数学高考(理)第一轮复习(江苏版):第15讲空间向量法解立体几何题经典精讲

合集下载

高三数学高考第一轮复习计划(10篇)

高三数学高考第一轮复习计划(10篇)

高三数学高考第一轮复习计划(10篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高三数学高考第一轮复习计划(10篇)2023高三数学高考第一轮复习计划(10篇)如何规划好数学第一轮的高考复习计划呢?制定详细的复习计划,学生需要好好把握做好复习计划,复习并不是某种意义上的“炒冷饭”,而是“温故而知新”。

数学立体几何解题技巧必看

数学立体几何解题技巧必看

数学立体几何解题技巧必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。

下面是小编给大家整理的一些数学立体几何解题技巧的学习资料,希望对大家有所帮助。

高考数学答题技巧:立体几何解答立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。

选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。

随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。

从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

知识整合1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2、判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3、两个平面平行的主要性质:(1)由定义知:“两平行平面没有公共点”。

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

苏教版高考总复习一轮数学精品课件 几何与代数 第八章 解答题专项第1课时 利用空间向量证明平行与垂直

苏教版高考总复习一轮数学精品课件 几何与代数 第八章 解答题专项第1课时 利用空间向量证明平行与垂直
形,//, ⊥ , = 2, = = = = 1,平
面 ⊥平面,为的中点.
解如图,取的中点,连接,在梯形中,由题意易知 ⊥ ,
∵ = ,为的中点,∴ ⊥ .
又平面 ⊥平面,∴ ⊥平面,
则 ⋅ = 0
2
+
2
2

2
,
= 0,所以 ⊥ ,所以 ⊥ .
由题可知 ⊥ ,且 ∩ = ,, ⊂平面,所以 ⊥平面.
规律方法
利用空间向量证明空间垂直、平行的一般步骤
(1)建立空间直角坐标系,建系时要尽可能地利用条件中的垂直关系.
由 ⋅ = 0 × 5 + 1 × 4 + × −3 = 0,得 ⊥ ,即平面 ⊥平面.
考向二 与平行、垂直有关的探索性问题
典例2(2023宿迁月考)如图,在直三棱柱 − 1 1 1 中,
1 1 = 1 1 ,为1 1 的中点,,分别是棱,1 上的点,且
∵ 1 ⊄平面, ⊂平面,∴ 1 //平面.
(2)若△ 是正三角形,为1 的中点,则能否在线段1 上找一点,使得1 //平
面?若存在,确定该点的位置;若不存在,请说明理由.
在线段1 上存在一点,使得1 //平面,此时是线段1 的中点,证明如下:
在直三棱柱 − 1 1 1 中,
∵ //1 ,∴ ⊥ , ⊥ .又∵ ⊥ ,∴ ,,两两垂直,
如图,以为原点,直线为轴,直线为轴,直线为轴,建立空
间直角坐标系.
设1 1 = 2,1 = 2,
∵点在线段1 上,∴设 = 1 ,0 ≤ ≤ 1,则 −1,0,2 ,
∴ ⋅ = 0 × −8 + 3 × 0 + 4 × 0 = 0,

(完整版)空间向量与立体几何知识点和习题(含答案)[1].doc

(完整版)空间向量与立体几何知识点和习题(含答案)[1].doc

∴∠ PB1Q 是异面直线 AM 和 CN 所成的角.
设正方体的棱长为 2,易知 B1P B1Q
5, PQ PC 2 QC 2 6,
cosPB Q ∴
1 B1P2
BQ 1
2
PQ2
2 ,
2B1 P B1Q5
∴异面直线 AM 和 C90°的角,因此按向量的夹角公式计算时,分子的数量积
由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线 l ⊥平面 ,取直线 l 的方向向量 a,则向量 a 叫做平面 的法向量.
由此可知,给定一点 A 及一个向量 a,那么经过点 A 以向量 a 为法向量的平面惟一确定.
(2) 用空间向量刻画空间中平行与垂直的位置关系: 设直线 l, m 的方向向量分别是 a, b,平面 , 的法向量分别是 u , v,则
(2) 空间向量的基本定理: ①共线 (平行 )向量定理:对空间两个向量
a, b(b≠ 0), a∥b 的充要条件是存在实数
,使得 a∥ b.
②共面向量定理:如果两个向量 a, b 不共线,则向量 c 与向量 a,b 共面的充要条件是存在惟一一 对实数 , ,使得 c= a+ b.
③空间向量分解定理:如果三个向量 a,b,c 不共面,那么对空间任一向量 p,存在惟一的有序实数
(4) 根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问 题.【复习要求】
1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表 示.
2.掌握空间向量的线性运算及其坐标表示. 3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量. 5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】

高三数学一轮复习 第九章《立体几何》9-1精品

高三数学一轮复习 第九章《立体几何》9-1精品
• (3)能用向量方法证明有关线、面位置关系的一些定理 (包括三垂线定理)
• (4)能用向量方法解决线线、线面、面面的夹角的计算 问题,体会向量方法在研究几何问题中的作用.
精选版ppt
7
• ●命题趋势
• 1.空间几何体
• 空间几何体是立体几何初步的重要内容,高考非常重视 对这一部分的考查.一是在选择、填空题中有针对性地 考查空间几何体的概念、性质及主要几何量(角度、距 离、面积、体积)的计算等.二是在解答题中,以空间 几何体为载体考查线面位置关系的推理、论证及有关计 算.
精选版ppt
9
• 3.空间向量与立体几何(理)
• 高考试题中的立体几何解答题,包括部分选择、填空题, 大多都可以使用空间向量来解答.高考在注重对立体几 何中传统知识和方法考查的同时,加大了对空间向量的 考查.给考生展现综合利用所学知识解决实际问题的才 能提供更宽阔的舞台.
• 这一部分高考命题主要有以下几个方面:
精选版ppt
27
• 1°球面被经过球心的平面截得的圆叫做大圆. • 2°不过球心的截面截得的圆叫做球的小圆.
精选版ppt
28
• (3)球面距离:
• 1°定义:在球面上两点之间的最短距离,就是经过这
两点的 在这两点间的一段
的长度,这个弧
长叫做两大点圆的球面距离.
劣弧
• 2°地球上的经纬线
• 当把地球看作一个球时,经线是球面上从北极到南极的 半个大圆,纬线是与地轴垂直的平面与球面的交线,其
• ②棱锥的高、斜高和斜高在底面内的射影组成一个直角 三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成 一个直角三角形.
• 4.棱台的概念及性质
• (1)定义:棱锥被 的部分叫做棱台.

【聚焦典型题】(苏教版)高考一轮数学(理):《立体几何中的向量方法》1.ppt

【聚焦典型题】(苏教版)高考一轮数学(理):《立体几何中的向量方法》1.ppt

A.α∥β
B.α⊥β
C.α、β 相交但不垂直 D.以上均不正确
3.已知A→B=(2,2,1),A→C=(4,5,3),则平面 ABC
的单位法向量为( ).
A.31,-23,32
B.-13,23,-23
C.±31,-23,32
D.32,13,-32
4.下列命题中,所有正确命题的序号为________. ①若 n1,n2 分别是平面 α,β 的法向量,则 n1∥ n2⇔α∥β; ②若 n1,n2 分别是平面 α,β 的法向量,则 α⊥β ⇔n1·n2=0; ③若 n 是平面 α 的法向量,a 与 α 共面,则 n·a =0; ④若两个平面的法向量不垂直,则这两个平面一 定不垂直.
组为nn··ba==00,.
考点梳理
(2)用向量证明空间中的平行关系 ①设直线 l1 和 l2 的方向向量分别为 v1 和 v2,则 l1∥l2(或 l1 与 l2 重合)⇔ v1∥v2 . ②设直线 l 的方向向量为 v,与平面 α 共面的两个不共线 向量 v1 和 v2, 则 l∥α 或 l⊂α⇔ 存在两个实数 x,y,使 v=xv1+yv2 . ③设直线 l 的方向向量为 v,平面 α 的法向量为 u,则 l∥α 或 l⊂α ⇔v⊥u. ④设平面 α 和 β 的法向量分别为 u1,u2,则 α∥β⇔u1∥u2.
第7讲 立体几何中的向量方法(一)
【2014年高考会这样考】
1.通过线线、线面、面面关系考查空间向量的坐标运算. 2.利用空间向量解决直线、平面的平行与垂直问题. 3.利用空间向量求空间距离.
抓住3个考点 突破3个考向 揭秘3高考 限时规范训练空间向量的坐标表示及运算
单击标题可完成对应小部 分的学习,每小部分独立 成块,可全讲,也可选讲

数学(理)一轮复习 第七章 立体几何 第讲 空间向量及其运算

数学(理)一轮复习 第七章 立体几何 第讲 空间向量及其运算

第6讲空间向量及其运算)1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在唯一的实数λ,使得a=λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p =x a+y b.(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=x a+y b+z c.其中{a,b,c}叫做空间的一个基底.2.两个向量的数量积(与平面向量基本相同)(1)两向量的夹角:已知两个非零向量a,b,在空间中任取一点O,作错误!=a,错误!=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉.通常规定0≤<a,b〉≤π.若<a,b〉=错误!,则称向量a,b 互相垂直,记作a⊥b。

(2)两向量的数量积两个非零向量a,b的数量积a·b=|a||b|cos〈a,b>.(3)向量的数量积的性质①a·e=|a|cos〈a,e〉(其中e为单位向量);②a⊥b⇔a·b=0;③|a|2=a·a=a2;④|a·b|≤|a||b|。

(4)向量的数量积满足如下运算律①(λa)·b=λ(a·b);②a·b=b·a(交换律);③a·(b+c)=a·b+a·c(分配律).3.空间向量的坐标运算(1)设a=(a1,a2,a3),b=(b1,b2,b3).a+b=(a1+b1,a2+b2,a3+b3),a-b=(a1-b1,a2-b2,a3-b3),λa=(λa1,λa2,λa3),a·b=a1b1+a2b2+a3b3,a⊥b⇔a1b1+a2b2+a3b3=0,a∥b⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),cos<a,b〉=错误!=错误!.(2)设A(x1,y1,z1),B(x2,y2,z2),则错误!=错误!-错误!=(x2-x1,y2-y1,z2-z1).4.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称错误!为直线l的方向向量,与错误!平行的任意非零向量也是直线l的方向向量,显然一条直线的方向向量可以有无数个.(2)平面的法向量①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为错误!5.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=01.辨明四个易误点(1)注意向量夹角与两直线夹角的区别.(2)共线向量定理中a∥b⇔存在唯一的实数λ∈R,使a=λb易忽视b≠0.(3)共面向量定理中,注意有序实数对(x,y)是唯一存在的.(4)向量的数量积满足交换律、分配律,但不满足结合律,即(a·b)c=a(b·c)不一定成立.2.建立空间直角坐标系的原则(1)合理利用几何体中的垂直关系,特别是面面垂直.(2)尽可能地让相关点落在坐标轴或坐标平面上.3.利用空间向量坐标运算求解问题的方法用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.1.已知a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),则下列结论正确的是( )A .a ∥c ,b ∥cB .a ∥b ,a ⊥cC .a ∥c ,a ⊥bD .以上都不对C 因为c =(-4,-6,2)=2a ,所以a ∥c 。

高三数学第一轮复习立体几何的综合问题知识精讲

高三数学第一轮复习立体几何的综合问题知识精讲

高三数学第一轮复习:立体几何的综合问题【本讲主要内容】立体几何的综合问题立体几何知识的综合应用及立体几何与其它知识点的综合问题【知识掌握】【知识点精析】1. 立体几何的综合问题融直线和平面的位置关系于平面与几何体中,有计算也有论证。

解决这类问题需要系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质.深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角的概念,理解点到面的距离、异面直线的距离的概念.2. 立体几何横向可与向量、代数、三角、解析几何等综合.3. 应用性问题、探索性问题需综合运用所学知识去分析解决.【解题方法指导】例1. 如图所示,在正方体ABCD—A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为()解析:P到直线BC的距离等于P到B的距离,动点P的轨迹满足抛物线定义.故选C.例2. 如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD,(Ⅰ)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明不论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°.(Ⅰ)解:∵PB⊥面ABCD,∴BA是PA在面ABCD上的射影,又DA⊥AB ∴PA⊥DA∴∠PAB是面PAD与面ABCD所成的二面角的平面角∴∠PAB=60°,PB=AB·tan60°=3a ,∴ V 锥=3233·3·31a a a =(Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为等腰三角形,作AE ⊥PD ,垂足为E ,连结CE ,则△ADE ≌△CDE ,因为AE =CE ,∠CED =90o,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角. 设AC 与BD 交于点O ,连结EO ,则EO ⊥AC ,所以a AD AE OA a =<<=22,22a AE <, 在△AEC 中,02222cos 222222222<-=-=∙-+=∠AE a AE AE a AE EC AE AC EC AE CEA 所以面PAD 与面PCD 所成的二面角恒大于90o。

基向量法解决立体几何问题

基向量法解决立体几何问题

AB (2)当 的值为多少时,才能使AC’⊥平面A’BD.请证明。 AA'
解:
AC' 平面A' BD AC' A' B且AC' A' D
AC' A' B 0且AC' A' D 0 (a b c) (a c) 0 (a b c) (b c) 0 2 m n m2 m n m n 2 m n 0 2 2 2 2 2 A m m n m2 m n m n n2 0 2 2 2 2 3m2 mn 2n2 0, 解得m n
A'
D'
C'
m2 mn ab ,a c bc 2 2
B'
D C
BD BA AD b a
AA' BD c (b a ) c b c a 0 所以 AA' BD.
A
B
线线线面垂直
13(2)在平行六面体AC’中,AB=AD,∠A’AD=∠A’AB=∠DAB=60º .
D'
C
A'
B'
D C
B
所以当AB / AA' 1时,AC' 平面A' BD.
线线线面垂直2
如图,60°的二面角的棱上有A、B两点,直线AC、BD分别在这个 二面角的两个半平面内,且都垂直AB,已知AB=4,AC=6,BD=
8,求CD的长.
C
A
解: CA 6 , AB 4 , BD 8 且 CA AB, BD AB , CA, BD 120

2024年高考数学一轮复习(新高考版)《向量法求空间角》课件ppt

2024年高考数学一轮复习(新高考版)《向量法求空间角》课件ppt
|n1·n2| cos θ=|cos〈n1,n2〉|= |n1||n2| .
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)两直线的方向向量所成的角就是两条直线所成的角.( × )
(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.
(×)
(3)两异面直线所成角的范围是0,π2,直线与平面所成角的范围是0,π2.
跟踪训练3 (2022·贵阳模拟)如图,AC,BD为圆柱OO′底面⊙O的两条 直径,PA为圆柱OO′的一条母线,且AP=AC.
(1)证明:AB⊥PD;
∵AC,BD为圆柱OO′底面⊙O的两条直径, ∴∠BAD=90°,∴AB⊥AD, ∵PA为圆柱OO′的一条母线,∴PA⊥AB, ∵PA∩AD=A,PA,AD⊂平面PAD, ∴AB⊥平面PAD,又PD⊂平面PAD,∴AB⊥PD.
设平面BCE的法向量为n=(x,y,z), 则nn··CC→→BE==2x+y=y+0, 2z=0, 取 z= 2,则yx==0-,2,
∴n=(-2,0, 2), 又AC=BC,则CN⊥AB, 又平面ABC∩平面ABE=AB,CN⊂平面ABC, ∴CN⊥平面 ABE,即C→N=(1,1,0)为平面 ABE 的一个法向量,
设平面ABE与平面BEC的夹角为θ,
则 cos θ=|cos〈n,C→N〉|=|n·C→→N|= |n||CN|
|-2| 2×
= 6
33,
∴平面 ABE 与平面 BEC 夹角的余弦值为 33.
思维升华
利用空间向量计算平面与平面夹角大小的常用方法 (1)找法向量:分别求出两个平面的法向量,然后通过两个平面的法向 量的夹角得到平面与平面夹角的大小. (2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂 直且以垂足为起点的两个向量,然后通过这两个向量的夹角可得到平 面与平面夹角的大小.

高考总复习课程--2019年高考数学(理)第一轮复习讲义 第15讲 空间向量法解立体几何题 经典精讲

高考总复习课程--2019年高考数学(理)第一轮复习讲义 第15讲 空间向量法解立体几何题 经典精讲

第讲空间向量法解立体几何题经典精讲题一:如图正方体中,点分
别为其所在棱的中点,则下面叙述错误的
是.
①点到面的距离相等
②与面的交点是三角形的
重心

④直线与面所成角为°
题二:正四面体中,分别是
的中点,则异面直线所成
角的余弦值是.
题三:如图,已知正方形和矩形
所在的平面互相垂直,,
()试在线段上确定一点,使得
与所成的角是︒;
()求二面角--的大小.
题四:直三棱柱中,底面为等腰直角三角
形,且,,分
别为、的中点,在面上
的射影为的重心,
()求证:平面
()求与面所成角的余弦值.
空间向量法解立体几何题经典精讲题一:④
题二:
题三:()当为中点时,与所成的角
是︒ () ︒
题四:()证明:∵为直棱柱,。

2022年高考数学(理)第二轮复习(江苏版)讲义:第15讲 立体几何与空间想象能力经典精讲

2022年高考数学(理)第二轮复习(江苏版)讲义:第15讲 立体几何与空间想象能力经典精讲

第15讲 立体几何与空间想象能力经典精讲 金题精讲
题一:正方体共有6个面,把各个面所在的平面展开,把空间分成___________部分.
题二:水平桌面α上放有4个半径均为2R 的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放一个半径为R 的小球,它和下面的4个球恰好相切,则小球的球心到水平桌面α的距离是__________.
题三:如图,某三棱锥的三视图如下图中三个等腰直角三角形,且直角边为2,则该三棱锥的体积为__________.
题四:设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线错误!未找到引用源。

旋转(02)θθπ<<后能与自身重合,那么符合条件的直线错误!未找到引用源。

有_______条.
题五:如图,在直三棱柱111C B A ABC -中,122AB BC AA ===,90ABC ︒∠=, D 是BC 的中点.
(Ⅰ)求证:1A B ∥平面1ADC ;
(Ⅱ)求二面角1C AD C --的余弦值;
(Ⅲ)试问线段11A B 上是否存在点E ,使AE 与1DC 成60︒角?若存在,确定E 点位置,若不存在,说明理由.
第15讲 立体几何与空间想象能力经典精讲
金题精讲
题一:27
题二:3R
题三:23
题四:13
题五:(Ⅰ)证明:连结1A C 交1AC 于点O ,连结OD ,因为四边形11AAC C 是矩形,所以O 是1A C 的中点,又因为D 是BC 的中点. 所以OD 112
A B ,又因为OD ⊂平面1ADC , 1A B ⊄平面1ADC ,所以1A B ∥平面1ADC ;(Ⅱ)
23;(Ⅲ)存在,点E 的坐标为:(0,1,1).。

(江苏专用)高考数学大一轮复习 第八章 立体几何与空间向量 8.6 立体几何中的向量方法(一)——证

(江苏专用)高考数学大一轮复习 第八章 立体几何与空间向量 8.6 立体几何中的向量方法(一)——证

第八章 立体几何与空间向量 8.6 立体几何中的向量方法(一)——证明平行与垂直教师用书 理 苏教版1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × )1.(2017·宿迁质检)已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是________.①(-1,1,1) ②(1,-1,1) ③(-33,-33,-33) ④(33,33,-33) 答案 ③解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .③正确.2.已知直线l 的方向向量为v =(1,2,3),平面α的法向量为u =(5,2,-3),则l 与α的位置关系是____________. 答案 l ∥α或l ⊂α解析 ∵v ·u =0,∴v ⊥u ,∴l ∥α或l ⊂α.3.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k =________. 答案 4解析 ∵α∥β,∴两平面法向量平行, ∴-21=-42=k-2,∴k =4. 4.(教材改编)设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________.答案 α⊥βα∥β解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.5.(教材改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),M (0,1,12),O (12,12,0),N (12,0,1),AM →·ON →=(0,1,12)·(0,-12,1)=0,∴ON 与AM 垂直.题型一 利用空间向量证明平行问题例1 (2016·某某模拟)如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD ,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A —xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC , ∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.(2016·海淀区模拟)正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .证明 如图所示,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设正方体的棱长为1,则M (0,1,12),N (12,1,1),D (0,0,0),A 1(1,0,1),B (1,1,0),于是MN →=(12,0,12),DA 1→=(1,0,1),DB →=(1,1,0).设平面A 1BD 的法向量为n =(x ,y ,z ),则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1. 所以n =(1,-1,-1).又MN →·n =(12,0,12)·(1,-1,-1)=0,所以MN →⊥n .又MN ⊄平面A 1BD ,所以MN ∥平面A 1BD . 题型二 利用空间向量证明垂直问题 命题点1 证线面垂直例2 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 如图所示,取BC 的中点O ,连结AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →, 故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n ,故AB 1⊥平面A 1BD . 命题点2 证面面垂直例3 (2016·某某模拟)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PAB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连结OP ,OF .因为PA =PD ,所以PO ⊥AD .因为侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点,所以OF ∥AB . 又ABCD 是正方形,所以OF ⊥AD . 因为PA =PD =22AD ,所以PA ⊥PD ,OP =OA =a 2. 以O 为原点,OA ,OF ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则A (a 2,0,0),F (0,a 2,0),D (-a 2,0,0),P (0,0,a 2),B (a 2,a,0),C (-a2,a,0).因为E 为PC 的中点,所以E (-a 4,a 2,a4).易知平面PAD 的一个法向量为OF →=(0,a 2,0),因为EF →=(a 4,0,-a 4),且OF →·EF →=(0,a 2,0)·(a 4,0,-a 4)=0,所以EF ∥平面PAD .(2)因为PA →=(a 2,0,-a 2),CD →=(0,-a,0),所以PA →·CD →=(a 2,0,-a 2)·(0,-a,0)=0,所以PA →⊥CD →,所以PA ⊥CD .又PA ⊥PD ,PD ∩CD =D ,所以PA ⊥平面PDC . 又PA ⊂平面PAB ,所以平面PAB ⊥平面PDC . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.(2016·某某模拟)如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB=AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1-AB -C 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明 (1)∵二面角A 1-AB -C 是直二面角,四边形A 1ABB 1为正方形, ∴AA 1⊥平面BAC . 又∵AB =AC ,BC =2AB , ∴∠CAB =90°,即CA ⊥AB , ∴AB ,AC ,AA 1两两互相垂直.建立如图所示的空间直角坐标系,点A 为坐标原点,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2).A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0),设平面AA 1C 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1A →=0,n ·AC →=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0,取y =1,则n =(0,1,0).∴A 1B 1→=2n ,即A 1B 1→∥n . ∴A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2), 设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1,即m =(1,-1,1). ∴AB 1→·m =0×1+2×(-1)+2×1=0, ∴AB 1→⊥m .又AB 1⊄平面A 1C 1C ,∴AB 1∥平面A 1C 1C .题型三 利用空间向量解决探索性问题例4 (2016·)如图,在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP的值;若不存在,说明理由. (1)证明 ∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD ,AB ⊂平面ABCD , ∴AB ⊥平面PAD .∵PD ⊂平面PAD ,∴AB ⊥PD . 又PA ⊥PD ,PA ∩AB =A ,且PA ,PB ⊂平面PAB ,∴PD ⊥平面PAB .(2)解 取AD 中点O ,连结CO ,PO ,∵PA =PD ,∴PO ⊥AD .又∵PO ⊂平面PAD , 平面PAD ⊥平面ABCD , ∴PO ⊥平面ABCD , ∵CO ⊂平面ABCD , ∴PO ⊥CO ,∵AC =CD ,∴CO ⊥AD .以O 为原点建立如图所示空间直角坐标系.易知P (0,0,1),B (1,1,0),D (0,-1,0),C (2,0,0). 则PB →=(1,1,-1),PD →=(0,-1,-1),PC →=(2,0,-1). CD →=(-2,-1,0).设n =(x 0,y 0,1)为平面PCD 的一个法向量. 由⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0得⎩⎪⎨⎪⎧-y 0-1=0,2x 0-1=0,解得⎩⎪⎨⎪⎧y 0=-1,x 0=12.即n =⎝ ⎛⎭⎪⎫12,-1,1.设PB 与平面PCD 的夹角为θ.则sin θ=|cos 〈n ,PB →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·PB →|n ||PB →|=⎪⎪⎪⎪⎪⎪⎪⎪12-1-114+1+1×3 =33. (3)解 设M 是棱PA 上一点,则存在λ∈[0,1]使得AM →=λAP →,因此点M (0,1-λ,λ),BM →=(-1,-λ,λ),∵BM ⊄平面PCD ,∴BM ∥平面PCD ,∴BM →·n =0,即(-1,-λ,λ)·⎝ ⎛⎭⎪⎫12,-1,1=0,解得λ=14,∴在棱PA 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.(2016·某某模拟)如图所示,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.解 (1)如图,以D 为坐标原点,建立空间直角坐标系D —xyz ,依题意得D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E (12,1,0),所以NE →=(-12,0,-1),AM →=(-1,0,1),因为|cos 〈NE →,AM →〉|=|NE →·AM →||NE →||AM →|=1252×2=1010.所以异面直线NE 与AM 所成角的余弦值为1010. (2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN . 连结AE ,如图所示.因为AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ),又EA →=(12,-1,0),所以ES →=EA →+AS →=(12,λ-1,λ).由ES ⊥平面AMN , 得⎩⎪⎨⎪⎧ES →·AM →=0,ES →·AN →=0,即⎩⎪⎨⎪⎧-12+λ=0,λ-1+λ=0,解得λ=12,此时AS →=(0,12,12),|AS →|=22.经检验,当AS =22时,ES ⊥平面AMN . 故线段AN 上存在点S ,使得ES ⊥平面AMN ,此时AS =22.19.利用向量法解决立体几何问题典例 (16分)如图1所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图2所示.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论. 思想方法指导 对于较复杂的立体几何问题可采用向量法(1)用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.(2)两种思路:①选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.②建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题. 规X 解答解 (1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF , ∴AB ∥平面DEF .[2分](2)以D 为原点,建立如图所示的空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),[4分] 易知平面CDF 的法向量为DA →=(0,0,2), 设平面EDF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →||n |=217,∴二面角E -DF -C 的余弦值为217.[9分] (3)设P (x ,y,0),则AP →·DE →=3y -2=0, ∴y =233.又BP →=(x -2,y,0),PC →=(-x,23-y,0), ∵BP →∥PC →,∴(x -2)(23-y )=-xy , ∴3x +y =2 3.[12分] 把y =233代入上式得x =43,∴P (43,233,0),∴BP →=13BC →,∴在线段BC 上存在点P (43,233,0),使AP ⊥DE .[16分]1.(2016·某某调研)已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ).若a ,b ,c 三向量共面,则实数λ=________. 答案657解析 由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ,∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.2.(2016·某某模拟)设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________. 答案 16解析 PA →=(-1,-3,2),PB →=(6,-1,4). 根据共面向量定理,设PC →=xPA →+yPB →(x 、y ∈R ), 则(2a -1,a +1,2)=x (-1,-3,2)+y (6,-1,4) =(-x +6y ,-3x -y,2x +4y ), ∴⎩⎪⎨⎪⎧2a -1=-x +6y ,a +1=-3x -y ,2=2x +4y ,解得x =-7,y =4,a =16.3.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是____________________________. ①P (2,3,3) ②P (-2,0,1) ③P (-4,4,0) ④P (3,-3,4) 答案 ①解析 逐一验证法,对于①,MP →=(1,4,1), ∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.4.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是______________. 答案 平行或在平面内解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面, ∴AB 与平面CDE 平行或在平面CDE 内.5.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t =________. 答案 5解析 ∵α⊥β,则u ·v =-2×6+2×(-4)+4t =0,∴t =5.6.(2016·某某模拟)如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是________.答案 平行解析 建立如图所示的空间直角坐标系,由于A 1M =AN =2a 3, 则M (a ,2a 3,a 3),N (2a 3,2a 3,a ),MN →=(-a 3,0,2a 3).又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a,0)为平面BB 1C 1C 的一个法向量. 因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .7.(2016·某某质检)已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________________________. 答案 α∥β解析 设平面α的法向量为m =(x ,y ,z ), 由m ·AB →=0,得x ·0+y -z =0⇒y =z , 由m ·AC →=0,得x -z =0⇒x =z ,取x =1, ∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________. 答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0, ∴AB ⊥AP ,AD ⊥AP ,则①②正确. 又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确. ∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD →与AP →不平行,故④错误.*9.如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________.答案72解析 由题意可知,建立空间直角坐标系,如图所示.则A (0,-1,0),B (0,1,0),S (0,0,3),M (0,0,32),设P (x ,y,0), ∴AM →=(0,1,32),MP →=(x ,y ,-32),即y =34,∴点P 的轨迹方程为y =34.根据圆的弦长公式,可得点P 形成的轨迹长度为21-342=72. 10.(2016·某某模拟)如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证:(1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .证明 (1)以A 为坐标原点,AB ,AC ,AA 1所在直线为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系A —xyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). 取AB 中点为N ,连结,则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC . 故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0).B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .11.如图,在三棱锥P-ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .证明 (1)如图所示,以O 为坐标原点,OD ,OP 所在直线为y 轴,z 轴,建立空间直角坐标系O —xyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, ∴AP →⊥BC →,即AP ⊥BC . (2)由(1)知AP =5,又AM =3,且点M 在线段AP 上, ∴AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125,又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0),∴BM →=BA →+AM →=⎝ ⎛⎭⎪⎫-4,-165,125,则AP →·BM →=(0,3,4)·⎝ ⎛⎭⎪⎫-4,-165,125=0,∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,且BM ∩BC =B , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC .又AM ⊂平面AMC ,故平面AMC ⊥平面BMC .12.(2016·某某模拟)如图,在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.(1)证明 如图,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a,0,0),B (a ,a,0),C (0,a,0),E ⎝⎛⎭⎪⎫a ,a 2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a,0).∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(a,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a2; 由FG →·CP →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.∴G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即G 为AD 的中点.∴存在点G (a2,0,0),使QF ⊥平面PCB .*13.如图所示,在多面体ABC-DEF 中,四边形ABCD 是正方形,EF ∥AB ,EF ⊥FB ,AB =2EF ,∠BFC =90°,BF =FC ,H 是BC 的中点.(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB .证明 (1)∵四边形ABCD 为正方形,∴AB ⊥BC . 又EF ∥AB ,∴EF ⊥BC .又EF ⊥FB ,FB ∩BC =B ,∴EF ⊥平面BFC . ∴EF ⊥FH ,∴AB ⊥FH .又BF =FC ,H 为BC 的中点,∴FH ⊥BC . 又AB ∩BC =B ,∴FH ⊥平面ABC .以H 为坐标原点,HB →为x 轴正方向,HF →为z 轴正方向,建立如图所示空间直角坐标系.设BH =1,则A (1,-2,0),B (1,0,0),C (-1,0,0),D (-1,-2,0),E (0,-1,1),F (0,0,1). 设AC 与BD 的交点为G ,连结GE ,GH , 则G (0,-1,0),∴GE →=(0,0,1), 又HF →=(0,0,1),∴HF →∥GE →. 又GE ⊂平面EDB ,HF ⊄平面EDB , ∴FH ∥平面EDB .(2)∵AC →=(-2,2,0),GE →=(0,0,1), AC →·GE →=0, ∴AC ⊥GE .又AC ⊥BD ,EG ∩BD =G , ∴AC ⊥平面EDB .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第15讲 空间向量法解立体几何题 经典精讲
题一: 如图正方体中,点P N M 、、分
别为其所在棱的中点,则下面叙述错误的
是________.
①点1,B D 到面MNP 的距离相等
②1BD 与面MNP 的交点是三角形MNP 的
重心
③1BD MNP ⊥面
④直线1BD 与面MNP 所成角为60°
题二:正四面体ABCD 中,,E F 分别是
,BC AD 的中点,则异面直线,AE CF 所成
角的余弦值是_________.
题三:如图,已知正方形ABCD 和矩形
ACEF 所在的平面互相垂直,AB =2,AF =1
(1)试在线段AC 上确定一点P ,使得PF
与BC 所成的角是60︒;
(2)求二面角A -DF -B 的大小.
题四:直三棱柱中,底面为等腰直角三角 形,且90ACB ∠=︒,21=AA ,D E 、分 别为1CC 、B A 1的中点,E 在面ABD 上 的射影为ABD ∆的重心G ,
(1)求证:AB ⊥平面DEG
(2)求A 1B 与面ABD 所成角的余弦值.。

相关文档
最新文档