高中物理易错题分析04——机械能

合集下载

高中物理各章易错题总结之机械能

高中物理各章易错题总结之机械能

例1 如图3-1,小物块位于光滑斜面上,斜面位于光滑水平地面上,在小物块沿斜面下滑的过程中,斜面对小物块的作用力 [ ]A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零【错解】斜面对小物块的作用力是支持力,应与斜面垂直,因为支持力总与接触面垂直,所以支持力不做功。

故A选项正确。

【错解原因】斜面固定时,物体沿斜面下滑时,支持力做功为零。

受此题影响,有些人不加思索选A。

这反映出对力做功的本质不太理解,没有从求功的根本方法来思考,是形成错解的原因。

【分析解答】根据功的定义W=F·scosθ为了求斜面对小物块的支持力所做的功,应找到小物块的位移。

由于地面光滑,物块与斜面体构成的系统在水平方向不受外力,在水平方向系统动量守恒。

初状态系统水平方向动量为零,当物块有水平向左的动量时,斜面体必有水平向右的动量。

由于m<M,则斜面体水平位移小于物块水平位移。

根据图3-2上关系可以确定支持力与物块位移夹角大于90°,则斜面对物块做负功。

应选B。

例2 以20m/s的初速度,从地面竖直向上势出一物体,它上升的最大高度是18m。

如果物体在运动过程中所受阻力的大小不变,则物体在离地面多高处,物体的动能与重力势能相等。

(g=10m/s2)【错解】以物体为研究对象,画出运动草图3-3,设物体上升到h高处动能与重力势能相等此过程中,重力阻力做功,据动能定量有物体上升的最大高度为H由式①,②,③解得h=9.5m【错解原因】初看似乎任何问题都没有,仔细审题,问物全体离地面多高处,物体动能与重力势相等一般人首先是将问题变形为上升过程中什么位置动能与重力势能相等。

而实际下落过程也有一处动能与重力势能相等。

【分析解答】上升过程中的解同错解。

设物体下落过程中经过距地面h′处动能等于重力势能,运动草图如3-4。

据动能定量解得h′=8.5m例3 如图3-5,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短。

高中物理第八章机械能守恒定律易错题集锦(带答案)

高中物理第八章机械能守恒定律易错题集锦(带答案)

高中物理第八章机械能守恒定律易错题集锦单选题1、某厢式货车在装车时,可用木板做成斜面,将货物沿斜面拉到车上,拉力方向始终平行于接触面。

某装卸工人用同样大小的力将不同质量的货物沿斜面拉到车上,则()A.质量大的货物拉力所做的功大B.质量小的货物拉力所做的功小C.拉力所做的功与质量无关D.拉力所做的功与质量有关答案:C根据做功公式W=Fx可知,由于工人用同样大小的力将货物拉动同样的斜面长度,故工人拉力做的功都相等,工人拉力所做的功与货物质量无关。

故选C。

2、在初中已经学过,如果一个物体在力F的作用下沿着力的方向移动了一段距离l,这个力对物体做功W= FL。

我们还学过功的单位是焦耳(J)。

那么请你用国际单位制基本单位表示能量的单位焦耳(J),下列正确的是()⁄C.kg·m/s D.kg·m/s2A.kg·m2/s2B.m s2答案:A1J=1N⋅m=1kg⋅m/s2⋅m=1kg⋅m2/s2故选A。

3、如图甲所示,质量0.5kg的小物块从右侧滑上匀速转动的足够长的水平传送带,其位移与时间的变化关系如图乙所示。

图线的0~3s段为抛物线,3~4.5s段为直线,(t1=3s时x1=3m)(t2=4.5s时x2=0)下列说法正确的是()A.传送带沿逆时针方向转动B.传送带速度大小为 1m/sC.物块刚滑上传送带时的速度大小为 2m/sD.0~4.5s内摩擦力对物块所做的功为-3J答案:DAB.根据位移时间图象的斜率表示速度,可知:前2s物体向左匀减速运动,第3s内向右匀加速运动。

3-4.5s 内x-t图象为一次函数,说明小物块已与传送带保持相对静止,即与传送带一起向右匀速运动,因此传送带沿顺时针方向转动,且速度为v=ΔxΔt=34.5−3m/s=2m/s故AB错误;C.由图象可知,在第3s内小物块向右做初速度为零的匀加速运动,则x=12at2其中x=1mt=1s解得a=2m/s2根据牛顿第二定律μmg=ma解得μ=0.2在0-2s内,对物块有v t2−v02=−2ax 解得物块的初速度为v0=4m/s故C错误;D.对物块在0~4.5s内,根据动能定理W f=12mv2−12mv02解得摩擦力对物块所做的功为W f=−3J故D正确。

高中物理易错题精选(含答案有解析分章节)

高中物理易错题精选(含答案有解析分章节)

⾼中物理易错题精选(含答案有解析分章节)⾼考物理易错题精选讲解1:质点的运动错题集⼀、主要内容本章内容包括位移、路程、时间、时刻、平均速度、即时速度、线速度、⾓速度、加速度等基本概念,以及匀变速直线运动的规律、平抛运动的规律及圆周运动的规律。

在学习中要注意准确理解位移、速度、加速度等基本概念,特别应该理解位移与距离(路程)、速度与速率、时间与时刻、加速度与速度及速度变化量的不同。

⼆、基本⽅法本章中所涉及到的基本⽅法有:利⽤运动合成与分解的⽅法研究平抛运动的问题,这是将复杂的问题利⽤分解的⽅法将其划分为若⼲个简单问题的基本⽅法;利⽤物理量间的函数关系图像研究物体的运动规律的⽅法,这也是形象、直观的研究物理问题的⼀种基本⽅法。

这些具体⽅法中所包含的思想,在整个物理学研究问题中都是经常⽤到的。

因此,在学习过程中要特别加以体会。

三、错解分析在本章知识应⽤的过程中,初学者常犯的错误主要表现在:对要领理解不深刻,如加速度的⼤⼩与速度⼤⼩、速度变化量的⼤⼩,加速度的⽅向与速度的⽅向之间常混淆不清;对位移、速度、加速度这些⽮量运算过程中正、负号的使⽤出现混乱:在未对物体运动(特别是物体做减速运动)过程进⾏准确分析的情况下,盲⽬地套公式进⾏运算等。

例1 汽车以10 m/s 的速度⾏使5分钟后突然刹车。

如刹车过程是做匀变速运动,加速度⼤⼩为5m/s 2 ,则刹车后3秒钟内汽车所⾛的距离是多少?【错解】因为汽车刹车过程做匀减速直线运动,初速v 0=10m/s 加速度a=5m/s 2,据S=2021at t v -,则位移S=9521310??-?=7.5(m )。

【错解原因】出现以上错误有两个原因。

⼀是对刹车的物理过程不清楚。

当速度减为零时,车与地⾯⽆相对运动,滑动摩擦⼒变为零。

⼆是对位移公式的物理意义理解不深刻。

位移S 对应时间t ,这段时间内a 必须存在,⽽当a 不存在时,求出的位移则⽆意义。

由于第⼀点的不理解以致认为a 永远地存在;由于第⼆点的不理解以致有思考a 什么时候不存在。

高中物理:机械能知识点总结及习题练习

高中物理:机械能知识点总结及习题练习

高中物理:机械能知识点总结及习题练习知识网络八大考点考点1.功1.功的公式:W=Fscosθ0≤θ< 90°力F对物体做正功,θ= 90°力F对物体不做功,90°<θ≤180° 力F对物体做负功。

特别注意:①公式只适用于恒力做功② F和S是对应同一个物体的;③某力做的功仅由F、S和q决定, 与其它力是否存在以及物体的运动情况都无关。

2.重力的功:WG =mgh ——只跟物体的重力及物体移动的始终位置的高度差有关,跟移动的路径无关。

3.摩擦力的功(包括静摩擦力和滑动摩擦力)摩擦力可以做负功,摩擦力可以做正功,摩擦力可以不做功,一对静摩擦力的总功一定等于0,一对滑动摩擦力的总功等于 - fΔS4.弹力的功(1)弹力对物体可以做正功可以不做功,也可以做负功。

(2)弹簧的弹力的功——W = 1/2 kx12 – 1/2 kx22(x1 、x2为弹簧的形变量)5.合力的功——有两种方法:(1)先求出合力,然后求总功,表达式为ΣW=ΣF×S ×cosθ(2)合力的功等于各分力所做功的代数和,即ΣW=W1 +W2+W3+……6.变力做功: 基本原则——过程分割与代数累积(1)一般用动能定理W合=ΔEK 求之;(2)也可用(微元法)无限分小法来求, 过程无限分小后,可认为每小段是恒力做功(3)还可用F-S图线下的“面积”计算.(4)或先寻求F对S的平均作用力7.做功意义的理解问题:解决功能问题时,把握“功是能量转化的量度”这一要点,做功意味着能量的转移与转化,做多少功,相应就有多少能量发生转移或转化考点2.功率1. 定义式:,所求出的功率是时间t内的平均功率。

2. 计算式:P=Fvcos θ , 其中θ是力F与速度v间的夹角。

用该公式时,要求F为恒力。

(1)当v为即时速度时,对应的P为即时功率;(2)当v为平均速度时,对应的P为平均功率。

(3)重力的功率可表示为PG =mgv⊥,仅由重力及物体的竖直分运动的速度大小决定。

高中物理(机械能守恒定律)习题训练与答案解析

高中物理(机械能守恒定律)习题训练与答案解析

基础知识一.功1.一个物体受到力的作用,并在上发生了位移,我们就说这个力对物体须知了功,做功的两个必不可少的因素是的作用,在力的。

2.功的计算公式:W= ,式中θ是的夹角,此式主要用于求作功,功是标量,当θ=90°时,力对物体;当θ<90°时,力对物体;当θ>90°时,力对物体。

3.合力的功等于各个力做功的,即W合=W1+W2+W3+W4+……4.功是过程量,与能量的转化相联系,功是能量转化的,能量转化的过程一定伴随着二.功率1.功跟的比值叫功率,它是表示的物理量。

2.计算功率的公式有、,若求瞬时功率,则要用。

3.两种汽车启动问题中得功率研究:三.动能1.物体由于而具有的能量叫动能,公式是,单位是,符号是。

2.物体的动能的变化,指末动能与初动能之差,即△Ek=Ekt一Eko,若△Ek>0,表示物体的动能;若△Ek<0,表示物体的动能。

四.重力势能1.概念:物体由于被举高而具有的能量叫 ,表达式:Ep= ,它是,但有正负,正负的意义是表示比零势能参考面上的势能大还是小,重力势能的变化与重力做功的关系:重力对物体做多少正功,物体的重力势能就多少;重力对物体做多少负功,物体的重力势能就多少。

重力对物体所做的功等于物体的减小量。

即W G=一△Ep=一(Ep2一Ep1)=Ep1一Ep2.2.弹性势能:定义:物体由于发生而具有的能量叫。

大小:弹性势能的大小与及有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能就越大。

习题练习1.下列说法正确的是( )A.当作用力做正功时,反作用力一定做负功B.当作用力不做功时,反作用力也不做功C.作用力与反作用力的功,一定大小相等,正负符号相反D.作用力做正功,反作用力也可能做正功2.如图所示,小物块A位于光滑的斜面上,斜面位于光滑的水平面上,从地面上看,小物块沿斜面下滑的过程中,斜面对小物块的作用力( )A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零3.如图所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离L.(1)摩擦力对物体做的功为(物体与斜面相对静止)()A.0B.μmglcosθC.-mglcosθsinθD.mglsinθcosθ(2)斜面对物体的弹力做的功为 ( )A.0B.mglsinθcos2θC.-mglcos2θD.mglsinθcosθ(3)重力对物体做的功( )A.0B.mglC.mgltan θD.mglcos θ(4)斜面对物体做的总功是多少? 各力对物体所做的总功是多少? 4.如图所示,物体沿弧形轨道滑下后进入足够长的水平传送带,传送带以图示方向匀速运转,则传送带对物体做功情况可能是( ) A.始终不做功 B.先做负功后做正功 C.先做正功后不做功 D.先做负功后不做功5.物体在水平力F 1作用下,在水平面上做速度为v 1的匀速运动,F 1的功率为P;若在斜向上的力F 2作用下,在水平面上做速度为v 2的匀速运动,F 2的功率也是P,则下列说法正确的是( ) A.F 2可能小于F 1, v 1不可能小于v 2 B.F 2可能小于F 1, v 1一定小于v 2 C.F 2不可能小于F 1, v 1不可能小于v 2 D.F 2不可能小于F 1, v 1一定小于v 26.小汽车在水平路面上由静止启动,在前5 s 内做匀加速直线运动,5 s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图所示.已知汽车的质量为m=2×103kg,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )A.汽车在前5 s 内的牵引力为4×103NB.汽车在前5 s 内的牵引力为6×103N C.汽车的额定功率为60 kW D.汽车的最大速度为30 m/s7.手持一根长为l 的轻绳的一端在水平桌面上做半径为r 、角速度为ω的匀速圆周运动,绳始终保持与该圆周相切,绳的另一端系一质量为m 的木块,木块也在桌面上做匀速圆周运动,不计空气阻力则( ) A.手对木块不做功B.木块不受桌面的摩擦力C.绳的拉力大小等于223r l m +ωD.手拉木块做功的功率等于m ω3r(l 2+r 2)/l8.一根质量为M 的直木棒,悬挂在O 点,有一只质量为m 的猴子抓着木棒,如图所示.剪断悬挂木棒的细绳,木棒开始下落,同时猴子开始沿木棒向上爬.设在一段时间内木棒沿竖直方向下落,猴子对地的高度保持不变,忽略空气阻力,则下列的四个图中能正确反映在这段时间内猴子做功的功率随时间变化的关系的是( )9.机车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,下列说法正确的是( ) A.机车输出功率逐渐增大 B.机车输出功率不变C.在任意两相等的时间内,机车动能变化相等D.在任意两相等的时间内,机车动量变化的大小相等10.如图所示,质量为m 的物体A 静止于倾角为θ的斜面体B 上,斜面体B 的质量为M,现对该斜面体施加一个水平向左的推力F,使物体随斜面体一起沿水平方向向左匀速运动的位移为l,则在此运动过程中斜面体B 对物体A 所做的功为( )A.m M Flm +B.Mglcot θC.0D.21mglsin2θ 11.起重机的钢索将重物由地面吊到空中某个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是下图中的哪一个( )12.以恒力推物体使它在粗糙水平面上移动一段距离,恒力所做的功为W 1,平均功率为P 1,在末位置的瞬时功率为P t1,以相同的恒力推该物体使它在光滑的水平面上移动相同距离,力所做功为W 2,平均功率为P 2,在末位置的瞬时功率为P t2,则下面结论中正确的是( )A.W 1>W 2B.W 1=W 2C.P 1=P 2D.P t2<P t113.如图所示,滑雪者由静止开始沿斜坡从A 点自由滑下,然后在水平面上前进至B点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m,A 、B 两点间的水平距离为L.在滑雪者经过AB 段运动的过程中,克服摩擦力做的功( )A.大于μmgLB.小于μmgLC.等于μmgLD.以上三种情况都有可能14.某汽车以额定功率在水平路面上行驶,空载时的最大速度为v 1,装满货物后的最大速度为v 2,已知汽车空车的质量为m 0,汽车所受的阻力跟车重成正比,则汽车后来所装的货物的质量是( )A.0221m v v v - B.0221m v vv + C.m 0 D.021m v v 15.物体在恒力作用下做匀变速直线运动,关于这个恒力做功的情况,下列说法正确的是( ) A.在相等的时间内做的功相等 B.通过相同的路程做的功相等 C.通过相同的位移做的功相等D.做功情况与物体运动速度大小有关16.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用,如图所示,假设驴拉磨的平均用力大小为500 N,运动的半径为1 m,则驴拉磨转动一周所做的功为( ) A.0 B.500 J C.500π J D.1 000π J17.如图所示,在倾角为θ的光滑斜面上,木板与滑块质量相等,均为m,木板长为l.一根不计质量的轻绳通过定滑轮分别与木板、滑块相连,滑块与木板间的动摩擦因数为μ,开始时,滑块静止在木板的上端,现用与斜面平行的未知力F,将滑块缓慢拉至木板的下端,拉力做功为( )A.μmglcos θB.2μmglC.2μmglcos θD.21μmgl18.额定功率为80 kW 的汽车,在平直的公路上行驶的最大速度为20 m/s,汽车的质量为2.0 t.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s 2,运动过程中阻力不变,则:(1)汽车受到的恒定阻力是多大?(2)3 s末汽车的瞬时功率是多大?(3)匀加速直线运动的时间是多长?(4)在匀加速直线运动中,汽车牵引力做的功是多少?答案 (1)4×103 N (2)48 KW (3)5 s (4)2×105 J19.汽车发动机的功率为60 kW,汽车的质量为4 t,当它行驶在坡度为sinα=0.02的长直公路上时,如图所示,所受阻力为车重的0.1倍(g取10 m/s2),求:(1)汽车所能达到的最大速度v m.(2)若汽车从静止开始以0.6 m/s2的加速度做匀加速直线运动,则此过程能维持多长时间?(3)当汽车以0.6 m/s2的加速度匀加速行驶的速度达到最大值时,汽车做功多少?答案 (1)12.5 m/s (2)13.9 s (3)4.16×105 J20.如图甲所示,质量m=2.0 kg的物体静止在水平面上,物体跟水平面间的动摩擦因数μ=0.20.从t=0时刻起,物体受到一个水平力F的作用而开始运动,前8 s内F随时间t变化的规律如图乙所示.g取10m/s2.求:(1)在图丙的坐标系中画出物体在前8 s内的v—t图象.(2)前8 s内水平力F所做的功.答案 (1) v-t图象如下图所示 (2)155 J动能定理.机械能守恒定律一.动能定理1.内容:外力对物体做功的代数和等于。

高考物理查补易混易错点10 机械能守恒定律(解析版)

高考物理查补易混易错点10 机械能守恒定律(解析版)

查补易混易错点10机械能守恒定律1.巧记知识一、易错易混知识大全【知识点一】机械能守恒定律的判断1.利用机械能的定义判断:分析动能和势能的和是否变化.2.利用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.3.利用能量转化来判断:若物体或系统只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体或系统机械能守恒.【知识点二】单物体机械能守恒问题1.机械能守恒的三种表达式守恒角度转化角度转移角度表达式E1=E2ΔEk=-ΔEpΔEA增=ΔEB减物理意义系统初状态机械能的总和与末状态机械能的总和相等系统减少(或增加)的重力势能等于系统增加(或减少)的动能系统内A部分物体机械能的增加量等于B部分物体机械能的减少量注意事项选好重力势能的参考平面,且初、末状态必须用同一参考平面计算势能分清重力势能的增加量或减少量,可不选参考平面而直接计算初、末状态的势能差常用于解决两个或多个物体组成的系统的机械能守恒问题2.解题的一般步骤(1)选取研究对象;(2)进行受力分析,明确各力的做功情况,判断机械能是否守恒;(3)选取参考平面,确定初、末状态的机械能或确定动能和势能的改变量;(4)根据机械能守恒定律列出方程;(5)解方程求出结果,并对结果进行必要的讨论和说明.【知识点三】实验:验证机械能守恒定律一、实验基本要求1.实验目的验证机械能守恒定律。

2.实验原理(如图所示)通过实验,求出做自由落体运动物体的重力势能的减少量和对应过程动能的增加量,在实验误差允许范围内,若二者相等,说明机械能守恒,从而验证机械能守恒定律。

3.实验器材打点计时器、交流电源、纸带、复写纸、重物、刻度尺、铁架台(带铁夹)、导线。

4.实验步骤(1)安装器材:将打点计时器固定在铁架台上,用导线将打点计时器与电源相连。

(2)打纸带用手竖直提起纸带,使重物停靠在打点计时器下方附近,先接通电源,再松开纸带,让重物自由下落,打点计时器就在纸带上打出一系列的点,取下纸带,换上新的纸带重打几条(3~5条)纸带。

高考物理 易错题系列 机械能守恒定律

高考物理  易错题系列  机械能守恒定律

高考物理 易错题系列 机械能守恒定律1.如图所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析:选C.小圆环从大环的最高处到达大圆环底端时满足机械能守恒,则有mg·2R =12mv2,对小圆环在最低点,应用牛顿第二定律可得:FN -mg =m v2R ;对大圆环,由平衡条件可知:FT =Mg +FN′,由牛顿第三定律可得:FN′=FN 解得FT =Mg +5mg ,选项C 正确.2.(多选)如图,滑块a 、b 的质量均为m ,a 套在固定竖直杆上,与光滑水平地面相距h ,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a 、b 可视为质点,重力加速度大小为g.则( )A .a 落地前,轻杆对b 一直做正功B .a 落地时速度大小为 2ghC .a 下落过程中,其加速度大小始终不大于gD .a 落地前,当a 的机械能最小时,b 对地面的压力大小为mg3.(多选)如图所示,一质量为m的小球套在光滑竖直杆上,轻质弹簧一端与小球相连,另一端固定于O点.现将小球从A点由静止释放,沿竖直杆运动到B点,已知OA长度小于OB长度,弹簧处于OA、OB两位置时弹力大小相等,A、B两点间的距离为h.在小球由A到B的过程中,下列说法正确的是()A.小球在B点时的速度大小为2ghB.小球的加速度等于重力加速度g的位置只有一个C.在弹簧与杆垂直时,小球机械能最小D.在B点时,小球机械能最大4.(多选)图甲、图乙中两传送带与水平面的夹角相同,都以恒定速率v顺时针运动.现将一质量为m的小物体(视为质点)轻放在传送带底端A处,小物体在图甲中传送带上到达传送带顶端B处时恰好与传送带的速率相等;在图乙中传送带上到达离B处竖直高度为h的C处时达到传送带的速率v,已知B处离地面的高度均为H则在小物体从A到B的过程中()A.小物体与图甲中传送带间的动摩擦因数较小B.两传送带对小物体做的功相等C.两传送带消耗的电能相等D.两种情况下因摩擦产生的热量相等解析根据公式v2=2ax,可知物体加速度关系a甲<a乙,再由牛顿第二定律得μmgcos θ-mgsin θ=ma,可知μ甲<μ乙,故A项正确;传送带对小物体做的功等于小物体机械能的增加量,动能增加量相等,重力势能的增加量也相等,故两图中传送带对小物体做的功相等,故B项正确;因摩擦产生的热量Q=Ffx相对,图甲中有Q甲=Ff1x1=Ff1Hsin θ,Ff1-mgsinθ=ma1=mv22·H sin θ,乙图中有Q 乙=Ff2x2=Ff2H -h sin θ,Ff2-mgsin θ=ma2=m v22·H -h sin θ,解得Q 甲=mgH +12mv2,Q 乙=mg(H -h)+12mv2,Q 甲>Q 乙,故D 项错误;根据能量守恒定律,电动机消耗的电能E 电等于因摩擦产生的热量Q 与物体增加的机械能之和,因物体两次从A到B 增加的机械能相同,Q 甲>Q 乙,所以将小物体运至B 处,图甲中传送带消耗的电能更多,故C 项错误. 答案 AB5.(多选)图甲、图乙中两传送带与水平面的夹角相同,都以恒定速率v 顺时针运动.现将一质量为m 的小物体(视为质点)轻放在传送带底端A 处,小物体在图甲中传送带上到达传送带顶端B 处时恰好与传送带的速率相等;在图乙中传送带上到达离B 处竖直高度为h 的C 处时达到传送带的速率v ,已知B 处离地面的高度均为H 则在小物体从A 到B 的过程中( )A .小物体与图甲中传送带间的动摩擦因数较小B .两传送带对小物体做的功相等C .两传送带消耗的电能相等D .两种情况下因摩擦产生的热量相等律,电动机消耗的电能E 电等于因摩擦产生的热量Q 与物体增加的机械能之和,因物体两次从A 到B 增加的机械能相同,Q 甲>Q 乙,所以将小物体运至B 处,图甲中传送带消耗的电能更多,故C 项错误. 答案 AB6.如图所示,水平传送带AB 逆时针匀速转动,一个质量为M =1.0 kg 的小物块以某一初速度由传送带左端滑上,通过速度传感器记录下物块速度随时间的变化关系如图所示(图中取向左为正方向,以物块滑上传送带时为计时零点).已知传送带的速度保持不变,g 取10 m/s2.求:(1)物块与传送带间的动摩擦因数μ; (2)物块在传送带上的运动时间; (3)整个过程中系统生成的热量.后1 s 内的位移大小s2=v′2t′=1 m ,向左,3 s 内位移s =s1-s2=3 m ,向右; 物块再向左运动时间t2=sv′=1.5 s物块在传送带上运动时间t =t1+t2=4.5 s (3)物块在皮带上滑动的3 s 内,皮带的位移 s′=v′t1=6 m ,方向向左;物块位移为s =s1-s2=3 m ,方向向右 相对位移为Δs′=s′+s =9 m所以转化的热量EQ =Ff×Δs′=18 J. 答案 (1)0.2 (2)4.5 s (3)18 J7.如图所示,长为L =10.5 m 的传送带与水平面成30°角,传送带向上做加速度为a0=1 m/s2的匀加速运动,当其速度为v0=3 m/s 时,在其底端轻放一质量为m =1 kg 的物块(可视为质点),已知物块与传送带间的动摩擦因数为μ=32,在物块由底端上升到顶端的过程中.求:(1)此过程所需时间;(2)传送带对物块所做的功; (3)此过程中产生的热量.解析:(1)由牛顿第二定律知物块上滑时有 μmgcos θ-mgsin θ=ma1(1分)设经时间t1物块与传送带的速度相等,则有 a1t1=v0+a0t1(1分)联立并代入数值得a1=2.5 m/s2,t1=2 s(1分) 此时间内物块发生的位移为x1=12a1t21=5 m <L(1分)所以物块与传送带相对静止后,以加速度a0匀加速到达顶端,经历的时间为t2,则速度刚相等时有v1=a1t1=5 m/s(1分)(3)物块发生的相对位移为 x 相=v0t1+12a0t21-12a1t21(2分)产生的热量为Q =μmgcos θ·x 相(1分)联立并代入数值得Q =22.5 J .(1分) 答案:(1)3 s (2)70.5 J (3)22.5 J8.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC 长L =6 m ,始终以v0=6 m/s 的速度顺时针运动.将一个质量m =1 kg 的物块由距斜面底端高度h1=5.4 m 的A 点静止滑下,物块通过B 点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H =5 m ,g 取10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求物块由A 点运动到C 点的时间;(2)若把物块从距斜面底端高度h2=2.4 m 处静止释放,求物块落地点到C 点的水平距离; (3)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同—点D. 解析:(1)A 到B 过程:根据牛顿第二定律t =t1+t2=3 s +1 s =4 s .(1分) (2)在斜面上根据动能定理mgh2-μ1mgcos θh2sin θ=12mv2(1分)解得v =4 m/s <6 m/s(1分)设物块在传送带先做匀加速运动达v0,运动位移为x ,则:a2=μ2mgm =μ2g =2 m/s2(1分)v20-v2=2ax ,x =5 m <6 m(1分)所以物块先做匀加速直线运动后和传送带一起匀速运动,离开C 点做平抛运动 s =v0t0,(1分) H =12gt20,(1分)解得s =6 m .(1分)(3)因物块每次均抛到同一点D ,由平抛知识知:物块到达C 点时速度必须有vC =v0(1分) ①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则: mgh3-μ1mgcos θh3sin θ+μ2mgL =12mv20(1分)h3=1.8 m(1分)②当离传送带高度为h4时物块进入传送带后一直匀减速运动,则: mgh4-μ1mgcos θh4sin θ-μ2mgL =12mv20(1分)h4=9.0 m(1分)所以当离传送带高度在1.8~9.0 m 的范围内均能满足要求,即1.8 m≤h≤9.0 m .(1分) 答案:(1)4 s (2)6 m (3)1.8 m≤h≤9.0 m9.(2016·全国丙卷T24)如图2所示,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R2.一小球在A 点正上方与A 相距R4处由静止开始自由下落,经A 点沿圆弧轨道运动.图2(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点.由④⑤式得,vC 应满足mg≤m 2v2CR ⑥由机械能守恒定律得mg R 4=12mv2C⑦由⑥⑦式可知,小球恰好可以沿轨道运动到C 点. 【答案】 (1)5 (2)能沿轨道运动到C 点 10. 1.(2017·全国卷Ⅰ,24)一质量为8.00×104 kg 的太空飞船从其飞行轨道返回地面。

高中物理压轴题04 用动量和能量的观点解题(解析版)

高中物理压轴题04 用动量和能量的观点解题(解析版)

压轴题04用动量和能量的观点解题1.本专题是动量和能量观点的典型题型,包括应用动量定理、动量守恒定律,系统能量守恒定律解决实际问题。

高考中既可以在选择题中命题,更会在计算题中命题。

2024年高考对于动量和能量的考查仍然是热点。

2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。

3.用到的相关知识有:动量定理、动量守恒定律、系统机械能守恒定律、能量守恒定律等。

近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型为弹性碰撞,完全非弹性碰撞,爆炸问题等。

考向一:动量定理处理多过程问题1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。

2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。

3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。

(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小。

4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程。

研究过程既可以是全过程,也可以是全过程中的某一阶段。

(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力。

(3)规定正方向。

(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考向二:动量守恒定律弹性碰撞问题两球发生弹性碰撞时应满足动量守恒和机械能守恒。

以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m 1v 21=12m 1v ′21+12m 2v ′22②由①②得v ′1=m 1-m 2v 1m 1+m 2v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度。

新高考专用备战2024年高考物理易错题精选易错点06机械能4大陷阱学生版

新高考专用备战2024年高考物理易错题精选易错点06机械能4大陷阱学生版

易错点06机械能易错点一:应用功和功率求解问题时出现错误1.计算功的方法(1)恒力做的功直接用W =Fx cos α计算或用动能定理计算。

(2)合力做的功方法一:先求合力F 合,再用W 合=F 合x cos α求功,尤其适用于已知质量m 和加速度a 的情况。

方法二:先求各个力做的功W 1、W 2、W 3…,再应用W 合=W 1+W 2+W 3+…求合力做的功。

方法三:利用动能定理,合力做的功等于物体动能的变化量。

(3)变力做的功①应用动能定理求解。

②用W =Pt 求解,其中变力的功率P 不变。

③当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功的绝对值等于力和路程(不是位移)的乘积。

如滑动摩擦力做功、空气阻力做功等。

④转换研究对象法。

有些变力做功问题可转换为恒力做功,用W =Fx cos α求解。

此法常用于轻绳通过定滑轮拉物体做功问题。

⑤图像法。

在F -x 图像中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移内所做的功,且位于x 轴上方的“面积”为正功,位于x 轴下方的“面积”为负功。

2.公式P =W t和P =Fv 的区别P =W t是功率的定义式,P =Fv 是功率的计算式。

3.平均功率的计算方法(1)利用P -=W t。

(2)利用P -=Fv -cos α,其中v -为物体运动的平均速度。

3.瞬时功率的计算方法(1)利用公式P =Fv cos α,其中v 为t 时刻的瞬时速度。

(2)P =Fv F ,其中v F 为物体的速度v 在力F 方向上的分速度。

(3)P=F v v,其中F v为物体受到的外力F在速度v方向上的分力�↑⇒�=�不变↓⇒�=�−�↓�=�−��↑�=1.动能定理的理解(1)两个关系数量关系:合力做的功与物体动能的变化具有等量代换关系,但并不是说动能的变化就是合力做的功。

因果关系:合力做功是引起物体动能变化的原因。

(2)标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题,当然动能定理也就不存在分量的表达式。

高中物理机械能守恒和动量守恒问题解析

高中物理机械能守恒和动量守恒问题解析

高中物理机械能守恒和动量守恒问题解析在高中物理学习中,机械能守恒和动量守恒是两个重要的概念。

理解这两个概念对于解题非常关键。

本文将通过具体题目的举例,分析和说明机械能守恒和动量守恒的考点,并提供解题技巧,帮助高中学生和家长更好地理解和应用这些知识。

一、机械能守恒问题解析机械能守恒是指在没有外力做功的情况下,系统的机械能保持不变。

在解决机械能守恒问题时,我们需要考虑势能和动能的转化。

例如,一道常见的题目是:一个质量为m的物体从高度为h处自由落下,落地后弹起到高度为h/2。

求物体弹起的最高点离地面的高度。

解题思路:首先,我们可以根据机械能守恒定律,将物体在自由落下和弹起过程中的机械能相加,即势能和动能之和保持不变。

在自由落下过程中,物体的势能转化为动能;在弹起过程中,动能转化为势能。

因此,我们可以列出等式:mgh = mgh/2通过简化计算,得出最高点离地面的高度为h/4。

这道题目的考点是机械能守恒的应用。

学生需要理解机械能的定义和转化过程,并能正确列出等式进行计算。

在解题过程中,化简计算是关键步骤,学生需要注意运算的准确性和合理性。

二、动量守恒问题解析动量守恒是指在没有外力作用的情况下,系统的总动量保持不变。

在解决动量守恒问题时,我们需要考虑物体的质量和速度变化。

例如,一道常见的题目是:一个质量为m1的物体以速度v1向右运动,与一个质量为m2的物体以速度v2向左运动碰撞,碰撞后两个物体分别以v3和v4的速度运动。

求碰撞后两个物体的速度。

解题思路:根据动量守恒定律,我们可以列出等式:m1v1 + m2v2 = m1v3 + m2v4通过化简计算,可以得出碰撞后两个物体的速度。

这道题目的考点是动量守恒的应用。

学生需要理解动量的定义和守恒定律,能够正确列出等式进行计算。

在解题过程中,化简计算是关键步骤,学生需要注意运算的准确性和合理性。

三、解题技巧和应用在解决机械能守恒和动量守恒问题时,有一些常用的解题技巧和应用方法可以帮助学生更好地理解和应用这些知识。

机械能守恒定律应用易错题分类解析

机械能守恒定律应用易错题分类解析

机械能守恒定律应用易错题分类解析机械能守恒定律是物理学最重要的理论之一,它简要地说明了能量在客观实体中的物理性质及物理过程中的变化规律,是物理学的基石。

本文的目的在于通过对机械能守恒定律的应用进行易错题的分类解析,以期让读者能够更好地理解机械能守恒定律,并正确地解答使用机械能守恒定律进行推理的考题。

首先,机械能守恒定律概括为:“在没有受到外力影响且只有内力作用的物体内,物体内的机械能不会减少或增加,只会从一种形式转化为另一种形式,如从势能转化为动能,反之亦然。

”机械能守恒定律的易错题可以分为三类:1.能的概念:势能是一种内力,是物体相对于物体自身的位置所产生的能量,若物体的位置发生变化,则物体的势能也会随之发生变化,可以通过机械能守恒定律,推导出物体因位置变化而产生的势能。

2.能的概念:动能是一种外力,是物体由于其速度或加速度而产生的能量,可以通过机械能守恒定律,推导出物体受到外力作用时产生的动能。

3.械能守恒定律的应用:机械能守恒定律的应用可以推导出物体的动能或势能的变化,进而解释物体运动的原因,也可以用机械能守恒定律来推导出物体受到外力作用时,机械能的变化,从而便于理解物体受到外力作用时发生的动能变化。

接下来,本文将通过实例来展示如何正确应用机械能守恒定律解答考题。

假设一个物体原本处于低空,现在被加速上升,此时物体的动能会增加,这是因为外力对物体施加的动能大于物体失去的势能,而机械能守恒定律规定在这种情况下,外力作用于物体的机械能总是可以通过物体的动能增加而实现守恒。

另一个例子,假设一个物体从地面被抛起,进行一次自由落体运动,此时物体的动能会减少,而机械能守恒定律规定在这种情况下,外力作用于物体的机械能总是可以通过物体的势能增加而实现守恒。

最后,本文分析了机械能守恒定律应用易错题的分类及解析,包括势能概念,动能概念及机械能守恒定律应用,通过实例让读者更好地理解机械能守恒定律,并给出了正确解答考题的方法。

高中物理易错题分析集锦_5机械能

高中物理易错题分析集锦_5机械能

第五单元:机械能[容和方法]本单元容包括功、功率、动能、势能(包括重力势能和弹性势能)等基本概念,以动能定理、重力做功的特点、重力做功与重力势能变化的关系及机械能守恒定律等基本规律。

其中对于功的计算、功率的理解、做功与物体能量变化关系的理解及机械能守恒定律的适用条件是本单元的重点容。

本单元中所涉及到的基本方法有:用矢量分解的方法处理恒力功的计算,这里既可以将力矢量沿平行于物体位移方向和垂直于物体位移方向进行分解,也可以将物体的位移沿平行于力的方向和垂直于力的方向进行分解,从而确定出恒力对物体的作用效果;对于重力势能这种相对物理量,可以通过巧妙的选取零势能面的方法,从而使有关重力势能的计算得以简化。

[例题分析]在本单元知识应用的过程中,初学者常犯的错误主要表现在:“先入为主”导致解决问题的思路过于僵化,如在计算功的问题中,一些学生一看到要计算功,就只想到W= Fscosθ,而不能将思路打开,从W=Pt和W=ΔE等多条思路进行考虑;不注意物理规律的适用条件,导致乱套机械能守恒定律。

例1、如图3-1,小物块位于光滑斜面上,斜面位于光滑水平地面上,在小物块沿斜面下滑的过程中,斜面对小物块的作用力[ ]A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零【错解分析】错解:斜面对小物块的作用力是支持力,应与斜面垂直,因为支持力总与接触面垂直,所以支持力不做功。

故A选项正确。

斜面固定时,物体沿斜面下滑时,支持力做功为零。

受此题影响,有些人不加思索选A。

这反映出对力做功的本质不太理解,没有从求功的根本方法来思考,是形成错解的原因。

【正确解答】根据功的定义W=F·scosθ为了求斜面对小物块的支持力所做的功,应找到小物块的位移。

由于地面光滑,物块与斜面体构成的系统在水平方向不受外力,在水平方向系统动量守恒。

初状态系统水平方向动量为零,当物块有水平向左的动量时,斜面体必有水平向右的动量。

高中物理机械能守恒定律经典例题及技巧

高中物理机械能守恒定律经典例题及技巧

一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。

物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。

所涉及到的题型有四类:(1)阻力不计的抛体类。

(2)固定的光滑斜面类。

(3)固定的光滑圆弧类。

(4)悬点固定的摆动类。

(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。

那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。

例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小?分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等2202121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。

例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少?分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等θsin 2120⋅==mgs mgh mv 得:θsin 220g v s = (3)固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。

例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等22021221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:Rg v t = 所以 gR v 50=(4)悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。

高中物理第八章机械能守恒定律重点易错题(带答案)

高中物理第八章机械能守恒定律重点易错题(带答案)

高中物理第八章机械能守恒定律重点易错题单选题1、如图所示,长直轻杆两端分别固定小球A 和B ,两球质量均为m ,两球半径忽略不计,杆的长度为L 。

先将杆AB 竖直靠放在竖直墙上,轻轻拨动小球B ,使小球B 在水平面上由静止开始向右滑动,当小球A 沿墙下滑距离为L 2时,下列说法正确的是(不计一切摩擦,重力加速度为g )( )A .杆对小球A 做功为14mgLB .小球A 、B 的速度都为12√gL C .小球A 、B 的速度分别为12√3gL 和12√gLD .杆与小球A 、B 组成的系统机械能减少了12mgL 答案:CBCD .对A 、B 组成的系统,整个过程中,只有重力做功,机械能守恒,由机械能守恒定律得mg ·L 2=12mv A 2+12mv B 2 又有vA cos60°=vB cos30°解得vA =12√3gLvB =12√gL故C 正确,BD 错误;A .对A ,由动能定理得mg L 2+W =12mv A 2 解得杆对小球A 做的功W =12mv A 2-mg ·L 2=-18mgL 故A 错误。

故选C 。

2、关于功率,下列说法中正确的是( )A .根据P =W t 可知,机械做功越多,其功率就越大B .根据P =Fv 可知,汽车的牵引力一定与其速度成反比C .根据P =W t 可知,只要知道时间t 内所做的功,就可知任意时刻的功率D .根据P =Fv 可知,发动机的功率一定时, 交通工具的牵引力与运动速度成反比答案:DA .做功越多,功率不一定大,功率大,说明做功快,故A 错误;BD .当功率保持不变时,牵引力与速度成反比,故B 错误,D 正确;C .知道时间t 内所做的功,就能知道这段时间内的平均功率,故C 错误。

故选D 。

3、如图所示,“歼15”战机每次从“辽宁号”航母上起飞的过程中可视为匀加速直线运动,且滑行的距离和牵引力都相同,则( )A .携带的弹药越多,加速度越大B .携带的弹药越多,牵引力做功越多C .携带的弹药越多,滑行的时间越长D .携带的弹药越多,获得的起飞速度越大答案:CA .由题知,携带的弹药越多,即质量越大,然牵引力一定,根据牛顿第二定律F =ma质量越大加速度a 越小,A 错误B .牵引力和滑行距离相同,根据W =Fl得,牵引力做功相同,B 错误C .滑行距离L 相同,加速度a 越小,滑行时间由运动学公式t =√2L a可知滑行时间越长,C 正确D .携带的弹药越多,获得的起飞速度由运动学公式v =√2aL可知获得的起飞速度越小,D 错误故选C 。

高中物理机械能守恒学习技巧分析

高中物理机械能守恒学习技巧分析

高中物理机械能守恒学习技巧分析高中物理的机械能守恒是一个重要的章节,也是物理中比较抽象的概念之一。

许多学生在学习时会感到比较困难,下面就介绍一些学习技巧,帮助大家更好地掌握机械能守恒。

一、理解机械能守恒的定义及其应用范围机械能守恒,简称机守恒,是指在一个孤立系统内,机械能的总量不变。

要理解机守恒,首先需要明确其适用范围。

机守恒只适用于孤立系统中,即系统不受外界物体的力的影响,系统内部之间的相互作用力之和为零。

只有在这种条件下,机械能守恒才成立。

二、掌握机械能与功的关系机械能包括动能和势能。

其中动能是物体运动时具有的能量,可以表示为1/2mv^2;势能是物体经过高度变化而具有的能量,可以表示为mgh。

在学习机械能守恒时,最基本的是需要掌握机械能与功的关系。

机械能守恒意味着势能和动能的总和不变,而功是能量的转移和转化,可以将机守恒理解为能量的转移不改变其总量。

三、了解机械能守恒的特点机械能守恒的特点主要有两个。

其一是它只在孤立系统中才成立,因为爆炸、撞击、化学反应等外部力作用都会导致系统无法孤立。

其二是机械能守恒是一个控制能量转移和转化的重要定律,而不是能量不变的定律。

因此,在具体的问题中,需要根据题目所描述的过程来确定能量转移和转化的方式,而不能简单地判断能量是否守恒。

四、注重实例分析和练习在学习机械能守恒时,尤其重要的是注重实例分析和练习。

可以通过做习题和模拟实验来加深理解。

在选择题中,首先需要读懂题目,然后根据机械能守恒的原理以及能量转移和转化的方式来解题。

同时,在物理实验中,可以通过使用小球、弹簧等简单的设备来进行模拟实验,加深对机械能守恒的理解。

五、从教材、课堂和其他途径获取帮助掌握机械能守恒需要良好的学习环境和遵循正确的学习方法。

学生可以通过阅读教材、课堂讲解和其他途径获取帮助。

有时候,教材或老师提供的知识点可能比较简单或过于抽象,这种情况下可以参考其他的参考书籍或网络资源,寻找更为详细和具体的内容,帮助理解机械能守恒。

中考物理易错考点专项解析—功和机械能

中考物理易错考点专项解析—功和机械能

中考物理易错考点专项解析—功和机械能易错分析陷阱一:不做功的三种情况判断易错?(1)有力而无距离:物体受力,但物体没有在力的方向上通过距离,此情况叫“劳而无功”;(2)有距离而无力:物体移动了一段距离,但在此运动方向上没有受到力的作用(如物体因惯性而运动),此情况叫“不劳无功”;(3)有力也有距离、但力与距离垂直:物体既受到力,又通过一段距离,但两者方向互相垂直(如起重机吊起货物在空中沿水平方向移动),此情况叫“垂直无功”。

(4)力做功的两种情况①力的方向与物体运动的方向一致,称为力对物体做功。

克服某个力做功。

陷阱二:(1)功和功率的比较理解易错?(1)“功”表示做功的“多少”;(2)“功率”则表示做功的“快慢”;(功率与功和时间两个因素有关)(3)在做功时间相同时,做功多的做功快;做功多不一定做功就快,即“功率”不一定就大。

陷阱三:功率的计算应用易错。

(1)公式P=Fv的适用条件:物体在拉力F的作用下,以速度v沿拉力的方向做匀速直线运动,则拉力F所做的功的功率可表示为Fv。

(其中F表示物体所受的拉力,v表示物体运动的速度)该公式也适用于变速直线运动。

(2)公式只能用于求平均功率,P=Fv既可以用于求平均功率,也可以用于求瞬时功率。

(3)由公式P=Fv可知:在功率P一定时,力F与速度v成反比。

陷阱四:机械能的转化和守恒理解易错。

(1)做功角度:只有重力或弹力做功,无其它力做功;其它力不做功或其它力做功的代数和为零;系统内如摩擦阻力对系统不做功。

(2)能量角度:首先只有动能和势能之间能量转化,无其它形式能量转化;只有系统内能量的交换,没有与外界的能量交换。

(3)机械能守恒一般都是理想状态下才发生的,物体能量的转化一般都不太可能只有机械能的转化,还有其他能量的转化。

(4)机械能守恒是有条件的,只有重力或弹力做功时,机械能是守恒的。

(5)在动能和势能相互转化中,若受摩擦等阻力,则机械能的总和减少。

(6)“在光滑面上”、“不计空气阻力”等文字,表示没有摩擦等阻力,此时机械能总和可看作是不变的。

高中物理——机械能

高中物理——机械能

高中物理——机械能1.功的计算。

cos W Fx α=123cos n F F F F W W W W W F x α=++=合合2. 计算平均功率:P v W t P F =⋅⎧=⎪⎨⎪⎩ 计算瞬时功率:P F v =⋅瞬瞬cos P F v α=⋅⋅ (力F 的方向与速度v 的方向夹角α)3. 重力势能:P E mgh=重力做功计算公式:12G P P W mgh mgh E E =-=-初末重力势能变化量:21P P P E E E mgh mgh ∆=-=-末初重力做功与重力势能变化量之间的关系:G PW E =-∆重力做功特点:重力做正功(A 到B),重力势能减小。

重力做负功(C 到D),重力势能增加。

4.弹簧弹性势能:212P E k x =∆x l l ∆=-(弹簧的变化量)弹簧弹力做的功等于弹性势能变化量的负值:P P P W E E E =-∆=-弹初末特点:弹力对物体做正功,弹性势能减小。

弹力对物体做负功,弹性势能增加。

5.动能:212K E mv=动能变化量:22211122K K K E E E mv mv ∆=-=-末初6.动能定理:K K K W E E E =∆=-合末初常用变形:123n F F F F K K K E W W E W E W ∆=++=-末初7.机械能守恒:在只有重力或弹力做功的物体系统内,动能和势能会发生相互转化,但机械能的总量保持不变。

表达式:1122P K P K E E E E +=+(初状态的势能和动能之和等于末状态的势能和动能之和)K PE E ∆=-∆ (动能的增加量等于势能的减少量)A BE E ∆=-∆ (A 物体机械能的增加量等于B 物体机械能的减少量)。

【物理】物理功和机械能易错剖析及解析

【物理】物理功和机械能易错剖析及解析

【物理】物理功和机械能易错剖析及解析一、功和机械能选择题1.如图所示的四幅图片是生活和生产中的场景,对其能量变化的描述,正确的是A.货物被举高后内能增加了B.列车进站速度减小后内能增加C.握力计被握扁后其弹性势能减小D.飞机升空后高度增加内能变大【答案】B【解析】【详解】A、货物被举高后,重力势能增加了,但内能不会改变,故A错误;B、列车速度减小,质量不变,所以列车的动能减小,在刹车减速过程中,克服摩擦做功,机械能转化为内能,内能增加,故B正确;C、握力计发生形变后弹性势能增加,故C错误;D、飞机升空后,高度增大,所以其重力势能增加,但内能不会改变,故D错误.故选B.【点睛】注意分清楚内能与机械能是完全不同的两种形式的能,内能是分子动能与分子势能的和,而机械能是宏观物体的动能与势能的和,两种形式的能之间没有关系.2.如图,小虎用水平向右的力推放在水平地面上的箱子,但没有推动,则此时()A.小虎的推力小于箱子受到的阻力B.小虎的推力大于箱子受到的阻力C.小虎对箱子做了功D.小虎对箱子没有做功【答案】D【解析】试题分析:(1)因为用水平力推静止在水平地面上的箱子,没有推动,所以箱子处于静止状态;在水平方向上所受的推力与摩擦阻力是一对平衡力,所以摩擦阻力等于推力,故AB 错误;(2)根据做功的两个必要条件可知,箱子在力的方向上没有移动距离,所以小虎对箱子没有做功.故C错误,D正确;故选D.3.如图,小聪用力将水平地面上的箱子拉走了;小明用力推箱子,但没有推动.下面关于做功的分析,正确的是A.小明、小聪都没有对箱子做功B.小明对箱子做了功,小聪对箱子没有做功C.小聪对箱子做了功,小明对箱子没有做功D.小聪在拉箱子的过程中,箱子的重力做了功,小明在推箱子时,箱子的重力没有做功【答案】C【解析】【详解】根据做功的两个要素分析解答:(1)小明用力推箱子,但箱子没有运动,只有力的作用,没有在力的方向上通过距离,所以他对箱子没有做功;(2)小聪用力将箱子拉走了,在力的方向上通过了距离,因此她对箱子做了功,故AB错误,C正确;(3)重力的方向是竖直向下的,箱子无论沿水平方向是否运动,箱子的重力都没有做功,故D错误.故选C.【点睛】重点是做功的判断,要根据做功的两个要素进行判断,一要有力作用在物体上,二是物体在力的方向上通过一段距离,当力与物体运动方向垂直时,此力不做功.4.工人师傅利用如图所示的两种方式,将重均为300N的货物从图示位置向上缓慢提升0.5m。

高中物理人教版必修2:机械能易错题型详解

高中物理人教版必修2:机械能易错题型详解

【机械能】1 机械功和能、求功方法总结(恒力、变力、图像发等)1、题目(坤哥练习例1):如图所示,质量为m的物体P静止在粗糙的倾角为θ的直角斜面体上,现用力F向右推斜面体匀速前进,P与斜面体保持相对静止向右匀速运动,重力加速度为g,在前进水平位移为s 的过程中,求:(1)重力做功多少?(2)斜面体对P的弹力做功w1为多少?(3)斜面体对P的摩檫力做功w2为多少?(4)斜面体对P做的总功为多少?解答:(1)重力做功:W mg=0;(2)斜面对P的弹力夹角为θ,所以W1=F N⋅s cos(90-θ)=mg·cosθ·s·sinθ= mg ssinθcosθ(3)W2=f静s cos(180-θ) =mg sinθ·s·(-cosθ)=- mg ssinθcosθ(4)W总=W1+W2= mg ssinθcosθ+(- mg ssinθcosθ)=0(1)题目(变式一):如图,质量为m的物体P放在倾角为θ的斜面体上,同时用力F向右推斜面体,使P与斜面体保持相对静止向右匀速运动,在前进水平位移为s的过程中,斜面体对P的作用力做功为( )A.F⋅sB. mgsinθ.cosθ⋅sC.mgcosθ⋅sD.0考点:功的计算分析:对P受力分析,根据共点力的平衡条件可明确作用力的大小及方向,再由功的公式可求得做功的多少.解答:因物体做匀速直线运动,故P受力平衡,则可知,斜面体对P的作用力一定竖直方向,大小等于重力;由功的公式可知,作用力做功为零;故选:D.(2)题目(变式二):质量为m的物体,静止在倾角为a的粗糙斜面上,当两者一起向右做匀速直线运动,通过水平位移为L的过程中,物体m所受的重力做功为多少?弹力做功为多少?摩擦力对物体做功为多少?斜面对物体m做功多少?解答:运动方向与重力垂直,因此重力不做功.弹力与位移夹角为90+a,大小为m×cosa,做功就为-m×cosa×sina;摩擦力与位移夹角为a,大小为m×sina,做功就为m×cosa×sina;斜面做功为弹力与摩擦力之和,为零。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理易错题分析——机械能[内容和方法]本单元内容包括功、功率、动能、势能(包括重力势能和弹性势能)等基本概念,以动能定理、重力做功的特点、重力做功与重力势能变化的关系及机械能守恒定律等基本规律。

其中对于功的计算、功率的理解、做功与物体能量变化关系的理解及机械能守恒定律的适用条件是本单元的重点内容。

本单元中所涉及到的基本方法有:用矢量分解的方法处理恒力功的计算,这里既可以将力矢量沿平行于物体位移方向和垂直于物体位移方向进行分解,也可以将物体的位移沿平行于力的方向和垂直于力的方向进行分解,从而确定出恒力对物体的作用效果;对于重力势能这种相对物理量,可以通过巧妙的选取零势能面的方法,从而使有关重力势能的计算得以简化。

[例题分析]在本单元知识应用的过程中,初学者常犯的错误主要表现在:“先入为主”导致解决问题的思路过于僵化,如在计算功的问题中,一些学生一看到要计算功,就只想到W= Fscos θ,而不能将思路打开,从W=Pt和W=ΔE等多条思路进行考虑;不注意物理规律的适用条件,导致乱套机械能守恒定律。

例1、如图3-1,小物块位于光滑斜面上,斜面位于光滑水平地面上,在小物块沿斜面下滑的过程中,斜面对小物块的作用力[ ]A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零【错解分析】错解:斜面对小物块的作用力是支持力,应与斜面垂直,因为支持力总与接触面垂直,所以支持力不做功。

故A选项正确。

斜面固定时,物体沿斜面下滑时,支持力做功为零。

受此题影响,有些人不加思索选A。

这反映出对力做功的本质不太理解,没有从求功的根本方法来思考,是形成错解的原因。

【正确解答】根据功的定义W=F·scosθ为了求斜面对小物块的支持力所做的功,应找到小物块的位移。

由于地面光滑,物块与斜面体构成的系统在水平方向不受外力,在水平方向系统动量守恒。

初状态系统水平方向动量为零,当物块有水平向左的动量时,斜面体必有水平向右的动量。

由于m<M,则斜面体水平位移小于物块水平位移。

根据图3-2上关系可以确定支持力与物块位移夹角大于90°,则斜面对物块做负功。

应选B。

【小结】求解功的问题一般来说有两条思路。

一是可以从定义出发。

二是可以用功能关系。

如本题物块从斜面上滑下来时,减少的重力势能转化为物块的动能和斜面的动能,物块的机械能减少了,说明有外力对它做功。

所以支持力做功。

例2、物体m从倾角为α的固定的光滑斜面由静止开始下滑,斜面高为h,当物体滑至斜面底端,重力做功的瞬时功率为[ ]【错解分析】错解一:因为斜面是光滑斜面,物体m受重力和支持。

支持不做功,只有策略重力做功,所有机械能守恒。

设底端势能为零,则有错解二:物体沿斜面做v0= 0的匀加速运动 a =mgsina故选B。

错解一中错误的原因是没有注意到瞬时功率P = Fvcosθ。

只有Fv同向时,瞬时功率才能等于Fv,而此题中重力与瞬时速度V不是同方向,所以瞬时功率应注意乘上F,v夹角的余弦值。

错解二中错误主要是对瞬时功率和平均功率的概念不清楚,将平均功率当成瞬时功率。

【正确解答】由于光滑斜面,物体m下滑过程中机械能守恒,滑至底F、v夹角θ为90°-α,故C选项正确。

【小结】求解功率问题首先应注意求解的是瞬时值还是平均值。

如果求瞬时值应注意普遍式P = Fv·cosθ(θ为F,v的夹角)当F,v有夹角时,应注意从图中标明。

例3、一列火车由机车牵引沿水平轨道行使,经过时间t,其速度由0增大到v。

已知列车总质量为M,机车功率P保持不变,列车所受阻力f为恒力。

求:这段时间内列车通过的路程。

【错解分析】错解:以列车为研究对象,水平方向受牵引力和阻力f。

据P=F·V可知牵引力F = P/v ①设列车通过路程为s,据动能定理有以上错解的原因是对P = F·v的公式不理解,在P一定的情况下,随着v的变化,F 是变化的。

在中学阶段用功的定义式求功要求F是恒力。

【正确解答】以列车为研究对象,列车水平方向受牵引力和阻力。

设列车通过路程为s。

据动能定理【小结】发动机的输出功率P恒定时,据P = F·V可知v变化,F就会发生变化。

牵动ΣF,a变化。

应对上述物理量随时间变化的规律有个定性的认识。

下面通过图象给出定性规律。

(见图3-4所示)例4 、以20m/s的初速度,从地面竖直向上抛出一物体,它上升的最大高度是18m。

如果物体在运动过程中所受阻力的大小不变,则物体在离地面多高处,物体的动能与重力势能相等。

(g=10m/s2)【错解分析】错解:以物体为研究对象,画出运动草图3-5,设物体上升到h高处动能与重力势能相等此过程中,重力阻力做功,据动能定量有物体上升的最大高度为H由式①,②,③解得h = 9.5m初看似乎任何问题都没有,仔细审题,问物体离地面多高处,物体动能与重力势相等,一般人首先是将问题变形为上升过程中什么位置动能与重力势能相等。

而实际下落过程也有一处动能与重力势能相等。

【正确解答】上升过程中的解同错解。

设物体下落过程中经过距地面h′处动能等于重力势能,运动草图如3-6。

据动能定量解得h′=8.5m【小结】在此较复杂问题中,应注意不要出现漏解。

比较好的方法就是逐段分析法。

例5、下列说法正确的是[ ]A.合外力对质点做的功为零,则质点的动能、动量都不变B.合外力对质点施的冲量不为零,则质点动量必将改变,动能也一定变C.某质点受到合力不为零,其动量、动能都改变D.某质点的动量、动能都改变,它所受到的合外力一定不为零。

【错解分析】错解一:因为合外力对质点做功为零,据功能定理有△E A=0,因为动能不变,所以速度V不变,由此可知动量不变。

故A正确。

错解二:由于合外力对质点施的冲量不为零,则质点动量必将改变,V改变,动能也就改变。

故B正确。

形成上述错解的主要原因是对速度和动量的矢量性不理解。

对矢量的变化也就出现理解的偏差。

矢量发生变化时,可以是大小改变,也可能是大小不改变,而方向改变。

这时变化量都不为零。

而动能则不同,动能是标量,变化就一定是大小改变。

所以△E k=0只能说明大小改变。

而动量变化量不为零就有可能是大小改变,也有可能是方向改变。

【正确解答】本题正确选项为D。

因为合外力做功为零,据动能定理有△E k=0,动能没有变化,说明速率无变化,但不能确定速度方向是否变化,也就不能推断出动量的变化量是否为零。

故A错。

合外力对质点施冲量不为零,根据动量定理知动量一定变,这既可以是速度大小改变,也可能是速度方向改变。

若是速度方向改变,则动能不变。

故B错。

同理C选项中合外力不为零,即是动量发生变化,但动能不一定改变,C选项错。

D选项中动量、动能改变,根据动量定量,冲量一定不为零,即合外力不为零。

故D正确。

【小结】对于全盘肯定或否定的判断,只要找出一反例即可判断。

要证明它是正确的就要有充分的论据。

例6、如图3-7,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短。

现将子弹、木块和弹簧合在一起作研究对象,则此系统在从子弹开始射入木块到弹簧压缩到最短的过程中[ ]A.动量守恒,机械能守恒B.动量不守恒,机械能不守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能守恒【错解分析】错解:以子弹、木块和弹簧为研究对象。

因为系统处在光滑水平桌面上,所以系统水平方向不受外力,系统水平方向动量守恒。

又因系统只有弹力做功,系统机械能守恒。

故A正确。

错解原因有两个一是思维定势,一见光滑面就认为不受外力。

二是规律适用条件不清。

【正确解答】以子弹、弹簧、木块为研究对象,分析受力。

在水平方向,弹簧被压缩是因为受到外力,所以系统水平方向动量不守恒。

由于子弹射入木块过程,发生巨烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒,故B正确。

例7、如图3-8,质量分别为m和2m的两个小球A和B,中间用轻质杆相连,在杆的中点O处有一固定转动轴,把杆置于水平位置后释放,在B球顺时针摆动到最低位置的过程中[ ]A.B球的重力势能减少,动能增加,B球和地球组成的系统机械能守恒B.A球的重力势能增加,动能也增加,A球和地球组成的系统机械能不守恒。

C.A球、B球和地球组成的系统机械能守恒D.A球、B球和地球组成的系统机械不守恒【错解分析】错解:B球下摆过程中受重力、杆的拉力作用。

拉力不做功,只有重力做功,所以B球重力势能减少,动能增加,机械能守恒,A正确。

同样道理A球机械能守恒,B错误,因为A,B系统外力只有重力做功,系统机械能守恒。

故C选项正确。

B球摆到最低位置过程中,重力势能减少动能确实增加,但不能由此确定机械能守恒。

错解中认为杆施的力沿杆方向,这是造成错解的直接原因。

杆施力的方向并不总指向沿杆的方向,本题中就是如此。

杆对A,B球既有沿杆的法向力,也有与杆垂直的切向力。

所以杆对A,B球施的力都做功,A球、B球的机械能都不守恒。

但A+B整体机械能守恒。

【正确解答】B球从水平位置下摆到最低点过程中,受重力和杆的作用力,杆的作用力方向待定。

下摆过程中重力势能减少动能增加,但机械能是否守恒不确定。

A球在B下摆过程中,重力势能增加,动能增加,机械能增加。

由于A+B系统只有重力做功,系统机械能守恒,A球机械能增加,B球机械能定减少。

所以B,C选项正确。

【小结】有些问题中杆施力是沿杆方向的,但不能由此定结论,只要杆施力就沿杆方向。

本题中A、B球绕O点转动,杆施力有切向力,也有法向力。

其中法向力不做功。

如图3-9所示,杆对B球施的力对B球的做负功。

杆对A球做功为正值。

A球机械能增加,B 球机械能减少。

例8、如图3-10,质量为M的木块放在光滑水平面上,现有一质量为m的子弹以速度v0射入木块中。

设子弹在木块中所受阻力不变,大小为f,且子弹未射穿木块。

若子弹射入木块的深度为D,则木块向前移动距离是多少?系统损失的机械能是多少?【错解分析】错解:(1)以木块和子弹组成的系统为研究对象。

系统沿水平方向不受外力,所以沿水平方向动量守恒。

设子弹和木块共同速度为v。

据动量守恒有mv0=(M+m)v解得v = mv0/(M+m)子弹射入木块过程中,摩擦力对子弹做负功(2)系统损失的机械能即为子弹损失的功能错解①中错误原因是对摩擦力对子弹做功的位移确定错误。

子弹对地的位移并不是D,而D打入深度是相对位移。

而求解功中的位移都要用对地位移。

错解②的错误是对这一物理过程中能量的转换不清楚。

子弹打入木块过程中,子弹动能减少并不等于系统机械能减少量。

因为子弹减少的功能有一部分转移为木块的动能,有一部转化为焦耳热。

【正确解答】以子弹、木块组成系统为研究对象。

画出运算草图,如图3—11。

系统水平方向不受外力,故水平方向动量守恒。

相关文档
最新文档