L-934SRC-E中文资料
ILI9341液晶显示
ILI9341液晶显⽰17.1液晶显⽰原理TFT-LCD(Thin Film Transistor Liquid Crystal Display)即薄膜晶体管液晶显⽰器,是微电⼦技术与液晶显⽰器技术巧妙结合的的⼀种技术。
CRT显⽰器的⼯作原理是通电后灯丝发热,阴极被激发后发射出电⼦流,电⼦流受到⾼电压的⾦属层的加速,经过透镜聚焦形成极细的电⼦束打在荧光屏上,使荧光粉发光显⽰图像。
LCD显⽰器需要来⾃背后的光源,当光束通过这层液晶时,液晶会呈不规则扭转形状(形状由TFT上的信号与电压改变实现),所以液晶更像是⼀个个闸门,选择光线穿透与否,这样就可以在屏幕上看到深浅不⼀,错落有致的图像。
⽬前主流的LCD显⽰器都是TFT-LCD,是由原有液晶技术发展⽽来。
TFT液晶为每个像素都设有⼀个半导体开关,以此做到完全的单独控制⼀个像素点,液晶材料被夹在TFT阵列和彩⾊滤光⽚之间,通过改变刺激液晶的电压值就可以控制最后出现的光线强度和⾊彩,如图7-1所⽰。
图7-1 液晶显⽰屏结构图Kingst-32F1开发板配套的TFT-LCD是3.2⼨⼤⼩,分辨率为240*320,即⼀共有240×320=76800个像素点,每个像素都设有⼀个半导体开关,像素之间是相对独⽴的,这么多像素如何控制呢?联想⼀下51单⽚机驱动LED点阵时,为了减少IO⼝的使⽤,采⽤三⼋译码器驱动点阵模块。
同理,TFT-LCD也可以⽤专门的驱动器来驱动,教材所⽤的TFT-LCD采⽤ILI9341驱动芯⽚。
该控制芯⽚是封装在TFT-LCD内部,只留有外部引脚接⼝。
对于⽤户来说,只要掌握如何向ILI9341控制器发送指令和读写数据,并不需要再设计额外的驱动电路,该液晶的具体参数如表7-1所⽰。
7.1.1ILI9341硬件接⼝和像素格式ILI9341驱动芯⽚主要由接⼝电路、显存(GRAM)、LCD驱动电路、背光控制、电源等部分组成,主要结构如图7-2所⽰。
ILI9341初始化程序_带注释
ILI9341a-Si TFT LCD Single Chip Driver with 240RGBx320 Resolution and 262K colorApplication NotesVersion: Preliminary V0.7Date: Mar. 22th 2011ILI TECHNOLOGY CORP.8F, No.38, Taiyuan St., Jhubei City, Hsinchu County 302,Taiwan, R.O.CTel.886-3-5600099; Fax.886-3-56000551.LGD 2.6” PANEL (3)1.1FPC A PPLICATION C IRCUIT (3)1.2LG2.8” I NITIAL C ODE (4)2.1BOE 2.0_2.4_3.14 FPC A PPLICATION C IRCUIT (8)2.2BOE2.0” I NITIAL C ODE (9)2.3BOE2.4” I NITIAL C ODE (12)2.3BOE2.4” I NITIAL C ODE (15)3.TM 2.2” 2.4” PANEL (20)3.1FPC A PPLICATION C IRCUIT (20)3.2TM2.4 INCH INITIAL CODE (21)3.3TM2.8 INCH INITIAL CODE (25)4.1HSD2.8 INCH INITIAL CODE (29)R EVISION H ISTORY1. LGD2.6/2.8 Panel1.1 FPC Application CircuitD B 13S D O C 11+V S Y N CI M 1V C O R EC 11U F /6.3VD B 0C 12+C 22+L E D +C S X R D X D B 15V G HI M 3L E D -C81U F /6.3V D B 1C 12-Connector 401234567891011121314151617181920212223242526272829333631323940373830343512345678910111213141516171819202122232425262728293336313239403738303435E N A B L E D B 5D B 11D B 3D B 14I M 0V D D I D B 10T E D B 2C 61U F /10V C 41U F /25VG N D D B 16C 22-V C I C 71U F /10V C 31U F /6.3VD B 7V C LD B 8V G LG N D D C X C 51U F /25VH S Y N C D B 12W R X C 91U F /6.3VC 21-D B 6D B 4C 21U F /6.3V S D A D O T C L K C 11-D B 17RE S X C 21+D D V D HI M 2D B 91.2 LG2.8” Initial Codevoid ILI9341_LG2.8_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************// LCD_nRESET = 1; delayms(1);// Delay 1msLCD_nRESET = 0; delayms(10);// Delay 10ms // This delay time is necessaryLCD_nRESET = 1; delayms(120);// Delay 120 ms//************* Start Initial Sequence **********// LCD_ILI9341_CMD(0xCB); LCD_ILI9341_ Parameter (0x39); LCD_ILI9341_ Parameter (0x2C); LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34); LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0XC1); LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xE8); LCD_ILI9341_ Parameter (0x85); LCD_ILI9341_ Parameter (0x00); LCD_ILI9341_ Parameter (0x78);LCD_ILI9341_CMD(0xEA); LCD_ILI9341_ Parameter (0x00); LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xED); LCD_ILI9341_ Parameter (0x64); LCD_ILI9341_ Parameter (0x03); LCD_ILI9341_ Parameter (0X12); LCD_ILI9341_ Parameter (0X81) //功耗控制A //功耗控制B//内核电压控制//DDVDH控制//Power控制//驱动时序控制A//栅极驱动器的非重叠时序控制//EQ时序控制//预充电时间控制//驱动时序控制B//栅极驱动器时序控制//电源序列控制//软启动控制//电源序列控制//电源序列控制//DDVDH增强模式LCD_ILI9341_CMD(0xF7); LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xC0);//Power control LCD_ILI9341_ Parameter (0x1b);//VRH[5:0]LCD_ILI9341_CMD(0xC1);//Power controlLCD_ILI9341_ Parameter (0x10);//SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5);//VCM control LCD_ILI9341_ Parameter (0x2d); LCD_ILI9341_ Parameter (0x33);//LCD_ILI9341_CMD(0xC7);//VCM control2//LCD_ILI9341_ Parameter (0xCf);LCD_ILI9341_CMD(0x36);// Memory Access Control LCD_ILI9341_ Parameter (0x48);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00); LCD_ILI9341_ Parameter (0x1d);LCD_ILI9341_CMD(0xB6);// Display Function Control LCD_ILI9341_ Parameter (0x0A); LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF2);// 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26);//Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0);//Set Gamma LCD_ILI9341_ Parameter (0x0F); LCD_ILI9341_ Parameter (0x3a); LCD_ILI9341_ Parameter (0x36); LCD_ILI9341_ Parameter (0x0b);//泵比控制//比率控制//功耗控制1//设置GVDD电平//功耗控制2//设置用于升压电路的因子//VCOM控制1//设置VCOMH电压//设置VCOML电压//VCOM控制2//设置VCOM偏移电压//存储器访问控制//该指令定义帧存储器的读写扫描方向//(正常模式/全色模式下)帧速率控制//内部时钟分频设置,00时表示不分频//RTNA设置,用于设置1H(行)的时间//显示功能设置//设置在没显示区域的扫描格式,0A表示间隔扫描//设置源极、栅极驱动器的移动方向和扫描周期//使能3G//01使能3G,00不使能//伽马设置//选择伽马曲线1//正极伽马校准LCD_ILI9341_ Parameter (0x0d); LCD_ILI9341_ Parameter (0x06); LCD_ILI9341_ Parameter (0x4c); LCD_ILI9341_ Parameter (0x91); LCD_ILI9341_ Parameter (0x31); LCD_ILI9341_ Parameter (0x08); LCD_ILI9341_ Parameter (0x10); LCD_ILI9341_ Parameter (0x04); LCD_ILI9341_ Parameter (0x11); LCD_ILI9341_ Parameter (0x0c); LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x0a);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x12);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x2c);LCD_ILI9341_ Parameter (0x92);LCD_ILI9341_ Parameter (0x3f);LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_ Parameter (0x0e);LCD_ILI9341_ Parameter (0x0b);LCD_ILI9341_ Parameter (0x2e);LCD_ILI9341_ Parameter (0x33);LCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_CMD(0x11); //Exit Sleep Delayms(120);LCD_ILI9341_CMD(0x29); //Display on } //负极伽马校准//退出睡眠模式//开显示void LCD_Enter Sleep_ILI9341(void){LCD_ILI9341_CMD(0x28); // Display offDelayms(20);LCD_ILI9341_CMD(0x10); // Enter Sleep mode }void LCD_Exit Sleep_ILI9341(void){LCD_ILI9341_CMD(0x11); // Sleep out Delayms(120);LCD_ILI9341_CMD(0x29); // Display on}2. BOE 2.0” 2.4”3.14 Panel2.1 FPC Application Circuit0000002.2 BOE 2.0” Initial Codevoid ILI9341_BOE2.0_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************//LCD_nRESET = 1;delayms(1); // Delay 1msLCD_nRESET = 0;delayms(10); // Delay 10ms // This delay time is necessary LCD_nRESET = 1;delayms(120); // Delay 120 ms//************* Start Initial Sequence **********//LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x81);LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xED);LCD_ILI9341_ Parameter (0x64);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0X12);LCD_ILI9341_ Parameter (0X81);LCD_ILI9341_CMD(0xE8);LCD_ILI9341_ Parameter (0x85);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x78);LCD_ILI9341_CMD(0xCB);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x2C);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF7);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xEA);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1B);LCD_ILI9341_CMD(0xB6); // Display Function Control LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0xA2);LCD_ILI9341_CMD(0xC0); //Power controlLCD_ILI9341_ Parameter (0x21); //VRH[5:0]LCD_ILI9341_CMD(0xC1); //Power controlLCD_ILI9341_ Parameter (0x11); //SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5); //VCM controlLCD_ILI9341_ Parameter (0x3F);LCD_ILI9341_ Parameter (0x3C);LCD_ILI9341_CMD(0xC7); //VCM control2LCD_ILI9341_ Parameter (0Xab);LCD_ILI9341_CMD(0x36); // Memory Access Control LCD_ILI9341_ Parameter (0x48);LCD_ILI9341_CMD(0xF2); // 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26); //Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0); //Set GammaLCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x27);LCD_ILI9341_ Parameter (0x25);LCD_ILI9341_ Parameter (0x0a);LCD_ILI9341_ Parameter (0x0E);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x56);LCD_ILI9341_ Parameter (0X98);LCD_ILI9341_ Parameter (0x49);LCD_ILI9341_ Parameter (0x07);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0x31);LCD_ILI9341_ Parameter (0x30);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x18);LCD_ILI9341_ Parameter (0x1a);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x11);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x29);LCD_ILI9341_ Parameter (0x67);LCD_ILI9341_ Parameter (0x36);LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_ Parameter (0x0f);LCD_ILI9341_ Parameter (0x0c);LCD_ILI9341_ Parameter (0x0e);LCD_ILI9341_ Parameter (0x0f);LCD_ILI9341_ Parameter (0x0f);LCD_ILI9341_CMD(0x11); //Exit Sleep Delayms(120);LCD_ILI9341_CMD(0x29); //Display on }2.3 BOE 2.4” Initial Codevoid ILI9341_BOE2.4_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************//LCD_nRESET = 1;delayms(1); // Delay 1msLCD_nRESET = 0;delayms(10); // Delay 10ms // This delay time is necessary LCD_nRESET = 1;delayms(120); // Delay 120 ms//************* Start Initial Sequence **********//LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x81);LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xED);LCD_ILI9341_ Parameter (0x64);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0X12);LCD_ILI9341_ Parameter (0X81);LCD_ILI9341_CMD(0xE8);LCD_ILI9341_ Parameter (0x85);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x78);LCD_ILI9341_CMD(0xCB);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x2C);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF7);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xEA);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1B);LCD_ILI9341_CMD(0xB6); // Display Function Control LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0xA2);LCD_ILI9341_CMD(0xC0); //Power controlLCD_ILI9341_ Parameter (0x21); //VRH[5:0]LCD_ILI9341_CMD(0xC1); //Power controlLCD_ILI9341_ Parameter (0x11); //SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5); //VCM controlLCD_ILI9341_ Parameter (0x3F);LCD_ILI9341_ Parameter (0x3C);LCD_ILI9341_CMD(0xC7); //VCM control2LCD_ILI9341_ Parameter (0Xb5);LCD_ILI9341_CMD(0x36); // Memory Access Control LCD_ILI9341_ Parameter (0x48);LCD_ILI9341_CMD(0xF2); // 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26); //Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0); //Set GammaLCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x26);LCD_ILI9341_ Parameter (0x24);LCD_ILI9341_ Parameter (0x0B);LCD_ILI9341_ Parameter (0x0E);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x54);LCD_ILI9341_ Parameter (0XA8);LCD_ILI9341_ Parameter (0x46);LCD_ILI9341_ Parameter (0x0C);LCD_ILI9341_ Parameter (0x17);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x07);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x19);LCD_ILI9341_ Parameter (0x1B);LCD_ILI9341_ Parameter (0x04);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x07);LCD_ILI9341_ Parameter (0x2A);LCD_ILI9341_ Parameter (0x47);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x30);LCD_ILI9341_ Parameter (0x38);LCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_CMD(0x11); //Exit Sleep Delayms(120);LCD_ILI9341_CMD(0x29); //Display on }void LCD_Enter Sleep_ILI9341(void){LCD_ILI9341_CMD(0x28); // Display offdelayms(20);LCD_ILI9341_CMD(0x10); // Enter Sleep mode }void LCD_Exit Sleep _ILI9341(void){LCD_ILI9341_CMD(0x11); // Sleep out Delayms(120);LCD_ILI9341_CMD(0x29); // Display on}2.4 BOE3.14” Initial Codevoid ILI9341_BOE3.14_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************//LCD_nRESET = 1;delayms(1); // Delay 1msLCD_nRESET = 0;delayms(10); // Delay 10ms // This delay time is necessary LCD_nRESET = 1;delayms(120); // Delay 120 ms//************* Start Initial Sequence **********//LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0xc1);LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xED);LCD_ILI9341_ Parameter (0x64);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0X12);LCD_ILI9341_ Parameter (0X81);LCD_ILI9341_CMD(0xE8);LCD_ILI9341_ Parameter (0x85);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x78);LCD_ILI9341_CMD(0xCB);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x2C);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF7);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xEA);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x16);LCD_ILI9341_CMD(0xB6); // Display Function Control LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0xA2);LCD_ILI9341_CMD(0xC0); //Power controlLCD_ILI9341_ Parameter (0x10); //VRH[5:0]LCD_ILI9341_CMD(0xC1); //Power controlLCD_ILI9341_ Parameter (0x10); //SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5); //VCM controlLCD_ILI9341_ Parameter (0x30);LCD_ILI9341_ Parameter (0x50);LCD_ILI9341_CMD(0xC7); //VCM control2LCD_ILI9341_ Parameter (0XA4);LCD_ILI9341_CMD(0x36); // Memory Access Control LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_CMD(0xF2); // 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26); //Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0); //Set GammaLCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x29);LCD_ILI9341_ Parameter (0x24);LCD_ILI9341_ Parameter (0x0c);LCD_ILI9341_ Parameter (0x0e);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x4e);LCD_ILI9341_ Parameter (0X78);LCD_ILI9341_ Parameter (0x3C);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x13);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x17);LCD_ILI9341_ Parameter (0x11);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x16);LCD_ILI9341_ Parameter (0x1b);LCD_ILI9341_ Parameter (0x04);LCD_ILI9341_ Parameter (0x11);LCD_ILI9341_ Parameter (0x07);LCD_ILI9341_ Parameter (0x31);LCD_ILI9341_ Parameter (0x33);LCD_ILI9341_ Parameter (0x42);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x0C);LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0x28);LCD_ILI9341_ Parameter (0x2f);LCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_CMD(0x11); //Exit Sleep Delayms(120);LCD_ILI9341_CMD(0x29); //Display on }void LCD_Enter Sleep_ILI9341(void){LCD_ILI9341_CMD(0x28); // Display offdelayms(20);LCD_ILI9341_CMD(0x10); // Enter Sleep mode }void LCD_Exit Sleep _ILI9341(void){LCD_ILI9341_CMD(0x11); // Sleep out Delayms(120);LCD_ILI9341_CMD(0x29); // Display on}a-Si TFT LCD Single Chip Driver 240RGBx320 Resolution and 262K color ILI9341 3. TM 2.2” 2.4” Panel 3.1 FPC Application Circuit0000ILI9341 for TM 2.4" 2.2" Panel 0 003.2 Tianma 2.4” Initial Codevoid ILI9341_Tianma2.4_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************//LCD_nRESET = 1;delayms(1); // Delay 1msLCD_nRESET = 0;delayms(10); // Delay 10ms // This delay time is necessary LCD_nRESET = 1;delayms(120); // Delay 120 ms//************* Start Initial Sequence **********//LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x81);LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xED);LCD_ILI9341_ Parameter (0x64);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0X12);LCD_ILI9341_ Parameter (0X81);LCD_ILI9341_CMD(0xE8);LCD_ILI9341_ Parameter (0x85);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x7A);LCD_ILI9341_CMD(0xCB);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x2C);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF7);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xEA);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xC0); //Power controlLCD_ILI9341_ Parameter (0x21); //VRH[5:0]LCD_ILI9341_CMD(0xC1); //Power controlLCD_ILI9341_ Parameter (0x11); //SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5); //VCM controlLCD_ILI9341_ Parameter (0x3F);LCD_ILI9341_ Parameter (0x3C);LCD_ILI9341_CMD(0xC7); //VCM control2LCD_ILI9341_ Parameter (0Xa7);LCD_ILI9341_CMD(0x36); // Memory Access Control LCD_ILI9341_ Parameter (0x48);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1B);LCD_ILI9341_CMD(0xB6); // Display Function Control LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0xA2);LCD_ILI9341_CMD(0xF2); // 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26); //Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0); //Set GammaLCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x23);LCD_ILI9341_ Parameter (0x1F);LCD_ILI9341_ Parameter (0x0B);LCD_ILI9341_ Parameter (0x0E);LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_ Parameter (0x4B);LCD_ILI9341_ Parameter (0XA8);LCD_ILI9341_ Parameter (0x3B);LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0x14);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1C);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_ Parameter (0x04);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x47);LCD_ILI9341_ Parameter (0x44);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x0B);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x2F);LCD_ILI9341_ Parameter (0x36);LCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_CMD(0x11); //Exit Sleep Delayms(120);LCD_ILI9341_CMD(0x29); //Display on }void LCD_Enter Sleep_ILI9341(void){LCD_ILI9341_CMD(0x28); // Display offdelayms(20);LCD_ILI9341_CMD(0x10); // Enter Sleep mode }void LCD_Exit Sleep _ILI9341(void){LCD_ILI9341_CMD(0x11); // Sleep out Delayms(120);LCD_ILI9341_CMD(0x29); // Display on3.2 Tianma 2.8” Initial Codevoid ILI9341_Tianma2.8_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************//LCD_nRESET = 1;delayms(1); // Delay 1msLCD_nRESET = 0;delayms(10); // Delay 10ms // This delay time is necessary LCD_nRESET = 1;delayms(120); // Delay 120 ms//************* Start Initial Sequence **********//LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x83);LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xED);LCD_ILI9341_ Parameter (0x64);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0X12);LCD_ILI9341_ Parameter (0X81);LCD_ILI9341_CMD(0xE8);LCD_ILI9341_ Parameter (0x85);LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_ Parameter (0x79);LCD_ILI9341_CMD(0xCB);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x2C);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF7);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xEA);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xC0); //Power controlLCD_ILI9341_ Parameter (0x1D); //VRH[5:0]LCD_ILI9341_CMD(0xC1); //Power controlLCD_ILI9341_ Parameter (0x11); //SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5); //VCM controlLCD_ILI9341_ Parameter (0x33);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_CMD(0xC7); //VCM control2LCD_ILI9341_ Parameter (0Xbe);LCD_ILI9341_CMD(0x36); // Memory Access Control LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1B);LCD_ILI9341_CMD(0xB6); // Display Function Control LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0xA2);LCD_ILI9341_CMD(0xF2); // 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26); //Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0); //Set GammaLCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x23);LCD_ILI9341_ Parameter (0x1F);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x0f);LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_ Parameter (0x4B);LCD_ILI9341_ Parameter (0Xf2);LCD_ILI9341_ Parameter (0x38);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x13);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0x12);LCD_ILI9341_ Parameter (0x07);LCD_ILI9341_ Parameter (0x04);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1d);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_ Parameter (0x11);LCD_ILI9341_ Parameter (0x07);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x81);LCD_ILI9341_ Parameter (0x46);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x0e);LCD_ILI9341_ Parameter (0x0c);LCD_ILI9341_ Parameter (0x32);LCD_ILI9341_ Parameter (0x38);LCD_ILI9341_ Parameter (0x0F);}void LCD_Enter Sleep_ILI9341(void){LCD_ILI9341_CMD(0x28); // Display offdelayms(20);LCD_ILI9341_CMD(0x10); // Enter Sleep mode }void LCD_Exit Sleep _ILI9341(void){LCD_ILI9341_CMD(0x11); // Sleep out Delayms(120);LCD_ILI9341_CMD(0x29); // Display on4.1 HSD 2.8” Initial Codevoid ILI9341_HSD2.8_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************//LCD_nRESET = 1;delayms(1); // Delay 1msLCD_nRESET = 0;delayms(10); // Delay 10ms // This delay time is necessary LCD_nRESET = 1;delayms(120); // Delay 120 ms//************* Start Initial Sequence **********//LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0xC1);LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xED);LCD_ILI9341_ Parameter (0x64);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0X12);LCD_ILI9341_ Parameter (0X81);LCD_ILI9341_CMD(0xE8);LCD_ILI9341_ Parameter (0x85);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x7A);LCD_ILI9341_CMD(0xCB);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x2C);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF7);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xEA);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xC0); //Power controlLCD_ILI9341_ Parameter (0x21); //VRH[5:0]LCD_ILI9341_CMD(0xC1); //Power controlLCD_ILI9341_ Parameter (0x11); //SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5); //VCM controlLCD_ILI9341_ Parameter (0x31);LCD_ILI9341_ Parameter (0x3C);LCD_ILI9341_CMD(0xC7); //VCM control2LCD_ILI9341_ Parameter (0X9f);LCD_ILI9341_CMD(0x36); // Memory Access Control LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1B);LCD_ILI9341_CMD(0xB6); // Display Function Control LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0xA2);LCD_ILI9341_CMD(0xF2); // 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26); //Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0); //Set GammaLCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_ Parameter (0x1d);LCD_ILI9341_ Parameter (0x0b);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x0a);LCD_ILI9341_ Parameter (0x49);LCD_ILI9341_ Parameter (0Xa9);LCD_ILI9341_ Parameter (0x3b);LCD_ILI9341_ Parameter (0x0a);LCD_ILI9341_ Parameter (0x15);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x0c);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1f);LCD_ILI9341_ Parameter (0x22);LCD_ILI9341_ Parameter (0x04);LCD_ILI9341_ Parameter (0x0f);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x36);LCD_ILI9341_ Parameter (0x46);LCD_ILI9341_ Parameter (0x46);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x0b);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x33);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x0F);}void LCD_Enter Sleep_ILI9341(void){LCD_ILI9341_CMD(0x28); // Display offdelayms(20);LCD_ILI9341_CMD(0x10); // Enter Sleep mode }void LCD_Exit Sleep _ILI9341(void){LCD_ILI9341_CMD(0x11); // Sleep out Delayms(120);LCD_ILI9341_CMD(0x29); // Display onRevision HistoryRevision HistoryVersion No. Date Page Description V01 2010/09/14 All New CreationV02 2010/10/26 All Modified VCI1 GND,C31M GNDAdd BOE2.0” BOE2.4” LG2.6” initial code V03 2010/12/20 All Remove command EFV0.4 2011/02/20 ALL Add 1uF capacitor in Vcore padV0.5 2011/03/08 ALL Add Tianma initial code and modify LG/BOE initial code V0.6 2011/03/11 ALL Modify TM 2.4 and BOE initial codeV0.7 2011/03/22 ALL Add LG 2.8 TM2.8 BOE 3.14 HSD 2.8 initial code。
ROHM BD34301EKV 32位D A转换器IC说明书
32bit D/A Converter I C ‘BD34301EKV’for Hi-Fi Audio EquipmentApril 1, 2021ROHM Co., Ltd.Marketing Communications Dept.*MUS-IC TM is a trademark or registered trademark of ROHM Co., Ltd.*Please note that this document is current as of the date of publicationROHM's first, most advanced MUS-IC TM series DAC chip enablesexpressive playback of classical musicAudio SoCSpeakersHigh Fidelity Audio Equipment and ROHM’s ApproachRadio/TV TunerRecording Media (Audio Source)Power Supply ICReleased Sep 2017We are developing a variety of products for high-fidelity audio equipmentAnalog Signal Digital Signal Control SignalMedia DecoderAmplifierAnalog DesignAudio DeviceSound Processor (Digital)MCUD/A ConverterSound Processor (Analog)Sound ProcessorReleased Oct 2016AmplifierReleased Mar 2018Digital DesignSpeakersClass D Speaker AmplifierClass AB Speaker AmpSupports high-fidelity, high-res audioSupports high-res audioSupports high-fidelity, high-res audio Supports high-fidelity, high-res audio12345Listening Evaluation ResultsConventional New ProductClarityRealityExpansionResolutionLocalizationBass feeling stereotacticDistortion feelingPowerfulnessAchieving Optimum Sound Quality Using ROHM’s Vertically Integrated Production System and Sound Quality Design TechnologyIC Layout, PhotomaskManufacturingWafer Formation ProcessDie and Lead FrameFinished IC ChipROHM’s Vertically Integrated Production SystemThe parameters in each process confirmedto have an effect on sound quality are shown belowLead FrameIC LayoutBonding WirePackageAt various steps in our vertically integrated production process, we have identified 28 parametersthat affect sound quality and adjusted them one by one to create the desired soundEx) Sound Processors for Hi-Fi AudioPlayer (Audio Source)PlayerPreamp (Volume Control)Sound ProcessorMain AmpPower AmpSpeakersIntegrated AmpMaintains information even at low volumeCheck sound quality through actual listening evaluation basedon a set of indicatorsPackageCircuit Design12 parameters6 parameters6 parameters1 parameter3 parametersVerify the sound quality in a dedicated listening room (At the Yokohama Technology Center)ROHM’s High -End Audio Device Brand: ROHM Musical Device [MUS-IC]For more information, please visit ROHM’s Musical Device ‘MUS -IC TM ’ web page.https:///mus-ic/MUS-IC TMCreated by combining the ‘Sound Quality Design Technology ’with ROHM’s corporate mission of ‘Quality First ’, ‘Vertically Integrated Production System ’, and ‘Contribution to the Musical Culture ’, MUS-IC TM (official name: ROHM Musical Device‘MUS -IC TM ’) is an audio device brand that represents the ultimate IC solutions developed by ROHM’s team of experienced and dedicated engineers.Quality FirstQ ualityContributing to Music CultureF or everyonemoved by musicSound QualityDesign TechnologyS oundVertically Integrated Production SystemC raftsmanshipDevelopment ConceptMUS-IC TMProduct OverviewROHM's first top-shelf MUS-IC TM series of DAC chips enables expressive playback of classical musicKey CharacteristicsNo. of Outputs: 2ch (stereo)Resolution: 32bitSampling Frequency: 32kHz to 768kHzS/N Ratio: 130dB (typ.)THD+N: -115dB (typ.)DSD Clock: 2.8MHz, 5.6MHz,11.2MHz, 22.4 MHzFIR Filter: Preset, Custom, External Segment We will begin selling the BD34301EKV DAC chip along with an evaluationBD34301EKV-EVK-001 Evaluation BoardEnables immediateevaluation of the soundquality of the BD34301EKV Please refer to the evaluation board user’s guide for details.The BD34301EKV delivers superior performance in audio equipment by improving sound quality in ways that cannotbe defined by numerical characteristicsDeliver sound quality characteristics that allow one to hear elementssuch as ‘spatial reverberation’, ‘quietness’, and ‘dynamic range’D/A Conversion Circuit⚫Minimizes the power supplyimpedance of each current segment ⚫Optimized wiring layout⇒Reduces the clock delay (thatdetermines the timing operation of each current segment) as much as possibleDigital Signal Processing Circuit⚫The FIR filter (a key function) isdesigned to faithfully process even the smallest signals⇒Achieves a rejection band attenuation (a filter performance index) of -150dB or lessEfforts to improve sound quality performanceBD34301EKV MUS-IC TM 32bit D/A Converter ICFeature 1: Achieves best-in-class sound quality characteristics ideal for classical musicFeature 2: Customizable digital filter allows designers to tailor the sound to audio equipment The BD34301EKV includes a customizable digital filter -a key feature of the digital signal processing circuit -supporting the creation of the ideal sound sought by audio equipmentmanufacturersFIR Filter Specifications⚫Select from preset / custom / external settings⚫The filter’s calculation coefficients and oversampling rate can alsobe customized with the program function⇒Configure unique digital filters to easily achieve different sound qualitytunings for each audio deviceCustomizable digital filters help reduce development loadand create the ideal sound sought by manufacturersReduce the power supply wiring impedance of each currentsegment as much as possibleSound quality improvement effect: Improved bass power and depth,resulting in better sound range balanceEliminating the common impedance from each current segment to the power supply pin makes it possible to align the matching characteristics of the current segments-120-110-100-90-80-70-60-50-40-30-20-100-100-90-80-70-60-50-40-30-20-10T H D +N (d B )Input Level (dBFS)THD+N vs Input LevelBD34301EKVWiring ImpedanceCurrent SegmentCurrent Segment Current SegmentMinimize clock skew and optimize slew rateSound quality improvement effect: Increased realism and resolution alongwith bassClockCurrent SegmentCurrent SegmentCurrent SegmentCurrent Segment time Level (L→H)Fastest ClockClock WaveformSlowest ClockMinimize clock skew between current segmentsMaterial of bonding wires connecting the chip to the lead frameMinimize stress on chips in IC packagesAu CuSound improvement effect: More natural reverberation , with a more delicateinstrumental toneSelect the best bonding wires material for the device because its material that connecting the device to the lead frame is affected the sound qualityBonding WireSelect the IC package and wafer processing method that minimize stress . At the same time, adopt a completelysymmetrical chip layout for the current segment circuit.Sound improvement effect: Reduced sound peculiarities, resulting in amore natural soundCurrent OutputPins Current OutputPinsChipIC PackageCompletely symmetricalLch Rch 電流セグメントLchRchCurrent Segment Examples of Sound Quality Improvement Effects Based on Sound Quality Design Tech.P . 10© 2021 ROHM Co., Ltd. Sales InformationThe BD34301EKV enables evaluation and adoption for a wide range of customerMUS-IC TM Sales⚫Supporting documents required for evaluation are now available on ROHM’s website:https:///products/audio-video/audio-converters/audio-dacs/bd34301ekv-product/documents⚫An evaluation board (BD34301EKV-EVK-001) is also available together with IC through online distributors Part No: BD34301EKVSales Launch Date: From December 2020Reference Price:$80.5 /pc. (excluding tax)Production Status: In mass production Evaluation Board Sales Part No: BD34301EKV-EVK-001Sales Launch Date: From February 2021Reference Price: Please refer to each online distributor websitePlease consider the BD34301EKV MUS-IC TM 32bit D/A converter IC for your next design Electronic Components and Parts Search | DigiKey ElectronicsSearch results for: bd34301ekv ROHM Semiconductor –Mouserbd34301ekv -Search Results | Farnell DE© 2021 ROHM Co., Ltd.Notes•The content specified herein is for the purpose of introducing ROHM’s products (hereinafter “Products”).•If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.•Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.•The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products.•ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties.•ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.•If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.•The content specified in this document is correct as of April 2021.© 2021 ROHM Co., Ltd.P. 12。
L934SRD12V中文资料
Description
The Super Bright Red source color devices are made with Gallium Aluminum Arsenide Red Light Emitting Diode.
INTERNAL RESISTOR.
Package Dimensions
Notes: 1. All dimensions are in millimeters (inches). 2. Tolerance is ±0.25(0.01") unless otherwise noted. 3. Lead spacing is measured where the lead emerge package. 4. Specifications are subject to change without notice.
元器件交易网
T-1 (3mm) SOLID STATE LAMP
L-934SRD-12V SUPER BRIGHT RED
Features
!LOW POWER CONSUMPTION. !POPULAR T-1 DIAMETER PACKAGE. !GENERAL PURPOSE LEADS. !RELIABLE AND RUGGED. ! LONG LIFE - SOLID STATE RELIABILITY. !12V
Note: 1. θ1/2 is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value.
Electrical Maximum Ratings at T)=25°C °
LMV934中文资料
LMV931Single /LMV932Dual /LMV934Quad 1.8V,RRIO Operational AmplifiersGeneral DescriptionThe LMV931/LMV932/LMV934are low voltage,low power operational amplifiers.LMV931/LMV932/LMV934are guar-anteed to operate from +1.8V to +5.0V supply voltages and have rail-to-rail input and output.LMV931/LMV932/LMV934input common mode voltage extends 200mV beyond the supplies which enables user enhanced functionality beyond the supply voltage range.The output can swing rail-to-rail unloaded and within 105mV from the rail with 600Ωload at 1.8V supply.The LMV931/LMV932/LMV934are optimized to work at 1.8V which make them ideal for portable two-cell battery powered systems and single cell Li-Ion systems.LMV931/LMV932/LMV934exhibit excellent speed-power ra-tio,achieving 1.4MHz gain bandwidth product at 1.8V supply voltage with very low supply current.The LMV931/LMV932/LMV934are capable of driving a 600Ωload and up to 1000pF capacitive load with minimal ringing.LMV931/LMV932/LMV934have a high DC gain of 101dB,making them suitable for low frequency applications.The single LMV931is offered in space saving SC70-5and SOT23-5packages.The dual LMV932are in MSOP-8and SOIC-8packages and the quad LMV934are in TSSOP-14and SOIC-14packages.These small packages are ideal solutions for area constrained PC boards and portable elec-tronics such as cellular phones and PDAs.Features(Typical 1.8V Supply Values;Unless Otherwise Noted)n Guaranteed 1.8V,2.7V and 5V specifications n Output swing —w/600Ωload 80mV from rail —w/2k Ωload 30mV from rail n V CM 200mV beyond rails n Supply current (per channel)100µA n Gain bandwidth product 1.4MHz n Maximum V OS 4.0mV n Ultra tiny packages n Temperature range −40˚C to 125˚CApplicationsn Consumer communication n Consumer computing n PDAsn Audio pre-ampn Portable/battery-powered electronic equipment n Supply current monitoring nBattery monitoringTypical Application200326H0December 2002LMV931Single /LMV932Dual /LMV934Quad 1.8V,RRIO Operational Amplifiers©2002National Semiconductor Corporation Absolute Maximum Ratings(Note 1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.ESD Tolerance (Note 2)Machine Model 200V Human Body Model 2000VDifferential Input Voltage ±Supply VoltageSupply Voltage (V +–V −)5.5VOutput Short Circuit to V +(Note 3)Output Short Circuit to V −(Note 3)Storage Temperature Range −65˚C to 150˚CJunction Temperature (Note 4)150˚C Mounting Temp.Infrared or Convection (20sec)235˚COperating Ratings (Note 1)Supply Voltage Range 1.8V to 5.0V Temperature Range −40˚C to 125˚CThermal Resistance (θJA )SC70-5414˚C/W SOT23-5265˚C/W MSOP-8235˚C/W SOIC-8175˚C/W TSSOP-14155˚C/W SOIC-14127˚C/W 1.8V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J =25˚C.V +=1.8V,V −=0V,V CM =V +/2,V O =V +/2and R L >1M Ω.Boldface limits apply at the temperature extremes.See (Note 10)Symbol ParameterConditionMin (Note 6)Typ (Note 5)Max (Note 6)Units V OSInput Offset VoltageLMV931(Single)146mV LMV932(Dual)LMV934(Quad)1 5.57.5mV TCV OS Input Offset Voltage Average Drift5.5µV/˚C I B Input Bias Current 153550nA I OS Input Offset Current132540nAI S Supply Current (per channel)103185205µACMRRCommon Mode Rejection RatioLMV931,0≤V CM ≤0.6V 1.4V ≤V CM ≤1.8V (Note 8)605578dBLMV932and LMV9340≤V CM ≤0.6V1.4V ≤V CM ≤1.8V (Note 8)555076−0.2V ≤V CM ≤0V 1.8V ≤V CM ≤2.0V5072PSRR Power Supply Rejection Ratio1.8V ≤V +≤5V 7570100dBCMVRInput Common-Mode Voltage RangeFor CMRR Range ≥50dBT A =25˚C V −−0.2−0.2to 2.1V ++0.2V T A −40˚C to 85˚C V −V +T A =125˚CV −+0.2V +−0.2A VLarge Signal Voltage Gain LMV931(Single)R L =600Ωto 0.9V,V O =0.2V to 1.6V,V CM =0.5V 7773101dBR L =2k Ωto 0.9V,V O =0.2V to 1.6V,V CM =0.5V8075105Large Signal Voltage Gain LMV932(Dual)LMV934(Quad)R L =600Ωto 0.9V,V O =0.2V to 1.6V,V CM =0.5V 757290dB R L =2k Ωto 0.9V,V O =0.2V to 1.6V,V CM =0.5V7875100L M V 931S i n g l e /L M V 932D u a l /L M V 934Q u a d 21.8V DC Electrical Characteristics(Continued)Unless otherwise specified,all limits guaranteed for T J =25˚C.V +=1.8V,V −=0V,V CM =V +/2,V O =V +/2and R L >1M Ω.Boldface limits apply at the temperature extremes.See (Note 10)Symbol ParameterConditionMin (Note 6)Typ (Note 5)Max (Note 6)UnitsV OOutput SwingR L =600Ωto 0.9V V IN =±100mV1.651.631.72V0.0770.1050.120R L =2k Ωto 0.9V V IN =±100mV1.751.741.770.0240.0350.04I OOutput Short Circuit CurrentSourcing,V O =0V V IN =100mV 43.38mASinking,V O =1.8V V IN =−100mV7591.8V AC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J =25˚C.V +=1.8V,V −=0V,V CM =V +/2,V O =V +/2and R L >1M Ω.Boldface limits apply at the temperature extremes.See (Note 10)Symbol ParameterConditionsMin (Note 6)Typ (Note 5)Max (Note 6)Units SR Slew Rate(Note 7)0.35V/µs GBW Gain-Bandwidth Product 1.4MHz Φm Phase Margin 67deg G m Gain Margin7dBe n Input-Referred Voltage Noisef =1kHz,V CM =0.5V 60i n Input-Referred Current Noise f =1kHz0.06THDTotal Harmonic Distortion f =1kHz,A V =+1R L =600Ω,V IN =1V PP 0.023%Amp-to-Amp Isolation(Note 9)123dB2.7V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J =25˚C.V +=2.7V,V −=0V,V CM =V +/2,V O =V +/2and R L >1M Ω.Boldface limits apply at the temperature extremes.See (Note 10)Symbol ParameterConditionMin (Note 6)Typ (Note 5)Max (Note 6)Units V OSInput Offset VoltageLMV931(Single)146mV LMV932(Dual)LMV934(Quad)1 5.57.5mV TCV OS Input Offset Voltage Average Drift5.5µV/˚C I B Input Bias Current 153550nA I OS Input Offset Current82540nAI SSupply Current (per channel)105190210µALMV931Single /LMV932Dual /LMV934Quad32.7V DC Electrical Characteristics(Continued)Unless otherwise specified,all limits guaranteed for T J =25˚C.V +=2.7V,V −=0V,V CM =V +/2,V O =V +/2and R L >1M Ω.Boldface limits apply at the temperature extremes.See (Note 10)Symbol ParameterConditionMin (Note 6)Typ (Note 5)Max (Note 6)UnitsCMRRCommon Mode Rejection RatioLMV931,0≤V CM ≤1.5V 2.3V ≤V CM ≤2.7V (Note 8)605581dBLMV932and LMV9340≤V CM ≤1.5V2.3V ≤V CM ≤2.7V (Note 8)555080−0.2V ≤V CM ≤0V 2.7V ≤V CM ≤2.9V5074PSRR Power Supply Rejection Ratio1.8V ≤V +≤5V V CM =0.5V7570100dBV CMInput Common-Mode Voltage Range For CMRR Range ≥50dBT A =25˚C V −−0.2−0.2to 3.0V ++0.2V T A =−40˚C to 85˚C V −V +T A =125˚CV −+0.2V +−0.2A VLarge Signal Voltage Gain LMV931(Single)R L =600Ωto 1.35V,V O =0.2V to 2.5V 8786104dBR L =2k Ωto 1.35V,V O =0.2V to 2.5V9291110Large Signal Voltage Gain LMV932(Dual)LMV934(Quad)R L =600Ωto 1.35V,V O =0.2V to 2.5V 787590dB R L =2k Ωto 1.35V,V O =0.2V to 2.5V 8178100V OOutput SwingR L =600Ωto 1.35V V IN =±100mV2.552.532.62V0.0830.1100.130R L =2k Ωto 1.35V V IN =±100mV2.652.642.6750.0250.040.045I OOutput Short Circuit CurrentSourcing,V O =0V V IN =100mV 201530mASinking,V O =0V V IN =−100mV1812252.7V AC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J =25˚C.V +=2.7V,V −=0V,V CM =1.0V,V O =1.35V and R L >1M Ω.Boldface limits apply at the temperature extremes.See (Note 10)Symbol ParameterConditionsMin (Note 6)Typ (Note 5)Max (Note 6)Units SR Slew Rate(Note 7)0.4V/µs GBW Gain-Bandwidth Product 1.4MHz Φm Phase Margin 70deg G m Gain Margin7.5dBe n Input-Referred Voltage Noisef =1kHz,V CM =0.5V 57i nInput-Referred Current Noisef =1kHz 0.082L M V 931S i n g l e /L M V 932D u a l /L M V 934Q u a d 42.7V AC Electrical Characteristics(Continued)Unless otherwise specified,all limits guaranteed for T J=25˚C.V+=2.7V,V−=0V,V CM=1.0V,V O=1.35V and R L>1MΩ.Boldface limits apply at the temperature extremes.See(Note10)Symbol Parameter Conditions Min(Note6)Typ(Note5)Max(Note6)UnitsTHD Total Harmonic Distortion f=1kHz,A V=+1R L=600kΩ,V IN=1V PP0.022%Amp-to-Amp Isolation(Note9)123dB 5V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J=25˚C.V+=5V,V−=0V,V CM=V+/2,V O=V+/2andR L>1MΩ.Boldface limits apply at the temperature extremes.See(Note10)Symbol Parameter Condition Min(Note6)Typ(Note5)Max(Note6)UnitsV OS Input Offset Voltage LMV931(Single)146mVLMV932(Dual) LMV934(Quad)1 5.57.5mVTCV OS Input Offset Voltage AverageDrift5.5µV/˚CI B Input Bias Current143550nAI OS Input Offset Current92540nAI S Supply Current(per channel)116210230µACMRR Common Mode RejectionRatio 0≤V CM≤3.8V4.6V≤V CM≤5.0V(Note8)605586dB −0.2V≤V CM≤0V5.0V≤V CM≤5.2V5078PSRR Power Supply RejectionRatio 1.8V≤V+≤5VV CM=0.5V7570100dBCMVR Input Common-Mode VoltageRange For CMRRRange≥50dBT A=25˚C V−−0.2−0.2to5.3V++0.2V T A=−40˚C to85˚CV−V+T A=125˚C V−+0.3V+−0.3A V Large Signal Voltage GainLMV931(Single)R L=600Ωto2.5V,V O=0.2V to4.8V8887102dB R L=2kΩto2.5V,V O=0.2V to4.8V9493113Large Signal Voltage Gain LMV932(Dual)LMV934(Quad)R L=600Ωto2.5V,V O=0.2V to4.8V817890dB R L=2kΩto2.5V,V O=0.2V to4.8V8582100V O Output Swing R L=600Ωto2.5VV IN=±100mV 4.8554.8354.890V0.1200.1600.180R L=2kΩto2.5V V IN=±100mV4.9454.9354.9670.0370.0650.075LMV931Single/LMV932Dual/LMV934Quad55V DC Electrical Characteristics(Continued)Unless otherwise specified,all limits guaranteed for T J =25˚C.V +=5V,V −=0V,V CM =V +/2,V O =V +/2and R L >1M Ω.Boldface limits apply at the temperature extremes.See (Note 10)Symbol ParameterConditionMin (Note 6)Typ (Note 5)Max (Note 6)UnitsI OOutput Short Circuit CurrentLMV931,Sourcing,V O =0V V IN =100mV 8068100mASinking,V O =5V V IN =−100mV5845655V AC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J =25˚C.V +=5V,V −=0V,V CM =V +/2,V O =2.5V and R L >1M Ω.Boldface limits apply at the temperature extremes.See (Note 10)Symbol ParameterConditionsMin (Note 6)Typ (Note 5)Max (Note 6)Units SR Slew Rate(Note 7)0.42V/µs GBW Gain-Bandwidth Product 1.5MHz Φm Phase Margin 71deg G m Gain Margin8dBe n Input-Referred Voltage Noisef =1kHz,V CM =1V 50i n Input-Referred Current Noise f =1kHz0.07THDTotal Harmonic Distortion f =1kHz,A V =+1R L =600Ω,V O =1V PP0.022%Amp-to-Amp Isolation(Note 9)123dBNote 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is intended to be functional,but specific performance is not guaranteed.For guaranteed specifications and the test conditions,see the Electrical Characteristics.Note 2:Human body model,1.5k Ωin series with 100pF.Machine model,200Ωin series with 100pF.Note 3:Applies to both single-supply and split-supply operation.Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150˚C.Output currents in excess of 45mA over long term may adversely affect reliability.Note 4:The maximum power dissipation is a function of T J(MAX),θJA ,and T A .The maximum allowable power dissipation at any ambient temperature is P D =(T J(MAX)–T A )/θJA .All numbers apply for packages soldered directly into a PC board.Note 5:Typical Values represent the most likely parametric norm.Note 6:All limits are guaranteed by testing or statistical analysis.Note 7:V +=5V.Connected as voltage follower with 5V step input.Number specified is the slower of the positive and negative slew rates.Note 8:For guaranteed temperature ranges,see Input Common-Mode Voltage Range specifications.Note 9:Input referred,V +=5V and R L =100k Ωconnected to 2.5V.Each amp excited in turn with 1kHz to produce V O =3V PP .Note 10:Electrical Table values apply only for factory testing conditions at the temperature indicated.Factory testing conditions result in very limited self-heating of the device such that T J =T A .No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where T J >T A .See Applications section for information of temperature derating of the device.Absolute Maximum Ratings indicated junction temperature limits beyond which the device may be permanently degraded,either mechanically or electrically.L M V 931S i n g l e /L M V 932D u a l /L M V 934Q u a d 6Connection Diagrams5-Pin SC70-5/SOT23-5(LMV931)8-Pin MSOP/SOIC(LMV932)14-Pin TSSOP/SOIC(LMV934)200326AO Top View200326G12 Top View200326G13 Top ViewOrdering InformationPackage Part Number Packaging Marking Transport Media NSCDrawing5-Pin SC70LMV931MGA741k Units Tape and ReelMAA05A LMV931MGX3k Units Tape and Reel5-Pin SOT23LMV931MFA79A1k Units Tape and ReelMF05A LMV931MFX3k Units Tape and Reel8-Pin MSOPLMV932MMA86A1k Units Tape and ReelMUA08A LMV932MMX 3.5k Units Tape and Reel8-Pin SOICLMV932MALMV932MARailsM08A LMV932MAX 2.5k Units Tape and Reel14-Pin TSSOPLMV934MTLMV934MTRailsMTC14 LMV934MTX 2.5k Units Tape and Reel14-Pin SOICLMV934MALMV934MARailsM14ALMV934MAX 2.5k Units Tape and ReelLMV931Single/LMV932Dual/LMV934Quad7Typical Performance CharacteristicsUnless otherwise specified,V S =+5V,single supply,T A =25˚C.Supply Current vs.Supply Voltage (LMV931)Sourcing Current vs.Output Voltage2003262220032625Sinking Current vs.Output Voltage Output Voltage Swing vs.Supply Voltage2003262820032649Output Voltage Swing vs.Supply Voltage Gain and Phase vs.Frequency20032650200326G8L M V 931S i n g l e /L M V 932D u a l /L M V 934Q u a d 8Typical Performance Characteristics Unless otherwise specified,V S =+5V,single supply,T A =25˚C.(Continued)Gain and Phase vs.FrequencyGain and Phase vs.Frequency200326G9200326G10Gain and Phase vs.Frequency CMRR vs.Frequency200326G1120032639PSRR vs.Frequency Input Voltage Noise vs.Frequency2003265620032658LMV931Single /LMV932Dual /LMV934Quad9Typical Performance Characteristics Unless otherwise specified,V S =+5V,single supply,T A =25˚C.(Continued)Input Current Noise vs.FrequencyTHD vs.Frequency2003266620032667THD vs.Frequency Slew Rate vs.Supply Voltage2003266820032669Small Signal Non-Inverting Response Small Signal Non-Inverting Response2003267020032671L M V 931S i n g l e /L M V 932D u a l /L M V 934Q u a d 10Typical Performance Characteristics Unless otherwise specified,V S =+5V,single supply,T A =25˚C.(Continued)Small Signal Non-Inverting ResponseLarge Signal Non-Inverting Response2003267220032673Large Signal Non-Inverting Response Large Signal Non-Inverting Response2003267420032675Short Circuit Current vs.Temperature (Sinking)Short Circuit Current vs.Temperature (Sourcing)2003267620032677LMV931Single /LMV932Dual /LMV934Quad11Typical Performance Characteristics Unless otherwise specified,V S =+5V,single supply,T A =25˚C.(Continued)Offset Voltage mon Mode RangeOffset Voltage mon Mode Range2003263620032637Offset Voltage mon Mode Range20032638L M V 931S i n g l e /L M V 932D u a l /L M V 934Q u a d 12Application Note1.0INPUT AND OUTPUT STAGEThe rail-to-rail input stage of this family provides more flex-ibility for the designer.The LMV931/LMV932/LMV934use a complimentary PNP and NPN input stage in which the PNP stage senses common mode voltage near V−and the NPN stage senses common mode voltage near V+.The transition from the PNP stage to NPN stage occurs1V below V+.Since both input stages have their own offset voltage,the offset of the amplifier becomes a function of the input common mode voltage and has a crossover point at1V below V+.This V OS crossover point can create problems for both DC and AC coupled signals if proper care is not rge input signals that include the V OS crossover point will cause distortion in the output signal.One way to avoid such distor-tion is to keep the signal away from the crossover.For example,in a unity gain buffer configuration and with V S= 5V,a5V peak-to-peak signal will contain input-crossover distortion while a3V peak-to-peak signal centered at1.5V will not contain input-crossover distortion as it avoids the crossover point.Another way to avoid large signal distortion is to use a gain of−1circuit which avoids any voltage excursions at the input terminals of the amplifier.In that circuit,the common mode DC voltage can be set at a level away from the V OS cross-over point.For small signals,this transition in V OS shows up as a V CM dependent spurious signal in series with the input signal and can effectively degrade small signal parameters such as gain and common mode rejection ratio.To resolve this problem,the small signal should be placed such that it avoids the V OS cross-over point.In addition to the rail-to-rail performance,the output stage can provide enough output current to drive 600Ωloads.Because of the high current capability,care should be taken not to exceed the150˚C maximum junction temperature specification.2.0INPUT BIAS CURRENT CONSIDERATIONThe LMV931/LMV932/LMV934family has a complementary bipolar input stage.The typical input bias current(I B)is 15nA.The input bias current can develop a significant offset voltage.This offset is primarily due to I B flowing through the negative feedback resistor,R F.For example,if I B is50nA and R F is100kΩ,then an offset voltage of5mV will develop (V OS=I B x R F).Using a compensation resistor(R C),as shown in Figure1,cancels this effect.But the input offset current(I OS)will still contribute to an offset voltage in the same manner.Typical Applications3.0HIGH SIDE CURRENT SENSINGThe high side current sensing circuit(Figure2)is commonlyused in a battery charger to monitor charging current toprevent over charging.A sense resistor R SENSE is connectedto the battery directly.This system requires an op amp withrail-to-rail input.The LMV931/LMV932/LMV934are ideal forthis application because its common mode input range goesup to the rail.20032659FIGURE1.Canceling the Offset Voltage due to InputBias Current200326H0FIGURE2.High Side Current SensingLMV931Single/LMV932Dual/LMV934Quad13Typical Applications(Continued)4.0HALF-WAVE RECTIFIER WITH RAIL-TO-GROUND OUTPUT SWINGSince the LMV931/LMV932/LMV934input common mode range includes both positive and negative supply rails and the output can also swing to either supply,achieving half-wave rectifier functions in either direction is an easy task.All that is needed are two external resistors;there is no need for diodes or matched resistors.The half wave rectifier can have either positive or negative going outputs,depending on the way the circuit is arranged.In Figure 3the circuit is referenced to ground,while in Figure 4the circuit is biased to the positive supply.These configu-rations implement the half wave rectifier since the LMV931/LMV932/LMV934can not respond to one-half of the incom-ing waveform.It can not respond to one-half of the incoming because the amplifier can not swing the output beyond either rail therefore the output disengages during this half cycle.During the other half cycle,however,the amplifier achieves a half wave that can have a peak equal to the total supply voltage.R I should be large enough not to load the LMV931/LMV932/LMV934.5.0INSTRUMENTATION AMPLIFIER WITH RAIL-TO-RAIL INPUT AND OUTPUTSome manufactures make a non-“rail-to-rail”-op amp rail-to-rail by using a resistive divider on the inputs.The resistors divide the input voltage to get a rail-to-rail input range.The problem with this method is that it also divides the signal,so in order to get the obtained gain,the amplifier must have a higher closed loop gain.This raises the noise and drift by the internal gain factor and lowers the input impedance.Any mismatch in these precision resistors reduces the CMRR as well.The LMV981/LMV982is rail-to-rail and therefore doesn’t have these disadvantages.Using three of the LMV981/LMV982amplifiers,an instru-mentation amplifier with rail-to-rail inputs and outputs can be made as shown in Figure 5.In this example,amplifiers on the left side act as buffers to the differential stage.These buffers assure that the input impedance is very high and require no precision matched resistors in the input stage.They also assure that the differ-ence amp is driven from a voltage source.This is necessary to maintain the CMRR set by the matching R 1-R 2with R 3-R 4.The gain is set by the ratio of R 2/R 1and R 3should equal R 1and R 4equal R 2.With both rail-to-rail input and output ranges,the input and output are only limited by the supplyvoltages.Remember that even with rail-to-rail outputs,the output can not swing past the supplies so the combined common mode voltages plus the signal should not be greater that the supplies or limiting will occur.For additional applications,see National Semiconductor application notes AN–29,AN–31,AN–71,and AN–127.200326C3200326C2200326C4FIGURE 3.Half-Wave Rectifier with Rail-To-Ground Output Swing Referenced to Ground200326C0200326B9200326C1FIGURE 4.Half-Wave Rectifier with Negative-Going Output Referenced to V CC200326G4FIGURE 5.Rail-to-rail Instrumentation AmplifierL M V 931S i n g l e /L M V 932D u a l /L M V 934Q u a d 14Simplified Schematic200326A9LMV931Single/LMV932Dual/LMV934Quad 15Physical Dimensionsinches (millimeters)unless otherwise noted5-Pin SC70NS Package Number MAA05A5-Pin SOT23NS Package Number MF05AL M V 931S i n g l e /L M V 932D u a l /L M V 934Q u a d 16Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)8-Pin MSOPNS Package Number MUA08A8-Pin SOICNS Package Number M08ALMV931Single /LMV932Dual /LMV934Quad17Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)14-Pin TSSOPNS Package Number MTC1414-Pin SOICNS Package Number M14AL M V 931S i n g l e /L M V 932D u a l /L M V 934Q u a d 18NotesLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices orsystems which,(a)are intended for surgical implant into the body,or(b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a lifesupport device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor CorporationAmericasEmail:support@ National SemiconductorEuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National SemiconductorAsia Pacific CustomerResponse GroupTel:65-2544466Fax:65-2504466Email:ap.support@National SemiconductorJapan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-7507 LMV931 Single / LMV932 Dual / LMV934 Quad 1.8V, RRIO Operational AmplifiersNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。
CH9343技术手册
USB Android Host 芯片CH9343中文手册版本:V1.11、概述CH9343是一个高度集成、低功耗、单芯片全速USB Android Host接口控制芯片,可配置为6种扩展接口:UART、GPIO、PWM、I2C主机、SPI主机及SPI从机,用于内置USB设备接口的安卓设备访问外部组件。
下图为其内部框图。
2、特点●支持全速USB传输(12Mbps),兼容USB V2.0。
●全内置USB协议处理,无需外部编程。
●硬件全双工异步串口,支持MODEM信号RTS和CTS以及RS485收发控制信号TNOW。
●16路通用输入输出引脚。
●2路PWM输出。
●I2C主机接口,时钟可调节。
●SPI主/从接口,字节MSB/LSB传输次序可调节。
●提供USB设备配置完成指示。
●支持5V电源电压和3.3V电源电压甚至3V电源电压。
●提供SOP-16、LQFP-48无铅封装,兼容RoHS。
3、封装封装形式塑体宽度引脚间距封装说明订货型号SOP-16 3.9mm 150mil 1.27mm 50mil 标准16脚贴片CH9343G LQFP-48 7*7mm 0.5mm 19.7mil 超小LQFP48脚贴片CH9343L4、引脚引脚号LQFP48 SOP16引脚名称类型引脚说明6 15 VCC 电源正电源输入端,需要外接0.1uF电源退耦电容7、13 8 GND 电源公共接地端,需要连接USB总线的地线8 5 V3 电源在3.3V电源电压时连接VCC输入外部电源,在5V电源电压时外接容量为0.1uF退耦电容TXD 输出串行数据输出RSYN 输出SPI从机接收同步信号,低有效2 2CFG0 输入接口配置线0,内置上拉电阻RXD 输入 串行数据输入,内置上拉电阻 3 3 TSYN 输出 SPI 从机发送同步信号,低有效 ACT 输出 USB 设备配置完成指示,低有效 4 4 CFG4 输入 接口配置线4,内置上拉电阻 9 6 UD+ USB 信号 直接连到USB 总线的D+数据线 10 7 UD- USB 信号 直接连到USB 总线的D-数据线 14 9 XI 输入 晶体振荡的输入端,需要外接晶体 15 10 XO 输出 晶体振荡的反相输出端,需要外接晶体16 IO12 双向三态 双向端口12 17 IO13 双向三态 双向端口13 18 IO14 双向三态 双向端口14 19 IO15 双向三态 双向端口15 20 IO0 双向三态 双向端口0 21 IO1 双向三态 双向端口1 22 IO2 双向三态 双向端口2 IO3 双向端口3 SCS 双向三态 SPI 片选线2311 CFG2 输入 接口配置线2,内置上拉电阻IO4 双向三态 双向端口4 25PWM1 输出 PWM1信号输出 IO5 双向三态 双向端口5 SCK 双向三态 SPI 时钟线26 12CFG3 输入 接口配置线3,内置上拉电阻IO6 双向三态 双向端口6MOSI 双向三态 SPI 主机输出/从机输入 SDA 开漏双向 I2C 数据线,内置上拉电阻27 13CTS 输入 MODEM 联络输入信号,清除发送,低有效IO7 双向三态 双向端口7MISO 双向三态 SPI 主机输入/从机输出 SCL 开漏输出 I2C 时钟线,内置上拉电阻28 14RTS 输出 MODEM 联络输出信号,请求发送,低有效33 IO8 双向三态 双向端口8 34 IO9 双向三态 双向端口9 38 IO10 双向三态 双向端口10 40 IO11 双向三态 双向端口11 PWM0 输出 PWM0信号输出TNOW 输出 串口发送正在进行的状态指示,高电平有效45 16 CFG1 输入 接口配置线1,内置上拉电阻46 1 RST输入外部复位输入,低电平有效,内置上拉电阻1、5、11、12、24、29、30、31、32、35、36、37、39、41、42、43、44、47、48NC 空脚 禁止连接,必须悬空5、功能说明5.1.一般说明CH9343芯片内置了电源上电复位电路,一般情况下,不需要外部提供复位。
L9341V中文资料
L9341QUAD LOW SIDE DRIVERDU/DT AND DI/DT CONTROLPWM CONTROLLED OUTPUT CURRENT SHORT CURRENT PROTECTION AND DI-AGNOSTICINTEGRATED FLYBACK DIODE UNDERVOLTAGE SHUTDOWNOVERVOLTAGE AND UNDERVOLTAGE DI-AGNOSTICOVERTEMPERATURE DIAGNOSTICDESCRIPTIONThe L9341 is a monolithic integrated circuit real-ized in Multipower BCD-II mixed technology. The driver is intended for inductive loads in synchro-nous PWM applications, especially for valve driv-ers. The output voltage and current rise and fall slopes du/dt and di/dt are controlled.September 2003®UNDERVOLTAGE SHUTDOWNDIAGNOSTICDRIVERSHORT CURRENT PROTECTIONCHANNEL 1CHANNEL 4CHANNEL 3CHANNEL 2VflythV offthCOMP1COMP2I OSCSDO SDI SCLK RES1SERIAL INTERFACE & PWM CONTROLLBIAS7115148613511RES2310912REXTCS 4OUT3OUT4GNDVSV sI I scc I OUT1I IOUT2OUT3I OUT4OSCC I GNDC BATD BATVccCO1C O2C C O3O4OUT2VCC2outsOUT1di / dt & du / dt CONTROLTHERMAL FLAG220nF10nF 10nF10nF 10nF10uFR ext 12.4k 10nFΩBLOCK & APPLICATION DIAGRAMMultiwatt 15ORDERING NUMBERS: L9341V L9341HMULTIPOWER BCD TECHNOLOGY1/10ABSOLUTE MAXIMUM RATINGSSymbol ParameterValue Unit V CC V CC Voltage Range-0.3 to 6V V S V S Voltage Range-0.3 to 24V V spmax VS Voltage Range for t ≤ 400ms -2 to 40V V st Schaffner Transient Pulses on V Ssee note 1VVin Input Voltage Range for SDI; SCLK;CS;RES1;RES2-0.3to V CC +0.3V outOutput Voltage Range for all Outputs:Negative Positive– 0.3intern. clamped to V SV V I outOutput Current for all Outputs:Negative Positive– 2+ 2A A for Transient with t < 10ms Negative Positive– 55A A Schaffner Transient Pulses on Output see note 2V ESDESD Voltage Capability (MIL 883 C)1500V THERMAL DATASymbol ParameterValue Unit R th j-case Thermal Resistance Junction to Case3°C/W R th j-amb Thermal Resistance Junction to Ambient mounted on PC Board 35°C/W T sdh Thermal Hysteresis 20°C T sdThermal DiagnosticT j > 150°CNotes:1. Schaffner transient specification: DIN 40839 test waveforms of the following type: 1, 2, 3a, 3b, 5 and 6. The pulses are applied to the application circuit according to fig. 3.2.The maximum output current results from the Schaffner pulses specified in note 1.PIN CONNECTION(Top view)ELECTRICAL CHARACTERISTICS (Unless otherwise specified: 8V ≤ V S≤ 24V; 4.7V ≤ V CC≤ 5.3V; –40 °C ≤ Tj ≤ 150°C; I O≤ 1A (note 3); I O≤ 1.5A; V sp = V S for t ≤ 400ms; V OUTP = V OUT for t ≤ 400ms;R ext = 12.4KΩ± 1%).Symbol Parameter Test Condition Min.Typ.Max.UnitI ccq V cc Quiescent Current All Outputs Off13mAI sq V s Quiescent Current All Outputs Off1425mAV ccu V cc Undervoltage Threshold See Note 434 4.7V V ccr V cc Range for RES1 and RES2Operation3VR on On Resistance I o = 1A T j = 125°CT j = 25°C 750450mΩmΩI o off Off State Output Current Outputs Off1.4V ≤ V o≤ V sV outp = V sp = 40V 112.5410mAmAV outf Output Voltage During Flyback I o = 1A Output OffT j = 25°C T j = 125°C V s +1.3V s +1.1VVI gndf Current to GND during Flyback(see note 5)I o = 1A Output OffV s = 24VV sp = 40V17204452mAmAI outr Reverse Leakage Current V sp - V o = 40V500µA V inH High Input Level of SCLK,SDI, CS, RES1, RES20.7*V cc V cc+0.3VV inL Low Input Level of SCLK,SDI, CS, RES1, RES2– 0.30.3*Vcc VV REShys Hysteresis of Reset InputsRES1, RES20.31VI inRESH Input Current on RES1,RES2RES i = H; -2V ≤ V sp≤ 8VRES i = H; 8V ≤ V sp≤ 40V – 1051010µAµAI in Input Current on SCLK,SDI,CS– 2V ≤ Vsp ≤ 40V– 1010µA V SDOH High Level SDO Output Voltage I SDO = -1mA -2V ≤ V sp≤ 40V0.9*V cc V cc V V SDOL Low Level SDO Output Voltage I SDO = 1mA -2V ≤ V sp≤ 40V00.4VI SDOZ SDO Tristate High-Z LeakageCurrent 0 ≤ V SDO≤ V cc– 2V ≤ V sp≤ 40V– 1010µAPWM duty PWM Duty Cycle1/1615/16 K f Frequency Accuracy Constant See Note 60.93*K fn K fn 1.07*K fnV flyth Flyback Diagnostic ComparatorThreshold 40 ≥ V sp≥ 8VV s≤ 8VV s – 11.5V s – 0.4VVV offth Off State DiagnosticComparator Threshold1.52VI outl Output Current Limitation Threshold see Note 7 1.5 2.5A t dpo Delay Time PWM Signal to Out.515µs S ov Output Voltage Rise and FallSlope | du/dt |(from 10 to 90% of V o) Fig. 2 1.010V/µsS oc Output Current Rise and FallSlope |di/dt|0.1 ≤ Io ≤ 1.5A(from 10 to 90% of I o)25125mA/µsNotes:3. The mean value is I o = 1T∫ I o(t) dtT;4. The outputs are switced off for Vcc ≤ Vccu. The logic is not reseted. For a reset, RES1 or RES2 must be used.5. This current is measured in the GND - terminal when one single output is in flyback and consists of the supply current added to the value of the output current source and the leakage current of the flyback diode. This leakage current is less than 1% of the nominal flyback current.6. The PWM frequency is defined by an external capacitor. The PWM oscillator frequency is: f pwm = f osc32with f osc =K fC osc⋅ 1A/V and k in = 15 ⋅ 10-6;the range is: 300Hz ≤ f pwm≤ 3000Hz. The OSC Pin can be alternatively driven by an external TTL / CMOS signal.7. For I out≥ I outl an internal comparator switches the corresponding output off for the current PWM cycle.15CLKPWM3PWM4PWM1PWM214131211109876543210Figure 1: Logic Diagram of PWM Generation.+12VI s I s12V01A 1A00du/dtdu/dt di/dtdi/dtdi/dtdi/dt 5%5%Internal PWM SignalI I Current through Flyback DiodeCurrent through Low Side Switch I GNDout V outt dpooutt dpofI fD DMOSDOUTV sDI fOutput Voltage V 20 mH510 nF220 nF Figure 2: Output Switching Diagram.220 nFD1Schaffner Generator4 x 10 nF-2V to 40 VVsGNDOUT1OUT2OUT3OUT44 x 1 nF+12V10 uFVCC+5VFigure 3: Test Circuit for Schaffner Pulses.INTERNAL CLOCKMSB 14131211321LSB MSB14131211321LSBSCLK SDI SDO CS SCLK SDI SDOt clcl t chclt cht clt clch t chcht sut ht dt clzt oht zch151415CS Figure 4: Synchronous Serial Interface Protocol.f clock Clock Frequencymin. DC max. 2MHzt ch Width of Clock Input High Puls min. 200ns t cl Widh of Clock Input Low Puls min. 200ns t cicl Clock Low Before CS Low min. 200ns t chcl Clock High After CS Low min. 200ns t clch Clock Low Before CS High min. 200ns t chch Clock High After CS High min. 200ns t ciz SDO Low-Z CS Low min. 0ns max. 400ns t zch SDO High-Z CS High max. 400nst su SDI Input Setup Time min. 80ns t h SDI Input Hold Timemin. 80nst d SDO Output Delay Time (C L = 50pF)max. 100nst ohSDO Output Hold Timemin. 0nsFigure 5: PWM Generation Function Table.Bit 3 - 0PWM1PWM2PWM3PWM4OUTPUT 000015/1615/1615/1615/16OFF 00011/1615/161/1615/16ON 00102/1614/162/1614/16ON 00113/1613/163/1613/16ON 01004/1612/164/1612/16ON 01015/1611/165/1611/16ON 01106/1610/166/1610/16ON 01117/169/167/169/16ON 10008/168/168/168/16ON 10019/167/169/167/16ON 101010/166/1610/166/16ON 101111/165/1611/165/16ON 110012/164/1612/164/16ON 110113/163/1613/163/16ON 111014/162/1614/162/16ON 111115/161/1615/161/16ONFigure 6:PWM Information From Microcontroller to QLSD.Bit. Contents0P10PWM Duty Cycle for Channel 1 / Bit 0: LSB1P11PWM Duty Cycle for Channel 1 / Bit 12P12PWM Duty Cycle for Channel 1 / Bit 23P13PWM Duty Cycle for Channel 1 / Bit 3 : MSB4P20PWM Duty Cycle for Channel 2 / Bit 0 : LSB5P21PWM Duty Cycle for Channel 2 / Bit 1 :6P22PWM Duty Cycle for Channel 2 / Bit 2 :7P23PWM Duty Cycle for Channel 2 / Bit 3 : MSB8P30PWM Duty Cycle for Channel 3 / Bit 0 : LSB9P31PWM Duty Cycle for Channel 3 / Bit 1 :10P32PWM Duty Cycle for Channel 3 / Bit 2 :11P33PWM Duty Cycle for Channel 3 / Bit 3 : MSB12P40PWM Duty Cycle for Channel 4 / Bit 0 : LSB13P41PWM Duty Cycle for Channel 4 / Bit 1:14P42PWM Duty Cycle for Channel 4 / Bit 2 :15P43PWM Duty Cycle for Channel 4 / Bit 3 : MSBBit Contents0F11COMP1 State at Positive Edge of PWM1 (0: V out1 > V flyth ; 1: V out1 < V flyth )1F12COMP2 State at Negative Edge of PWM1 (1: V out1 > V offth ; 0 : V out1 < V ofth )2F21COMP1 State at Positive Edge of PWM2 (0: V out2 > V flyth ; 1: V out2 < V flyth )3F22COMP2 State at Negative Edge of PWM2 (1: V out2 > V ofth ; 0 : V out2 < V ofth )4F31COMP1 State at Positive Edge of PWM3 (0: V out3 > V flyth ; 1: V out3 < V flyth )5F32COMP2 State at Negative Edge of PWM3 (1: V out3 > V offth ; 0 : V out3 < V ofth )6F41COMP1 State at Positive Edge of PWM4 (0: V out4 > V flyth ; 1: V out4 < V flyth )7F42COMP2 State at Negative Edge of PWM4 (1: V out4 > Voffth ; 0 : V out4 < V ofth )8RES1Logic State of RES1 Input (0: RES1 = L ; 1: RES1 = H)9RES2Logic State of RES2 Input (0: RES2 = L ; 1: RES2 = H)10TSDF Thermal Diagnostic Flag ( 0: Overtemperature ; 1:Normal )11C1Current at Negative Edge of PWM1 ( 0: I out > I outl ; 1: I out < I outl )12C2Current at Negative Edge of PWM2 ( 0: I out > I outl ; 1: I out < I outl )13C3Current at Negative Edge of PWM3 ( 0: I out > I outl ; 1: I out < I outl )14C4Current at Negative Edge of PWM4 ( 0: I out > I outl ; 1: I out < I outl )151Framing Information (always 1)Figure 7: Diagnostic Information from QLSD to Microcontroller.PWMV OUTPWM V OUT I Dt Ct VdPOPWMON t tminSample point COMP2Sample point COMP1dPOt t VPWMOFF t minSample point COMP2Sample point COMP1Fig.1Fig.2Figure 8.Fig. A Fig. B Note:For safty diagnostic take notice of the following conditions:t PWMON ≥ t dPOMAX + t C + t V (see Fig. A) t C = I D S OCMINt V =V outfmax S OVMINt PWMOFF ≥ t dPOMAX + t V (see Fig. B)FUNCTIONAL DESCRIPTIONThe U511 is a PWM quad low side driver for in-ductive loads. The duty cycle of the internal gen-erated PWM signal is set by a microcontroller via a serial interface for each output. An output slope limitation for both dv/dt and di /dt is implemented to reduce RFI. The PWM generation is realized avoiding a simultaneous output switching. As a result, di/dt becomes smaller. Integrated flyback diodes clamp the output voltage during the fly-back phase of the low side switches.The driver is protected against short circuit. An undervoltage shutdown circuit switches off all out-puts if V cc is less then V ccu. Below the shutdown voltage all outputs remain in off state regardless of the input state. After each malfunction which resets the driver, only the serial link interface can reactivate the normal function. In case of overcur-rent (I out = I out1), an internal comparator switches the output off. The overcurrent information can be read via the serial link for each driver separately at the negative edge of the corresponding PWM signal.The interface to the microcontroller is realized with a 16 bit synchronous serial peripheral inter-face (SPI). If CS is switched low, the serial link becomes active and SDO goes to low impedance. At the rising edge of the SCLK signal, one of the 16 bit of data stored in a shift register appear se-quencely at SDO. These data contain the 8 error flags, the status of thermal diagnostic flag and the external reset sources RES1, RES2 and the over-current flgs c1...c4. The last bit is framing infor-mation (see fig. 7). At each falling edge of SCLK, one of the 16 bits of data sent by the microcon-troller is transferred via the SDI input to the driver. These data contain the duty-cycle information for the internal PWM generation (4 times 4 bit).On the rising edge of CS the previously stored in-formation is transferred to the circuits. SDO be-come now high impedance and SDI is inactive. The serial interface of the QLSD is cascadable with the serial link interface of another QLSD, thus obtaining a 32 bit serial link information wich can control eight inductive loads. For a safety data transfer the takeover of data bits is only real-ized when the number of SCLK - clocks is n x 16 (n ≥ 1).The PWM duty cycle is set by 4 bit for each out-put independently via the serial link. If all four bits for an output are zero, the output is turned off, but the error diagnosis will work correctly (see fig. 5 and 6). The PWM frequency is defined by an ex-ternal capacitor on the OSC pin. Rext defines through the reference current the output current slope, the diagnostic current sink and the internal oscillator frequency (together with C osc).For error diagnosis the voltage on the output is measured during the on and off state of the par-ticular output driver. Upon the rising edge of the PWM signal (at this moment the power output is off and will be switched on) the status of COMP1 is stored into an internal latch. On the falling edge of the PWM signal ( the power output is on and will be switched off) the status of COMP2 is stored into another internal latch. This information can be read via the serial link for each output driver separately (see fig. 7).The thermal diagnostic switch the thermal flag to 0 in case of overtemperature T ≥T sd. It will be switched to 1 with the hysteresis T sdth in case of T < T sd - T sdh.To avoid male functions due to extensive noise or spikes at the supply pins V CC, V S and R ext mustbe blocked externally via capacitors.Multiwatt15 VDIM.mminchMIN.TYP.MAX.MIN.TYP.MAX.A 50.197B 2.650.104C 1.60.063D 10.039E 0.490.550.0190.022F 0.660.750.0260.030G 1.02 1.27 1.520.0400.0500.060G117.5317.7818.030.6900.7000.710H119.60.772H220.20.795L 21.922.222.50.8620.8740.886L121.722.122.50.8540.8700.886L217.6518.10.6950.713L317.2517.517.750.6790.6890.699L410.310.710.90.4060.4210.429L7 2.65 2.90.1040.114M 4.25 4.55 4.850.1670.1790.191M1 4.63 5.08 5.530.1820.2000.218S 1.9 2.60.0750.102S1 1.9 2.60.0750.102Dia13.653.850.1440.152OUTLINE AND MECHANICAL DATAInformation furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronics.All other names are the property of their respective owners© 2003 STMicroelectronics - All rights reservedSTMicroelectronics GROUP OF COMPANIESAustralia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States。
din934
DIN9341. Introduction to DIN934DIN934 is a standard that specifies the requirements for metric hexagon nuts. These nuts are widely used in various applications and industries, including mechanical engineering, automotive industry, and construction. The standard ensures the compatibility and interchangeability of these nuts, making them a reliable choice for fastening purposes.2. FeaturesDIN934 nuts come with several features that make them suitable for different applications. Some of the key features are:2.1 Hexagonal ShapeDIN934 nuts have a hexagonal shape, which provides easy handling and tightening using standard tools like wrenches or spanners. The six-sided design also offers a secure grip and makes it less likely to slip during fastening.2.2 Metric ThreadThese nuts have a metric thread, which means they adhere to the metric system of measurement. The metric thread ensures compatibility with other metric fasteners, such as bolts and screws. This feature allows for the creation of strong and secure connections in a variety of applications.2.3 Strong and DurableDIN934 nuts are typically made from materials like steel or stainless steel, providing excellent strength and durability. These nuts can withstand heavy loads and high-pressure environments, making them suitable for applications that require reliable and long-lasting fastening solutions.2.4 Wide Range of SizesDIN934 nuts are available in a wide range of sizes, allowing for versatility in various applications. The sizes are specified in terms of thread diameter and pitch, ensuring compatibility with corresponding bolts and screws. This availability of different sizes makes DIN934 nuts suitable for both small-scale and large-scale projects.3. Standard Specifications and DimensionsThe standard specifies various dimensions and specifications for DIN934 nuts. Some of the key specifications include:•Thread size: M1.6 to M160•Thread pitch: Various options available•Hex width across flats: Corresponding to thread size•Nut height: Corresponding to thread size•Material: Steel, stainless steel, or other materials specified in the standardThese specifications ensure the consistency and uniformity of DIN934 nuts, allowing for easy interchangeability and compatibility with other components.4. ApplicationsDue to their reliable performance and versatility, DIN934 nuts find application in various industries and sectors. Some common applications include:•Machinery and equipment assembly•Automotive manufacturing and maintenance•Construction and infrastructure projects•Electrical and electronics equipment•Plumbing and pipe fittings•Furniture manufacturingThe use of DIN934 nuts in these applications ensures strong and secure connections, which are essential for the proper functioning and safety of the assembled components.5. Installation and RemovalInstalling and removing DIN934 nuts is a straightforward process. Here are the general steps to follow:1.Place the nut on the threaded bolt or stud.e a wrench or spanner to tighten the nut clockwise until it reachesthe desired level of tightness.3.To remove the nut, use the wrench or spanner to turn itcounterclockwise until it is completely loosened.4.If the nut is stuck or difficult to remove, applying lubricants or usingadditional tools like pliers or sockets can help ease the removal process.It’s important to ensure that the nut is securely tightened to prevent loosening or potential damage to the assembled components.6. ConclusionDIN934 nuts are a widely recognized and standardized choice for fastening applications. Their hexagonal shape, metric thread, durability, and wide range of sizes make them versatile and reliable. It is important to follow the specified dimensions and installation guidelines to ensure optimal performance and safety. Whether in machinery assembly, construction projects, or other industries, DIN934 nuts provide secure and long-lasting fastening solutions.。
L-934PGD中文资料
Note: 1. θ1/2 is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value.
Electrical / Optical Characteristics at TA=25° °
Notes: 1. 1/10 Duty Cycle, 0.1ms Pulse Width. 2. 2mm below package base.
Pu r e Gr een 105 25 135 5 -40°C To +85°C 260°C For 5 Seconds
Un its mW mA mA V
元器件交易网
T-1 (3mm) SOLID STATE LAMP
L-934PGD PURE GREEN
Features
! LOW
Description
The Pure Green source color devices are made with Gallium Phosphide Pure Green Light Emitting Diode. T-1 DIAMETER PACKAGE. PURPOSE LEADS. AND RUGGED.
SPEC NO: DSAB8361 APPROVED: J.LU
REV NO: V.2 CHECKED: Allen Liu
DATE:FEB/22/2003 DRAWN:Y.H.LI
PAGE: 1 OF 3
元器件交易网
Selection Guide
P ar t N o . Dic e L en s Ty p e Iv (m c d ) @ 10m A Min . L-934PGD PURE GREEN (GaP) GREEN DIFFUSED 1.8 Ty p . 5 V i ew i n g An g l e 2θ1/2 60°
ILI9342AN_V06
DB1 DB0
VPP
1
VPP
76 77 78 79 80
DB2 DB1 DB0 VSEL VPP
1
RESX
VCI
VCI TE
GND GND
81 82 83 84 85 86 87 88
VPP NRESET VCI VCI TE PWM_OUT DUMMY DUMMY
GND GND
89 90 91 92 93
Page 2 of 13
V0.3
V0.3
Page 3 of 13
whole or in part without prior written permission of ILI Technology Corp.
The information contained herein is the exclusive property of ILI Technology Corp. and shall not be distributed, reproduced, or disclosed in
21 22
BS3 BS2
IM0
23 24 25
BS1 BS0 NISD
SDA
VSYNC HSYNC
26 27 28 29 30
BURN REGVDD SDI SDO VSYNC
DOTCLK DE
GND GND
GND
31 32 33 34 35 36 37 38 39 40 41 42 43
HSYNC PCLK DE RS2 NCS2 E2 NWR2 DSI_VSS DSI_VSS DSI_CLKP DSI_CLKP DSI_VSS DSI_CLKN
非常难得的屏驱动电路及其程序
TC334_中文手册_F1V2.0
TC334中文手册目录1.概述 (1)2.特点 (1)3.应用 (2)4.管脚图示 (2)5.管脚描述 (2)6.芯片功能 (3)6.1初始化时间 (3)6.2灵敏度 (3)6.3自校正 (4)6.4触摸反应时间 (4)6.5输出逻辑 (4)6.6睡眠模式 (4)7.应用原理图 (4)8.模拟电压输出 (4)9.PCB版图注意事项 (5)10.额定值 (5)11.电气特性 (6)12.ESD特性 (6)13.封装尺寸图(SO-16) (6)1.概述人机接口要求更高的功能性和直观性,触摸式界面,迅速成为新的规范。
TC334是一个4按键电容传感装置。
该装置可以作为一个4键控制器。
2.特点☐可以控制4个按键☐自动灵敏度校正☐系统低成本☐一对一输出方式☐降低系统复杂度提高稳定性☐嵌入的共模干扰去除电路☐空闲状态可以节省功耗(4键功能)☐RoHS兼容的SO-16封装3.应用☐媒体播放器☐消费类电子☐家电应用☐键盘☐传统按键替换☐密封控制面板4.管脚图示5.管脚描述引脚名称输入/输出描述1VSS电源负极地参考2VREG模拟输出内部参考源输出3SEN模拟输入输出灵敏度电容4CX0模拟输入输出感应输入05CX1模拟输入输出感应输入16CX2模拟输入输出感应输入27CX3模拟输入输出感应输入310O3输出按键3输出11O2输出按键2输出12O1输出按键1输出13O0输出按键0输出14IDLE输入空闲使能端口15FUN输入功能选择端口16VCC电源正极供电电压输入SEN此管脚电容大小为15pf~100pf,电容越小灵敏度越高。
VREG内部参考源输出,接4.7nf电容。
CX0~CX3感应管脚,串联电阻是3KΩ。
O0~O3CX0~CX3的相应输出端口,有高阻和低电平两种状态。
IDLE设置为高电平时,如果75秒无按键,芯片进入空闲状态,否则会一直保持正常工作状态。
FUN接VSS6.芯片功能6.1初始化时间上电复位后,芯片需要300ms进行初始化,计算感应管脚的环境电容,然后才能正常工作。
ILI9341讲解
IC(ILI9341)讲解姚青华2011年5月15日讲解内容:•简单介绍•(一)ILI9341特点•(二)ILI9341框图•(三)芯片管脚★•(四)芯片尺寸•(五)块功能简述•(六)功能详述★•(七)命令寄存器★•(八)RAM•(九)同步信号TE •(十)省电模式•(十一)上电/断电顺序•(十二)功率等级定义•(十三)Gamma曲线设置•(十四)复位•(十五)电源配置电路•(十六)烧录•(十七)电气特性ILI9341是一颗单片系统级,262,144色,分辨率为240RGB X 320的TFT液晶驱动芯片。
芯片内部包括一个720个通道源驱动,320个通道门驱动器,一个172,800字节图形显示数据的GRAM 240 RGB X 320D点,并带有供电模拟电路。
解释:262,144色=R5 R4 R3 R2 R1 R0 ,G5 G4 G3 G2 G1 G0 ,B5 B4 B3 B2 B1 B0=2^6 X 2^6 X 2^6。
720个通道源驱动= 240RGB = 240 X 3 =720320个通道门,不言而喻172,800字节GRAM=(240x320x18)/8。
成本构成:通道源数+通道门数+GRAM大小+通信接口+模拟电路拓展:大尺寸屏的驱动通常是多个单独的通道源驱动和门驱动芯片驱动。
(一)ILI9341特点1、显示分辨率:[240xRGB](H)x320(V)。
2、输出:720源输出,320门输出,常见的电极输出VCOM。
3、GRAM:172,800字节。
4、接口:8/9/16/18位,8080模式MCU接口;6/16/18位RGB接口;3/4线串口。
5、显示模式:全彩模式(空闲模式关闭),26万色(颜色深度模式可由软件设定);减色模式(空闲模式),8色阶。
6、省电模式:睡眠模式。
7、片上功能:VCOM生成和调整;时序发生器;振荡器;直流/直流转换器;线翻转/帧翻转;独立的RGB伽马校正预设伽马曲线。
瑞士哈弗莱公司产品手册说明书
2763 / 2767 / 2769全自动互感器试验装置特点⏹ 单台仪器测量电流及电压互感器。
⏹ 全自动测量、数字显示电流/电压比误差、相移、试验电流及电压。
⏹ 可测量互感器的一次侧和二次侧的电流和电压。
⏹ 测试变压器和标准变压器的变比可以不同。
⏹高性价比:单台标准变压器即可测试不同的变压器;不同的标准变压器和试验变压器变比无需外部分压器即可相互匹配。
⏹ 可输入交互参数以简化操作。
⏹ 测量进行期间,微处理器监控所有输入和控制。
⏹ 2 x 16字符点阵,纯语言显示错误信息。
⏹ 测量耗时短。
⏹ 动态平均。
⏹ 精度高。
⏹ 固有负载低。
⏹ 可连接至外部打印机(RS 232C 接口) ⏹ 前板设有压电晶体制键盘。
⏹产品规格遵从IEC 60044-1, IEC 60044-2; IEC 60044-3; IEC 60044-7,ANSI/IEEE C57.13-1978 和 VDE 0414, part 2标准。
⏹ 含RS 232C接口用于连接计算机。
可选配件⏹ 遥控测量过程用- IEEE 488 接口 ⏹更多可选配件参见采购信息综述TETTEX 仪器公司出产的2767型电流/电压互感器自动测试装置是一款高效、精确的互感器测量仪,专为实验室、工业生产、质量管理及官方计量站应用而设计。
随着现今质量管理标准的日益严格,测量设备的操作舒适度和可靠性越发受到关注。
该款测试仪基于最新技术开发,开创了质量、可靠性、可操作性和可维护性上的新标准,在电流/电压误差、相位差和激励电流/激励电压的测量范围上,该仪器完全符合国际标准。
该仪器经过德国物理技术研究院(PTB )测试,校正核准,完全符合PTB 仪表变压器测试标准。
全套测试系统同时,TETTEX 仪器公司也设计并销售计算机控制电流和电压互感器测量设备,以满足客户的特定需求,它们包括: ⏹ 2767型组合测试装置,用于电流和电压比互感器测试。
⏹ 4760系列标准电流互感器(电流比较器)。
L-934SEC资料
Su p er B r ig h t Or an g e 75 30 195 5 -40°C To +85°C 260°C For 5 Seconds
Un its mW mA mA V
Note: 1. θ1/2 is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value.
Electrical / Optical Characteristics at TA=25°C °
Sy m b o l λpeak λD ∆λ1/2 C VF IR P ar am et er Peak Wavelength Dominate Wavelength Spectral Line Half-width Capacitance Forward Voltage Reverse Current D ev i c e Super Bright Orange Super Bright Orange Super Bright Orange Super Bright Orange Super Bright Orange Super Bright Orange Ty p . 610 601 29 30 2.0 2.5 10 Max . Un its nm nm nm pF V uA Tes t Co n d it io n s IF = 2 0 m A IF = 2 0 m A IF = 2 0 m A V F = 0 V;f= 1 M Hz IF = 2 0 m A VR = 5V
贴片稳压芯片bl9342参数
贴片稳压芯片BL9342参数一、BL9342芯片简介BL9342是一款贴片稳压芯片,具有高效、稳定、可靠的特点。
它适用于各种电子设备中的电源管理系统,能够提供稳定的电压输出,保障设备的正常运行。
二、BL9342芯片的主要参数BL9342芯片具有以下主要参数:1.输入电压范围:2.5V-5.5V2.输出电压范围:0.8V-3.6V3.输出电流:最大200mA4.输出电压精度:±2%5.软启动时间:约10ms6.过压保护:4.4V-4.6V7.短路保护:有8.超温保护:有9.工作温度范围:-40℃至+85℃10.封装形式:SOT-23-5三、BL9342芯片的功能特点1. 高效稳定BL9342芯片采用先进的稳压技术,能够在输入电压波动较大的情况下,保持输出电压的稳定性。
它能够有效地抑制电源噪声和纹波,提供高质量的电源输出。
2. 低功耗BL9342芯片在工作状态下具有较低的功耗,能够有效节省电池能量。
在待机或关机状态下,芯片能够进入低功耗模式,进一步降低功耗,延长电池寿命。
3. 多重保护BL9342芯片内置多重保护机制,能够有效保护电子设备和芯片本身的安全。
它具有过压保护、短路保护和超温保护功能,能够防止电路故障引起的损坏和安全问题。
4. 快速启动BL9342芯片具有快速启动功能,软启动时间约为10ms,能够快速响应设备的开机指令,提供稳定的电源输出。
四、BL9342芯片的应用领域BL9342芯片广泛应用于各种电子设备中的电源管理系统,包括但不限于以下领域:1.移动通信设备:智能手机、平板电脑、便携式音乐播放器等;2.消费电子产品:数码相机、便携式游戏机、蓝牙耳机等;3.工控设备:工业控制器、仪器仪表等;4.汽车电子:车载导航仪、车载音响等;5.家用电器:电视机、空调、冰箱等。
五、BL9342芯片的优势与劣势优势:•高效稳定的电源输出•低功耗,节省电池能量•多重保护机制,保障设备安全•快速启动,提供稳定的电源输出劣势:•输出电流较小,适用于低功耗设备,不适合高功耗设备六、BL9342芯片的未来发展趋势随着电子设备的不断发展,对电源管理系统的要求也越来越高。
L9341资料
L9341QUAD LOW SIDE DRIVERAVANCE DATADU/DT AND DI/DT CONTROLPWM CONTROLLED OUTPUT CURRENT SHORT CURRENT PROTECTION AND DI-AGNOSTICINTEGRATED FLYBACK DIODE UNDERVOLTAGE SHUTDOWNOVERVOLTAGE AND UNDERVOLTAGE DI-AGNOSTICOVERTEMPERATURE DIAGNOSTICDESCRIPTIONThe L9341is a monolithic integrated circuit real-ized in Multipower BCD-II mixed technology.The driver is intended for inductive loads in synchro-nous PWM applications,especially for valve driv-ers.The output voltage and current rise and fall slopes du/dt and di/dt are controlled.This is advanced information on a new product now in development or undergoing evaluation.Details are subject to change without notice.March 1994UNDERVOLTAGE SHUTDOWNDIAGNOSTICDRIVERSHORT CURRENT PROTECTIONCHANNEL 1CHANNEL 4CHANNEL 3CHANNEL 2VflythV offthCOMP1COMP2I OSCSDOSDISCLKRES1SERIAL INTERFACE&PWM CONTROLLBIAS7115148613511RES2310912REXTCS4OUT3OUT4GNDVSV sI I scc I OUT1I I OUT2OUT3I OUT4OSCCI GNDC BATD BATVccCO1CO2CCO3O4OUT2VCC2outsOUT1di /dt &du /dt CONTROLTHERMAL FLAG220nF10nF 10nF10nF10nF10uFR ext 12.4k 10nFΩBLOCK &APPLICATION DIAGRAMMultiwatt 15ORDERING NUMBERS:L9341VL9341HMULTIPOWER BCD TECHNOLOGY1/10ABSOLUTE MAXIMUM RATINGSSymbol ParameterValue Unit V CC V CC Voltage Range -0.3to 6V V S V S Voltage Range-0.3to 24V V spmax VS Voltage Range for t ≤400ms -2to 40V V st Schaffner Transient Pulses on V Ssee note 1VVin Input Voltage Range for SDI;SCLK;CS;RES1;RES2-0.3to V CC +0.3V outOutput Voltage Range for all Outputs:Negative Positive–0.3intern.clamped to V SV V I outOutput Current for all Outputs:Negative Positive–2+2A A for Transient with t <10ms Negative Positive–55A A Schaffner Transient Pulses on Outputsee note 2V ESDESD Voltage Capability (MIL 883C)1500V THERMAL DATASymbol ParameterValue Unit R th j-case Thermal Resistance Junction to Case3°C/W R th j-amb Thermal Resistance Junction to Ambient mounted on PC Board 35°C/W T sdh Thermal Hysteresis 20°C T sdThermal DiagnosticT j >150°CNotes:1.Schaffner transient specification:DIN 40839test waveforms of the following type:1,2,3a,3b,5and 6.The pulses are applied to the application circuit according to fig.3.2.The maximum output current results from the Schaffner pulses specified in note 1.PIN CONNECTION (Top view)L93412/10ELECTRICAL CHARACTERISTICS(Unless otherwise specified:8V≤V S≤24V;4.7V≤V CC≤5.3V;–40°C≤Tj≤150°C;I O≤1A(note3);I O≤1.5A;V sp=V S for t≤400ms;V OUTP=V OUT for t≤400ms;R ext=12.4KΩ±1%).Symbol Parameter Test Condition Min.Typ.Max.UnitI ccq V cc Quiescent Current All Outputs Off13mAI sq V s Quiescent Current All Outputs Off1425mAV ccu V cc Undervoltage Threshold See Note434 4.7V V ccr V cc Range for RES1and RES2Operation3VR on On Resistance I o=1A T j=125°CT j=25°C 750450mΩmΩI o off Off State Output Current Outputs Off1.4V≤V o≤V sV outp=V sp=40V 112.5410mAmAV outf Output Voltage During Flyback I o=1A Output OffT j=25°C T j=125°C V s+1.3V s+1.1VVI gndf Current to GND during Flyback(see note5)I o=1A Output OffV s=24VV sp=40V17204452mAmAI out r Reverse Leakage Current V sp-V o=40V500µA V inH High Input Level of SCLK,SDI,CS,RES1,RES20.7*V cc V cc+0.3VV inL Low Input Level of SCLK,SDI,CS,RES1,RES2–0.30.3*Vcc VV REShys Hysteresis of Reset InputsRES1,RES20.31VI inRESH Input Current on RES1,RES2RES i=H;-2V≤V sp≤8VRES i=H;8V≤V sp≤40V –1051010µAµAI in Input Current on SCLK,SDI,CS–2V≤Vsp≤40V–1010µA V SDOH High Level SDO Output Voltage I SDO=-1mA-2V≤V sp≤40V0.9*V cc V cc V V SDOL Low Level SDO Output Voltage I SDO=1mA-2V≤V sp≤40V00.4VI SDOZ SDO Tristate High-Z LeakageCurrent 0≤V SDO≤V cc–2V≤V sp≤40V–1010µAPWM duty PWM Duty Cycle1/1615/16 K f Frequency Accuracy Constant See Note60.93*K fn K fn 1.07*K fnV flyth Flyback Diagnostic ComparatorThreshold 40≥V sp≥8VV s≤8VV s–11.5V s–0.4VVV offth Off State DiagnosticComparator Threshold1.52VI outl Output Current Limitation Threshold see Note7 1.5 2.5A t dpo Delay Time PWM Signal to Out.515µs S ov Output Voltage Rise and FallSlope|du/dt|(from10to90%of V o)Fig.2 1.010V/µsS oc Output Current Rise and FallSlope|di/dt|0.1≤Io≤1.5A(from10to90%of I o)25125mA/µsNotes:3.The mean value is I o=1T∫I o(t)dtT;4.The outputs are switced off for Vcc≤Vccu.The logic is not reseted.For a reset,RES1or RES2must be used.5.This current is measured in the GND-terminal when one single output is in flyback and consists of the supply current added to the value of the output current source and the leakage current of the flyback diode.This leakage current is less than1%of the nominal flyback current.6.The PWM frequency is def ined by an external capacitor.The PWM oscillator frequency is:f pwm=f osc32with f osc=K fC osc⋅1A/V and k in=15⋅10-6;the range is:300Hz≤f pwm≤3000Hz.The OSC Pin can be alternatively driven by an external TTL/CMOS signal.7.For I out≥I outl an internal comparator switches the corresponding output off for the current PWM cycle.L93413/1015CLKPWM3PWM4PWM1PWM214131211109876543210Figure 1:Logic Diagram of PWM Generation.+12VI sI s12V01A1A00du/dtdu/dt di/dtdi/dt di/dtdi/dt 5%5%Internal PWM SignalI ICurrent through Flyback Diode Current through Low Side SwitchI GNDout V outt dpo outt dpof I fD DMOSDOUTV sDI fOutput Voltage V20mH510nF220nFFigure 2:Output Switching Diagram.220nFD1Schaffner Generator4x 10nF-2V to 40VVsGNDOUT1OUT2OUT3OUT44x 1nF+12V10uFVCC+5VFigure 3:Test Circuit for Schaffner Pulses.INTERNAL CLOCKL93414/10MSB 14131211321LSB MSB14131211321LSBSCLK SDI SDOCS SCLK SDISDO t clcl t chclt cht clt clcht chcht sut ht dt clzt oht zch1514015CSFigure 4:SynchronousSerial Interface Protocol.f clock Clock Frequencymin.DC max.2MHzt ch Width of Clock Input High Puls min.200ns t cl Widh of Clock Input Low Puls min.200ns t cicl Clock Low Before CS Low min.200ns t chcl Clock High After CS Low min.200ns t clch Clock Low Before CS High min.200ns t chch Clock High After CS High min.200ns t ciz SDO Low-Z CS Low min.0ns max.400ns t zch SDO High-Z CS High max.400nst su SDI Input Setup Time min.80ns t h SDI Input Hold Timemin.80nst d SDO Output Delay Time (C L =50pF)max.100nst ohSDO Output Hold Timemin.0nsL93415/10L9341Figure5:PWM Generation Function Table.Bit3-0PWM1PWM2PWM3PWM4OUTPUT 000015/1615/1615/1615/16OFF 00011/1615/161/1615/16ON 00102/1614/162/1614/16ON 00113/1613/163/1613/16ON 01004/1612/164/1612/16ON 01015/1611/165/1611/16ON 01106/1610/166/1610/16ON 01117/169/167/169/16ON 10008/168/168/168/16ON 10019/167/169/167/16ON 101010/166/1610/166/16ON 101111/165/1611/165/16ON 110012/164/1612/164/16ON 110113/163/1613/163/16ON 111014/162/1614/162/16ON 111115/161/1615/161/16ONFigure6:PWM Information From Microcontroller to QLSD. Contents0P10PWM Duty Cycle for Channel1/Bit0:LSB1P11PWM Duty Cycle for Channel1/Bit12P12PWM Duty Cycle for Channel1/Bit23P13PWM Duty Cycle for Channel1/Bit3:MSB4P20PWM Duty Cycle for Channel2/Bit0:LSB5P21PWM Duty Cycle for Channel2/Bit1:6P22PWM Duty Cycle for Channel2/Bit2:7P23PWM Duty Cycle for Channel2/Bit3:MSB8P30PWM Duty Cycle for Channel3/Bit0:LSB9P31PWM Duty Cycle for Channel3/Bit1:10P32PWM Duty Cycle for Channel3/Bit2:11P33PWM Duty Cycle for Channel3/Bit3:MSB12P40PWM Duty Cycle for Channel4/Bit0:LSB13P41PWM Duty Cycle for Channel4/Bit1:14P42PWM Duty Cycle for Channel4/Bit2:15P43PWM Duty Cycle for Channel4/Bit3:MSB6/10Bit Contents0F11COMP1State at Positive Edge of PWM1(0:V out1>V flyth ;1:V out1<V flyth )1F12COMP2State at Negative Edge of PWM1(1:V out1>V offth ;0:V out1<V ofth )2F21COMP1State at Positive Edge of PWM2(0:V out2>V flyth ;1:V out2<V flyth )3F22COMP2State at Negative Edge of PWM2(1:V out2>V ofth ;0:V out2<V ofth )4F31COMP1State at Positive Edge of PWM3(0:V out3>V flyth ;1:V out3<V flyth )5F32COMP2State at Negative Edge of PWM3(1:V out3>V offth ;0:V out3<V ofth )6F41COMP1State at Positive Edge of PWM4(0:V out4>V flyth ;1:V out4<V flyth )7F42COMP2State at Negative Edge of PWM4(1:V out4>Voffth ;0:V out4<V ofth )8RES1Logic State of RES1Input (0:RES1=L ;1:RES1=H)9RES2Logic State of RES2Input (0:RES2=L ;1:RES2=H)10TSDF Thermal Diagnostic Flag (0:Overtemperature ;1:Normal )11C1Current at Negative Edge of PWM1(0:I out >I outl ;1:I out <I outl )12C2Current at Negative Edge of PWM2(0:I out >I outl ;1:I out <I outl )13C3Current at Negative Edge of PWM3(0:I out >I outl ;1:I out <I outl )14C4Current at Negative Edge of PWM4(0:I out >I outl ;1:I out <I outl )151Framing Information (always 1)Figure 7:Diagnostic Information from QLSD to Microcontroller.PWMV OUTPWM V OUT I Dt Ct VdPOPWMON t tminSample point COMP2Sample point COMP1dPOt t VPWMOFFtminSample point COMP2Sample point COMP1Fig.1Fig.2Figure 8.Fig.AFig.BNote:For safty diagnostic take notice of the following conditions:t PWMON ≥t dPOMAX +t C +t V (see Fig.A)t C =I D S OCMINt V =V outfmax S OVMINt PWMOF F ≥t dPOMAX +t V (see Fig.B)L93417/10FUNCTIONAL DESCRIPTIONThe U511is a PWM quad low side driver for in-ductive loads.The duty cycle of the internal gen-erated PWM signal is set by a microcontroller via a serial interface for each output.An output slope limitation for both dv/dt and di/dt is implemented to reduce RFI.The PWM generation is realized avoiding a simultaneous output switching.As a result,di/dt becomes smaller.Integrated flyback diodes clamp the output voltage during the fly-back phase of the low side switches.The driver is protected against short circuit.An undervoltage shutdown circuit switches off all out-puts if V cc is less then V ccu.Below the shutdown voltage all outputs remain in off state regardless of the input state.After each malfunction which resets the driver,only the serial link interface can reactivate the normal function.In case of overcur-rent(I out=I out1),an internal comparator switches the output off.The overcurrent information can be read via the serial link for each driver separately at the negative edge of the corresponding PWM signal.The interface to the microcontroller is realized with a16bit synchronous serial peripheral inter-face(SPI).If CS is switched low,the serial link becomes active and SDO goes to low impedance. At the rising edge of the SCLK signal,one of the 16bit of data stored in a shift register appear se-quencely at SDO.These data contain the8error flags,the status of thermal diagnostic flag and the external reset sources RES1,RES2and the over-current flgs c1...c4.The last bit is framing infor-mation(see fig.7).At each falling edge of SCLK, one of the16bits of data sent by the microcon-troller is transferred via the SDI input to the driver. These data contain the duty-cycle information for the internal PWM generation(4times4bit).On the rising edge of CS the previously stored in-formation is transferred to the circuits.SDO be-come now high impedance and SDI is inactive. The serial interface of the QLSD is cascadable with the serial link interface of another QLSD, thus obtaining a32bit serial link information wich can control eight inductive loads.For a safety data transfer the takeover of data bits is only real-ized when the number of SCLK-clocks is n x16 (n≥1).The PWM duty cycle is set by4bit for each out-put independently via the serial link.If all four bits for an output are zero,the output is turned off,but the error diagnosis will work correctly(see fig.5 and6).The PWM frequency is defined by an ex-ternal capacitor on the OSC pin.Rext defines through the reference current the output current slope,the diagnostic current sink and the internal oscillator frequency(together with C osc).For error diagnosis the voltage on the output is measured during the on and off state of the par-ticular output driver.Upon the rising edge of the PWM signal(at this moment the power output is off and will be switched on)the status of COMP1 is stored into an internal latch.On the falling edge of the PWM signal(the power output is on and will be switched off)the status of COMP2is stored into another internal latch.This information can be read via the serial link for each output driver separately(see fig.7).The thermal diagnostic switch the thermal flag to 0in case of overtemperature T≥T sd.It will be switched to1with the hysteresis T sdth in case of T<T sd-T sdh.To avoid male functions due to extensive noise or spikes at the supply pins V CC,V S and R ext must be blocked externally via capacitors.L9341 8/10MULTIWATT15PACKAGE MECHANICAL DATADIM.mm inchMIN.TYP.MAX.MIN.TYP.MAX.A50.197B 2.650.104C 1.60.063D10.039E0.490.550.0190.022F0.660.750.0260.030G 1.02 1.27 1.520.0400.0500.060G117.5317.7818.030.6900.7000.710H119.60.772H220.20.795L21.922.222.50.8620.8740.886L121.722.122.50.8540.8700.886L217.6518.10.6950.713L317.2517.517.750.6790.6890.699L410.310.710.90.4060.4210.429L7 2.65 2.90.1040.114M 4.25 4.55 4.850.1670.1790.191M1 4.63 5.08 5.530.1820.2000.218S 1.9 2.60.0750.102S1 1.9 2.60.0750.102Dia1 3.65 3.850.1440.152L93419/10L9341Information furnished is believed to be accurate and reliable.However,SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use.No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.Specifications men-tioned in this publication are subject to change without notice.This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without ex-press written approval of SGS-THOMSON Microelectronics.©1994SGS-THOMSON Microelectronics-All Rights ReservedSGS-THOMSON Microelectronics GROUP OF COMPANIESAustralia-Brazil-France-Germany-Hong Kong-Italy-Japan-Korea-Malaysia-Malta-Morocco-The Netherlands-Singapore-Spain-Sweden-Switzerland-Taiwan-Thaliand-United Kingdom-U.S.A.10/10。
L9349
RDSON 3, 4
300
450 750
mΩ
VZ RO VOUV 1-4
60 40 0.575 x VS 50
V kΩ V V V
VOUV hys 1- Hysteresis
4
∆VOUV 1-4,
2-3, 4-1, 3-2
Open Load Difference Voltage Threshold
∆VOUV hys Open Load Hysteresis
Values Tj1 Symbol Supply IVS OFF IVS ON DC Supply Current Off EN = 1.0V DC Supply Current On VS ≤ 14V; VIN, VEN = 2V 5 8 10 mA mA Parameter Test Conditions Min. Typ. Max. Min. Max. Values Tj2 Unit
Σt ≤ 15min 1) over life time
150
Parameters guaranteed by correlation
3/12
L9349
ELECTRICAL CHARACTERISTICS (VS = 4.5 to 32V; -40°C ≤ Tj1 ≤ 150°C < Tj2 ≤ TjDIS, unless other-wise specified.)
Values Tj1 Symbol IOUT-LE Parameter OUT leakage current Test Conditions Min. VOUT = 20V VS = 0V Typ. Max. 5 Min. Max. Values Tj2 Unit
驱动芯片为ILI9341初始化代码
TFT-LCD初始化代码Product Model: GST3D2051-FPC-ADriver IC:ILI9341 -Dot arrangement :240(RGB)×320LCD type :3.2’’TFTInterface :i80-system 16-bit interfaceOthers:驱动芯片为ILI9341,控制器LPC2220,总线方式,数据宽度16位void Init_DevTFTLcd(void){PINSEL2 &= 0xfffffff7;IO1DIR |= 0x00020000;TFTLCD_RESET_H;delay(1); //延时1msTFTLCD_RESET_L;delay(10);TFTLCD_RESET_H;delay(120);//////////////////这段代码对盛世创业和随珑(恒凯辉)的9341驱动芯片通用///////////////初始化寄存器的顺序没有前后之分,但对于寄存器的值很重要//////////////TRANS_W_REG(0x0011); //这句放到后面效果一样,//如下所有初始化的命令没有顺序关系delay(120); //延时60和延时120效果一样TRANS_W_REG(0x00CF);TRANS_W_DA TA(0x0000);TRANS_W_DA TA(0x0081); //参数为C1也可以TRANS_W_DA TA(0x0030);TRANS_W_REG(0x00ED);TRANS_W_DA TA(0x0064);TRANS_W_DA TA(0x0003);TRANS_W_DA TA(0x0012);TRANS_W_DA TA(0x0081);TRANS_W_REG(0x00E8);TRANS_W_DA TA(0x0085);TRANS_W_DA TA(0x0000); //参数为0x0010也可以TRANS_W_DA TA(0x0079); //参数为0x007A也可以TRANS_W_REG(0x00CB);TRANS_W_DA TA(0x0039);TRANS_W_DA TA(0x002C);TRANS_W_DA TA(0x0000);TRANS_W_DA TA(0x0034);TRANS_W_DA TA(0x0002);TRANS_W_REG(0x00F7);TRANS_W_DA TA(0x0020);TRANS_W_REG(0x00EA);TRANS_W_DA TA(0x0000);TRANS_W_DA TA(0x0000);TRANS_W_REG(0x00C0);TRANS_W_DA TA(0x002e); //参数0x0021也是可以的TRANS_W_REG(0x00C1);TRANS_W_DA TA(0x0012); //参数0x0013也是可以的TRANS_W_REG(0x00C5);TRANS_W_DA TA(0x0050); //参数0x003F也是可以的TRANS_W_DA TA(0x0019); //参数0x003C也是可以的TRANS_W_REG(0x00C7);TRANS_W_DA TA(0x0090); //参数0x00B3也是可以的//////////////////////////没有这里显示的是乱码//////////////////////////////右边屏幕空白,左边有字符显示但是是乱码,显示字符区的底色是蓝色//// //////////////供应商给的参考代码里面居然没有这两个命令/////////////////TRANS_W_REG(0x002A);TRANS_W_DA TA(0x0000);TRANS_W_DA TA(0x0000);TRANS_W_DA TA(0x0001);TRANS_W_DA TA(0x003F);TRANS_W_REG(0x002B);TRANS_W_DA TA(0x0000);TRANS_W_DA TA(0x0000);TRANS_W_DA TA(0x0000);TRANS_W_DA TA(0x00EF);//////////////////////////没有这里显示的是乱码/////////////TRANS_W_REG(0x0036); // Memory Access ControlTRANS_W_DA TA(0x00A8);//参数为0x00C8时右边屏幕空白,左边有字符显示但是是乱码,显示字符区的底色是蓝色//参数为0x0008时左边屏幕空白,右边有字符显示但是是乱码,显示字符区的底色是蓝色//参数为0x0013时左边屏幕空白,右边有字符显示但是是乱码,显示字符区的底色是红色//这里的值的设定和你的程序对寄存器的读写非常有关,参阅ILI9341的datasheetTRANS_W_REG(0x003A);TRANS_W_DA TA(0x0055);TRANS_W_REG(0x00B1);TRANS_W_DA TA(0x0000);TRANS_W_DA TA(0x0014); //参数分别为0x001B,0x0029,0x0014似乎影响不大TRANS_W_REG(0x00B6);TRANS_W_DA TA(0x000A);TRANS_W_DA TA(0x00A2);///////////这里的命令似乎不影响效果//////////////TRANS_W_REG(0x00F6);TRANS_W_DA TA(0x0001);TRANS_W_DA TA(0x0030);///////////////////////////////////////////////////////////////////////TRANS_W_REG(0x00F2);TRANS_W_DA TA(0x0000);TRANS_W_REG(0x0026);TRANS_W_DA TA(0x0001);/*TRANS_W_REG(0x00E0);TRANS_W_DA TA(0x000F);TRANS_W_DA TA(0x0024);TRANS_W_DA TA(0x0021);TRANS_W_DA TA(0x000C);TRANS_W_DA TA(0x000F);TRANS_W_DA TA(0x0009);TRANS_W_DA TA(0x004D);TRANS_W_DA TA(0x00B8);TRANS_W_DA TA(0x003C);TRANS_W_DA TA(0x000A);TRANS_W_DA TA(0x0013);TRANS_W_DA TA(0x000A);TRANS_W_DA TA(0x0005);TRANS_W_DA TA(0x0000);TRANS_W_REG(0x00E1);TRANS_W_DA TA(0x0000);TRANS_W_DA TA(0x001B);TRANS_W_DA TA(0x001E);TRANS_W_DA TA(0x0003);TRANS_W_DA TA(0x0010);TRANS_W_DA TA(0x0006);TRANS_W_DA TA(0x0032);TRANS_W_DA TA(0x0047);TRANS_W_DA TA(0x0043);TRANS_W_DA TA(0x0005);TRANS_W_DATA(0x000C);TRANS_W_DA TA(0x000B);TRANS_W_DA TA(0x0035);TRANS_W_DA TA(0x003A);TRANS_W_DA TA(0x000F);//上面的0x00E0和0x00E1的参数改为下面的参数效果似乎一样*/TRANS_W_REG(0x00E0); //Set GammaTRANS_W_DA TA(0x000F);TRANS_W_DA TA(0x0022);TRANS_W_DA TA(0x001C);TRANS_W_DA TA(0x001B);TRANS_W_DA TA(0x0008);TRANS_W_DA TA(0x000F);TRANS_W_DA TA(0x0048);TRANS_W_DA TA(0x00B8);TRANS_W_DA TA(0x0034);TRANS_W_DA TA(0x0005);TRANS_W_DA TA(0x000C);TRANS_W_DA TA(0x0009);TRANS_W_DA TA(0x000F);TRANS_W_DA TA(0x0007);TRANS_W_DA TA(0x0000);TRANS_W_REG(0x00E1); //Set GammaTRANS_W_DA TA(0x0000);TRANS_W_DA TA(0x0024);TRANS_W_DA TA(0x0007);TRANS_W_DA TA(0x0010);TRANS_W_DA TA(0x0007);TRANS_W_DA TA(0x0038);TRANS_W_DA TA(0x0047);TRANS_W_DA TA(0x004B);TRANS_W_DA TA(0x000A);TRANS_W_DA TA(0x0013);TRANS_W_DA TA(0x0006);TRANS_W_DA TA(0x0030);TRANS_W_DA TA(0x0038);TRANS_W_DA TA(0x000F);// TRANS_W_REG(0x0011); //前面的0x0011命令写在这里也是可以的// delay(120);TRANS_W_REG(0x0029);delay(10);TRANS_W_REG(0x002C); //没有这句就白屏,并闪烁//但是有的供应商给的参考代码里面没有这一句}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Description
The Super Bright Red source color devices are made with Gallium Aluminum Arsenide Red Light Emitting Diode.
Package Dimensions
Notes: 1. All dimensions are in millimeters (inches). 2. Tolerance is ±0.25(0.01") unless otherwise noted. 3. Lead spacing is measured where the lead emerge package. 4. Specifications are subject to change without notice.
元器件交易网
T-1 (3mm) SOLID STATE LAMP
L-934SRC-E SUPER BRIGHT RED
Features
!UL EFFICIENCY. !RELIABLE AND RUGGED. !IC COMPATIBLE/LOW CURRENT CAPABILITY.
SPEC NO: DSAA9363 APPROVED : J. Lu
REV NO: V.2 CHECKED :Allen Liu
DATE: JAN/16/2003 DRAWN: L.ZHANG
PAGE: 2 OF 3
元器件交易网
Super Bright Red
L-934SRC-E
Spectral Line Half-width Super Bright Red Capacitance Forward Voltage Reverse Current Super Bright Red Super Bright Red Super Bright Red
° Absolute Maximum Ratings at T)=25°C
Notes: 1. 1/10 Duty Cycle, 0.1ms Pulse Width. 2. 2mm below package base.
S u p er B r i g h t R ed 100 30 155 5 -40°C To +85°C 260°C For 5 Seconds
Un it s mW mA mA V
Sy m b o l λpeak λD ∆λ1/2 C VF IR Par am et er Peak Wavelength Dominate Wavelength D ev i c e Super Bright Red Super Bright Red Ty p . 660 6 40 20 45 1.85 2.5 10 Max . Un it s nm nm nm pF V uA Tes t Co n d it io n s I F =20mA I F =20mA I F =20mA VF=0V;f=1MHz I F =20mA V R = 5V
SPEC NO: DSAA9363 APPROVED : J. Lu
REV NO: V.2 CHECKED :Allen Liu
DATE: JAN/16/2003 DRAWN: L.ZHANG
PAGE: 3 OF 3
SPEC NO: DSAA9363 APPROVED : J. Lu
REV NO: V.2 CHECKED :Allen Liu
DATE: JAN/16/2003 DRAWN: L.ZHANG
PAGE: 1 OF 3
元器件交易网
Selection Guide
Par t No . L-934SRC-E Dic e SUPER BRIGHT RED (GaAlAs) L en s Ty p e WATER CLEAR Iv (m c d ) @20m A Min . 650 Ty p . 80 0 V i ew i n g An g l e 2θ1/2 50 °
Note: 1. θ1/2 is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value.
Electrical / Optical Characteristics at T)=25°C °