2008年全国线性代数卷
2008线性代数A参考答案
2007~2008学年第二学期《线性代数》A 卷参考答案及评分标准一、单项选择(每小题2分,共20分)请将正确选项前的字母填入下表中1、2-。
2、159206915-⎛⎫⎪-⎝⎭。
3、4。
4、213/21/2-⎛⎫⎪-⎝⎭。
5、 3 。
6、3。
7、 0 。
8、2。
9、1/λ。
10、222123122344x x x x x x x ++++ 三、计算题(1、2每小题6分,其余每小题6分,共40分)1、解:212223242322A A A A +++=1222232********* ……3分122201220011001---=1=- ……6分2、解:由AX A X =+有()A E X A -=()1002001002001101200101201111120112A E A ⎛⎫⎛⎫⎪ ⎪-=→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ……4分 200120012X ⎛⎫⎪∴=- ⎪ ⎪-⎝⎭……6分 3、解:由225A A E O --=有()()32A E A E E -+= ……3分320A E A E -+=≠有30A E -≠ 所以3A E -可逆 ……6分 且11(3)()2A E A E --=+ ……7分4、解:()1234310111512112370122318100001397000TTTTαααα⎛⎫ ⎪--⎛⎫⎪⎪- ⎪ ⎪-=→ ⎪ ⎪- ⎪ ⎪- ⎪⎝⎭ ⎪⎝⎭……3分 ∴1234,,,αααα线性相关,1234(,,,)2R αααα=,12,αα是它的一个极大无关组,……4分且31241237, 222αααααα=-=+. ……7分5、解:矩阵A 的特征方程为0)1)(2(163530642=--=-+--=-λλλλλλA E得特征值 12321==-=λλλ ……3分当21-=λ时有⎩⎨⎧=-=+⎪⎩⎪⎨⎧=-+=+=--00,036303306632313212121x x x x x x x x x x x 即它的基础解系是⎪⎪⎪⎭⎫ ⎝⎛-111,所以对应于21-=λ的全部特征向量是)0(111≠⎪⎪⎪⎭⎫⎝⎛-c c ……5分当132==λλ时有 02,6306306321212121=+⎪⎩⎪⎨⎧=+=+=--x x x x x x x x 即它的基础解系是向量⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-100012及,所以对应于132==λλ的全部特征向量是不全为零)2121,(100012c c c c ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛- ……7分6、解: 22020021201002000410011201001201001A E -⎛⎫⎛⎫⎪ ⎪---⎪⎪⎪⎪-⎛⎫=→⎪ ⎪⎪-⎝⎭⎪ ⎪- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭……3分112012001P -⎛⎫⎪∴=- ⎪ ⎪⎝⎭……6分 222123123(,,)24f x x x y y y=-+ ……7分 四、证明题(每题5分,共10分)1、证明:由 AB O = 有 12(,,,)s A X X X O = 即12(,,,)s AX AX AX O = 得i AX O = ()1,2,i s =即i X 为A X O =的s 个解 ……2分 显然12()(,,,)()s R B R X X X n R A =≤-即()()R A R B n +≤ ……3分 2、证明:()123,,3R ααα= ,()1234,,,3R αααα= 123,,ααα 线性无关 1234,,,αααα线性相关 则有 4112233m m m αααα=++ 成立 ……2分 设 112233454()0k k k k ααααα+++-=有 112233454112233()0k k k k k m m m ααααααα+++-++= 1411242234334()()()0k k m k k m k k m kαααα-+-+-+=……3分 ()1235,,,4R αααα=1235,,,αααα 线性无关则有141242343400k k m k k m k k m k -=⎧⎪-=⎪⎨-=⎪⎪=⎩ 解之有 12340k k k k ==== ……4分故 12354,,,ααααα-线性无关 即12354(,,,)4R ααααα-=……5分。
2008-2009学年线性代数试卷A及答案
华南农业大学期末考试试卷(A 卷)2008-2009学年第2学期 考试科目: 线性代数考试类型:(闭卷) 考试时间: 120 分钟学号 姓名 年级专业 题号 一 二 三 四 五 六 总分 得分 评阅人试卷说明: T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,1A -表示矩阵A 的逆矩阵,A 表示方阵A 的行列式, R (A )表示矩阵A 的秩, I 是单位矩阵.一. 选择题(本大题共5小题,每小题3分,共15分)在每小题的选项中,只有一项符合要求,把所选项前的字母填在题中括号内1. 设n B A 均为,阶方阵,满足等式0=AB ,则必有( C )(A) 0=A 或 0=B(B) 0=+B A () 0||=A 或 0||=B(D) 0||||=+B A2. 已知,,A B C 均为n 阶可逆方阵,且ABC I =,则下列结论必然成立的是( C )(A) ACB I = (B) BAC I = () BCA I = (D) CBA I =3.设有n 维向量组(Ⅰ):12,,,r ααα 和(Ⅱ):12,,,()m m r ααα> ,则( B )(A) 向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关() 向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关 (C) 向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关 (D) 向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关4.设n 元齐次线性方程组AX =0的系数矩阵A 的秩为r ,则AX =0有非零解的充分必要条件是( B )5. Matlab 软件中, 在命令窗口输入[1:3][321]'*, 显示ans=( D )二、填空题(本大题共6小题,每小题4分,满分24分)6. ⎪⎪⎪⎭⎫ ⎝⎛=100010021A ,则=-1A120010001-⎛⎫⎪ ⎪ ⎪⎝⎭. (A) r=n() r<n(C) r ≥n(D) r>n(A) 7 (B) 8 (C) 9 () 107. 设t ηηη,,,21 及t t ηληληλ+++ 2211都是非齐次线性方程组b A =X 的解向量,则=+++t λλλ 21______1__________.8. 矩阵20002023A a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与矩阵10002000B b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似, 则a b += . 9. 设123,1,1),0,2,3),1,0,1),k ααα===(((则当k = 时,α1,α2,α3 线性相关.10.设A 为三阶方阵,其特征值2,1,3,- 则*A = .11.已知二次型222123112132233(,,)2245f x x x x tx x x x x x x x =+-+++正定, 则t 的取值范围为 .三、计算题12.(7分) 已知100110,021A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭131011,002B ⎛⎫⎪=- ⎪ ⎪⎝⎭求:2T A AB +13.(8分)计算下列行列式3214214314324321四、解方程组14. (10分)求方程组123412341234311232x x x xx x x xx x x x⎧⎪--+=⎪-+-=⎨⎪⎪--+=-⎩的通解.五、解答题15.(10分)求下列向量组的秩,并求一个最大无关组:a1=(1, 2,-1, 4)T,a2=(9, 100, 10, 4)T, a3= (-2,-4, 2,-8)T.16. (8分) 已知1121 342 012A--⎛⎫⎪= ⎪⎪-⎝⎭,求A的伴随矩阵*A.17.(12分) 设212122221A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求一个正交阵P ,使1P AP -=Λ为对角阵.六、证明题18.(6分) 设向量组322211,a a b a a b +=+= 433,a a b += 144,a a b +=, 证明向量组4321,,,b b b b 线性相关.2008—2009第二学期《线性代数》(A )参考答案和评分标准一. 选择题(本大题共5小题,每小题3分,共15分)1. C2. C3. B4. B5. D二、填空题(本大题共6小题,每小题4分,满分24分)6. 120010001-⎛⎫⎪ ⎪⎪⎝⎭ 7. 18. 8 9. -1/2 10. 36 11. 405t -<<三、计算题12.T T A AB A E B 2(2)+=+=1001001001102010310021001112⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥⎪ ⎪ ⎪-+⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦3分100300110330021114⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪-⎝⎭⎝⎭ 5分 300030754⎛⎫ ⎪= ⎪ ⎪⎝⎭7分 13.将行列式第2、3、4列加到第1列上,得3214214314324321=32110214101431043210=101110222031104321------ 4分=10400440311--- 6分=160 8分14.11110111101111011131002410024111231/200121/200000⎛⎫⎛⎫⎛⎫------ ⎪ ⎪ ⎪--→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭ 4分 x x x x x x 1234340241--+=⎧⎨-=⎩,x x x x x x x x 1324132431-=-⎧⎨+=++⎩, 5分 取x x 2400⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得*120120η⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, 6分取x x 2410,01⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,x x 1311,02⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 8分 得齐次方程组基础解系为121110,0201ξξ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 9分通解为x x k kx x 12123411120101022010⎛⎫⎪⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭10分 15. 192192192210040820010110201900004480320000A ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦6分rank(A)=2 7分 所以向量组的秩为2. 8分 a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T 不成比例,所以 a 1,a 2为最大无关组. 10分16. 因为1*1,||A A A -=2分*1111||||A A AA A ---==4分 1||1A -=- 6分*1||1*A A -=-=121342012--⎛⎫ ⎪--- ⎪ ⎪-⎝⎭8分17.123(1)(1)(5),1,1,5A E λλλλλλλ-=-+--=-==, 3分对应于11λ=-,由 ()0A E x += 得111122ξ-⎛⎫ ⎪=- ⎪ ⎪⎝⎭,单位化,得111162p -⎛⎫ ⎪=- ⎪ ⎪⎝⎭; 6分 对应于21λ=,由 ()0A E x -= 得2110ξ-⎛⎫ ⎪= ⎪ ⎪⎝⎭,单位化,得211120p -⎛⎫⎪= ⎪ ⎪⎝⎭ 8分 对应于35λ=,由 (5)0A E x -= 得3111ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,单位化,得311131p ⎛⎫⎪= ⎪ ⎪⎝⎭. 10分 11162311162321063P ⎛⎫-- ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭,有1100010005TP AP P AP --⎛⎫⎪==Λ= ⎪ ⎪⎝⎭. 12分18. 设有4321,,,x x x x 使得044332211=+++b x b x b x b x即0)()()()(144433322211=+++++++a a x a a x a a x a a x 3分整理得 01100011000111001)(43214321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛x x x x a a a a 4分而011000110001110014321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛x x x x 有非零解,所以结论成立 6分。
全国2008年4月2008年4月高等教育自学考试
全国2008年4月2008年4月高等教育自学考试线性代数(经管类)试题课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式D=333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为()A .-15B .-6C .6D .152.设矩阵⎪⎪⎭⎫ ⎝⎛+d b a 04=⎪⎪⎭⎫ ⎝⎛-32c b a ,则( )A .a=3,b=-1,c=1,d=3B .a=-1,b=3,c=1,d=3C .a=3,b=-1,c=0,d=3D .a=-1,b=3,c=0,d=33.设3阶方阵A 的秩为2,则与A 等价的矩阵为( )A .⎪⎪⎪⎭⎫ ⎝⎛000000111B .⎪⎪⎪⎭⎫⎝⎛000110111C .⎪⎪⎪⎭⎫⎝⎛000222111 D .⎪⎪⎪⎭⎫⎝⎛3332221114.设A 为n 阶方阵,n ≥2,则A 5-=( )A .(-5)n AB .-5AC .5AD .5n A5.设A=⎪⎪⎭⎫ ⎝⎛4321,则*A=( )A .-4B .-2C .2D .46.向量组α1,α2,…αs ,(s >2)线性无关的充分必要条件是( )A .α1,α2,…,αs 均不为零向量B .α1,α2,…,αs 中任意两个向量不成比例C .α1,α2,…,αs 中任意s-1个向量线性无关D .α1,α2,…,αs 中任意一个向量均不能由其余s-1个向量线性表示7.设3元线性方程组Ax=b,A 的秩为2,1η,2η,3η为方程组的解,1η+2η=(2,0,4)T ,1η+3η=(1,-2,1)T ,则对任意常数k ,方程组Ax=b 的通解为( )A .(1,0,2)T +k(1,-2,1)TB .(1,-2,1)T +k(2,0,4)TC .(2,0,4)T +k(1,-2,1)TD .(1,0,2)T +k(1,2,3)T8.设3阶方阵A 的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是( )A .E-AB .-E-AC .2E-AD .-2E-A9.设λ=2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于( )A .41B .21 C .2 D .410.二次型f(x 1,x 2,x 3,x 4)=x 21+x 22+x 23+x 24+2x 3x 4的秩为( )A .1B .2C .3D .4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数试卷
12008-2009-1年秋线性代数期末试卷(A)一、单项选择题(每小题3分,共15分)1.设A 中有2n n -个以上元素为零,则A 的值为( ) A.大于零; B. 等于零; C. 小于零; D. 不能确定.2.设n 阶方阵A 有一个特征值为零,则下列说法正确的是( )A. 0;A =B. ();R A n =;C.A 可逆;D. A 的列向量组线性无关. 3. 设A 为n 阶方阵,若A 与n 阶单位矩阵等价,则方程组Ax b =有( )A. 无解;B. 有唯一解;C. 有无穷多解;D. 解的情况不能确定。
4. 设,A B 为三阶方阵,若A 可逆,()2R B =,则()R AB =( ) A. 0; B. 1; C. 2; D. 3。
5. 同阶方阵A 与B 相似的充要条件是( )A. 存在两个可逆矩阵P 与Q ,使得PAQ B =;B. 存在可逆矩阵P ,使得1P AP B -=;C. 存在可逆矩阵P ,使得T P AP B =;D. ()()R A R B =。
二、填空题(每小题3分,共15分)6.行列式1234003209156412a a a a 中4a 的代数余子式的值等于 。
7.若2λ=是可逆方阵A 的一个特征值,则方阵1212A -⎛⎫⎪⎝⎭必有一个特征值为 。
8.当t = 时,下列向量组()123(2,1,0),(3,2,5),10,6,a a a t ===线性相关。
9.设A 是三阶方阵,*A 是A 的伴随矩阵,已知12A =,则()1*32A A --= 。
10.二次型121323222f x x x x x x =++的秩等于 。
三、计算题(每小题10分,共50分)11. 若111121()11x x f x n x++=+,求(0)f 。
12.设矩阵111111111A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,矩阵X 满足*12A X A X -=+,求X 。
13. 问,a b 取何值时,向量()1,2,T b β=可由向量组()11,1,2T α=,()22,3,3Tα=,()33,6,Ta α=(1)唯一的线性表示, (2)无穷多的线性表示, (3)不能线性表示。
2008高考数学全国卷及答案文
2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-= ,,,一、选择题1.函数y = ) A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )A .B .C .D .3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( )A .10B .5C .52D .14.曲线324y x x =-+在点(13),处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°5.在ABC △中,AB c = ,AC b = .若点D 满足2BD DC = ,则AD=( )A .2133b c + B .5233c b -C .2133b c - D .1233b c +6.2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .2438.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22ex -B .2e xC .21ex +D .2+2ex9.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位10.若直线1x y a b+=与圆221x y +=有公共点,则( )A .221a b +≤B .221a b +≥ C .22111a b+≤D .2211a b +≥1 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B C D .2312.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120 ,则点A 到BCD △所在平面的距离等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)(注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .18.(本小题满分12分)(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 在数列{}n a 中,11a =,122n n n a a +=+. (Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S . 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.CDE AB21.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅰ)参考答案一、1.D 2.A 3.C 4.B 5.A 6.D 7.A 8.A 9.C 10.D 11.B 12.B二、13.9 14.12 15.12 16三、17.解:(1)由cos 3a B =与sin 4b A =两式相除,有:3cos cos cos cot 4sin sin sin a B a B b BB b A A b B b ==== 又通过cos 3a B =知:cos 0B >,则3cos 5B =,4sin 5B =,则5a =.(2)由1sin 2S ac B =,得到5c =.由222cos 2a c b B ac+-=,解得:b =最后10l =+18.解:(1)取BC 中点F ,连接DF 交CE 于点O , AB AC =, ∴AF BC ⊥,又面ABC ⊥面BCDE , ∴AF ⊥面BCDE , ∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠= ,90DOE ∴∠= ,即CE DF ⊥,CE ∴⊥面ADF , CE AD ∴⊥.(2)在面ACD 内过C 点做AD 的垂线,垂足为G . CG AD ⊥,CE AD ⊥, AD ∴⊥面CEG , EG AD ∴⊥,则CGE ∠即为所求二面角.AC CD CG AD ==,DG =,EG ==,CE =则222cos 2CG GE CE CGE CG GE +-∠==πarccos CGE ∴∠=-⎝⎭.19.解:(1)122n n n a a +=+,11122n nn n a a +-=+, 11n n b b +=+,则n b 为等差数列,11b =,n b n =,12n n a n -=.(2)01211222(1)22n n n S n n --=+++-+12121222(1)22n n n S n n -=+++-+两式相减,得01121222221n n n n n S n n -=---=-+ .20.解:设1A 、2A 分别表示依方案甲需化验1次、2次。
2007-2008第二学期线代试卷A及答案)
武汉理工大学教务处试题标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共12分)1、 2;2、 1;3、 21t ≠;4、k >二、选择题(每小题3分,共12分)1、 A ;2、 C ;3、 B ;4、 D 三、解答题(每小题9分,共36分)1、11(2,,)(2,,)1100011111100100020012000200011i in i n i n r r r r n nn n n D n nn n nn n==+++---=-------…..…(4分)()(1)(2)(1)1122000001(1)1(1)(1)()(1)1222000n n n n n n n n n n n n n n nn n n n -------+++=⋅=⋅⋅-⋅-=⋅⋅---...….(9分)2、记 121624,1713A A ---⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭,则121,1A A =-=;…..…………………………………..…..……...(4分)又1112767637,111112A A -----⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以1760011000037012A --⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭-。
………………………...(9分)3、由题意有010100001A B ⎛⎫⎪= ⎪ ⎪⎝⎭,100011001B C ⎛⎫⎪= ⎪ ⎪⎝⎭,……………..…………………………………………...(4分) 于是 010100100011001001A C ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以011100001X ⎛⎫⎪= ⎪ ⎪⎝⎭。
……….……………………………………...(9分)4、()123403481011,,,21043211αααα⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭~1011034801220244-⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭~10110122002200-⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭~10000104001100⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭………...(4分) 则()1234,,,3R αααα=,且123,,ααα线性无关,所以123,,ααα即为1234,,,αααα的一个极大无关组,(7分) 且412304αααα=+-;…………………………………………………………………………………..………...(9分) 或者取124,,ααα,312404αααα=+-;还可以取134,,ααα,2341144ααα=+四、解()2111,1111tA b t t tt -⎛⎫⎪=-- ⎪ ⎪-⎝⎭~2223110110111t tt t t t t t t ⎛⎫- ⎪--+-- ⎪ ⎪+-++⎝⎭~ 22321101100(1)(2)1t tt t t t t t t t t ⎛⎫- ⎪--+-- ⎪ ⎪-+---+⎝⎭…………………………….…………..………...(4分) 所以当12t t ≠-≠且时,方程组有唯一解;…………………………………..…………………………….……...(6分) 当2t =时,(),A b ~112403360001-⎛⎫⎪-- ⎪ ⎪⎝⎭()(),32R A b R A =≠=,所以方程组无解。
《2008线性代数》试卷参考答案(不完整版)
2 3 10
0
3
C1 证明:β = AZ 有解,Z0 = ⋮ ,则β = C1α1 + ⋯ + Cnαn,故(A,β)的列向 Cn 量组与 A 的列向量组等价,从而秩相等 反过来, (A,β)的列向量组与 A 的列向量组等价 故β可用α1, ⋯ ,αn线性表示 令β = C1α1 + ⋯ + Cnαn,则 Z0= C1 ⋮ 为 AZ=β的解 Cn
1 1 = (a + 2)(a − 1)2 a
当 a≠ −2, a ≠ 1 时,有唯一解; 当 a= 1时,无解; 当 a=-2 时,有无数解。 方程为-2x1+x2+x3=2,,x1+x2-2x3=4 对应齐次方程组基础解为 −1, − 1,1
T
求一特解为 x1=3,x2= 3 ,x3=0
2
10
−1 故通解为 a −1 + −1 六、证明题
n −2 n −1
n
=nn −1
1 + n +n + ⋯+ 0 0 ⋮ 0 0
n+1 2
n −1
0 0 0 0 ⋮ ⋮ 0 −1 −1 0
n+1 2
0 −1 ⋮ 0 0
n
−1 0 ⋮ 0 0
n
=nn −1 五、 a 1 解: A = 1 a 1 1
(−1)n+
n (n +1) 2
= nn −1
(−1)n(n+1)
1 1 1 3、解: A = ⋮ 1 1
2 1 1 ⋮ 1 1−n
3 1 1 ⋮ 1−n 1 ⋯ ⋯ ⋯ ⋱ ⋯ ⋯
2 n
⋯ n−2 n−1 ⋯ 1 1 ⋯ 1 1−n ⋱ ⋮ ⋮ ⋯ 1 1 ⋯ 1 1
2007-2008学年第1学期线性代数B期终考试试卷A
西南交通大学2007-2008 学年第(一)学期考试试卷课程代码 2100024 课程名称 线性代数B 考试时间 120 分钟阅卷教师签名:注意:1.答题前,请在密封线内清楚、正确地填写班级、学号、姓名;2.请将填空题和选择题的答案填写在指定的位置,写在其它地方不得分。
一、填空题(每空4分,共24分)1.设(111),(111)T T αβ==-,则T βα= ; 2.设{}V =X |AX =0,则V (是/不是)向量空间; 3.已知 3 阶方阵A 有特征值 -1,1,2,则2*2A A E +-= ; 4.设矩阵1234(,,,),A =αααα其中234,,ααα线性无关,且12332ααα=-,1234=+++βαααα,则 AX β= 的通解为: ;5.设3250326120531614A ⎛⎫⎪-- ⎪= ⎪- ⎪-⎝⎭,则A 的列向量组的一个最大线性无关组为: , ()A R = 。
二、选择题(每小题4分,共24分)班 级 学 号 姓 名密封装订线 密封装订线 密封装订线6.行列式 001100010020100003A ⎛⎫⎛⎫⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭求1A -=( )(A ) 100010121⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )1001002103⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ (C ) 001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D ) 00110021003⎛⎫ ⎪ ⎪⎪⎪ ⎪⎝⎭7.设 21201123()132013x x x f x x x x--=,则()f x 中3x 的系数为( )。
(A) -1 ; (B) 1 ; (C) -17 ; (D) 17 。
8.设 A B 、 均为 n 阶可逆方阵,下列各式正确的是( )。
(A) ||||A A λλ=; (B) 111()AB B A ---=; (C) ()T T T AB A B =; (D)||||||A B A B +=+。
全校各专业《线性代数》课程试卷及答案A卷
全校各专业《线性代数》课程试卷及答案A 卷试卷 A 考试方式 闭卷 考试时间(120分钟)一、选择题(本题共4小题,每小题4分,满分16分。
每小题给出的四个选项中,只有一项符合题目要求) 1、设A ,B 为n 阶方阵,满足等式0=AB,则必有( ) (A)0=A 或0=B ; (B)0=+B A ; (C )0=A 或0=B ; (D)0=+B A 。
2、A 和B 均为n 阶矩阵,且222()2A B A AB B +=++,则必有( ) (A) A E =; (B)B E =; (C ) A B =. (D) AB BA =。
3、设A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是( )(A) A 的列向量线性无关; (B) A 的列向量线性相关; (C ) A 的行向量线性无关; (D) A 的行向量线性相关. 4、 n 阶矩阵A 为奇异矩阵的充要条件是( ) (A) A 的秩小于n ; (B) 0A ≠;(C) A 的特征值都等于零; (D) A 的特征值都不等于零; 二、填空题(本题共4小题,每题4分,满分16分)5、若4阶矩阵A 的行列式5A =-,A *是A 的伴随矩阵,则*A = 。
6、A 为n n ⨯阶矩阵,且220A A E --=,则1(2)A E -+= 。
7、已知方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+43121232121321x x x a a 无解,则a = 。
8、二次型2221231231213(,,)2322f x x x x x tx x x x x =++++是正定的,则t 的取值范围是 。
三、计算题(本题共2小题,每题8分,满分16分)9、计算行列式1111111111111111x x D y y+-=+-10、计算n 阶行列式121212333n n n n x x x x x x D x x x ++=+四、证明题(本题共2小题,每小题8分,满分16分。
最新-2008年-自考-线性代数-经管类-真题详细答案
全国2007年4月高等教育自学考试线性代数(经管类)参考答案课程代码:-、单项选择题(本大题共 10小题,每小题2分,共20分) 1.设A 为3阶方阵,且|A| = 2,则|2A 」卜(D ) A . -4B . -11311|2A| = 23|A| =84 .Ax=0有非零解:二r (A ) :: A 的列向量组线性相关.8 .设3元非齐次线性方程组 Ax=b 的两个解为。
=(1,0,2)T , P =(1,一1,3)T ,且系数矩阵A 的秩r (A )=2 ,意常数k, k 1, k 2,方程组的通解可表为( C ) A . k 1(1,0,2)T +k 2(1,-1,3)TB . (1,0,2)T +k (1,-1,3)T041842 .设矩阵 A= (1, 2), B=A . ACBB . ABC(1 I 42323,则下列矩阵运算中有意义的是(5 6C . BACCBA3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是(TTTA . A + AB . A - AC . AA■a b )*设2阶矩阵A= I ,则 A = ( A)l c d丿(d—b \f-d c 、(-d b 、(d —c \iB .C .D .i<_c a丿b~aJ< c~a)(—ba丿3 -10 -n i-3"i巾-1 'A''1、1 - A .B .C .14 D .33丿I 13丿G 1丿I-1 0 丿设矩阵A=-2A .所有2阶子式都不为零B .所有 2阶子式都为零C .所有3阶子式都不为零D .存在一个3阶子式不为零7 .设A 为mxn 矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是A . A 的列向量组线性相关B . A 的列向量组线性无关C . A 的行向量组线性相关D . A 的行向量组线性无关则对于任(A-A T )T 二A T -(A T )T 二 A T — A = -(A-A T ),所以 A - A T 为反对称矩阵.A.)矩阵4 .3的逆矩阵是(1 -1精品文档C . (1,0,2)T +k (0,1,-1)TD . (1,0,2)T +k (2,-1,5)T为鳥 k(: - 一)=(1,0,2)T +k (0,1,-1)T .行成比例值为零.:-(1,0,2)T 是 Ax=b 的特解,:•---(0,1,-1)T 是 Ax=0 的基础解系,所以 Ax=b 的通解可表A . 4B . 3C . 2D . 1人-1-1 -1 3 九一3九一31 1 1| ZE — A|=-1 Z-1 -1=-1 九-1 -1 =仏—3) —1^—1 -1-1-1人—1-1-1 K-1-1 -1 丸—1I 1 11 1 11 1 1 1、■0 1 1 1、1 0 0 0、1 0 0 0 T 1 0 0 0T 0 1 1 1 1 0 0 00 0 0 00 0 0 00 0 0丿e 0 0 °」<00 0丿 C . B . 3 2,秩为2. A 二10小题,每小题(本大题共1、1的非零特征值为(19 .矩阵A= =(九一3)-3),非零特征值为 ■ =3 .10. 4元二次型 f (X 1,X 2,X 3,X 4)-2x 1x 2 - 2x 1x 3 - 2x 1x 4 的秩为共20分)二、填空题 11 .若 a i b i -0,i =1,2,3,则行列式a 1b 1 a 2b 1a 3b 1 a 1b 2 a 2b 2&3匕ag a 2b 3 &3匕12•设矩阵A=则行列式 |AT A|=__4__. |A TA 円 A T ||A 冃 A| 2*2)2 =4 .13.若齐次线性方程组811X 1 ' 812X 2 ' 813X 3 — 072^+822X2+823X 3=0有非零解,则其系数行列式的值为 031x 1+a 32x 2 +a 33x3 =°14.设矩阵A=10,矩阵B=A —E ,则矩阵B 的秩r (B )= 1」15 .向量空间 V={ X=(X 1,X 2,0)|X 1,X 2为实数}的维数为__2__ .16•设向量 a =(1,2,3) , P =(3,2,1),则向量 J B 的内积(a ,B )= _10_ 17 •设A 是4X 3矩阵,若齐次线性方程组 Ax=0只有零解,则矩阵 A 的秩18 .已知某个3元非齐次线性方程组 Ax=b 的增广矩阵A 经初等行变换化为:广0 B=A —E = 0 <0 0 1 ?1 0 , r(B)=2.0 0』r(A)= __3_-2-1,若a(a -1) 方程组无解,则 a 的取值为_0_.a =0时,r(A) =2 ,r(A) =3 .19 .设3元实二次型 f (X 1 , X 2 , X 3 )的秩为3,正惯性指数为2,则此二次型的规范形是 2-y 3.秩r =3,正惯性指数k =2,则负惯性指数r -k =3-2 =1 '1120.设矩阵A= 12 —a e 00、0为正定矩阵,则a 的取值范围是 .3丿 —-1 =1 0,-212 —a1 02 — a 0 =3(1 -a)>0 二 av1 .3三、计算题(本大题共 6小题,每小题9分,共54 分)123 23 321 .计算3阶行列式 249 49 9367 677123 23 3解: 249 49 9 =367 67 7「1 0 1 1 0 0『11 1 00 '「10 1 1 0 0210 0 1 0 T 01 -2 -2 1 0 T 0 1 -2 -2 1 0 L3 2 -5 0 0 h<0 2 -2 3 0 h27-2 b'20 2 2 00、'2 0 0-5 2 -1、 1 0 0 —5/2 1-1/2"T 0 1-2 -2 1 0 T 0 1 0 5 -1 1 T 0 1 0 5 -1 127-2 1」Q 0 27-21」0 1 7/2 -1 1/2丿100 20 3 200 40 9 =0 .300 60 71 022. 设A=-3 2 -5求A ,解:解: ■ -1I 入E — A|=-2-2咒T -(咒_^1) ―'4= ■ $ - 2咒―3 = '_1)^ ―3),特征值,1 = -1 ,对于‘1 =「1,解齐次线性方程组(E - A )x =0 :足一A =「2 一2}]1* ,1—2 -2丿 e 0 丿,X"| =_X 2X 2 =X2'基础解系为单位化为二k 1(-1,1,0,0,0)T k 2(-1,0,-1,0,1)T •25•设矩阵A 」1 2求正交矩阵P ,使P’AP 为对角矩阵.€ 1丿广_5/2 1 —1/2 A 」= 5 -1 1 7/2-11/223•设向量组:1(1,一1,2,1)丁 , :- 2(2,一2,4,一2)丁 , : 3(1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.<12 3 0、「1 23 0、 -1 -2 03T0 0 332460 0 0 0 0-2 -1 -4>e-4-4 一4丿1 2 3 0、巾 2 3 0、广1 2 0 -3"1广10 0 -3"0 -4 -4 -4T11 1T0 1 0 0 T0 1 00 0 0 3 30 0 1 1 0 0 110 0 1 1e 0丿1° 0 0 0丿1° 0 0」<0 0 0丿24 •求齐次线性方程组X 1 x 2X 1 X 2 - X 3X 3 X 5 =0=0的基础解系及通解.=01 1 0 0 1、1 10 0 1、1 10 0 1、 解:A = 1 1 -1 0 0 T0 0 -1 0 -1 T 0 0 -1 0 -1e 011 b<0 0 1 11>1。
2008-2009 线性代数B题及参考答案
D、 α 1 , α 2 , L , α s ( s ≥ 2 ) 都不是零向量
二、填空题,每空 3 分,共 10 空,30 分。
2 1 ,则 | A |= ( 3 2
(1)、设 A =
), A 的逆矩阵为(
) 。
(2)、设 A, B 是已知的 n 阶方阵,且 | A |≠ 0 ,则矩阵方程 AX = B 中的未知矩阵 X 为( ) 。 );二维向量 a1 = (1,1)T , a2 = (1, 0)T 将 b = (2,3) T
(3)写出二维单位向量 e1 , e2 (
表示为 a1 , a2 的线性组合(
) 。
(4)、m × n 阶线性方程组 Ax = b , R( A), R( A, b) 分别为系数矩阵的秩及增广矩阵的 秩,则当(
r
)无解,当(
r
)有唯一解 ,当(
r r
)有无穷多解
(5)、已知 α = (1,−1,2,0) T , β = (2,1,−2,−1) T ,则 α T β = ( 1 1 (6)、三阶方阵 A 的特征值为 1, , ,则 A −1 为( 2 3 三、计算题(每题 10 分,共 40 分)
α 3 = (2,1,2 )T
2 1 ,单位化后得 p 1 = 3 1 2
则所求正交阵为 P = ( p1 , p 2 , p 3 ) 。
50
)
(6)、向量组 α 1 , α 2 , L , α s ( s ≥ 2 ) 线性相关的充分必要条件是(
46
《线性代数》作业答题纸
专业及班级 姓名 学号 成绩
A、 α 1 , α 2 , L , α s ( s ≥ 2 ) 中至少有一个零向量 B、其中至少有一个向量是其余 s − 1 个向量的线性组合 C、 α 1 , α 2 , L , α s ( s ≥ 2 ) 中至少有两个向量成比例
2007-2008第一学期线代试卷A及标答
武汉理工大学教务处试题标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共15分)1、23-; 2、E ; 3、-15; 4、5t ≠; 5、 2 二、选择题(每小题3分,共15分)1、C2、A3、B4、C 5 、D 三、解答题(每小题8分,共32分)1、 121000121000(1)2121000121121n n n x xn x n xn n D x x n n x x n nn n-+-++⎡⎤==+⎢⎥⎣⎦+-+--………………(4分) (1)12(1)(1)2n n n n n x x --+⎡⎤=-+⎢⎥⎣⎦………………………………………………………………(8分) 2、 由题意(1,2)B AE = ……………………………………………………………………………………(4分)又BX A =,即(1,2)A E X A =,所以1(1,2)X E -=(1,2)E =……………………………………………(8分) 3、 记1200A A A ⎛⎫=⎪⎝⎭,则1111200A A A ---⎛⎫= ⎪⎝⎭, ……………………………………………………………(2分) 又*11211,10A A ⎛⎫== ⎪-⎝⎭,故112110A -⎛⎫= ⎪-⎝⎭ …………………………………………………………(4分)*21211,31A A -⎛⎫=-= ⎪-⎝⎭,故122131A --⎛⎫= ⎪-⎝⎭………………………………………………………(6分)所以12100100000210031A -⎛⎫⎪-⎪= ⎪- ⎪-⎝⎭。
…………………………………………………………………(8分) 4、记()1234,,,A αααα=,对A 进行行初等变换,将其化为行最简形:1211241012213631A -⎛⎫ ⎪-⎪= ⎪--- ⎪-⎝⎭~1211003200320064-⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭~121100320000000-⎛⎫⎪- ⎪ ⎪⎪⎝⎭~11203201300000000⎛⎫-⎪⎪⎪-⎪ ⎪⎪ ⎪⎝⎭…………………(4分)()2R A =,又显然13,αα线性无关,所以13,αα即为原向量组的一个最大无关组;………………………(6分)且212αα=,4131233ααα=--。
全国2008年10月高等教育自学考试线性代数试题
全国2008年10月高等教育自学考试线性代数试题课程代码:02198说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.已知矩阵A= ,B= ,则AB-BA=()A. B.C. D.2.设A为3阶方阵,且,则|A|=()A.-9B.-3C.-1D.93.设A、B为n阶方阵,满足A2=B2,则必有()A.A=BB.A=-BC.|A|=|B|D.|A|2=|B|24.设A、B均为n阶可逆矩阵,且AB=BA,则下列结论中,不正确的是()A.AB-1=B-1AB.B-1A=A-1BC.A-1B-1=B-1A-1D.A-1B=BA-15.设向量α1=(a1, b1, c1),α2=(a2, b2, c2),β1=(a1, b1, c1, d1),β2=(a2, b2, c2, d2),下列命题中正确的是()A.若α1,α2线性相关,则必有β1,β2线性相关B.若α1,α2线性无关,则必有β1,β2线性无关C.若β1,β2线性相关,则必有α1,α2线性无关D.若β1,β2线性无关,则必有α1,α2线性相关6.设m×n矩阵A的秩r(A)=n-3(n>3),α,β, 是齐次线性方程组Ax=0的三个线性无关的解向量,则方程组Ax=0的基础解系为()A.α,β,α+βB.β, ,-βC.α-β,β- -αD.α,α+β,α+β+7.已知是齐次线性方程组Ax=0的两个解,则矩阵A可为()A.(5,-3,-1)B.C. D.8.设A为n(n≥2)阶矩阵,且A2=E,则必有()A.A的行列式等于1B.A的逆矩阵等于EC.A的秩等于nD.A的特征值均为19.设矩阵A= ,则A的特征值为()A.1,1,0B.-1,1,1C.1,1,1D.1,-1,-110.已知矩阵A与对角矩阵D= 相似,则A2=()A.AB.DC.ED.-E二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格上填上正确答案。
2008级线性代数试题和答案 A卷
经济学院本科生09-10学年第一学期线性代数期末考试试卷 (A 卷)答案及评分标准一、填空题(每小题4分、本题共28分)1. 设A 为n 阶方阵, *A 为其伴随矩阵, 31det =A , 则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛*-A A 1541det 1_____ 2. 已知12,αα均为2维列向量, 矩阵),2(2121αααα-+=A , ),(21αα=B . 若行列式6A =, 则B = _____3.若,),,,(),,,,(2121k r r s s ==αααβααα,1),,,,(21+=k r s γααα 则),,,,,(21γβαααs r = _____4. 设A 为5阶方阵, 且4)(=A r , 则齐次线性方程组0*=x A (*A 是A 的伴随矩阵)的基础解系所包含的线性无关解向量的个数为 _____5. 设33()ij A a ⨯=是实正交矩阵, 且,a b T11=1,=(1,0,0)则线性方程组Ax b =的解是_____6. 若使二次型31212322213212242),,(x tx x x x x x x x x f ++++=为正定的, 则 t 的取值范围是 _____7. 设3阶方阵A 满足0322=--E A A , 且0<A <5, 则=A _____ 答案:(1) 3)1(n - (2)-2 (3) k +1 (4) 4(5) T)0,0,1( (6) 2<t (7)3二、单项选择题(每小题4分、本题共28分)1. 设A 为n 阶方阵, B 是A 经过若干次矩阵的初等变换后所得到的矩阵, 则有( ) (A) B A = (B) B A ≠(C) 若0=A , 则一定有0=B (D) 若0>A , 则一定有0>B 2. 设行列式3040222207005322D =--, 则第四行各元素代数余子式之和的值为 ( ) (A) 28 (B) -28 (C) 0 (D) 336 3. 设A 为m 阶方阵, B 为n 阶方阵, ⎪⎪⎭⎫ ⎝⎛=00BA C , 则 C 等于 ( )(A) B A (B) B A - (C) B A m n )1(- (D) B A n m +-)1( 4. 设n 维列向量组)(,,21n m m <ααα 线性无关, 则n 维列向量组m βββ ,,21线性无关的充分必要条件是 ( )(A) 向量组m ααα ,,21可由向量组m βββ ,,21线性表示 (B) 向量组m βββ ,,21可由向量组m ααα ,,21线性表示 (C) 矩阵),,(21m ααα 与矩阵),,(21m βββ 等价 (D) 向量组m ααα ,,21与向量组m βββ ,,21等价 5.设A 、B 为n 阶方阵, 且)()(B r A r =, 则( )(A) 0)(=-B A r (B) )(2)(A r B A r =+ (C) )()()(B r A r B A r +≤ (D) )(2)(A r AB r =6. 设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000000000000004,1111111111111111B A , 则A 与B ( ) (A )合同且相似 (B )合同但不相似( C ) 不合同但相似 (D) 不合同且不相似7.设21,λλ是矩阵A 的两个不同的特征值, 对应的特征向量分别为21,αα, 则221),(ααα+A 线 性无关的充分必要条件是 ( )(A )01≠λ (B )02≠λ ( C )01=λ (D) 02=λ 答案:CCC CCA A三、计算题(每小题8分、本题共32分)1.计算n +1阶行列式 nn n n d b d b d b a a a a D 00000022112101=+.解 分三种情况讨论:(1)当n d d d ,,,21 全不为0时,D 为箭型行列式且∑∑==--=-=====nk n kkk nn nk k k k c c d d d d b a a d d d a a a d b a a D jjd jb 1210212110;)(0000001(2)当n d d d ,,,21 中只有一个为0时,不妨假设0=i d ,则ni i i i ni i i inni i i i ni i ic cd d d d b a d d b d d a d b d b b d b d a a a a a a D i111111111111011000011+-+-+--+-↔-=-=-====+(3)当n d d d ,,,21 中有两个以上为0时,显然0=D .综合以上三种情况,我们有⎪⎩⎪⎨⎧=∃-=≠-=+-=∑0,;...),...,2,1(0;)(11211210i n i i i i k nk n kk k d i d d d d d b a n k d d d d d b a a D 2. 设矩阵A 满足关系式11)2(--=-C A B C E T , 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=1000210002101021,1000210032102321C B , 求A ? 解 在等式11)2(--=-C A B C E T 等号两边同时乘以C , 得[]TB C A 1)2(--=,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=--100021********21)2(,100021003210432121B C B C ,[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-=-1210012100120001)2(1TB C A . 3.设线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+++=+++-=+--=+--bx x x x x ax x x x x x x x x x x 43214321432143217107141253032(1)问:a , b 取何值时, 线性方程组无解、有解?(2)当线性方程组有解时, 试用基础解系表示通解.解 设题中线性方程组为.Ax b =用消元法, 对线性方程组Ax b =的增广矩阵A 施以行初等变换,化为阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛--−−−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛----=b-401000000-1001320b1-10初等行变换a a A 32117107141125313211 由此可知:当b ≠4时,)()(A r A r ≠ 线性方程组Ax b =无解; 当b =4时, 恒有)()(A r A r = 线性方程组Ax b =有解.若,3)()(,1==≠A r A r a 方程组有无穷多个解,通解为:T T )1,0,21,27()0,0,21,21(--+k k 为任意实数 若,2)()(,1===A r A r a 方程组有无穷多个解,通解为:T 2T 1T )1,0,21,27()0,1,23,21()0,0,21,21(--+-+k k 21k k 、为任意实数 4.设矩阵,,321101210,324202423*1Q A Q B Q A -=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛= 求E B 2010+的特征值和特征向量. 其中*A 是A 的伴随矩阵, E 为3阶单位矩阵. 解 计算A 的特征多项式32422423--------=-λλλλA E .)1()8(2+-=λλ故A 的特征值为1,8321-===λλλ. 因为.,,8*X AX A X AX A i λλλ====∏则若所以*A 的特征值为1,-8,-8.由于Q A Q B *1-=与*A 相似, 相似矩阵有相同的特征值,所以E B 2010+的特征值为:2011,2002,2002.下面求特征向量, 因为X Q A X A Q X Q Q A Q X Q B 1*11*11||))(()(-----===λ,我们有矩阵B 的属于λA的特征向量为X Q 1-, 因此矩阵E B 2010+的属于2010+λA的特征向量为X Q 1-第三步 求出A 的全部特征向量对于81=λ,求解线性方程组0)8(=-x A E 得特征向量 .2121⎪⎪⎪⎭⎫ ⎝⎛=α 对于132-==λλ,求解线性方程组0)(=--x A E 得特征向量.021,10132⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=αα第四步 求出E B 2010+ 的全部特征向量,即计算312111,,ααα---Q Q Q .,012,23223,23121,21211111212113121111⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=----αααQ Q Q Q综合以上分析我们有:矩阵E B 2010+属于特征值2011的特征向量为k ⎪⎪⎪⎪⎪⎭⎫⎝⎛--27121, k 为任意实数属于特征值2002的特征向量为 ,0122322321⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫⎝⎛--k k 21k k 、为任意实数四、证明题(每题6分,共12分)1. 已知向量组)1(,,,121>+s s s αααα 线性无关, 向量组s βββ,,21 可表示为),,2,1(1s i t i i i i =+=+ααβ, 其中i t 是实数. 证明s βββ,,21 线性无关.证明 用定义. 假设存在 s 个数s k k k ,,21 , 使 02211=+++s s k k k βββ , 即 0)()()(132222111=+++++++s s s s t k t k t k αααααα , 也就是0)()()(11133212221111=++++++++++--s s s s s s s t k k t k k t k k t k k ααααα .又因为)1(,,,121>+s s s αααα 线性无关, 所以上式中系数部分都为0, 即⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+=--0000112111s s s s s t k k t k k t k k 解得 021====s k k k , 故s βββ,,21 线性无关. 2. 设n 阶矩阵 A 满足022=-+E A A 且E A ≠. 证明A 相似于对角矩阵.证 由022=-+E A A 可得 ))(2(0)2)((E A A E A E A E ---==+- (1)可得A 的特征值为 1或 -2,要证明A 相似于对角矩阵,也就是A 可以对角化,即要证明A 有n 个线性无关的特征向量。
2008年全国考研数学一真题及答案.doc
2008年考研数学一真题一、选择题(18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)设函数,则的零点个数为(A)0 (B)1(C)2 (D)3【答案】B。
【解析】且,则是唯一的零点综上所述,本题正确答案是B。
【考点】高等数学—一元函数积分学—积分上限的函数及其导数(2)函数在点处的梯度等于(A)(B)(C)(D)【答案】A。
【解析】所以综上所述,本题正确答案是A。
【考点】高等数学—多元函数微分学—方向导数和梯度(3)在下列微分方程中,以为任意常数为通解的是(A)(B)(C)(D)【答案】D。
【解析】由通解表达式可知其特征根为可见其对应特征方程为故对应微分方程为综上所述,本题正确答案是D。
【考点】高等数学—常微分方程—高于二阶的某些常系数齐次线性微分方程(4)设函数在内单调有界,为数列,下列命题正确的是(A)若收敛,则收敛(B)若单调,则收敛(C)若收敛,则收敛(D)若单调,则收敛【答案】B。
【解析】【方法一】由于单调,单调有界,则数列单调有界,根据单调有界准则知数列收敛。
【方法二】排除法:若取,,则显然单调,收敛,但,为偶数为奇数,显然不收敛,排除A。
若取,显然收敛且单调,但不收敛,排除C和D。
综上所述,本题正确答案是B。
【考点】高等数学—函数、极限、连续—函数的有界性、单调性、周期性和奇偶性,极限存在的两个准则:单调有界准则和夹逼准则(5)设为阶非零矩阵,为阶单位矩阵,若,则(A)不可逆,不可逆(B)不可逆,可逆(C)可逆,可逆(D)可逆,不可逆【答案】C。
【解析】因为所以可知可逆,可逆综上所述,本题正确答案是C。
【考点】线性代数—矩阵—矩阵的概念和性质,矩阵可逆的充分必要条件(6)设为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如右图所示,则的正特征值的个数为(A)(B)1(C)2 (D)3【答案】B。
【解析】所给图形为双叶双曲线,标准方程为二次型正交变换化为标准形时,其平方项的系数就是的特征值,可知的正特征值的个数为1综上所述,本题正确答案是B。
08-09(1)线性代数A-参考答案与评分标准
广州大学2008-2009学年第一学期考试卷参考答案与评分标准课 程:线性代数 考 试 形 式: 闭卷 考试一.填空题(每小题3分,共15分)1.行列式524210321--中(2,3)元素的代数余子式A 23的值为__-10__ 2.设A 是4阶方阵,A =-2,则*A -=___-8___3.向量组α1=(1,2,-1,1), α2=(2,0,3,0), α3=(-1,2,-4,1)的秩为__2__4.若α1,α2,α3都是齐次线性方程组Ax=0的解向量,则A (3α1-5α2+2α3)=__0__.5.已知0=λ是方阵A 的一个特征值,则|A|= 0___二.单项选择题(每小题3分,共15分)1.设n 阶方阵A 中有n 2-n 个以上元素为零,则A 的值【 B 】A .大于零B .等于零C .小于零D .不能确定2.设n 阶方阵A ,B ,C 满足ABC=E ,则必有【 D 】A .ACB=EB .CBA=EC .BAC=ED .BCA=E3.设3阶矩阶A=(α1,β,γ),B=(α2,β,γ),且A =2,B =-1,则B A += 【 A 】A .4B .2C .1D .-44.设A 是3阶可逆矩阵, A 的第2行乘以2为矩阵B ,则1-A 的【 C 】为1-BA .第2列乘以2; B. 第2行乘以2;装┋┋┋┋┋┋┋订┋┋┋┋┋┋┋┋线┋┋┋┋┋┋┋┋┋装┋┋┋┋┋┋┋┋┋订┋┋┋┋┋┋线┋┋┋┋┋┋┋学院 系专业班级 学号姓名C. 第2列乘以21; D. 第2行乘以21. 5.设A 为m ×n 矩阵,则非齐次线性方程组Ax=b 有惟一解的充分必要条件是【 D 】A .m=nB .Ax=0只有零解C .向量b 可由A 的列向量组线性表出D .A 的列向量组线性无关,而增广矩阵A 的列向量组线性相关三.(本题8分)计算行列式3351110243152113------=D .解:331511204351213121-------=↔c c D 7216011206480213114125------=+-r r r r ……………………2分 7216064801120213132-----=↔r r 1510001080011202131242384----=-+r r r r ……………………………4分 402/50001080011202131344/5=---=+r r …………………………………………6分…………………………………………8分四.(本题8分)设矩阵3400430000200022A ⎛⎫ ⎪- ⎪=⎪ ⎪ ⎪⎝⎭,求4A 解: 记13443A ⎛⎫= ⎪-⎝⎭22022A ⎛⎫= ⎪⎝⎭2212343450434305A ⎛⎫⎛⎫⎛⎫== ⎪⎪⎪--⎝⎭⎝⎭⎝⎭44145005A ⎛⎫=⎪⎝⎭………………………………………………3分22232202020222222A ⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭442642022A ⎛⎫= ⎪⎝⎭………………………………………………6分4444141442264500000050000200022A A A A A ⎛⎫ ⎪⎛⎫⎛⎫ ⎪=== ⎪⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭…………8分┋┋┋┋┋ 装 ┋┋┋┋┋┋┋订┋┋┋┋┋┋┋┋线┋┋┋┋┋┋┋┋┋装┋┋┋┋┋┋┋┋┋订┋┋┋┋┋┋线┋┋┋┋┋┋┋学院系专业班级 学号姓名五.(本题10分)已知向量1110α-⎛⎫⎪=- ⎪ ⎪⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛=1322α,⎪⎪⎪⎭⎫ ⎝⎛=2133α,⎪⎪⎪⎭⎫ ⎝⎛=7054α,(1)试判定1α,2α,3α是向量组1α,2α,3α,4α的一个最大无关组(2)将4α用1α,2α,3α线性表出解:(1)12341235(,,,)13100127A αααα-⎛⎫ ⎪==- ⎪ ⎪⎝⎭122334123501250013r r r r r ÷---⎛⎫⎪−−−→-- ⎪ ⎪⎝⎭……………………………………………2分123233120401010013r r r r +---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭………………………………………………4分12(1)123412100601010013(,,,)r r r Bββββ-⨯-⎛⎫ ⎪−−−→ ⎪⎪⎝⎭= ………………………………………………6分由于()()3R A R B ==,且1β,2β,3β线性无关,所以1α,2α,3α是向量组1α,2α,3α,4α的一个最大无关组………………………………………………8分(2)由于对矩阵初等行变换,不改变列向量组的线性相关性所以412363αααα=++ …………… ……………………………10分六.(本题10分)已知⎪⎪⎪⎭⎫⎝⎛-=321011330A ,B A AB 2+=,求B 解:B A AB 2+=A B E A =-⇒)2( ……………………………………………2分021*********≠=⎪⎪⎪⎭⎫⎝⎛---=-E A …………………………………………4分所以1)2(--E A 存在,有A E A B 1)2(--=……………………………………6分()A E A 2-⎪⎪⎪⎭⎫ ⎝⎛----=321121011011330332⎪⎪⎪⎭⎫⎝⎛-++330110011011352310~23212r r r r ⎪⎪⎪⎭⎫ ⎝⎛----+022200363301352310~1312r r r r ⎪⎪⎪⎭⎫⎝⎛-÷↔011100352310363301~)2(312r r r ⎪⎪⎪⎭⎫ ⎝⎛---011100321010330001~323133r r r r ………………………8分 ⇒A E A B 1)2(--==⎪⎪⎪⎭⎫ ⎝⎛-011321330 ……………………………………………10分┋┋┋┋┋ 装┋┋┋┋┋┋┋订┋┋┋┋┋┋┋┋线┋┋┋┋┋┋┋┋┋装┋┋┋┋┋┋┋┋┋订┋┋┋┋┋┋线┋┋┋┋┋┋┋学院 系专业 班级 学号姓名七.(本题12分)求齐次线性方程组⎪⎩⎪⎨⎧=++-=++-=--+0377023520432143214321x x x x x x x x x x x x 的基础解系与通解解:对系数矩阵A 作初等行变换,变为行最简形矩阵,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=137723521111A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------81014045701111~121327r r r r …………………………3分 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----000045701111~232r r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----÷-00007/47/5107/37/201~)7(221r r r ……………………6分 便得⎪⎩⎪⎨⎧+=+=43243174757372x x x x x x ……………………………………………8分令⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛0143x x 及⎪⎪⎭⎫ ⎝⎛10,则对应有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛7/57/221x x 及⎪⎪⎭⎫ ⎝⎛7/47/3,即得基础解系 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=017/57/21ξ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=107/47/32ξ……………………………………………10分 并由此写出通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4321x x x x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=017/57/21c ⎪⎪⎪⎪⎪⎭⎫⎝⎛+107/47/32c ,),(21R c c ∈…………………………………12分八.(本题12分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00111100x A ,问x 为何值时,矩阵A 能对角化?解:λλλλλλλ---=---=-11)1(011110x E A ……………………………2分 )1()1(2+--=λλ得11-=λ,132==λλ ……………………………………………4分 对应单根11=λ,可求得线性无关的特征向量恰有一个,故A 可对角化的充分必要条件是对应重根132==λλ,有两个线性无关的特征向量,即方程0)(=-x E A 有两个线性无关的解,亦即系数矩阵E A -的秩为1………6分由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-10101101)(x E A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-000100101~x r ,……………………………8分 要1)(=-E A R ,得01=+x ,即1-=x ………………………………10分 因此,当1-=x 时,矩阵A 能对角化。
2008—数三真题、标准答案及解析
(22) (本题满分 11 分) 设 随 机 变 量 X 与 Y 相 互 独 立 , X 的 概 率 分 布 为 P X i
1 i 1, 0,1 , Y 的 概 率 密 度 为 3
1 0 y 1 fY y ,记 Z X Y 0 其它
(1)求 P Z
梅花香自苦寒来,岁月共理想,人生齐高飞! 第 - 2 - 页 共 14 页
(1)证明对任意实数 t ,有 (2)证明 G x
t 2
t
f x dx f x dx ;
0
2
x
0
2 f t t 2 f s ds dt 是周期为 2 的周期函数. t
所以 f y (0, 0) 存在.故选 B . (4)【答案】 A 【详解】用极坐标得
02 y 4
1
y
e y 1 y2 lim lim 0 y 0 y 0 y y
2
F u, v
D
f u 2 v2 u 2 v2
dudv dv
0
v
u f (r2 ) r 1
2 2
dxdy ,其中 Duv 为图中阴影部分,则
(D)
F ( u
)
(A) vf (u )
2
(B)
v f (u 2 ) u
(C) vf (u )
3
v f (u ) u
)
(5)设 A 为阶非 0 矩阵 E 为阶单位矩阵若 A 0 ,则(
A E A 不可逆, E A 不可逆. C E A 可逆, E A 可逆.
x c
x c x c
2 2 x c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 中国自考人()——700门自考课程 永久免费、完整 在线学习 快快加入我们吧!
全国2008年10月自学考试线性代数(经管类)试题
课程代码:04184
说明:在本卷中, A T 表示矩阵A 的转置矩阵,A*表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式,r(A)表示矩阵A 的秩.
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 为3阶方阵,且
=
=-||31
31
A A 则,( )
A .-9
B .-3
C .-1
D .9 2.设A 、B 为n 阶方阵,满足A2=B2,则必有( )
A .A=
B B .A= -B
C .|A|=|B|
D .|A|2=|B|2 3.已知矩阵
A=⎪⎭⎫ ⎝⎛-1011,B=⎪⎭⎫ ⎝⎛1101,则AB-BA=( ) A .⎪⎭⎫ ⎝⎛--12
01 B .⎪⎭⎫ ⎝⎛-1011 C .⎪⎭⎫ ⎝⎛1001 D .⎪⎭⎫ ⎝⎛0000
4.设A 是2阶可逆矩阵,则下列矩阵中与A 等价的矩阵是( )
A .⎪⎭⎫ ⎝
⎛0000 B .⎪⎭⎫ ⎝⎛0001 C .⎪⎭⎫ ⎝⎛0011
D .⎪⎭⎫ ⎝⎛1011 5.设向量),,,(),,,,(),,,(),,,(222221111122221111d c b a d c b a c b a c b a ====ββαα
,下列命题中正确的是( ) A .若21αα
,线性相关,则必有21ββ,线性相关 B .若21αα,线性无关,则必有2
1ββ,线性无关
第 2 页
C .若21ββ,
线性相关,则必有21αα,线性无关 D .若21ββ,线性无关,则必有2
1αα,线性相关 6.已知⎪⎪
⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-132,121是齐次线性方程组Ax=0的两个解,则矩阵A 可为( )
A .(5,-3,-1)
B .⎪⎭⎫ ⎝⎛-112
13
5 C .⎪⎭⎫ ⎝⎛--712321 D .⎪⎪⎭⎫ ⎝⎛----135221121
7.设m ×n 矩阵A 的秩r(A)=n-3(n>3),α,β,γ是齐次线性方程组Ax=0的三个线性无关的解向量,则方程组Ax=0的基础解系为( )
A .α,β,α+β
B .β,γ,γ-β
C .α-β,β-γ,γ-α
D .α,α+β,α+β+γ
8.已知矩阵
A 与对角矩阵D=⎪⎪⎭⎫ ⎝⎛--100010001相似,则A2=( ) A .A
B .D
C .E
D .-E
9.设矩阵A=⎪⎪⎭⎫ ⎝⎛00101
010
0,则A 的特征值为( )
A .1,1,0
B .-1,1,1
C .1,1,1
D .1,-1,-1
10.设A 为n(n ≥2)阶矩阵,且A2=E ,则必有( )
A .A 的行列式等于1
B .A 的逆矩阵等于E
C .A 的秩等于n
D .A 的特征值均为1
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
11.已知行列式0111032
12=-a
,则数a =__________.
第 3 页
12.设方程组⎩⎨
⎧=+=+020
22121kx x x x 有非零解,则数
k = __________. 13.设矩阵
A=⎪⎭⎫ ⎝⎛--311102,B=⎪⎭⎫ ⎝⎛753240,则A TB= __________. 14.已知向量组
⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=4212,0510,2001321
t ααα的秩为2,则数t= __________. 15.设向量的长度为则αα),1,21,1,2(-= __________.
16.设向量组α1=(1,2,3),α2=(4,5,6),α3=(3,3,3)与向量组β1,β2,β3等价,则向量组β1,β2,β3的秩为 __________.
17.已知3阶矩阵A 的3个特征值为1,2,3,则|A*|= __________.
18.设3阶实对称矩阵A 的特征值为λ1=λ2=3,λ3=0,则r(A)= __________.
19.矩阵A=⎪⎪⎭
⎫ ⎝⎛--314122421对应的二次型f = __________. 20.设矩阵A=⎪⎭⎫
⎝⎛-1002,则二次型xTAx 的规范形是__________.
三、计算题(本大题共6小题,每小题9分,共54分)
21.计算行列式D=5
0210113
2101
4321
---的值. 22.已知A=⎪⎭⎫ ⎝⎛-2141,B=⎪⎭⎫
⎝⎛-1102,C=⎪⎭⎫ ⎝⎛-1013,矩阵X 满足AXB=C ,求解X.
23.求向量β=(3,-1,2)T 在基α1=(1,1,2)T ,α2=(-1,3,1)T ,α3=(1,1,1)T 下的坐标,并将β用此基线性表示.
24.设向量组α1,α2,α3线性无关,令β1=-α1+α3,β2=2α2-2α3,β3=2α1-5α2+3α3.试确定向量组β1,β2,β3的线性相关性.
25.已知线性方程组⎪⎩⎪⎨⎧-=++-=++-=++32
2
321321321λλλλx x x x x x x x x ,
(1)讨论λ为何值时,方程组无解、有惟一解、有无穷多个解.
(2)在方程组有无穷多个解时,求出方程组的通解(要求用其一个特解和导出组的基础解系表示).
26.已知矩阵A=
⎪
⎪
⎭
⎫
⎝
⎛
1
1
1
1
1
1
1
1
1
,求正交矩阵P和对角矩阵Λ,使P-1AP=Λ.
四、证明题(本题6分)
27.设η为非齐次线性方程组Ax=b的一个解,ξ1,ξ2,…,ξr是其导出组Ax=0的一个基础解系.证明η,ξ1,ξ2,…,ξr线性无关.
中国自考人()——改写昨日遗憾创造美好明天!用科学方法牢记知识点顺利通过考试!
第 4 页。