求证:CD=AN;(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.23. (10分) (2016八下·固始期末) 如图,在▱ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD.(1)求证:△ADE≌△CBF.(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.24. (15分) (2020八上·青岛期末) 如图,已知直线经过点,交x轴于点A , y 轴于点B , F为线段AB的中点,动点C从原点出发,以每秒1个位长度的速度沿y轴正方向运动,连接FC ,过点F作直线FC的垂线交x轴于点D ,设点C的运动时间为t秒.(1)当时,求证:;(2)连接CD,若的面积为S,求出S与t的函数关系式;(3)在运动过程中,直线CF交x轴的负半轴于点G,是否为定值?若是,请求出这个定值;若不是,请说明理由.25. (10分)已知且 .(1)求的值;(2)若,求的值.26. (7分)(2018·西华模拟) 如图,AB为⊙O的直径,点D,E是位于AB两侧的半圆AB上的动点,射线DC切⊙O于点D.连接DE,AE,DE与AB交于点P,F是射线DC上一动点,连接FP,FB,且∠AED=45°.(1)求证:CD∥AB;(2)填空:①若DF=AP,当∠DAE=________时,四边形ADFP是菱形;②若BF⊥DF,当∠DAE=________时,四边形BFDP是正方形.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共97分)17-1、18-1、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-3、25-1、25-2、26-1、26-2、。

湖南省怀化市2020年数学中考一模试卷B卷

湖南省怀化市2020年数学中考一模试卷B卷

湖南省怀化市2020年数学中考一模试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·十堰模拟) 下列计算正确的是()A . xy•xy=2xyB . 3 ﹣ =3(x≥0)C . (2x)3=2x3D . • = (x≥0,y≥0)2. (2分)如图所示,该几何体的俯视图是()A .B .C .D .3. (2分)(2019·宁波模拟) 下列事件是必然事件的是()A . 明年国庆节宁波的天气是晴天B . 小华上学的路上遇到同班同学C . 任意掷一枚均匀的硬币,正面朝上D . 在学校操场上抛出的篮球会下落4. (2分) (2018八上·临安期末) 已知 a>b ,则下列四个不等式中,不正确的是()A . a -3> b -3B . - a +2>- b +2C . a> bD . 1+4a>1+4b5. (2分)(2018·陕西) 如图,在矩形ACBO中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为()A . -B .C . -2D . 26. (2分)掷一颗均匀的骰子,6点朝上的概率为()A . 0B .C . 1D .7. (2分) (2019八上·鹿邑期末) 小玲每天骑自行车或坐公交车上学,她上学的路程为20千米,坐公交车的平均速度是骑自行车的平均速度的3倍,坐公交车比骑自行车上学早到40分钟,设小玲骑自行车的平均速度为千米/小时,根据题意,下面列出的方程正确的是()A .B .C .D .8. (2分) (2017九上·官渡期末) 一元二次方程x2﹣4x+4=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 无法确定9. (2分)(2017·新化模拟) 已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A .B .C .D . 210. (2分)一棵大树在一次强台风中于离地面5 m处折断倒下,倒下后树顶落在树根部大约12 m处.这棵大树折断前离度估计为()A . 25 mB . 18 mC . 17 mD . 13 m二、填空题 (共8题;共8分)11. (1分)(2017·仙游模拟) 科学家测量到某种细菌的直径为0.00001917mm,将这个数据用科学记数法表示为________.12. (1分)分解因式:x3﹣2x2y+xy2=________ .13. (1分) (2019八下·余杭期中) 某校5个假日小队参加植树活动,平均每组植树10株.已知第一、二、三、五组分别植树9株、12株、9株、8株,则第四小组植树________株.14. (1分)(2016·济南) 如图1,在矩形纸片ABCD中,AB=8 ,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E 重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=________.15. (1分) (2016九上·南充开学考) 某市2007年5月份某一周的日最高气温(单位:℃)分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值是________.16. (1分)(2017·费县模拟) 当x满足x﹣4=0时,()÷ =________.17. (1分) (2018八上·宁波期中) 直角三角形的两直角边分别是6和8,则斜边上的高线等于________.18. (1分) (2017八下·闵行期末) 已知一次函数y= x+m﹣1(其中m是常数),如果函数值y随x的增大而减小,且与y轴交于点P(0,t),那么t的取值范围是________.三、解答题 (共8题;共75分)19. (5分)(2018·遵义模拟) 先化简,再求值:÷( -1),其中a=3+,b=3- .20. (10分)(2016·郓城模拟) 已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:①分别以A,C为圆心,a为半径(a> AC)作弧,两弧分别交于M,N两点;②过M,N两点作直线MN交AB于点D,交AC于点E;③将△ADE绕点E顺时针旋转180°,设点D的像为点F.(1)请在图中直线标出点F并连接CF;(2)求证:四边形BCFD是平行四边形;(3)当∠B为多少度时,四边形BCFD是菱形.21. (10分)(2013·无锡) 小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)22. (10分)(2017·大冶模拟) 如图,AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,点D为AP的中点,连结AC.求证:(1)∠P=∠BAC(2)直线CD是⊙O的切线.23. (5分)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为16海里.求A、C两地之间的距离.(保留根号)24. (15分) (2017九上·义乌月考) 新定义函数:在y关于x的函数中,若0≤x≤1时,函数y有最大值和最小值,分别记ymax和ymin ,且满足,则我们称函数y为“三角形函数”.(1)若函数y=x+a为“三角形函数”,求a的取值范围;(2)判断函数y=x2﹣ x+1是否为“三角形函数”,并说明理由;(3)已知函数y=x2﹣2mx+1,若对于0≤x≤1上的任意三个实数a,b,c所对应的三个函数值都能构成一个三角形的三边长,则求满足条件的m的取值范围.25. (10分)如图,正与正关于某点中心对称,已知三点的坐标分别是.(1)求对称中心的坐标;(2)写出顶点的坐标.26. (10分)(2015·台州) 如图,在多边形ABCDE中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,过点E 作EF∥CB交AB于点F,FB=1,过AE上的点P作PQ∥AB交线段EF于点O,交折线BCD于点Q,设AP=x,PO•OQ=y.(1)①延长BC交ED于点M,则MD=________,DC=________;(2)求y关于x的函数解析式;(3)当a≤x≤ (a>0)时,9a≤y≤6b,求a,b的值;(4)当1≤y≤3时,请直接写出x的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、24-1、24-2、24-3、25-1、26-1、26-2、26-3、26-4、。

2020年下期第一次月考八年级数学测试题

2020年下期第一次月考八年级数学测试题

2020年下期第一次月考八年级数学测试题总分:150分 时间:120分钟一.选择题(共10小题,每小题4分,共40分) 1.下列各式:,,,,(x ﹣y )中,是分式的共有( )A .1个B .2个C .3个D .4个2.若分式的值为零,则x 等于( )A .0B .2C .±2D .﹣2 3.下列计算正确的是( )(A )236a a a =÷; (B )532a a a =+; (C )n m nm a a a-=-; (D )()()43a a a =-⋅-4.已知a m =2,a n =3,则a 4m ﹣3n 的值是( )A .﹣B .C .﹣D .5.要使分式有意义,则x 应满足( )A .x ≠﹣1B .x ≠2C .x ≠±1D .x ≠﹣1且x ≠2 6.化简的结果是( )A .x +1B .C .x ﹣1D .7.下列分式是最简分式的是( )A .B .C .D .8.若分式方程有增根,则a 的值是( )A .1B .0C .﹣1D .39. A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用 9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .B .C .+4=9 D .10. 已知x 、y 、z 均为实数,并满足x+y+z = 0,xyz > 0,且xyza x y z =++, 111111b x y z y z x z x y ⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则23a b ab ++=( ) A .1 B .2 C .3 D .4二、填空题(共8小题,每小题4分,满分32分) 11.计算:+= .12.用科学记数法表示:﹣0.00002016= . 13.分式,,的最简公分母是 .14、计算:x x x -÷⎪⎭⎫⎝⎛--+121111= ; 15.已知﹣=3,则分式的值为 .16.设xy=x ﹣y ≠0,则的值为 .17. 已知256,2389a b b a a ba b+-+==+则 . 18. 已知22222334422;33;44......33881515+=⨯+=⨯+=⨯若21010,(b b a a a b+=⨯、都是正整数),求分式22222a ab b ab a b+++的值 .三、解答题(共8小题,满分78分) 19.(8分)计算:(1)|﹣2|+(﹣1)2015×(π﹣3.14)0+(﹣)﹣1 (2)÷.20.(10分)解下列分式方程: (1)(2).21.(8分)先化简:÷(﹣),再从﹣2<x <3的范围内选取一个你喜欢的x 值代入求值.22.(8分)已知分式:A=,B=,其中x ≠±2.学生甲说A 与B 相等,乙说A 与B互为倒数,丙说A 与B 互为相反数,她们三个人谁的结论正确?为什么?23.(10分)已知关于x 的分式方程ax +1-2a -x -1x 2+x=0无解,求a 的值.24.(10分)去年入秋以来,某省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?25.(12分)观察下面的变形规律:111111111;;;......12223233434=-=-=-⨯⨯⨯解答下面的问题:(1)若n 为正整数,则1(1)n n =+ ,111122334++=⨯⨯⨯ ;(2)用上述相似的方法求和:1111 (133557)20132015+++⨯⨯⨯⨯;(3)化简代数式111111 (1324354657)(2)n n +++++⨯⨯⨯⨯⨯⨯+(n ≥3,且n 为正整数).26.(12分)定义:如果一个分式能化为一个整式与一个分子为常数的分式和的形式,那么称这个分式为“和谐分式”.如11212211,111111x x x x x x x x x x +-+-+==+=+------则是“和谐分式”.(1)将“和谐分式”311x x +-化为一个整式与一个分式为常数的分式的和的形式,311x x +-= + ;(2)将“和谐分式”2331a a a -+-化为一个整式与一个分式为常数的分式的和的形式(要求写出变形过程);(3)应用:先化简22371112x x x x x x x +---÷++,并回答:x 取什么整数时,该式的值为整数.德雅学校2020年下期第一次月考八年级数学测试题一.选择题(共10小题,每小题4分,共40分)1. C2. D3. D4. B5. D6. A7. C8. D9. A 10. B二、填空题(共8小题,每小题4分,满分32分)11. 0 . 12. ﹣ 2.016×10﹣5 . 13. 12ab 2 . 14. 11+x15.. 16. ﹣1 17. 37/55; 18. 109/990三、解答题(共8小题,满分78分)19. (每小题4分,共8分)解:(1)原式=2﹣1﹣2=﹣1;(2)原式=•=20. (每小题5分,共10分)解:(1)去分母得:3x ﹣3=2x ,解得:x=3,经检验x=3是分式方程的解; (2)去分母得:3x ﹣3+x +1=6,解得:x=2,经检验x=2是分式方程的解.21.(8分)解:原式=÷=•=,当x=2时,原式=4(x ≠﹣1,0,1).22.(8分) 解:B===;∴A +B=0,故A 与B 互为相反数23.(10分)解:去分母,得ax -2a +x +1=0,分两种情况讨论:①当分式方程有增根时,即x (x +1)=0,得x =-1或0.当x =-1时,-a -2a -1+1=0,解得a =0;当x =0时,-2a +1=0,解得a =12;②当方程ax -2a +x +1=0无解时,即(a +1)x =2a -1无解,所以a +1=0,a =-1.综上所述,a =0或12或-1.24.(10分)解:设原计划每天修水渠x 米. 根据题意得:﹣=20,解得:x=80.经检验:x=80是原分式方程的解. 答:原计划每天修水渠80米.25. (12分)解:(1)113,(1)4nn -+;(2) 10072015(3) 原式21111111111111(............)21335244611211111()21212354(1)(2)n n n n n n n n n n =-+-+-+-+-+--++=+--+++=++26. (12分) 解:(1)3 41x - (2)121a a -+-(3)化简为:253211x x x +=+++ 所以当x+1=1或-1或3或-3时分式的值为整数,此时x=0或x=-2或x=2或x=-4,又因为分式有意义,所以x 不能等于0,1,-1,-2,所以x=2或x=-4。

2020年初中八年级下第一次月考数学试题及答案 新教材 新大纲 练习 测试 模拟 复习 考试 期中 期末 中考.doc

2020年初中八年级下第一次月考数学试题及答案 新教材 新大纲 练习 测试 模拟 复习 考试 期中 期末 中考.doc

2020学年第二学期黄岗初中八年级第一次月考数 学 试 题(时间:120分钟 满分:150)一、选择题(每小题4分,共40分) 1. 下列等式不成立的是( )A .66326=⋅B 4=C .3331= D .228=- 2.下列方程中是关于x 的一元二次方程的是( )A .2210x x +=B .20ax bx c ++= C .(1)(2)1x x -+=D .223250x xy y --=3.在根式:,最简二次根式是( ) A .①② B .③④ C .①③ D .①④4. a 的值为( )A .34a =B .43a = C .1a = D .1a =- 5. △ABC 的三边均满足方程2680x x -+=,则它的周长为( )A .8或10B 、10C 、10或12或6D 、6或8或10或126. 一元二次方程2310x x --=与2330x x -+=的所有实数根的和等于( )A. -3B. -6C. 6D. 37.下列四个结论中,正确的是( )A.方程x +x 1=-2有两个不相等的实数根 B.方程x +x1=1有两个不相等的实数根C.方程x +x 1=2有两个不相等的实数根 D .方程x +x1=a (其中a 为常数,且|a|>2)有两个不相等的实数根8. 下列各式中,一定能成立的是( )A .22)5.2()5.2(=-B .22)(a a =C .122+-x x =x-1D .3392+⋅-=-x x x9.分式方程=--11x x)2)(1(+-x x m 有增根,则m 的值为 ( ) A. 0和3 B . 1 C. 1和-2 D. 310.以方程0322=-+x x 的两个根的和与积为两根的一元二次方程是 ( )A.0652=-+y y B.0652=++y yC.0652=+-y y D. 0652=--y y二11.当x 满足时,式子xx -+-513有意义12.比较大小:35-54-(填“<”、“>”、“=”)13.将(a-1)a-11根号外的因式移至根号内 . 14. 试写一个..有两个不相等实根的一元二次方程: . 15.已知1x 、2x 是一元二次方程032=-+x x 的两个根;则12x x +21x x 的值等于 三、解答题(每小题6分,共12分)16. 计算: (1)32x 9+64x-2x x1;(2)(23-32)2+(2+3)(2-3);四、解答题(每小题6分,共18分)17.按指定的方法解下列方程:(1)22540x x --=(配方法); (5分)(2)23(2)20x x x -+-=(因式分解法)(5分)(3)222224)(b a abx x b a -=--2(a ≠)2b (公式法)(8分)五、解答下列各题(每小题8分,共16分)18. A ,B 两地间的距离为15千米,甲从A 地出发步行前往B 地,20分钟后,乙从B地出发骑车前往A 地,且乙骑车比甲步行每小时多走10千米。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省怀化市2020年八年级下学期第一次月考数学试卷B卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共6题;共12分)
1. (2分) (2017八下·北海期末) 下列手机软件图标中,是中心对称图形的是()
A .
B .
C .
D .
2. (2分)(2016·呼和浩特) 下列说法正确的是()
A . “任意画一个三角形,其内角和为360°”是随机事件
B . 已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次
C . 抽样调查选取样本时,所选样本可按自己的喜好选取
D . 检测某城市的空气质量,采用抽样调查法
3. (2分) (2016九上·萧山月考) 一个不透明口袋中装有3个红球2个白球,除颜色外都相同,从中任意摸出一个球,下列叙述正确的是()
A . 摸到红球是必然事件
B . 摸到白球是不可能事件
C . 摸到红球的可能性比白球大
D . 摸到白球的可能性比红球大
4. (2分) (2017八下·林甸期末) 将分式中分子与分母的各项系数都化成整数,正确的是()
A .
B .
C .
D .
5. (2分)如图,平行四边形ABCD的对角线相交于点O,AO=4,OD=7,△DBC的周长比△ABC的周长()
A . 长6
B . 短6
C . 短3
D . 长3
6. (2分)如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么tan∠BAD′等于()
A . 1
B .
C .
D .
二、填空题 (共10题;共11分)
7. (1分)(2017·衡阳模拟) 分式有意义的条件是________.
8. (1分)(2019·三明模拟) 如图,在直角坐标系中,四边形OABC为菱形,OA在x轴的正半轴上,∠A OC =60°,过点C的反比例函数的图象与AB交于点D ,则△COD的面积为________.
9. (2分)在分式中,当y=________时,分式无意义;当y=________时,分式值为零.
10. (1分)化简: =________
11. (1分)如图,是可以自由转动的一个转盘,转动这个转盘,当它停下时,指针落在标有号码________上的可能性最大.
12. (1分)(2017·宿州模拟) 某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x 个物件,根据题意列出的方程是________.
13. (1分) (2017八下·海淀期末) 如图,分别是边长为4的正方形四条边上的点,且 . 那么四边形的面积的最小值是________
14. (1分) (2017九上·沂源期末) 已知a2﹣2a﹣1=0,则 =________.
15. (1分) (2017八上·东城期末) 如图,从点A(0,2)发出一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过的路径的长为________
16. (1分) (2015八下·扬州期中) 在平行四边形ABCD中,∠A=110°,则∠D=________.
三、解答题 (共10题;共95分)
17. (5分)已知y= ÷ ﹣x+1.试说明不论x为何值,y的值不变.
18. (5分)(2015·舟山) 小明解方程﹣ =1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.
19. (15分)为激励教师爱岗敬业,某市开展了“我最喜爱的老师”评选活动.某中学确定如下评选方案:由学生和教师代表对4名候选教师进行投票,每票选1名候选教师,每位候选教师得到的教师票数的5倍与学生票数的和作为该教师的总得票数.如图是根据学生和教师代表投票结果绘制的统计表和条形统计图(不完整).学生投票结果统计表
候选教师王老师赵老师李老师陈老师
得票数200300
(1)若共有25位教师代表参加投票,则李老师得到的教师票数是多少?请补全条形统计图;
(2)王老师与李老师得到的学生总票数是500,且王老师得到的学生票数是李老师得到的学生票数的3倍多20票,王老师与李老师得到的学生票数分别是多少?
(3)在(1)(2)的条件下,若总得票数较高的2名教师推选到市参评,你认为推选到市里的是哪两位老师?为什么?
20. (5分)小张买了张元的乘车IC卡,如果他乘车的次数用表示,则记录他每次乘车后的余额(元)如下表:
次数m余额n(元)
150—0.8
250—1.6
350—2.4
450—3.2
…………
⑴写出乘车的次数表示余额(元)的关系式;
⑵利用上述关系式计算小张乘了13次车后还剩下多少元?
⑶小张最多能乘几次车?
21. (15分)(2017·兰州模拟) 将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x <10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.
(1)这部分男生有多少人?其中成绩合格的有多少人?
(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?
(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.
22. (10分)(2016·北京) 如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
(1)
求证:BM=MN;
(2)
∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
23. (10分)(2017·安次模拟) 如图,在▱ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8.
(1)求证:四边形ABCD是菱形;
(2)过点A作AH⊥BC于点H,求AH的长.
24. (10分) (2017八上·沂水期末) 综合题。

(1)
如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.
(2)
如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB 还成立吗?请说明理由.
25. (10分)已知且 .
(1)求的值;
(2)若,求的值.
26. (10分)(2017·兰陵模拟) 猜想与证明:
如图,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM,EM.
(1)试猜想写出DM与EM的数量关系,并证明你的结论.
拓展与延伸:
(2)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则(1)中的结
论是否仍然成立?请直接写出你的判断.
参考答案一、选择题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共10题;共11分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共10题;共95分)
17-1、18-1、
19-1、19-2、
19-3、20-1、21-1、21-2、21-3、
22-1、22-2、23-1、
23-2、24-1、
24-2、25-1、25-2、
26-1、26-2、。

相关文档
最新文档