2014江西公务员考试行测:行程问题快速解题技巧
行程问题的解题技巧和方法

行程问题的解题技巧和方法
行程问题指的是计算一个人或物体在一段时间内的移动距离问题。
这类问题中,我们通常会遇到很多不同的变量,包括起点和终点位置、速度、时间等等。
因此,解决这类问题需要一些特定的技巧和方法。
以下是一些解决行程问题的技巧和方法:
1. 确定问题所需的变量
在解决行程问题之前,我们需要先确定问题所涉及的所有变量。
例如,起点和终点位置、速度、时间等。
通过确定这些变量,我们可以更好地规划解题过程,避免出现遗漏或错误。
2. 使用单位转换
在行程问题中,我们通常需要涉及到不同的单位,例如英里、千米、小时、分钟等等。
为了更好地计算问题,我们需要将所有的单位转换成相同的单位。
例如,将小时转换成分钟、将英里转换成千米等等。
3. 利用公式计算
在行程问题中,有很多公式可以用来计算距离、速度和时间等。
例如,速度等于距离除以时间(v=d/t),距离等于速度乘以时间(d=v*t)等等。
通过利用这些公式,我们可以更快速地计算出所需的答案。
4. 注意时间和速度的关系
在行程问题中,时间和速度是密切相关的。
当速度增加时,时间会减少,距离也会相应地减少。
因此,在解决行程问题时,我们需要注意时间和速度的关系,并确保计算过程中这两个变量的一致性。
总之,解决行程问题需要一些具体的技巧和方法,包括确定变量、使用单位转换、利用公式计算、注意时间和速度的关系等等。
只有通过不断练习和实践,我们才能更好地掌握这些技巧和方法,并在实际问题中得到更好的应用。
行测答题技巧:比例思想速解行测行程工程问题

行测答题技巧:比例思想速解行测行程工程问题行测答题技巧:比例思想速解行测行程工程问题在公务员考试行测中,根本上每年都有行程问题以及工程问题的题目,但是有的时候对于行程问题或工程问题的题目,我们无法做到一分钟一道题的速度,尤其是一些复杂的题目,今天将带大家来学习一种快速解决行程问题和工程问题的思想——比例思想。
在行程问题中,贯穿整个行程问题的公式:路程〔s〕=速度〔v〕×时间〔t〕,想必大家都非常熟悉了。
在s=vt中,存在着正反比的关系:1. 当s一定时,v和t成反比;2. 当v一定时,s和 t成正比;3. 当t一定时,s和v成正比。
【例1】某____从驻地乘车赶往训练基地,假如将车速进步1/9,就可比预定的时间提早20分钟赶到;假如将车速进步1/3,可比预定的时间提早多少分钟到?A.30B.40C.50D.60【答案】C【解析】由“车速进步1/9”可得,v1:v0=10:9,且从驻地赶往训练基地的路程是一定的,所以v和t成反比关系,因此,t1:t0=9:10,t1比t0少花一份时间,对应提早20分钟到达,所以按照原来的速度走完全程需要花t0=10×20=200分钟;由“车速进步1/3”可得,v2:v0=4:3,且从驻地赶往训练基地的路程是一定的,所以v和t成反比关系,因此,t2:t0=3:4,由于t0=200分钟,所以4份时间对应200分钟,即1份对应50分钟,t2比t0少花1份时间,所以可比预定的时间提早50分钟到。
因此,答案选C。
【例2】某植树队方案种植一批行道树,假设每天多种25%可提早9天完工,假设种植4000棵树之后每天多种1/3可提早5天完工,问:共有多少棵树?A.3600B.7200C.9000D.6000【答案】B【解析】此题是工程问题,在工程问题中,存在公式:工作总量〔W〕=工作效率〔P〕×工作时间〔t〕,在w=pt中,也存在着正反比的关系:1.当w一定时,p和t成反比;2.当p一定时,w和 t成正比;3.当t一定时,w和p成正比。
行程问题的解题技巧和方法

行程问题的解题技巧和方法
在旅行中,行程规划是至关重要的一步,它通常需要考虑预算、时间、航班、酒店、景点等多个因素。
为了成功规划旅行行程,我们需要掌握解决行程问题的技巧和方法。
1. 列出旅行目的地和时间
首先,我们需要确定旅游的目的地和时间。
如果旅行时间比较短,我们需要优先考虑距离和交通的方便性。
如果旅行时间较长,我们可以更自由地选择目的地,但是需要考虑预算和时间。
2. 制定详细的旅行计划
在行程规划中,详细的旅行计划是必不可少的。
我们需要列出每个目的地的具体行程,包括交通、住宿、餐饮、景点等。
这样做可以更好地预估旅行的时间和预算,同时也可以避免在旅行中遇到不必要的麻烦。
3. 寻找有经验的旅行顾问
如果您对行程规划不是很熟悉,寻找有经验的旅行顾问是一个不错的选择。
他们可以为您提供专业的行程规划建议,包括旅游线路、预算、
酒店、景点等方面的建议。
这将有助于您在旅行中更好地享受旅游。
4. 利用旅游应用程序
现今有许多旅游应用程序可以帮助您规划行程。
这些应用程序可以提供各种信息,包括航班、酒店、景点、餐饮和交通等。
通过这些应用程序,您可以更快速、更方便地规划您的旅行。
总之,在规划旅程时,我们需要考虑多方面的因素,包括预算、时间、距离、景点、交通和住宿等。
通过掌握上述技巧和方法,我们可以更好地解决行程问题,规划出一次愉快的旅行。
行程问题解题技巧 让你快速解决的方法

行程问题解题技巧让你快速解决的方法行程问题解题技巧学会用正反比例这类行程问题很简单比例思想是考生在做题过程中常常会用到的一种思想,也是行测数量关系局部的重点考察内容,比例问题的难度属于中等偏上,相对于列方程求解这类常规方法而言,假如能巧用正反比,在行程问题中可以到达事半功倍的效果。
下面通过两个例题带大家体会如何利用正反比巧解行程问题。
例1.一战斗机从甲机场匀速开往乙机场,假如速度进步25%,可比原定时间提早12分钟到达;假如以原定速度飞行600千米后,再将速度进步1/3,可以提早5分钟到达。
那么甲乙两机场的间隔是多少千米?A、750B、800C、900D、1000【答案】C。
解析:第一次提速前后速度比4:5,那么时间比为5:4,差了一份,相差12分钟,那么原速走完全程需要1小时,即60分钟。
第二次提速前后速度比为3:4,那么时间比为4:3,差5分钟,即原来的速度走完后面的路程需要20分钟;可得原速走600千米需要60-20=40分钟,那么原速为600千米÷40分钟=15千米/分钟,那么全程为15千米/分钟×60分钟=900千米,应选择C选项。
列方程求解是解决数量关系问题的常规思路,但是在行程问题中列方程那么比拟繁琐,而比例法的好处在于摆脱方程的束缚,利用正反比,可到达快速求解的目的。
例2.一个小学生从家到学校,先用每分钟50米的速度走了2分钟,假如这样走下去,他上课就要迟到8分钟:后来他改用每分钟60米的速度前进,结果早到了5分钟,求这个学生从家到学校的间隔是多少米?A、1200B、3200C、4000D、5600【答案】:C。
解析:V1=50,前2分钟走了100米,改变速度后V2=60,因为后一段路程两者走的间隔相等,路程一定的时候,速度和时间成反比。
因为V1:V2=5:6,在速度提升之后,t1:t2=6:5,从慢8分钟到快5分钟,增加了13分钟,1个比例点对应13分钟。
假如以50米/分钟的速度来走剩下的路程,应该走6个比例点,需要13×6=78分钟。
行程问题的解题技巧

行程问题的解题技巧1. 哎呀呀,行程问题中遇到相向而行的情况,那简直就像是两个人对着跑呀!比如说,小明和小红在一条路上,一个从这头走,一个从那头走,他们多久能相遇呢?这时候只要把两人的速度加起来,再用总路程除以这个和,不就能算出相遇时间啦!就像搭积木一样简单嘛!2. 嘿,要是同向而行呢,那不就是一个追一个嘛!就好像跑步比赛,跑得快的追跑得慢的。
比如小强每分钟跑 100 米,小亮每分钟跑 80 米,那小强要多久才能追上小亮呀?用他们的速度差乘以时间等于最初的距离差这个道理,一下子就能算出来啦,是不是超有趣呀!3. 碰到那种来回跑的行程问题呀,可别晕!比如说小李在 A、B 两点间跑来跑去。
这就像钟摆一样来来回回呀!这时候得仔细分析他跑的每一段路程和时间,然后加起来或者算差值,搞清楚到底怎么回事儿!这很考验耐心哦,但搞懂后会超有成就感的呀!4. 还有那种在环形跑道上跑的呢,这不就像围着一个大圆圈转嘛!比如小王在环形跑道上跑,和别人相遇几次或者追上几次,就得想想他们相对的速度和跑的圈数啦。
这多有意思呀,就好像在玩一个特别的游戏!5. 你们想想看,行程问题里有时候给的条件可隐晦啦!这就像捉迷藏一样,得仔细找线索呀!比如说告诉你一段路程走了几小时,又告诉你另外一些模糊的信息,就得开动脑筋把有用的找出来,算出行程中的各种数据。
是不是有点像侦探破案呀,刺激吧!6. 有时候行程问题里会有停顿呀什么的,那就像走路走一半歇会儿一样。
比如小张走一段路,中间停了几分钟,这时候得把停顿的时间考虑进去呀,不然可就算错啦,可不能马虎哟!7. 哈哈,行程问题其实就是生活中的各种走呀跑呀的情况。
只要我们把它当成有趣的事儿,像玩游戏一样去对待,就不会觉得难啦!所以呀,不要害怕行程问题,大胆去挑战它们吧!我的观点结论就是:行程问题没那么可怕,只要用心去理解和分析,都能轻松搞定!。
公考行程问题技巧

公考行程问题技巧说起公考行程问题的技巧,我有一些心得想分享。
我刚开始备考公务员的时候,一遇到行程问题就头疼得不行。
就像走进了一个迷宫,绕来绕去找不到出口。
首先呢,咱们来说说最基本的公式:路程= 速度×时间,这个就像是做饭的基本食材一样,缺了它可不行。
比如说,有一道题是这样的,一辆汽车以每小时60千米的速度行驶了3小时,问行驶了多远?这就是直接套用公式的简单例子,这时候路程就等于60×3 = 180千米。
这种简单题就像是走路碰到一块小石头,轻松就能跨过去。
那要是复杂一点的呢?假如是相向而行或者相背而行的问题,这就像两个人面对面走路或者背对背走路。
两个人相向而行时,他们之间的距离减少的速度就是两人速度之和;相背而行时,距离增加的速度就是两人速度之和。
比如说,A、B两人,A的速度是每小时5千米,B的速度是每小时3千米,他们相向而行,一开始相距20千米,问多久能相遇?这时候就可以把A和B想象成两个合作的小蚂蚁,它们共同完成20千米的路程,二者速度和是5 + 3 = 8千米/小时,根据公式时间= 路程÷速度,那就是20÷8 = 小时就能相遇啦。
对于那些追击问题,就好比是两个人在赛跑,一个人在前面跑,一个人在后面追。
后面人的速度比前面人快,快出来的那部分速度就是用来缩短他们之间距离的关键。
比如说,甲速度是每小时8千米,乙速度是每小时6千米,乙先出发1小时,甲再出发追乙,甲追乙就是他们的距离在不断缩小,乙先走1小时就先走了6×1 = 6千米,甲每小时比乙多走8 - 6 = 2千米,那甲追上乙就需要6÷2 = 3小时。
对了,还有个事儿要说。
在解行程问题的时候,画图是个特别好的方法。
就像给你一堆乱线,你把它整理好画出来就清楚多了。
有时候单纯看题脑袋里乱糟糟的,但把图画出来,速度、路程和时间的关系就一目了然了。
但是,我得承认,这个画图法虽然好用,但也有局限性。
行程问题的解题技巧和方法

行程问题的解题技巧和方法
行程问题是数学中常见的问题之一,它涉及到速度、时间、距离等基本概念。
在解题时,我们需要根据题目中所给出的信息,运用合适的方法进行求解。
以下是一些常用的解题技巧和方法:
1. 基本公式法:行程问题的基本公式为:路程=速度×时间。
利用这个公式,我们可以很方便地求解各类行程问题。
2. 比例法:比例法是行程问题中常用的方法之一。
如果题目中给出的比例关系正确,我们可以通过比例关系来求解问题。
3. 假设法:假设法适用于一些无法确定具体数值的行程问题。
通过假设一些数值,然后根据题目中给出的信息,进行分析推理,进而求解问题。
4. 方程法:方程法是行程问题中最常见的方法之一。
通过建立方程,我们可以将行程问题转化为代数问题,然后通过解方程来求解答案。
5. 正反比法:正反比法适用于一些行程问题中的速度变化情况。
如果题目中给出的速度变化规律正确,我们可以通过正反比关系来求解问题。
6. 比例分配法:比例分配法适用于一些行程问题中的比例关系不正确,但可以分解成两个比例关系的情况。
通过比例分配,我们可以将问题转化为两个比例关系的问题,然后求解答案。
总之,行程问题的解题技巧和方法有很多种,我们需要根据具体情况进行选择。
在学习过程中,我们应该注重基础知识的掌握和技巧的应用,这样才能在解题时更加从容自信。
2014年国家公务员考试行测答题技巧:追击问题

追击问题
在国家公务员考试中,行程问题都是一个常考点,综合来看历年国考,专家发现行程问题主要是考察相遇和追击问题,这就要求各位考生能把握住相遇追击的本质。
相遇和追击本质上就是要看在相同时间内,走过的路程和一定还是路程差一定。
如果相同时间走过的路程和能明显找到,就采用相遇公式:路程和=速度和×时间;如果相同时间走过的路程差能明显找到,就采用追击公式:路程差=速度差×时间。
一、路程差一定
能够根据题干信息找到路程差值时,就采用追击公式路程差=速度差×时间。
例1:快、中、慢三辆车同时从同一地点出发,沿同一公路追赶前面的一辆骑车人。
这三辆车分别用了6分钟、10分钟、12分钟追上骑车人,现在知道快车每小时行24公里,中速车每小时行20公里,问慢车每小时行( )。
(10吉)
A19公里 B14公里 C15公里 D18公里
【解析】A
文章来源:中公教育。
行测数量关系技巧:如何利用正反比巧解行程问题

行测数量关系技巧:如何利用正反比巧解行程问题行测数量关系技巧:如何利用正反比巧解行程问题对于众多考生来说,行测数量中的行程问题基本上是属于年年必考类的题型,但是这种题型有时简单有时复杂,所以接下来给大家介绍一种关于行程问题可以巧解的方法——正反比方法。
一、行程问题中基本公式S=VT(路程=速度×时间)二、行程问题中正反比存在S=VT时且3个未知数有其中一个量处于不变时当S不变时,V与T成反比当V不变时,S与T成正比当T不变时,S与V成正比三、例题展示例:甲乙两辆从A地驶往90公里外的B地,两车的速度比为5:6。
甲车于上午10点半出发,乙车于10点40分出发,最终乙车比甲车早2分钟到达乙地。
问两车的时速相差多少千米/小时?A.10B.12C.12.5D.15【解析】:选D。
根据题意,甲乙两车的速度比为5:6,两车都是从A走向B路程一致,速度与时间成反比,因此两车从A到B所用的时间比为6:5,乙比甲晚出发10分钟,且比甲早2分钟到达,所以全程乙比甲快了12分钟,即时间所差的一份对应12分钟,因此全程乙用时12×5=60分钟,即乙的速度为90公里/小时,甲的速度为90×5/6=75公里/小时,因此两车速度之差为15公里/小时。
例:有两个山村之间的公路都是上坡和下坡,没有平坦路。
农车上坡的速度保持20千米/小时,下坡的速度保持30千米/小时,已知农车在两个山村之间往返一次,需要行驶4小时,问两个山村之间的距离是多少千米?A.45B.48C.50D.24【解析】:选B。
往返相当于走了一个全程的上坡和一个全程的下坡,根据S=VT,当S一定时,VT成反比。
上坡的速度:下坡速度=20:30=2:3,则上坡时间:下坡时间=3:2,5份对应4小时,1份是0.8时间,上坡对应3×0.8=2.4小时,全程是2.4×20=48千米。
例:两名运动员进行110米栏赛跑,结果甲领先乙10米到达终点。
行程问题的解题技巧和方法

行程问题的解题技巧和方法
行程问题是数学中常见的一种问题类型,通常应用于时间、速度、距离等方面。
解题时需要掌握一定的技巧和方法,下面介绍一些常见的解题技巧:
1. 建立方程
在解决行程问题时,可以根据题目所给出的条件,建立相应的方程式,来求解未知数。
例如,当我们知道两个物体在同一方向上移动时,可以运用公式:距离=速度×时间,建立方程,进而求出未知数。
2. 画图辅助解题
有些行程问题,尤其是多个物体同时移动时,画图可以帮助我们更好地理解题目意思,并且有利于我们找到解题的方法。
因此,在解题时,可以根据题目要求,画出相应的图形,帮助我们更好地理解题目。
3. 分析速度、时间、距离之间的关系
在行程问题中,速度、时间和距离之间有着密切的关系。
当我们知道任意两项,都可以通过公式求出另一项。
因此,在解题时,可以尝试从速度、时间、距离之间的关系入手,找到解题的方法。
4. 求平均速度
有些题目中,物体在行程中可能有多个速度。
此时,我们可以求出平均速度来解决问题。
平均速度的公式是:平均速度=总路程÷总时间。
在求解平均速度时,我们需要注意速度的单位应该统一。
总之,解决行程问题需要综合运用数学知识和思维能力,灵活运用解题技巧和方法,精准地分析题目,才能得到正确的答案。
行程问题的解题技巧和方法

行程问题的解题技巧和方法
旅行是每个人都喜欢的活动之一,但是在规划行程时可能会遇到许多问题。
下面列出一些解决行程问题的技巧和方法。
1. 制定详细的行程计划:在规划旅行时,制定详细的行程计划非常
重要,包括行程的时间、地点、预算和活动。
这可以使您更好地了解您的旅行,并在您的旅行期间更轻松地管理时间和资源。
2. 确定您的预算:在规划旅行时,预算是非常关键的因素。
您需要
确定旅行预算,并制定一个预算计划,以确保您的旅行花费在合理范围内,同时还能尽情享受旅行。
3. 掌握当地的文化和风俗:在规划旅行时,了解当地的文化和风俗
也非常重要。
了解当地的文化和风俗可以帮助您更好地融入当地人群,避免造成尴尬和冒犯。
4. 确定您的旅行方式:在规划旅行时,您需要确定您的旅行方式。
您可以选择乘坐公共交通工具、租用汽车或参加旅行团等方式。
选择最适合您的旅行方式可以让您更舒适地旅行,并节省时间和金钱。
5. 预定住宿和机票:在规划旅行时,预定住宿和机票也是非常重要的。
您需要提前预定住宿和机票,以确保您有一个舒适的住宿和便捷
的交通。
总之,在规划旅行时,您需要考虑许多因素。
这些技巧和方法可以帮助您更好地规划旅行,并获得最佳的旅行体验。
行程问题的解题技巧和方法

行程问题的解题技巧和方法介绍在日常生活中,我们经常面临行程安排的问题。
无论是规划旅行还是安排工作日程,合理的行程安排对我们的生活具有重要意义。
本文将介绍一些解决行程问题的技巧和方法,帮助读者更好地规划自己的行程。
行程问题的来源和类型行程问题通常分为两类:旅行行程问题和工作日程问题。
旅行行程问题涉及到如何合理地安排旅行路线、景点游览顺序、交通工具选择等;而工作日程问题则是关于如何合理安排工作任务、会议安排、时间分配等。
解决行程问题的技巧和方法以下是一些解决行程问题的技巧和方法,可以帮助读者更好地规划自己的行程。
旅行行程问题的解决技巧和方法1.确定旅行目的地和时间:首先需要明确旅行的目的地和出行的时间,这将有助于确定有关行程安排的其他要素。
2.研究目的地:了解目的地的景点、气候、交通等信息,帮助做出更明智的决策。
3.制定旅行路线:根据目的地景点的位置和开放时间,制定一个合理的旅行路线。
考虑景点之间的交通便利性、旅行时间等因素,避免来回折腾。
4.合理安排游览时间:根据景点的特点和自己的兴趣,合理安排游览时间,避免时间过长或过短。
5.选择合适的交通工具:根据旅行路线和自己的预算,选择合适的交通工具,如飞机、火车、汽车等。
同时,预先购买车票或订票有助于降低成本和提前规划行程。
6.考虑食宿问题:根据旅行路线,提前安排好合适的食宿,以免到达目的地后再苦苦寻找,浪费时间和精力。
工作日程问题的解决技巧和方法1.列出工作任务:首先将需要完成的工作任务列出来,并根据重要性和紧急程度进行排序。
2.估算任务完成时间:对每个工作任务估计所需的完成时间,以便更好地分配时间和优先处理。
3.合理分配时间:根据工作任务的紧急程度和时间估计,合理分配每天工作的时间段。
4.避免过度安排:不宜在同一时间段内安排过多的工作任务,以免无法有效完成。
5.留出灵活时间:在行程中留出一些灵活的时间,以应对可能的变动和突发事件。
6.合理安排会议和约会:将会议和约会集中在一天或几天内安排,以减少工作中的中断和时间浪费。
2014年江西公务员考试行测考场技巧

江西公务员考试大纲已经公布一段时日,距离考试不到20天的时间,决战时刻即将来临,对于辛苦备考的广大考生们,最后的冲刺阶段,我们需要掌握哪些信息,以助我们取得佳绩,这里主要给大家介绍一下考场上的做题技巧,掌握这个,可以让你更好地发挥出练习中的水平,甚至超常发挥,取得好的成绩。
1、关于涂卡:涂卡方面一直有几种选择,一是做一道涂一道、二是做完一部分涂一部分、三是全部做完再涂,对于第一种,应该可以排除,这种是最浪费时间的;至于第三种,全部做完再涂,对于时间充裕的人来说是比较合适的,全部做完了,涂的时候还可以有一次检验的机会,但是对于行测那么紧张的时间,也不推荐;因此,一般情况下,做一部分涂一部分是不错的选择,不过对于这种方法,我们要认识到位,涂的那一部分,需要是你全部做完,没有空的那部分,如果你中间有难题跳过了,这个部分就不要涂,防止出现错位。
2、关于如何进行猜测:猜测是需要技巧的,并不是单纯的蒙,最忌讳题目也不看,直接在答题卡上涂答案。
猜测需要有个方向:一般来说,放到最后进行猜测的题目有两种情况,一是时间不够,二是前面留下的难题。
属于是前面留下的难题,你应该有思考过,可以确定一个方向,排除一到两个,那么在剩下的两个里猜测,成功率会高很多。
对于时间不够的,可以简单看一下四个选项,找答案简单的,越简单,是正确答案的可能性越高。
每年都有几万甚至几十万的人参加公务员考试,但是考上的毕竟是少数。
大家都经过了高等教育,拥有差不多的智力水平,所以,更勤奋的人将获得更多的机会。
在最后,还是要强调,多做题目,是行测获得高分的最高秘诀。
要保持对题目的敏感度,看到题目就有连锁反映,包括如何下手,如何解答,如何得出正确答案。
如果公务员真的是你的毕生追求,那么,为这个一辈子的目标,投入一个月的疯狂,难道不值得么?。
公务员考试:行程问题三个妙招

公务员行程问题三个妙招华图教育孙兆宸行程问题是公职考试中最重要的题型,几乎每个级别的考试都会涉及到行程问题,而且题型多样,复杂多变,因此,对于广大考生而言,并不容易掌握。
那么,对于行程问题我们应该从什么样的角度切入呢?在行程问题中,最本质的就是速度、时间、路程三者之间的关系。
只要把这三者的关系牢牢抓住了,所有的问题都会迎刃而解,因为行程问题所有的内容都是从这个基础演化而来的。
相信大家对行程问题的基本公式:路程=速度×时间,已经在熟悉不过了,而行程问题之所以称为国考、省考中的数量常考点、易考点和难考点,往往有很多考生见到行程问题就头大脑晕、不知所措,或者干脆主动放弃,之所以会这样,就在于很多考生都没有把握行程问题的本质,但是,只要我们把握了行程问题的本质——路程=速度×时间,然后再加上一些基本公式和技巧,那么解决行程问题绝不是难事。
大家一定要记住这个本质公式:路程=速度×时间。
在记住这个公式的基础上,大家还要掌握下面的三种方法:1、比例法:运用比例法的目的是为了将繁琐的数值简化为简单的数值来进行分析计算,同时比例法的实质也是抓住了数学的核心思想“相对关系”。
2、画图法:通过画简单行程图,迅速理清各物体运动轨迹和之间的相互关系。
3、公式法:特定模型应用特定公式,秒杀题目。
但是一定要记住每个公式的运用前提和它的特征。
但是要大家切记,在做行程问题时我们要用比例不用方程,用份数不用分数。
也许有很多考生会问:为什么用这三种方法而不用方程呢?是因为我们在日常学习中,解决行程问题常采取列方程的方式,这种方法虽然简便易学,但是在国考分秒必争的时间里,列方程这种方法并不能很好的解决在短时间内达到解决行程问题的目的,因此,我们采用比例方法来达到快速解题的目的!下面我们就通过几个例题来训练一下:例1甲每分钟走80米,乙每分钟走72米,两人同时从A地出发到B地,乙比甲多用4分钟,AB两地的距离为多少米()?(2010年福建)A.320B.288C.1440 D.2880【正确答案】D【思路点拨】思路一——方程法:设甲走了X分钟,则得出80X=72*(X+4),解出X。
行程问题技巧

行程问题技巧行程问题是研究速度、时间和路程三量之间关系的问题,这种题型是公务员考试题的重点考察内容。
行程问题常与分数、比例等知识结合在一起,综合性强,且运用形式多变,解答时应注意几点。
行程问题是研究速度、时间和路程三量之间关系的问题,这种题型是公务员考试题的重点考察内容。
行程问题常与分数、比例等知识结合在一起,综合性强,且运用形式多变,解答时应注意以下几点:1、尽可能采用作线段图的方法,正确反映数量之间变化关系,帮助分析思考。
2、行程问题常结合分数应用题,解答时要巧妙地假设单位“l”使问题简单化,有时还可以联系整数知识,把路程理解为若干份。
3、复杂行程问题经常运用到比例知识。
速度一定,时间和路程成正比;时间一定,速度和路程成正比;路程一定,速度和。
时间成反比4、碰到综合性问题可先把综合问题分解成几个单一问题,然后逐个解决。
例1、甲、乙两辆汽车同时分别从A、B两站相对开出。
第一次在离A站90千米处相遇。
相遇后两车继续以原速前进,到达目的地后又立刻返回。
第二次相遇在离A站50千米处。
求A、B两站之间的路程。
A、150千米B、160千米C、180千米D、200千米解析:甲、乙两辆汽车同时从A、B两站相对开出到第二次相遇共行了3个全程。
由于两车合行一个全程时,甲车行90千米。
在两车两次相遇的三个全程中,甲车共行了90×3=270(千米),这时离A站正好有50千米,加上50即为两个全程270+50=320(千米)。
所以A、B两站之间的路程是320÷2=160(千米)。
答案选择B练习1、两辆汽车同时从东、西两站相对开出。
第一次在离西站45千米的地方相遇之后,两车继续以原来的速度前进。
各自到站后都立即返回,又在距中点东侧15千米处相遇。
两站相距多少千米?A、80千米B、100千米C、120千米D、140千米例2、甲、乙两辆汽车分别从A、B两地同时相对开出。
甲每小时行42千米,乙每小时行54千米。
行程问题的解题技巧和方法

行程问题的解题技巧和方法
行程问题是数学中的一类常见问题,它们通常涉及到时间、距离、速度等概念。
解决这类问题需要掌握一些技巧和方法,以下是其中的一些:
1. 画图法
我们可以通过画图的方式将问题模拟出来,明确各个变量的含义和关系。
比如在解决汽车行驶问题时,可以画出车辆行驶的路线图,标明起点、终点、途中的里程数等,以便更好地理解问题和推导答案。
2. 等量代换法
有时候问题中的某些变量可以用其他变量表示出来,这时候可以通过等量代换来简化计算。
比如在解决两车相遇问题时,可以将两车相遇的时间转化为两车之间的距离关系,然后用速度和时间的公式求解。
3. 速度图法
速度图是一种表示车速变化的图形,可以帮助我们更好地理解车辆行驶的过程。
在解决多车同时出发的问题时,可以通过画速度图来分析各车之间的关系,以便更好地推导答案。
4. 追及问题法
追及问题是一类特殊的行程问题,通常涉及到两个物体的相对运动。
在解决这类问题时,可以采用追及问题法,即通过两个物体的相对速度和相对距离来推导它们相遇的时间和地点。
5. 求平均速度
在解决行程问题时,有时需要求出多个车辆或物体的平均速度。
这时候可以通过平均速度的公式来计算,即平均速度=总路程/总时间。
以上是解决行程问题的一些常用技巧和方法,它们可以帮助我们更好地理解问题和推导答案。
当然,还有很多其他的方法和技巧,需要根据具体情况进行选择和应用。
行程问题解题技巧和思路

行程问题解题技巧和思路
1. 哎呀呀,碰到行程问题别慌呀!你看,就像你要去一个好玩的地方,得先规划好路线一样。
比如说,从家到超市5 公里,你走路每小时3 公里,那算一下不就知道得走多久啦!解题时要抓住路程、速度和时间的关系,这可是关键哦!
2. 嘿,行程问题有时候挺绕人的,可咱不怕呀!比如说两辆车同时出发,一辆速度快,一辆速度慢,它们之间的距离变化不就是个有趣的事儿嘛。
就好像跑步比赛,谁跑得快,不就更容易领先嘛,这里面的窍门可得搞清楚咯!
3. 哇塞,行程问题的思路其实不难找呢!就像你找宝藏,得有线索呀。
比如知道了总路程和两人的速度比,那就能算出各自走的路程啦。
好比分蛋糕,按比例来嘛,这样一想是不是就简单多啦?
4. 哟呵,行程问题里还藏着好多小秘密呢!比如说相遇问题,两个人相向而行,就跟你和朋友约好见面,想想怎么才能碰面最快嘛。
这不就是实际生活中的事儿嘛,可有意思啦!
5. 哈哈,解决行程问题可得仔细着点!就像走路要一步一步稳着来。
比如给你一段路程,中间休息了一会儿,那时间可得单独算呀。
就好比做一件事,中间停了会儿,总得把时间分清楚不是?
6. 呀,行程问题也不是那么难搞嘛!比如说知道了速度和时间,那路程不就呼之欲出啦。
这就像你知道每天跑多少,跑了几天,一共跑了多远不就清楚啦,是不是很好理解呀?
7. 哼,行程问题可难不倒我!就像爬山,虽然过程有点累,但到了山顶就超有成就感。
遇到难题别怕,一点点分析,总能找到答案的!
我的观点结论就是:只要掌握好方法和思路,行程问题绝对能轻松拿下!。
行测行程问题解题方法

行测行程问题解题方法
行测中的行程问题通常都是与时间、距离、速度等相关的运动问题,常见类型有相向出发、相遇、交错等。
针对这些问题,以下是一些解题方法:
1. 画图法
在解题时可以根据题目要求,绘制出相应的图形,以便更好地理解和解决问题。
比如相向而行问题,可以画出两人相向而行的图形,标上相对速度,根据两人之间的距离和时间来计算出两人相遇的时间点;而对于相遇问题,则需要画出两人的运动轨迹,通过交点来确定两人相遇的时间和位置。
2. 路程、速度、时间图
在解题时可以采用路程、速度、时间图的方法,将三者之间的关系用图形表现出来。
比如相向出发问题,可以将两人行程的路程距离、速度和时间用图表来表示,将两者之间的距离表示为一条线段,两人相遇的点为交点,从而计算出两人相遇的时间。
交错问题也可以用同样的方法解决。
3. 解方程法
对于一些比较复杂的行程问题,可以采用解方程的方法来求解。
首先需要根据问题中所给的条件列方程,然后化简、代入、消元,在数学上求解出问题的答案。
这种方法需要一定的数学基础和运算能力,但对于一些比较复杂的问题,是一种有效的解题方法。
综上所述,行测中的行程问题需要注意细节问题,例如要注意两人相遇的时间点还是距离、速度在题目中是否有单位等。
无论采用哪种方法解答,都需要对题目中所给出的条件进行仔细分析,清晰表达,逐步推导出正确的答案。
同时,练习过程中建议多做一些类似题目,加强理解和运算能力,提高解题效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中公教育. 给人改变未来的力量2014江西公务员考试行测:行程问题快速解题技巧
行程问题在数学运算当中固然是较难的一种题型,因为行程问题的相关知识点较多,尤其是相遇问题,又要进行多次相遇,较为复杂,另外,行程问题除了我们通常考的相遇问题和追击问题之外,还有牛吃草问题,钟表问题等等,你会发现,其实牛吃草问题也好,钟表问题也罢,它们都不过是相遇问题或者追击问题中的一种变形。
下面中公教育专家为大家讲解钟表问题。
一、必备知识
钟表问题和普通的行程问题最主要的区别在于,普通的相遇或追击是在直线上进行的,而钟表问题是在圆圈上进行的。
那么,你会发现,无非就是把直线是我们所谓的长度,在钟表中看成了角度,而直线上的速度,在钟表上变成了时针和分针的角速度。
那么由此,我们必须要了解的就是在时针与分针的角速度问题。
我们知道,分针走一周是60分钟,所走的度数为360º,所以,分针=6º/分。
同理,时针走一周是12*60分钟,所以,时针=0.5º/分。
这两个已知的速度要作为常识进行积累。
希望同学们牢牢记住。
二、应用
钟表问题的应用核心就在于我是给它看成相遇问题还是追击问题。
看成相遇,我们就可以用分针与时针共同所走的角度除以他们的速度和,如下:
看成追击问题,就可以用追击的角度除以他们的速度差,如下:
这无非就是形成问题的基本公式,只不过我们在钟表问题当中时针和分针的速度是已知的,无非我们需要关注下路程,也就是角度问题等于多少即可。
所以我们钟表问题的核心在于:哪段角度已知。
例题1:已知现在是12点整,问过了多久时针与分钟第一次形成180°?
中公教育. 给人改变未来的力量
中公解析:12点我们知道分针与时针的夹角是0°,过了多久形成180°,也就是核心:已知分针比时针多走了180°,也就是追击的角度,由此看成追击问题。
套用公式:
便可以轻松求出。
例题2:已知现在是三点整,问过了多久时针与分针分布在3的两侧并且距离相等。
中公解析:三点整,也就是时针与分针夹角为90°,时针与分针分布在3的两侧并且距离相等,通过画图能够轻易发现,核心:已知时针与分钟共同所走的度数为90°,由此
看成相遇问题。
套用公式
得到结果。
由此,我们通过两道例题,发现应对钟表问题无非核心问题就是找到时针与分针共同所走的角度已知,还是角度差已知,便可以看成简单的相遇或追击问题就可以轻松求出,应对考试。