9年级数学模拟试卷14年4月
2023年湖北省武汉第三寄宿中学九年级四月调考数学模拟试卷及答案解析
2023年湖北省武汉第三寄宿中学九年级四月调考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣3的相反数是()A.3B.﹣3C.D.2.(3分)如图是四届冬奥会会标的一部分,其中是轴对称图形的是()A.B.C.D.3.(3分)下列说法中,正确的是()A.调查某班45名学生的身高情况宜采用全面调查B.“太阳东升西落”是不可能事件C.“武汉明天降雨的概率为0.6”,表示武汉明天一定降雨D.任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次4.(3分)下列水平放置的几何体中,俯视图是矩形的是()A.B.C.D.5.(3分)如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.496.(3分)如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是()A.B.C.D.7.(3分)反比例函数y=的图象经过点A(﹣1,﹣2),则当x>1时,函数值y的取值范围是()A.y>1B.0<y<1C.y>2D.0<y<28.(3分)如图,在四边形ABCD中,∠B=90°,AC=6,AB∥CD,AC平分∠DAB.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.9.(3分)若实数m,n满足条件:m2﹣2m﹣1=0,n2﹣2n﹣1=0,则的值是()A.2B.﹣4C.﹣6D.2或﹣6 10.(3分)如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB=60°.若四边形APBC面积为,且PA:PB=1:2,则⊙O的半径为()A.2B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)神舟十三号载人飞船和航天员乘组于2022年4月16日返回地球,结束了183天的在轨飞行时间,从2003年神舟五号载人飞船上天以来,我国已有13位航天员出征太空,绕地球飞行共约2.32亿公里,将数据232000000用科学记数法表示为.12.(3分)某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.13.(3分)计算:÷(1﹣)的结果是.14.(3分)如图,斜坡AB长为100米,坡角∠ABC=30°,现因“改小坡度”工程的需要,将斜坡AB改造成坡度i=1:5的斜坡BD(A、D、C三点在地面的同一条垂线上),那么由点A到点D下降了米.(结果保留根号)15.(3分)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论是:.16.(3分)如图,在四边形ABCD中,BD垂直CD,若AB=7,CD=12,∠ABD=2∠BCD,2∠BAC+∠ACB=90°,则AC的长为.三、解答题(共8题,共72分)17.(8分)解不等式组.请结合题意完成本题的解答(每空只需填出最后结果).解:解不等式①,得.解不等式②,得.把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为.18.(8分)在四边形ABCD中,对角线AC、BD相交于点O,AD∥BC,BO=DO.(1)求证:四边形ABCD是平行四边形;(2)过点O作OE⊥BD交BC于点E,连结DE,若∠CDE=∠CBD=15°,则∠ABC 的度数是°.19.(8分)某校为落实“双减”工作,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术:D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α=度:(2)若该校有3200名学生,估计该校参加D组(阅读)的学生人数.20.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC交BA的延长线于点E,交AC于点F.(1)求证:DE是⊙O的切线;(2)若AC=6,tan E=,求AF的长.21.(8分)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中先将AC绕点C逆时针旋转90°得到线段CD,画出线段CD,再在BC上画点P,使;(2)在图(2)中,画出点C关于AB的对称点M,连接BM,在射线BM上取点F,使得BF=BA,画出点F.22.(10分)由于惯性的作用,行驶中的汽车在刹车后还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”.某公司设计了一款新型汽车,现在对它的刹车性能(车速不超过150km/h)进行测试,测得数据如表:车速v(km/h)0306090120150刹车距离s(m)07.819.234.252.875(1)刹车距离s与车速v之间存在某种函数关系,结合你所学的知识,直接写出刹车距离s与车速v之间的函数关系;(2)若该路段实际行车的最高限速为120km/h,要求该型汽车的安全车距要大于最高限速时刹车距离的3倍,则安全车距应超过多少米?(3)在某路段上,要求该型汽车的刹车距离不超过40米,请问车速应该控制在什么范围内?23.(10分)【问题背景】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在平行四边形ABCD中,E为BC上一点,F为CD延长线上一点,FE、FB分别交AD于点H、G.∠BFE=∠A,若BF=8,BE=6,GH:AG=9:8,求FD:DC的值.【拓展创新】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,若∠EDF=∠BAD,AE=4,DF=10,直接写出菱形ABCD的边长为.24.(12分)如图①,抛物线C1:y=ax2+bx﹣4a顶点坐标为(0,﹣1),抛物线与x轴交于A,B(A左,B右)两点.(1)求A,B两点的坐标;(2)若M(﹣4,m),N是抛物线上两点,且锐角∠OMN的正切值不小于2,直接写出N点的横坐标x N的取值范围;(3)将抛物线C1上移一个单位得抛物线C2,过B作直线交抛物线C2于F、D,如图②,过F的直线y=x+b交抛物线于另一点E,则直线DE过定点,求这个定点的坐标.2023年湖北省武汉第三寄宿中学九年级四月调考数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:实数﹣3的相反数是3.故选:A.【点评】此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A,B,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】根据全面调查与抽样调查的特点、随机事件的定义对各选项进行分析即可.【解答】解:A、调查某班45名学生的身高情况宜采用全面调查,正确,符合题意;B、“太阳东升西落”是必然事件,原说法错误,不符合题意;C、“武汉明天降雨的概率为0.6”,表示武汉明天可能降雨也可能不降雨,原说法错误,不符合题意;D、任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数不一定是13次,原说法错误,不符合题意.故选:A.【点评】本题考查的是概率的意义,全面调查与抽样调查的特点、随机事件的定义,熟知以上知识是解题的关键.4.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:圆柱的俯视图是圆,三棱柱的俯视图是三角形,长方体的俯视图是矩形,圆锥的俯视图是圆,【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.【分析】直接利用位似图形的性质得出位似比,进而得出面积比,即可得出答案.【解答】解:∵△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,∴OA:OD=3:7,:S△DEF=9:49,∴S△ABC=9,∵S△ABC∴△DEF的面积为:49.故选:D.【点评】此题主要考查了位似变换,正确得出三角形面积比是解题关键.6.【分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B、C、D处都是等可能情况,从而得到在四个出口E、F、G、H也都是等可能情况,然后根据概率的意义列式即可得解.【解答】解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E、F、G、H四个,所以小球从E出口落出的概率是:;故选:C.【点评】本题考查了概率的求法,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.7.【分析】把A(﹣1,﹣2)代入反比例函数y=可得k=2,而当x=1,y=2,根据反比例图象分布在第一、第三象限,在每一象限,y随x的增大而减小,得到当x>1时,函数值的范围为0<y<2.【解答】解:∵反比例函数y=的图象经过点A(﹣1,﹣2),∴﹣2=,∴k=2,∴y=,当x=1,y=2,当x>1时,函数值的范围为0<y<2.【点评】本题考查了反比例函数图象上点的坐标特征和性质:反比例函数y=(k≠0)的图象上点的横纵坐标之积为常数k;当k>0时,图象分布在第一、第三象限,在每一象限,y随x的增大而减小;当k<0时,图象分布在第二、第四象限,在每一象限,y 随x的增大而增大.8.【分析】先证明CD=AD=y,过D点作DE⊥AC于点E,证明△ABC∽△AED,利用相似三角形的性质可得函数关系式,从而可得答案.【解答】解:过D点作DE⊥AC于点E.∵AB∥CD,∴∠ACD=∠BAC,∵AC平分∠DAB,∴∠BAC=∠CAD,∴∠ACD=∠CAD,则CD=AD=y,即△ACD为等腰三角形,则DE垂直平分AC,∴AE=CE=AC=3,∠AED=90°,∵∠BAC=∠CAD,∠B=∠AED=90°,∴△ABC∽△AED,∴,∴,∴y=,∵在△ABC中,AB<AC,∴x<6,故选:D.【点评】本题考查的是角平分线的定义,等腰三角形的判定与性质,相似三角形的判定与性质,反比例函数的图象,通过添加辅助线证明△ABC∽△AED是解本题的关键.9.【分析】根据根与系数的关系即可求出答案.【解答】解:当m≠n时,∴m、n是方程x2﹣2x﹣1=0的两根,∴m+n=2,mn=﹣1,∴原式====﹣6,当m=n时,原式=1+1=2,故的值是2或﹣6.故选:D.【点评】本题考查根与系数的关系,解题的关键是正确找出m+n与mn的值,本题属于中等题型.10.【分析】先证明△ABC是等边三角形,再利用勾股定理求出边长,再求出半径.【解答】解:过A作AE⊥BP角BP的延长线于E,过O作OF⊥AB于F,连接OB,设AP=x,则BP=2x,∵∠APC=∠CPB=60°,∴∠APE=120°,∠BAC=∠ABC=60°,∴∠ACB=60°,∠EAP=30°,∴△ABC是等边三角形,∴AE=x,EP=x,∴AB==x,=S△ABP+S△ABC=BP•AE+AB•AC sin A=•2x•x+(x)2=∴S四边形APBC,解得:x=,∴AB=4,∵OF⊥AB,∴BF=AB=2,∠ABO=30°,∴OB=,故选:C.【点评】本题考查了圆内接四边形,掌握有关性质及等边三角形的性质是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【解答】解:232000000=2.32×108.故答案为:2.32×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】把这组数据从小到大排列,处于中间位置的数就是这组数据的中位数.【解答】解:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案是:183.【点评】此题考查了中位数和折线统计图,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【解答】解:原式=÷(﹣)=÷=•=,故答案为:.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.14.【分析】根据直角三角形的性质求出AC,根据余弦的定义求出BC,根据坡度的概念求出CD,结合图形计算,得到答案.【解答】解:在Rt△ABC中,∠ABC=30°,∴AC=AB=50,BC=AB•cos∠ABC=50,∵斜坡BD的坡度i=1:5,∴DC:BC=1:5,∴DC=10,则AD=50﹣10,故答案为:(50﹣10).【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.15.【分析】根据抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)且c>0,即可判断开口向下,即可判断①;根据二次函数的性质即可判断②;根据抛物线的对称性即可判断③;根据抛物线的对称性以及二次函数的性质即可判断④.【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,∴抛物线开口向下,则a<0,故①正确;∵抛物线开口向下,对称轴为x=﹣2,∴函数的最大值为4a﹣2b+c,∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;∵对称轴为x=﹣2,c>0.∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,∴16a+c>4b,故③正确;∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),∵抛物线开口向下,∴若﹣4<x0<0,则y0>c,故④错误;故答案为:①③.【点评】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数与方程及不等式的关系,掌握二次函数的性质.16.【分析】如图,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得CF2=FB•FA,设FB=x,则有:x(x+7)=122,推出x=9或﹣16(舍弃),再利用勾股定理求出AC即可.【解答】解:如图,将△BCD沿BC翻折得到△BCF.∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD,∵∠ABD=2∠BCD,∵BD垂直CD,∴∠BCD+∠CBD=90°,∴∠ABD+∠DBC+∠CBF=180°,∴A、B、F共线,∠F=90°,∴∠FAC+∠ACF=90°∴2∠ACB+∠CAB≠90°,∴只有2∠FAC+∠ACB=90°,∴∠FCB=∠FAC,∵∠F=∠F,∴△FCB∽△FAC,∴CF2=FB•FA,设FB=x,则有:x(x+7)=122,∴x=9或﹣16(舍),∴AF=7+9=16,在Rt△ACF中,AC===20.【点评】本题考查四边形综合题、相似三角形的判定和性质、“准互余三角形”的定义等知识,解题的关键是理解题意,学会利用翻折变换添加辅助线,构造相似三角形解决问题,学会利用已知模型构建辅助线解决问题,属于中考压轴题.三、解答题(共8题,共72分)17.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①,得x>﹣2.解不等式②,得x≤3.把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为﹣2<x≤3,故答案为:x>﹣2,x≤3,﹣2<x≤3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【分析】(1)证明△AOD≌△COB(ASA),由全等三角形的性质得出AD=BC,由平行四边形的判定可得出结论;(2)由线段垂直平分线的性质得出BE=ED,得出∠CBD=∠BDE=15°,求出∠ABD =30°,则可得出答案.【解答】(1)证明:∵AD∥BC,∴∠ADO=∠CBO,又∵∠AOD=∠BOC,OB=OD,∴△AOD≌△COB(ASA),∴AD=BC,∴四边形ABCD是平行四边形;(2)解:∵OB=OD,OE⊥BD,∴BE=ED,∴∠CBD=∠BDE=15°,∵∠CDE=15°,∴∠BDC=30°,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABD=∠BDC=30°,∴∠ABC=∠ABD+∠CBD=30°+15°=45°.故答案为:45.【点评】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,平行线的性质,三角形外角的性质,熟练掌握全等三角形的判定与性质是解题的关键.19.【分析】(1)①由B组的人数除以所占百分比即可;②求出C组的人数,补全条形统计图即可;③由360°乘以C组所占的比例即可;(2)由该校共有学生人数乘以参加D组(阅读)的学生人数所占的比例即可.【解答】解:(1)①调查人数:50÷25%=200(名),故答案为:200;②C组的人数:200﹣30﹣50﹣70﹣20=30(名),补全条形统计图如下:③扇形统计图中圆心角α=360°×=54°,故答案为:54;(2)3200×=1120(人),答:估计该校参加D组(阅读)的学生人数为1120人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.【分析】(1)由等腰三角形的性质可得∠ABC=∠ACB=∠OBD=∠ODB,可证OD∥AC,可得OD⊥DE,可得结论;(2)由锐角三角函数可求DE=4,在直角三角形ODE中,由勾股定理可求OE=5,通过证明△AEF∽△OED,可得,即可求解.【解答】证明:(1)如图,连接OD,∵AB=AC,∴∠ABC=∠ACB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠ACB,∴AC∥OD,∴∠DFC=∠ODF,∵DE⊥AC,∴∠DFC=∠ODF=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)∵AC=6=AB,∴AO=OB=3=OD,∵OD⊥DE,tan E=,∴=,∴DE=4,∴OE===5,∴AE=OE﹣OA=2,∵AC∥OD,∴△AEF∽△OED,∴,∴,∴AF=.【点评】本题考查了切线的判定和性质,锐角三角函数,等腰三角形的性质,相似三角形的判定和性质,勾股定理等知识,求出OE的长是解题的关键.21.【分析】(1)取格点E,连接BE,交CD于F,此时CF=CD,连接AF交BC于P 点;(2)作CD⊥AB,再过点E作EM∥AB,交CD于M,再过格点G作AB的平行线,交BM于F点.【解答】解:(1)如图,取格点E,连接BE,交CD于F,连接AF交BC于P点,则点P即为所求;(2)作CD⊥AB,再过点E作EM∥AB,交CD于M,再过格点G作AB的平行线,交BM于F点.则点M、F即为所求.【点评】本题主要考查了网格作图,旋转变换,相似三角形的判定与性质,三角函数等知识,熟练掌握平行线分线段成比例是解题的关键.22.【分析】(1)根据表格中数据猜想刹车距离s与车速v之间的函数关系是二次函数,然后设出函数解析式,用待定系数法求出函数解析式,再把x,y的对应值代入解析式验证即可;(2)由表格中数据得出根据表格可得车速为120km/h时,刹车距离是52.8m,进而可得答案;(3)先求出s=40时,v得值,再根据函数的性质求取值范围.【解答】解:(1)由表中数据可知,刹车距离s与车速v之间的函数关系既不是一次函数也不是反比例函数,∴猜想刹车距离s与车速v之间的函数关系是二次函数,设刹车距离s与车速v之间的函数关系式为s=av2+bv,把x=30,y=7.8;x=60,y=19.2代入解析式得:,解得,∴y=0.002v2+0.2v,当x=90时,y=0.002×8100+0.2×90=34.2,∴刹车距离s与车速v之间的函数关系式为y=0.002v2+0.2v;(2)由表格得,车速为120km/h时,刹车距离是52.8m,∴52.8×3=158.4(m),答:安全车距应超过158.4米;(3)当s=40时,0.002v2+0.2v=40,解得v1=100,v2=﹣200(舍去),∴当s≤40时,v≤100,∴车速应该控制不超过100km/h范围内.【点评】本题考查了二次函数的应用,由函数的函数值求自变量的运用,解答时求出函数的解析式是关键.23.【分析】(1)证明△ADC∽△ACB,即可得出结论.(2)证明△FGH∽△FBE,△FDH∽△FCE,得到,由△BEF∽△BFC求出BC,CE,得到AD的长,进一步求出GH,HD的长,则即可得结果.(3)分别延长EF,DC相交于点G,证得四边形AEGC是平行四边形,得出AC=EG,CG=AE,∠EAC=∠G,证明△EDF∽△EGD,得出DE2=EF•EG,则DE=EF,求出DG得到答案.【解答】(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∴AC2=AD•AB.(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠A=∠BCD,∴△FGH∽△FBE,△FDH∽△FCE,∴,,∴,∵∠BFE=∠A,∴∠BFE=∠BCD,又∵∠EBF=∠CBF,∴△BEF∽△BFC,∴BF2=BE•BC,82=6•BC,∴BC=,∴CE=BC﹣BE=﹣6=,∴,∴=,∵=,AG+GH+DH=AD=,∴DH=×=,∴==,∴FD:DC=2:1.(3)解:如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC是平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴=,DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵=,∴DG=DF=10,∴DC=DG﹣CG=10﹣4,故菱形ABCD的边长为10﹣4.【点评】本题主要考查了相似三角形的判定与性质,平行四边形的判定与性质,菱形的性质等知识,熟练运用相似三角形的判定和性质,把所学知识融会贯通是解题关键.24.【分析】(1)通过将顶点坐标代入解析式,可求系数a、b的值,从而求出A、B两点坐标.(2)求点N横坐标的范围,即是求当∠OMN的正切值等于2时,点N的横坐标值,即可得出答案.(3)先得出平移后的抛物线解析式,设出点D(2d,d2)、E(2e,e2)、F(2f,f2),利用待定系数法求得直线DF,EF,DE的解析式,经过整理变形,得到直线DE的解析式:y=(d+e)(x﹣1)+2,由于x=2时,y=2,可知直线DE经过点(2,2),结论可得.【解答】解:(1)∵顶点坐标为(0,﹣1),∴﹣4a=﹣1,对称轴为x=0,∴a=,b=0,∴函数解析式是y=x2﹣1,令y=0,则x2﹣1=0,解得:x1=2,x2=﹣2.∴A(﹣2,0),B(2,0);(2)M(﹣4,t)是抛物线上的点,∴t=3,∴M(﹣4,3),如图,作ME⊥⊥x轴,OH⊥OM,HF⊥x轴∴∠MEO=∠OFH=90°,∠MOE+∠OME=90°,∠MOE+∠HOF=90°,∴∠OME=∠HOF,∴△OME∽△HOF,∴=,当tan∠OMN==2时,==2,∴HO=10,OF=6,HF=8∴H(6,8),∵当x=6时,y=x2﹣1=8,∵点H在抛物线上,∴锐角∠OMN的正切值不小于2时,N点的横坐标x N的取值范围为x N≥6,故答案为:x N≥6;(3)∵将抛物线C1向上平移一个单位得抛物线C2,∴抛物线C2的解析式为y=x2.设D(2d,d2)、E(2e,e2)、F(2f,f2),利用待定系数法可得:直线DF的解析式为:y=x﹣df,直线EF的解析式为:y=x﹣ef,直线DE的解析式为:y=x﹣de.∵DF过B(2,0)点,∴d+f﹣df=0.∵直线EF的解析式为:y=x+b,∴e+f=2.∴f=2﹣e.∴d+(2﹣e)﹣d(2﹣e)=0.∴de=d+e﹣2.∴直线DE的解析式变为:y=x﹣de=x﹣(d+e﹣2)=x﹣(d+e)+2=(d+e)(x﹣1)+2,∵当x=2时,y=2,∴直线DE过定点(2,2).【点评】本题是二次函数综合题,主要考查了一次函数的性质,二次函数的性质,待定系数法,勾股定理,三角形相似的判定与性质,锐角三角函数,平移的性质.掌握一次函数的性质,二次函数的性质是解题的关键。
北师大版九年级中考数学模拟考试试题(含答案)
九年级中考数学模拟试卷(满分150分 时间120分钟)一.单选题。
(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×1074.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx-1的图象向上平移2个单位长度后经过点(2,3),则k的值是()A.1B.﹣1C.﹣2D.29.如图,在△ABC中,AB=AC=2BC=4,以点B为圆心,BC长为半径画弧,与AC交于点D,则线段CD的长为()A.12B.1 C.43D.210.二次函数y=﹣x2+2x+8的图像与x轴交于B,C两点,点D平分BC,若在x轴上侧的A点为抛物线的动点,且∠BAC为锐角,则AD的取值范围是()A.3<AD≤9B.3≤AD≤9C.4<AD≤10D.3≤AD≤8二.填空题。
(共24分)11.因式分解:m2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是.(第12题图)(第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为.14.已知m是关于x的方程x2-2x-3=0的一个根,则m2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x表示餐桌的张数,y表示椅子的把数,请你写出椅子数y(把)与餐桌数x(张)之间的函数关系式.(第15题图)(第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。
湖南长郡教育集团2024年九年级上学期数学9月月考模拟试卷+答案
湖南省长沙市长郡教育集团2024-2025学年九年级上学期数学9月月考模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图各交通标志中,不是中心对称图形的是()A.B.C.D.2.(3分)地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为()A.0.149×106B.1.49×107C.1.49×108D.14.9×1073.(3分)下列计算正确的是()A.x2•x3=x5B.(x3)3=x6C.x(x+1)=x2+1D.(2a﹣1)2=4a2﹣14.(3分)下面是2024年丽江市某周发布的最高温度:16℃,19℃,22℃,24℃,26℃,24℃,23℃.关)A.中位数是24B.众数是24C.平均数是20D.方差是95.(3分)下列关于x的一元一次不等式x﹣1>0的解集在数轴上的表示正确的是()A.B.C.D.6.(3分)如图,已知AB是⊙O的直径,D、C是劣弧EB的三等分点,∠BOC=40°,那么∠AOE=()A .40°B .60°C .80°D .120°7.(3分)关于函数y =﹣2x +1,下列结论正确的是()A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .图象与直线y =﹣2x +3平行D .y 随x 的增大而增大8.(3分)如图,直线AB ∥CD ,直线EF 分别与AB ,CD 交于点E ,F ,EG 平分∠BEF ,交CD 于点G ,若∠1=70°,则∠2的度数是()A .60°B .55°C .50°D .45°9.(3分)函数y =ax +b 与y =ax 2+b (a ≠0)在同一平面直角坐标系中的大致图象可能是()A .B .C .D .10.(3分)如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D ,且DC +DA =12,⊙O 的直径为20,则AB 的长等于()A.8B.12C.16D.18二.填空题(共6小题,满分18分,每小题3分)11.(3分)因式分解:﹣a2﹣6a﹣9=.12.(3分)请写出一个经过点(0,﹣2),且y随着x增大而增大的一次函数:.13.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c>0的解集是.14.(3分)石拱桥的主桥拱是圆弧形.如图,一石拱桥的跨度AB=16m,拱高CD=4m,那么桥拱所在圆的半径OA=m.15.(3分)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为.16.(3分)如图,四边形ABCD内接于⊙O,点M在AD的延长线上,∠CDM=71°,则∠AOC=.三.解答题(共9小题,满分72分)17.(6分)计算:.18.(6分)先化简,再求值:(y+1)2﹣(y﹣1)(y+5),其中y=﹣.19.(6分)如图所示,每个小正方形的边长为1个单位长度,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).(1)点A关于点O中心对称的点的坐标为;(2)△AOB绕点O顺时针旋转90°后得到△A1OB1,在图中画出△A1OB1,并写出点B1的坐标:.20.(8分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=130°,求∠BED的度数.21.(8分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=45°,∠APD=75°.(1)求∠B的大小;(2)已知圆心O到BD的距离为3,求AD的长.22.(9分)如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B 在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.23.(9分)国庆节期间,某品牌月饼经销商销售甲、乙两种不同味道的月饼,已知一个甲种月饼和一个乙种月饼的进价之和为14元,每个甲种月饼的利润是6元,每个乙种月饼的售价比其进价的2倍少1元,小王同学买4个甲种月饼和3个乙种月饼一共用了89元.(1)甲、乙两种月饼的进价分别是多少元?(2)在(1)的前提下,经销商统计发现:平均每天可售出甲种月饼200个和乙种月饼150个.如果将两种月饼的售价各提高1元,则每天将少售出50个甲种月饼和40个乙种月饼.为使每天获取的利润更x元.在不考虑其他因素的条件下,当x为多少元时,才能使该经销商每天销售甲、乙两种月饼获取的利润为2650元?24.(10分)如图(1),正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE=6,将正方形AEFG绕点A逆时针旋转a(0°≤α≤45°).(1)如图(2),正方形AEFG旋转到此位置,求证:BE=DG;(2)在旋转的过程中,当∠BEA=120°时,试求BE的长;(3)BE的延长线交直线DG于点P,在旋转的过程中,是否存在某时刻BF=BC?若存在,试求出DP 的长;若不存在,请说明理由.25.(10分)如图1所示,直线与x轴、y轴分别相交于点A,点B,点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.(1)求抛物线的解析式:(2)点P为线段AB上(不与端点重合)的一动点,过点P作PQ∥y轴交抛物线于点Q,求PQ+PB 取得最大值时点P的坐标;(3)如图2,连接BC并延长,交x轴于点D,E为第三象限抛物线上一点,连接DE,点G为x轴上一点,且G(﹣1,0),直线CG与DE交于点F,点H在线段CF上,且∠CFD+∠ABH=45°,连接BH交OA于点M,已知∠GDF=∠HBO,求点H的坐标.湖南省长沙市长郡教育集团2024-2025学年九年级上学期数学9月月考模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图各交通标志中,不是中心对称图形的是()A.B.C.D.【解答】解:A.不是中心对称图形,故此选项符合题意;B、C、D是中心对称图形,故B、C、D选项不符合题意.故选:A.2.(3分)地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为()A.0.149×106B.1.49×107C.1.49×108D.14.9×107【解答】解:将149000000用科学记数法表示为:1.49×108.故选:C.3.(3分)下列计算正确的是()A.x2•x3=x5B.(x3)3=x6C.x(x+1)=x2+1D.(2a﹣1)2=4a2﹣1【解答】解:A、x2•x3=x5,本选项符合题意;B、(x3)3=x9≠x6,本选项不符合题意;C、x(x+1)=x2+x,本选项不符合题意;D、(2a﹣1)2=4a2﹣4a+1≠4a2﹣1,本选项不符合题意;故选:A.4.(3分)下面是2024年丽江市某周发布的最高温度:16℃,19℃,22℃,24℃,26℃,24℃,23℃.关于这组数据,下列说法正确的是()A.中位数是24B.众数是24C.平均数是20D.方差是9【解答】解:将数据按从小到大排列为:16、19、22、23、24、24、29,故中位数为:23,故A选项错误,不符合题意;众数是24,故B选项正确,符合题意;平均数为,故C错误,不符合题意;方差是:,故D选项错误,不符合题意;故选:B.5.(3分)下列关于x的一元一次不等式x﹣1>0的解集在数轴上的表示正确的是()A.B.C.D.【解答】解:解不等式x﹣1>0得,x>1,在数轴上表示如图,.故选:B.6.(3分)如图,已知AB是⊙O的直径,D、C是劣弧EB的三等分点,∠BOC=40°,那么∠AOE=()A.40°B.60°C.80°D.120°【解答】解:∵D、C是劣弧EB的三等分点,∠BOC=40°∴∠EOD=∠COD=∠BOC=40°∴∠AOE=60°.故选:B.7.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.图象与直线y=﹣2x+3平行D.y随x的增大而增大【解答】解:A、当x=﹣2,y=﹣2x+1=﹣2×(﹣2)+1=5,则点(﹣2,1)不在函数y=﹣2x+1图象上,故本选项错误;B、由于k=﹣2<0,则函数y=﹣2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,故本选项错误;C、由于直线y=﹣2x+1与直线y=﹣2x+3的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;D、由于k=﹣2<0,则y随x增大而减小,故本选项错误;故选:C.8.(3分)如图,直线AB∥CD,直线EF分别与AB,CD交于点E,F,EG平分∠BEF,交CD于点G,若∠1=70°,则∠2的度数是()A.60°B.55°C.50°D.45°【解答】解:∵EG平分∠BEF,∴∠BEG=∠GEF,∵AB∥CD,∴∠BEG=∠2,∴∠2=∠GEF,∵AB∥CD,∴∠1+∠2+∠GEF=180°,∴∠2=(180°﹣70°)=55°.故选:B .9.(3分)函数y =ax +b 与y =ax 2+b (a ≠0)在同一平面直角坐标系中的大致图象可能是()A .B .C .D .【解答】解:选项A 中,函数y =ax +b 中的a >0,b >0,二次函数y =ax 2+b 中a >0,b >0,故选项A 符合题意;选项B 中,函数y =ax +b 中的a >0,b <0,二次函数y =ax 2+b 中a >0,b >0,故选项B 不符合题意;选项C 中,函数y =ax +b 中的a >0,b <0,二次函数y =ax 2+b 中a <0,b >0,故选项C 不符合题意;选项D 中,函数y =ax +b 中的a >0,b >0,二次函数y =ax 2+b 中a <0,b >0,故选项D 不符合题意;故选:A .10.(3分)如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D ,且DC +DA =12,⊙O 的直径为20,则AB 的长等于()A .8B .12C .16D .18【解答】解:连接OC ,过O 作OF ⊥AB ,垂足为F ,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=12,设AD=x,则OF=CD=12﹣x,∵⊙O的直径为20,∴DF=OC=10,∴AF=10﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(10﹣x)2+(12﹣x)2=102,解得x1=4,x2=18.∵CD=12﹣x大于0,故x=18舍去,∴x=4,∴AD=4,AF=10﹣4=6,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=12.故选:B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)因式分解:﹣a2﹣6a﹣9=﹣(a+3)2.【解答】解:﹣a2﹣6a﹣9=﹣(a2﹣+6a+9)=﹣(a+3)2.故答案为:﹣(a+3)2.12.(3分)请写出一个经过点(0,﹣2),且y随着x增大而增大的一次函数:y=x﹣2(答案不唯一).【解答】解:设一次函数解析式为y=kx+b(k≠0).∵y随着x增大而增大,∴k>0,∵一次函数y=kx+b的图象经过点(0,﹣2),取k=1,∴﹣2=1×0+b,∴b=﹣2,∴一次函数的解析式可以为y=x﹣2.故答案为:y=x﹣2(答案不唯一).13.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c>0的解集是﹣1<x<3.【解答】解:∵由函数图象可知,当﹣1<x<3时,函数图象在x轴的下方,∴不等式ax2+bx+c>0的解集是﹣1<x<3.故答案为:﹣1<x<3.14.(3分)石拱桥的主桥拱是圆弧形.如图,一石拱桥的跨度AB=16m,拱高CD=4m,那么桥拱所在圆的半径OA=10m.【解答】解:∵OC⊥AB,AB=16m,∴AD=BD=8m,设BO=x m,则DO=(x﹣4)m,在Rt△OBD中,得:BD2+DO2=BO2,即82+(x﹣4)2=x2,解得:x=10,即桥拱所在圆的半径是10m.故答案为:10.15.(3分)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为1.【解答】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32﹣3k﹣6=0,解此方程得到k =1.16.(3分)如图,四边形ABCD内接于⊙O,点M在AD的延长线上,∠CDM=71°,则∠AOC=142°.【解答】解:∵四边形ABCD内接于⊙O,∴∠B=∠CDM=71°,∴∠AOC=2∠B=2×71°=142°,故答案为:142°.三.解答题(共9小题,满分72分)17.(6分)计算:.【解答】解:原式=2﹣+4﹣1+=2﹣+4﹣1+﹣1=4.18.(6分)先化简,再求值:(y+1)2﹣(y﹣1)(y+5),其中y=﹣.【解答】解:(y+1)2﹣(y﹣1)(y+5)=y2+2y+1﹣(y2+4y﹣5)=y2+2y+1﹣y2﹣4y+5=﹣2y+6,当时,原式=.19.(6分)如图所示,每个小正方形的边长为1个单位长度,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).(1)点A关于点O中心对称的点的坐标为(﹣3,﹣2);(2)△AOB绕点O顺时针旋转90°后得到△A1OB1,在图中画出△A1OB1,并写出点B1的坐标:(3,﹣1).【解答】解:(1)如图,点A′即为所求作.A′(﹣3,﹣2).故答案为:(﹣3,﹣2).(2)如图,△A1OB1即为所求作,点B1的坐标(3,﹣1).故答案为:(3,﹣1).20.(8分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=130°,求∠BED的度数.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD,∴∠BAD+∠EAB=∠BAD+∠DAC,∴∠EAB=∠DAC,在△EAB和△DAC中,,∴△EAB≌△DAC(SAS),∴∠AEB=∠ADC;(2)解:如图,连接DE,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形,∴∠AED=60°,又∵∠AEB=∠ADC=130°,∴∠BED=130°﹣60°=70°.21.(8分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=45°,∠APD=75°.(1)求∠B的大小;(2)已知圆心O到BD的距离为3,求AD的长.【解答】解:(1)∵∠CAB=45°,∠APD=75°.∴∠C=∠APD﹣∠CAB=30°,∵由圆周角定理得:∠C=∠B,∴∠B=30°;(2)过O作OE⊥BD于E,∵OE过O,∴BE=DE,∵圆心O到BD的距离为3,∴OE=3,∵AO=BO,DE=BE,∴AD=2OE=6.22.(9分)如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B 在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.【解答】解:(1)将M(﹣2,﹣2)代入抛物线解析式得:﹣2=(﹣2﹣2)(﹣2+a),解得:a=4;(2)①由(1)抛物线解析式y=(x﹣2)(x+4),当y=0时,得:0=(x﹣2)(x+4),解得:x1=2,x2=﹣4,∵点B在点C的左侧,∴B(﹣4,0),C(2,0),当x=0时,得:y=﹣2,即E(0,﹣2),=×6×2=6;∴S△BCE②由抛物线解析式y=(x﹣2)(x+4),得对称轴为直线x=﹣1,根据C与B关于抛物线对称轴直线x=﹣1对称,连接BE,与对称轴交于点H,即为所求,设直线BE解析式为y=kx+b,将B(﹣4,0)与E(0,﹣2)代入得:,解得:,∴直线BE解析式为y=﹣x﹣2,将x=﹣1代入得:y=﹣2=﹣,则H(﹣1,﹣).23.(9分)国庆节期间,某品牌月饼经销商销售甲、乙两种不同味道的月饼,已知一个甲种月饼和一个乙种月饼的进价之和为14元,每个甲种月饼的利润是6元,每个乙种月饼的售价比其进价的2倍少1元,小王同学买4个甲种月饼和3个乙种月饼一共用了89元.(1)甲、乙两种月饼的进价分别是多少元?(2)在(1)的前提下,经销商统计发现:平均每天可售出甲种月饼200个和乙种月饼150个.如果将两种月饼的售价各提高1元,则每天将少售出50个甲种月饼和40个乙种月饼.为使每天获取的利润更多,经销商决定把两种月饼的价格都提高x元.在不考虑其他因素的条件下,当x为多少元时,才能使该经销商每天销售甲、乙两种月饼获取的利润为2650元?【解答】解:(1)设甲种月饼的进价是x元/个,乙种月饼的进价是y元/个,则,解得.故甲种月饼的进价是8元/个,乙种月饼的进价是6元/个;(2)依题意有(6+x)(200﹣50x)+(6﹣1+x)(150﹣40x)=2650,解得x1=1,x2=﹣,∵x>0,∴x=1.答:当x为1元时,才能使该经销商每天销售甲、乙两种月饼获取的利润为2650元.24.(10分)如图(1),正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE=6,将正方形AEFG绕点A逆时针旋转a(0°≤α≤45°).(1)如图(2),正方形AEFG旋转到此位置,求证:BE=DG;(2)在旋转的过程中,当∠BEA=120°时,试求BE的长;(3)BE的延长线交直线DG于点P,在旋转的过程中,是否存在某时刻BF=BC?若存在,试求出DP 的长;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD=90°,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴BE=DG;(2)解:如图1,过点A作AH⊥BE交BE的延长线于点H,∵∠BEA=120°,∴∠AEH=180°﹣∠BEA=60°,∵∠AHE=90°,∴∠EAH=90°﹣60°=30°,∴EH=AE=×6=3,∴AH===3,在Rt△ABH中,BH===3,∴BE=BH﹣EH=3﹣3;(3)解:存在.如图2,连接AF,∵四边形AEFG是正方形,∴AE=EF=6,∠AEF=90°,∴AF===12,∵BF=BC=AB=12,∴AF=BF=AB=12,∴△ABF是等边三角形,∵BA=BF,EA=EF,∴BE是线段AF的垂直平分线,∵EG是线段AF的垂直平分线,∴直线BE与直线EG是同一条直线,∴点P与点G重合,即DP=DG,设EG与AF交于点O,则AO=EO=AF=6,∠AOB=90°,∴BO===6,∴BE=BO﹣EO=6﹣6,∵∠BAE+∠EAD=∠DAG+∠EAD=90°,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴DG=BE,∴DP=BE=6﹣6.25.(10分)如图1所示,直线与x轴、y轴分别相交于点A,点B,点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.(1)求抛物线的解析式:(2)点P为线段AB上(不与端点重合)的一动点,过点P作PQ∥y轴交抛物线于点Q,求PQ+PB 取得最大值时点P的坐标;(3)如图2,连接BC并延长,交x轴于点D,E为第三象限抛物线上一点,连接DE,点G为x轴上一点,且G(﹣1,0),直线CG与DE交于点F,点H在线段CF上,且∠CFD+∠ABH=45°,连接BH交OA于点M,已知∠GDF=∠HBO,求点H的坐标.【解答】解:(1)∵直线y=x+3与x轴、y轴分别相交于点A,点B,∴A(﹣4,0),B(0,3),∵点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.∴,∴,∴y=﹣x2﹣x+3;(2)如图,作PD⊥OB于D,设Q(m,﹣m2﹣m+3),P(m,m+3),∴PQ=﹣m2﹣m+3﹣(m+3)=﹣m2﹣m,∵PD∥OA,∴△BPD∽△BAO,∴=,∵A(﹣4,0),B(0,3),∴AB===5,∴,∴PB=﹣m,∴PQ+PB=﹣m2﹣m﹣m=﹣m2﹣m=﹣(m+)2+,∴当m=﹣时,PQ+PB取得最大值,∵×(﹣)+3=,∴P(﹣,);(3)如图,作CN⊥AD于N,作MT⊥AB于T,∵C(1,2),G(﹣1,0),∴CN=GN=2,∴∠CGN=∠NCG=45°,∴∠CFD+∠GDF=45°,∵∠CFD+∠ABH=45°,∴∠GDF=∠ABH,∵∠GDF=∠HBO,∴∠ABH=∠HBO,∴OM=MT,+S△BOM=S△AOB,∵S△ABM∴AB•MT+OB•OM=OB•OA,∴5OM+3OM=3×4,∴OM=,∴M(﹣,0),∴直线BM的解析式为:y=2x+3,∵C(1,2),G(﹣1,0),∴直线CG的解析式为:y=x+1,由2x+3=x+1得,x=﹣2,∴x+1=﹣1,∴H(﹣2,﹣1).。
河北省邢台市任泽区2023届九年级4月月考数学试卷(含答案)
2023年河北省邢台市任泽区中考数学月考试卷(4月份)一、选择题(本大题共16小题,共42.0分。
在每小题列出的选项中,选出符合题目的一项)1. 1―|―3|到的值是( )A. ―3B. ―2C. 3D. 42. 下列命题中,真命题是( )A. 两个锐角的和一定是钝角 B. 两点之间线段最短C. 不是对顶角的两个角不相等 D. 带根号的数一定是无理数3. 下列计算结果正确的是( )A. 3x 4+x 2=5x 6 B. x 8÷x 4=x 2C. (―2x 3)3=―6x 9D. 3x 3⋅2x =6x 44. 下列说法正确的是( )A. ―9平方根是―3B. 16的算术平方根是±4C. 916的算术平方根是34D. ―1的立方根是15. 如图,下列条件能判断直线l1//l 2的有( )①∠1=∠3;②∠2+∠4=180°;③∠4=∠5;④∠2=∠3;⑤∠6=∠2+∠3A. 1个B. 2个C. 3个D. 4个6. 若关于x 的方程x 2+4x +c =0有两个相等的实数根,则c 的值是( )A. 4B. ―4C. 16D. ―167. 如图是某校七年级二班参加课外兴趣小组人数的扇形统计图,根据图中信息,你认为哪一个兴趣小组参加人数最多的是( )A. 唱歌B. 绘画C. 编程D. 舞蹈8. 一元二次方程x 2+2x ―1=0的根的情况是( )A. 只有一个实数根 B. 有两个相等的实数根C. 有两个不相等的实数根D. 没有实数根9. 新冠病毒的直径约为60纳米到140纳米,在一次检测中检测人员把100个新冠病毒排列在一起测得长度有0.000011米,则每一个新冠病毒的直径用科学记数法表示为多少米( )A. 1.1×10―6B. 11×10―6C. 1.1×10―7D. 1.1×10―810. 下列图形属于中心对称的有( )A. 1个B. 2个C. 3个D. 4个11. 如图,在平行四边形ABCD中,对角线AC,BD相交于O,过点O作OE⊥AC交AD于E.若AE=2,DE=1,AB=5,则AC的长为( )A. 22B. 522C. 42D. 3212. 一次学校智力竞赛中共有20道题,规定答对一题得5分,答错或不答一道题扣2分,得分为75分以上可以获得奖品,小锋在本次竞赛中获得了奖品.假设小锋答对了x题,可根据题意列出不等式( )A. 5x+2(20―x)≥75B. 5x+2(20―x)>75C. 5x―2(20―x)>75D. 5x―2(20―x)≥7513. 如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走100米至坡顶D处,再从D处沿水平方向继续前行若干米到点E处,在E点测得该建筑物顶端C的仰角为59°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:4.根据以上数据,计算出建筑物BC的高度3约为(结果精确到1.参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)( )A. 158米B. 161米C. 159米D. 164米14. 如图,在直角坐标系中,已知点A(4,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下作等边三角形ABC,连接OC,则OC的最小值为( )A. 2B. 23C. 1+23D. 415. 如图,AB为⊙O的直径,且AB=4,C为AB的中点,四边形OACD为平行四边形,BD是⊙O的切线,则图中阴影部分的面积为( )A. 2―πB. 4―π2C. 2―π2D. 2―2π316. 如图,二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象的对称轴为直线x=1,与x轴的一个交点为(3,0),与y轴交于点(0,―2).有下列结论:①b>0;②a―b+c=0;③一元二次方程ax2+bx+c+2=0(a≠0)的两个实数根是0和2;④当x<―1或x>3时,y>0.其中,正确结论的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共3小题,共9.0分)17. 不透明袋子中装有10个球,其中有5个红球,3个黄球,2个绿球:这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黄球的概率是.18. 如图,在平行四边形ABCD中,AC、BD相交于点O,AC=8,BD=10,AD=7,△AOD的周长为.19. 如图,正方形ABCD的边BC在x轴上,反比例函数y=k(k≠0)的图象经过点A和CD边上x点E,若正方形ABCD的边长为6,DE=2CE,则k的值是.三、计算题(本大题共2小题,共9.0分)20.(4.0分)计算:(―13)―1―3―8+|1―2|―4sin45°.21.(5.0分)先化简,再求值:(2x+1―2x―3x2―1)÷1x+1,其中x=2+1.四、解答题(本大题共6小题,共60.0分。
2024年湖北省武汉市九年级中考模拟调考数学试卷(含答案)
2024年湖北省武汉市九年级中考模拟调考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−5的相反数是( )A. −5B. 5C. 15D. −152.对下列各表情图片的变换顺序描述正确的是( )A. 轴对称,平移,旋转B. 轴对称,旋转,平移C. 旋转,轴对称,平移D. 平移,旋转,轴对称3.下列事件中,是随机事件的是( )A. 通常温度降到0℃以下,纯净的水结冰B. 随意翻到一本书的某页,这页的页码是奇数C. 明天太阳从东方升起D. 任意画一个三角形,其内角和是360°4.如图所示的正三棱柱的主视图是( )A. B. C. D.5.下列整式计算的结果为a6的是( )A. a3+a3B. (a2)3C. a12÷a2D. (a3)36.光线照射到平面镜镜面会产生反射现象,物理学中,我们知道反射光线与法线(垂直于平面镜的直线叫法线)的夹角等于入射光线与法线的夹角.如图一个平面镜斜着放在水平面上,形成∠AOB形状,∠AOB=36°,在OB上有一点E,从点E射出一束光线(入射光线),经平面镜点D处反射光线DC刚好与OB平行,则∠DEB的度数为( )A. 71°B. 72°C. 54°D. 53°7.毕业季来临,甲、乙、丙三位同学随机站成一排照合影,甲站在中间的概率为( )A. 12B. 13C. 16D. 238.“漏壶”是一种古代计时器,在一次实践活动中,某小组同学根据“漏壶”的原理制作了如图所示的液体漏壶,由一个圆锥和一个圆柱组成的,中间连通,液体可以从圆锥容器中匀速漏到圆柱容器中,实验开始时圆柱容器中已有一部分液体,下表是实验记录的圆柱体容器液面高度y cm与时间xℎ的数据:时间x/ℎ12345圆柱体容器液面高度y/cm610141822如果本次实验记录的开始时间是上午8:00,那么当圆柱体容器液面高度达到8cm时是( )A. 8:30B. 9:30C. 10:00D. 10:309.如图,△ABC内接于⊙O,∠ACB=135°,CD⊥AB于点D,若AD=4,BD=6,则CD的长为( )A. 2B. 3C. 4D. 510.如图1,点P从边长为6的等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点Q,再从该点沿直线运动到顶点B.设点P运动的路程为x,PBPC=y,能反映点P运动时y随x变化关系的部分大致图象如图2,点P从点Q运动到B的路程为( )A. 6B. 3C. 23D. 3二、填空题:本题共6小题,每小题3分,共18分。
2024学年四川省成都市武侯区九年级上学期一诊数学模拟试题
2024学年四川省成都市武侯区九年级上学期一诊数学模拟试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.某几何体的三视图如图所示,则这个几何体是( )A .圆柱B .正方体C .球D .圆锥 2.若方程3x -=□是关于x 的一元二次方程,则“W ”可以是( )A .2x -B .22C .22xD .2y 3.已知四条线段a ,b ,c ,d 成比例,则下列结论正确的是( )A .a b d c =B .a c b d =C .d b a c =D .a d c b = 4.若M 表示平行四边形,N 表示矩形,P 表示菱形,Q 表示正方形,它们之间的关系用下列图形来表示,正确的是( )A .B .C .D . 5.若关于x 的方程()221x m -=+有实数根,则m 的取值范围是( )A .1m >B .1m >-C .m 1≥D . 1m ≥-6.如图,在平面直角坐标系中,矩形OABC 的顶点坐标分别是()0,0O ,()6,0A ,()6,4B ,()0,4C ,已知矩形OA B C '''与矩形OABC 位似,位似中心是原点O ,且矩形OA B C '''的面积等于矩形OABC 面积的14,则点B '的坐标为( )A .()3,2B .()3,2或()3,2--C .()3,2--D .()2,3或()2,3--7.王丽同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,绘出的统计图如图所示,则该试验可能是( )A .关于“从装有2张红桃和1张黑桃的扑克牌盒子中,随机摸出一张(这些扑克牌除花色外都相同),这张扑克牌是黑桃”的试验B .关于“50个同学中,有2个同学生日相同”的试验C .关于“抛一枚质地均匀的硬币,正面朝上”的试验D .关于“掷一枚质地均匀的正方体骰子,出现的点数是1”的试验8.已知反比例函数k y x=的图象如图所示,关于下列说法:①常数0k >;②y 的值随x 值的增大而减小;③若点A 为x 轴上一点,点B 为反比例函数图象上一点,则2ABO S k =V ;④若点(),P m n 在反比例函数的图象上,则点(),P m n --也在该反比例函数的图象上.其中说法正确的是( )A .①②③B .③④C .①④D .②③④二、填空题9.将方程()13x x -=化成一元二次方程的一般形式为 .10.一个口袋中装有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有69次摸到红球,则可估计这个口袋中红球的数量是 . 11.如图,小强自制了一个小孔成像装置,其中纸筒的长度为15cm .他准备了一支长为20cm 的蜡烛,想要得到高度为5cm 的像.蜡烛应放在距离纸筒 cm 的地方.12.在平面直角坐标系xOy 中,一次函数111y k x b =+,222y k x b =+的图象与反比例函数()0m y x x=>的图象如图所示,则当12y y y >>时,自变量x 的取值范围是 .13.如图,先将一张正方形纸向上对折、再向左对折,然后沿着图中的虚线剪开,得到①②两部分,将①展开后得到的平面图形是 .三、解答题14.解方程:(1)221x x +=;(2)()()421321x x x +=+.15.如图,在正方形ABCD 中,延长BC 至点E ,使得:AD CE =连接AC ,AE ,AE 交CD 于点F .(1)试探究ACE △的形状;(2)求AFD ∠的度数.16.2023年9月21日,“天宫课堂”第四课在中国空间站开讲,“太空教师”景海鹏、朱杨柱、桂海潮为广大青少年带来一场精彩的太空科普课,航天员们演示了“球形火焰”“奇妙乒乓球”“动量守恒”和“又见陀螺”四个实验.本次授课活动分别在北京、内蒙古阿拉善盟、陕西延安、安徽桐城及浙江宁波设置了5个地面课堂.(1)若航天员们随机连线一个地面课堂,求北京地面课堂被连线的概率;(请直接写出结果,不必写求解过程)(2)某班组织同学们收看了本次太空科普课,并随机对李明和张敏两位同学进行了关于“你最感兴趣的实验”的采访,若将以上四个实验分别记为1M ,2M ,3M ,4M ,请利用画树状图或列表的方法,求他们两人最感兴趣的实验恰好是同一个实验的概率. 17.如图,在ABC V 中,D ,E 是边AC 上的两点,连接BD ,BE ,且满足AE AB =,BE 平分CBD ∠.(1)求证:ABD ACB ∽△△;(2)若6AB =,8AC =,且90CBD ∠=︒,求BC 的长.18.如图,在平面直角坐标系xOy 中,一次函数32y kx k =+-的图象与反比例函数m y x=的图象相交于(2)A a ,,B 两点,与y 轴正半轴,x 轴分别相交于C ,D 两点.(1)求点A 的坐标及反比例函数的表达式;(2)求证:AC BD =;(3)若点P 是位于点C 上方的y 轴上的动点,过P ,A 两点的直线与该反比例函数的图象交于另一点E ,连接PB BE ,.当2A D B D =,且PBE △的面积为18时,求点E 的坐标.四、填空题19.已知()304a cb d b d ==-≠,则代数式ac bd --的值为 .20.已知方程2240x kx +=-1,则另一个根是 .21.在一次趣味运动会中,设计了一个掷飞镖的游戏.如图,在ABC V “靶”中,点M ,N 分别是线段BC 的两个黄金分割点,我们把AMNV 的内部称为“黄金区域”(图中阴影部分).游戏规定:投掷的飞镖落在“黄金区域”即为获胜.假设投掷的飞镖都能落在“靶”内,现小明随机向该“靶”投掷一枚飞镖,则小明获胜的概率是 .22.如图,在ABCD Y 中,10AB =,BC =AC 与BD 相交于点O ,过点O 作OE BD ⊥交DA 的延长线于点E ,交AB 于点F .若32OF EF =,则对角线BD 的长为 .23.对于平面直角坐标系xOy 中的图形M 和直线m ,给出如下定义:若图形M 上有点到直线m 的距离为d ,那么称这个点为图形M 到直线m 的“d 距点”.如图,双曲线C :()40y x x=>和直线l :y x n =-+,若图形C 到直线l 的”只有2个,则n 的取值范围是 .五、解答题24.《义务教育课程方案和课程标准(2022年版)》优化了课程内容结构,设立跨学科主题学习活动,以强化实践性要求.在一堂数学、美术的融合课中,每个同学桌上都有一段长60cm 的铁丝,需要将铁丝剪成两段,并把每一段铁丝做成一个配件.(1)填空:小东想做两个正方形配件,若设其中一个正方形配件的边长为cm x ,则另一个正方形配件的边长为cm (请用含x 的代数式表示);(2)在(1)的基础上,若小东想让做成的两个正方形配件满足面积之和等于2100cm ,请问小东的想法能否实现?为什么?25.如图,在平面直角坐标系xOy 中,直线3(0)y kx k =->与反比例函数k y x=的图象相交于A ,B 两点(点A 在点B 的右侧),与y 轴相交于点C .(1)当2k =时.(ⅰ)分别求A ,B 两点的坐标;(ⅱ)P 为x 轴上一动点,当APC ABP ∠=∠时,求点P 的坐标;(2)取点(0,1)M ,连接AM BM ,,当90AMB ∠=︒时,求k 的值.26.如图,在菱形ABCD 中,120B ∠=︒,E 为BC 边上一动点(点E 不与B ,C 重合),连接AE ,将线段AE 绕点E 顺时针旋转120︒得到线段FE ,连接AC ,AF ,AF 交CD 边于点H ,设BE x CE =,FH y AH=.(1)如图1,求证:ABC AEF V V ∽;(2)如图2,连接CF ,当1x =时,探究得出y 的值为1,请写出证明过程;(3)结合(2)的探究经验,从特殊到一般,最后得出y 与x 之间满足的关系式为21x y x =+.请根据该关系式,解决下列问题:连接EH ,若12AB =,当EHF V 为等腰三角形时,求BE 的长.。
云南省昭通市昭阳区2024届九年级下学期4月月考数学试卷(含答案)
数学试题卷(三)(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1. 本卷为试题卷。
考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题 卷、草稿纸上作答无效。
2. 考试结束后,请将试题卷和答题卡一并交回。
一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. -5的相反数是A. -15B. 15C. -5D. 52. 2022年3月23日下午,“天宫课堂”第2课在中国空间站开讲,神舟十三号乘组三位航天员翟志刚、王亚平、叶光富进行授课,某平台进行全程直播. 某一时刻观看人数达到3900000人. 用科学记数法表示3900000,正确的是A. 0.39×107B. 3.9×106C. 3.9×105D. 39×1053. 已知某几何体的三视图如图所示,则该几何体可能是主视图左视图俯视图A B C D数学模拟试题卷(三)·第1页(共8页)数学模拟试题卷(三)·第2页(共8页)4. 下列图形中,既是轴对称图形又是中心对称图形的是A B C D 5. 下列运算正确的是A.(4xy )2=16x 2y 2B. (y 3)2=y 5 C. x 2⋅x 2=2x 2 D. x 9÷x 3=x 36. 如图,已知a ∥b ,点A 在直线a 上,点B ,C 在直线b 上,∠BAC =90°,∠1=35°,则∠2的度数是AabC B12A. 35°B. 45°C. 55°D. 75°7. 函数y则自变量x 的取值范围是 A. x ≥ -1B. x ≠ 3C. x ≥ 1且x = 3D. x ≥ -1且x ≠ 38. 如图,直线y =ax +b (a ≠0)过点A (0,2),B (3,0),则不等式ax + b > 0的解集是A. x > 3B. x < 3C. x > 2D. x < 29. 某公司7名员工在一次义务募捐中的捐款额为(单位:元):30,35,45,50,60,60,70. 若捐款最少 的员工又多捐了25元,则分析这7名员工捐款额的数据时,不受影响的统计量是 A. 平均数B. 中位数C. 众数D. 方差数学模拟试题卷(三)·第3页(共8页)10. 如图,小明同学自制了一个小孔成像装置,其中直筒的长度为10cm. 他准备了一支长为15cm 的蜡烛,想要得到高度为5cm 的像,蜡烛应放在距离直筒 cm 远的地方.A. 10B. 15C. 20D. 3011. 在△ABC 中,∠ABC =90°,若AC =10,sin A =45,则AB 的长是 A. 4 B. 6C. 8D. 1012. 按一定规律排列的单项式:a 3,4a 4,9a 5,16a 6,25a 7,……,第n 个单项式是 A. n 2a n +2 B. n 2a n −2 C. (n +1)2a n +2D. (n +1)2a n 13. 某人患了流感,经过两轮传染后共有121人患了流感. 设每一轮传染中平均每人传染了x 人,则可得到方程A. x +(1 + x ) = 121 B. 2(1 + x ) = 121C. 1 + x + x 2 = 121D. 1 + x + x (1 + x ) = 12114. 在同一直角坐标系中,函数y =kx +k 与y =kx(k ≠0)的图象大致为xA B C D 15. 如图,在⊙O 中,若∠CDB = 60°,⊙O 的直径AB 等于2,则BC 的长为A. 3B. 2C. 23D. 43二、填空题(本大题共4小题,每小题2分,共8分)16. 分解因式:3b3−6b2+3b= .17. 10名射击运动员第一轮比赛的成绩如下表所示:环数人数102938471则他们本轮比赛的平均成绩是环.18. 用一个圆心角为90°,半径为4cm的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为 cm.19. 如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边BC上,BC=2CD,AB=1. 若点B,E在同一个反比例函数的图象上,则这个反比例函数的表达式是 .三、解答题(本大题共8小题,共62分)20.(本题满分7分)计算:()1 2-2+2sin45°−(2−1)0−273+||||-2.数学模拟试题卷(三)·第4页(共8页)数学模拟试题卷(三)·第5页(共8页)21.(本题满分6分)如图,已知AB =DE ,∠A =∠D ,∠1=∠2. 求证:CE =CB .22.(本题满分7分)随着科技的飞速发展,人工智能(AI )已成为当今社会的热点话题,从自动驾驶汽车到智能家居, 从医疗诊断到金融分析,AI 正在改变着我们的生活方式和工作模式. 某科技公司生产了A ,B 两 种型号的搬运机器人,A 型机器人比B 型机器人每天多搬运20吨货物,A 型机器人搬运500吨所 用天数与B 型机器人搬运400吨所用天数相等,求两种机器人每天搬运的货物量.E BC DA12数学模拟试题卷(三)·第6页(共8页)23.(本题满分6分)二十四节气是中国古代一种用来指导农事的补充历法,在国际气象界被誉为“中国的第五大发 明”,并位列联合国教科文组织人类非物质文化遗产代表作名录. 小明和小亮对二十四节气非常 感兴趣,在课间玩游戏时,准备了四张完全相同的不透明卡片,卡片正面分别写有“A :惊蛰” “B :春分”“C :清明”“D :谷雨”四个节气,两人商量将卡片背面朝上洗匀后,从中随机抽取一张, 并讲述所抽卡片上的节气的由来与习俗.(1)小明从四张卡片中随机抽取一张卡片,抽到“D :谷雨”的概率是 .(2)小明先从四张卡片中随机抽取一张,小亮再从剩下的卡片中随机抽取一张,请用列表或画树 状图的方法,求两人抽到“A :惊蛰”“B :春分”的概率.本题满分8分)如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,DE = 12AC .)求证:四边形OCED 是菱形.)若∠AOD = 120°,DE = 4,求矩形ABCD 的面积.BC ADOE数学模拟试题卷(三)·第7页(共8页)25.(本题满分8分)直播带货已成为一种热门的销售方式,某商家在网络平台上直播销售芒果. 已知该芒果的成本 为4元/kg ,销售价格不高于14元/kg ,且每售卖1kg 需向网络平台支付1元的相关费用,经过一 段时间的直播销售发现,每日销售量y (kg )与销售价格x (元/kg )之间满足如图所示的一次函数 关系.(1)求y 与x 的函数解析式.(2)当每千克芒果的销售价格定为多少元时,销售这种芒果日获利最大,最大利润为多少元?26.(本题满分8分)如图,抛物线y = -x 2 + bx + c 经过点()1,173,与y 轴交于点B (0,5一动点.(1)求抛物线的解析式.(2)直线y =kx −4与x 轴交于点A (6,0),与y 轴交于点D ,过点E 作直线EF ⊥x 轴,交AD 于点F , 连接BE . 当BE =DF 时,求点E 的横坐标.(元/kg )27.(本题满分12分)如图,AB为⊙O的直径,DA和⊙O相交于点F,AC平分∠DAB,点C在⊙O上,且CD⊥DA,AC交BF于点P.(1)求证:CD是⊙O的切线;(2)求证:AC·PC=BC2;(3)已知BC2=3FP·DC,求AF AB的值.A数学模拟试题卷(三)·第8页(共8页)数学(三)参考答案及评分标准(满分100分)一、选择题(本大题共15小题,每小题2分,满分30分。
重庆南开中学2024年九年级上学期9月月考模拟数学试卷+答案
重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4)A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。
九年级中考数学一模考试试卷及答案
九年级数学试卷第1页(共10页)九年级数学试卷第2页(共10页)学校________________班级________________姓名_________________密封线内不能答题初中学业水平考试模拟测试九 年 级 数 学考生须知1.本试卷共10页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.右图是某几何体的三视图,该几何体是(A )三棱柱(B )长方体(C )圆锥(D )圆柱2.2021年我国加大农村义务教育薄弱环节建设力度,提高学生营养改善计划补助标准,约37000000学生受益.将37000000用科学计数法表示应为(A )603710.⨯(B )63710.⨯(C )73710.⨯(D )63710⨯3.实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论中正确的是(A )0b c -<(B )2b >-(C )0+ac >(D )b c>4.下列多边形中,内角和为720°的是(A )(B )(C )(D )5.下列图形中,既是中心对称图形也是轴对称图形的是(A )平行四边形(B )等腰三角形(C )正五边形(D )矩形6.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕AB 的长是(A )3cm (B )3cm (C)cm (D )4cm7.2022年2月4日晚,举世瞩目的北京第二十四届冬季奥林匹克运动会开幕式在国家体育场隆重举行.冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪图案的概率是油漆时,如果每平方米费用为16元,那么总费用与底面边长满足的函数关系是(A )正比例函数关系(B )一次函数关系(C )反比例函数关系(D )二次函数关系二、填空题(共16分,每题2分)9.若代数式11x -有意义,则实数x 的取值范围是.10.如图,在△ABC 中,ABAC =,AB 的垂直平分线MN交AC于D 点.若BD 平分ABC ∠,则A ∠=°.11.已知关于x 的一元二次方程22210()x a x a +-+=有两个不相等的实数根,则a 的取值范围是.124小的无理数.高山滑雪速度滑冰冰球单板滑雪冰壶2022.4九年级数学试卷第3页(共10页)九年级英语试卷第4页(共10页)密封线内不能答题13.如图,点A ,B ,C 在⊙O 上,若20∠OCB =°,则∠A 的度数为_________.14.已知点A (1,2),B 在反比例函数()0ky x x=>的图象上,若OA=OB ,则点B 的坐标为_________.15.下表记录了甲、乙、丙三名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙平均数9.359.359.34方差6.66.96.7根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择_________.16.某市为进一步加快文明城市的建设,园林局尝试种植A 、B 两种树种.经过试种后发现,种植A 种树苗a 棵,种下后成活了()棵,种植B 种树苗b 棵,种下后成活了棵.第一阶段两种树苗共种植了40棵,且两种树苗的成活棵树相同,则种植A 种树苗_________棵.第二阶段,该园林局又种植A 种树苗m 棵,B 种树苗n 棵,若,在第一阶段的基础上进行统计,则这两个阶段种植A 种树苗成活棵数_________种植B 种树苗成活棵数(填“>”“<”或“=”).三、解答题(共68分,第17—20题,每题5分,第21—22题,每题6分,第23题5分,第24题6分,第25题5分,第26题6分,第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:()2012cos3022+-⎛⎫︒-π-- ⎪⎝⎭.18.解不等式组:21115≤,x . x x ⎧⎪⎨⎪⎩-+<-19.已知230m m +-=,求代数式2211+m m m m m +⎛⎫+÷ ⎪⎝⎭的值.20.已知:如图,点M 为锐角∠APB 的边PA 上一点.求作:∠AMD ,使得点D 在边PB 上,且∠AMD =2∠P .作法:①以点M 为圆心,MP 长为半径画圆,交PA 于另一点C ,交PB 于点D ;②作射线MD .(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点P ,C ,D 都在⊙M 上,∠P 为 CD所对的圆周角,∠CMD 为 CD 所对的圆心角,∴∠P =12∠CMD ()(填推理依据).∴∠AMD =2∠P .九年级数学试卷第5页(共10页)九年级数学试卷第6页(共10页)学校________________班级________________姓名_________________密封线内不能答题21.如图,一个单向隧道的断面,隧道顶是一条抛物线的一部分,经测量,隧道顶的跨度为4米,最高处到地面的距离为4米,两侧墙高均为3米,距左侧墙壁1米和3米时,隧道高度均为3.75米.设距左侧墙壁水平距离为x 米的地点,隧道高度为y 米.请解决以下问题:(1)在下边网格中建立适当的平面直角坐标系,根据题中数据描点,并用平滑的曲线连接;(2)请结合所画图象,写出抛物线的对称轴;(3)今有宽为2.4米的卡车在隧道中间行驶,如果卡车载物后的高度为3.2米,要求卡车从隧道中间通过时,为保证安全,要求卡车载物后最高点到隧道顶面对应的点的距离均不小于0.6米,结合所画图象,试判断该卡车能否通过隧道.22.如图,在□ABCD 中,过点B 作BE ⊥CD 交CD 的延长线于点E ,过点C 作C F//EB交AB 的延长线于点F.(1)求证:四边形BFCE 是矩形;(2)连接AC ,若AB =BE =2,tan ∠FBC =12,求AC 的长.23.如图,一次函数y =kx +4k (k ≠0)的图象与x 轴交于点A ,与y 轴交于点B ,且经过点C (2,m ).(1)当92m =时,求一次函数的解析式并求出点A 的坐标;(2)当x >-1时,对于x 的每一个值,函数y =x 的值大于一次函数y =kx+4k (k ≠0)的值,求k 的取值范围.24.如图,BE 是⊙O 直径,点A 是⊙O 外一点,OA ⊥OB ,AP 切⊙O 于点P ,连接BP交AO 于点C .(1)求证:∠PAO =2∠PBO ;(2)若⊙O 的半径为5,tan ∠PAO 34=,求BP 的长.九年级数学试卷第7页(共10页)九年级英语试卷第8页(共10页)密封线内不能答题25.为庆祝中国共产党建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,继承革命先烈的优良传统,某中学开展了建党100周年知识测试.该校七、八年级各有300名学生参加,从中各随机抽取了50名学生的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息:a.八年级的频数分布直方图如下(数据分为5组:50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100);b.八年级学生成绩在80≤x<90的这一组是:808182838383.583.58484858686.587888989c.七、八年级学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七年级87.28591八年级85.3m90根据以上信息,回答下列问题:(1)表中m的值为;(2)在随机抽样的学生中,建党知识成绩为84分的学生,在年级抽样学生中排名更靠前,理由是;(3)若成绩85分及以上为“优秀”,请估计八年级达到“优秀”的人数.26.已知二次函数2y x bx c=++(b,c为常数)的图象经过点A(1,0)与点C(0,-3),其顶点为P.(1)求二次函数的解析式及P点坐标;(2)当m≤x≤m+1时,y的取值范围是-4≤y≤2m,求m的值.27.已知:等边△ABC,过点B作AC的平行线l.点P为射线AB上一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转60°交直线l于点D.(1)如图1,点P在线段AB上时,依题意补全图形;①求证:∠BDP=∠PCB;②用等式表示线段BC ,BD,BP之间的数量关系,并证明;(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.l备用图l图1九年级数学试卷第9页(共10页)九年级数学试卷第10页(共10页)学校________________班级________________姓名_________________密封线内不能答题28.如图1,⊙I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交⊙I 于P ,Q两点(Q 在P ,H 之间).我们把点P 称为⊙I 关于直线a 的“远点”,把PQ ·PH 的值称为⊙I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,4),半径为1的⊙O 与两坐标轴交于点A ,B ,C ,D .①过点E 作垂直于y 轴的直线m ,则⊙O 关于直线m 的“远点”是点(填“A ”,“B ”,“C ”或“D ”),⊙O 关于直线m 的“特征数”为;②若直线n 的函数表达式为y =3x +4,求⊙O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy 中,直线l 经过点M (1,4),点F 是坐标平面内一点,以F 为圆心,3为半径作⊙F .若⊙F 与直线l 相离,点N (-1,0)是⊙F 关于直线l 的“远点”,且⊙F 关于直线l 的“特征数”是66,直接写出直线l 的函数解析式.图1图2初中学业水平考试模拟测试九年级数学学科参考答案一、 选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.A 、2.C 、3.B 、4.D 、5.D 、6.B 、7.B 、8.D二、 填空题(共16分,每题2分)9.x ≠1 10. 36 11.a <1412.答案不唯一13.70°14.(2,1) 15.甲16.22,>三、解答题(共68分,第17—20题,每题5分,第21—22题,每题6分,第23题5分,第24题6分,第25题5分,第26题6分,第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解:()2012cos30+224+1−⎛⎫︒−π− ⎪⎝⎭−− …………………………………………4分=3…………………………………………5分18.解:21115x x x ⎧⎪⎨⎪⎩−+<−≤②①x 由①得:≤3…………………………………………2分15546x x x +<−−<−由②得:32x >…………………………………………4分 32x ∴不等式组的解集为≤3.<……………………………………… 5分19.解:()()2222221+121+11+1+1m m m m m m m m m m m m m m m m +⎛⎫+÷ ⎪⎝⎭++=⨯+=⨯=2=m m+ …………………………………………3分230m m +−=23m m ∴+=…………………………………………4分 =3 3.∴∴原式代数式的值为 …………………………………………5分20.(1) 补全图形,如图所示 ……………………3分 (2)一条弧所对的圆周角等于它所对的圆心角的一半…………………………………………5分21.解:略…………………………………………6分22.(1)证明:∵四边形ABCD 是平行四边形,∴AB CD ∥∵//CF EB∴四边形BFCE 是平行四边形∵BE CD ⊥∴90E ∠=︒∴四边形BFCE 是矩形…………………………………………3分 (2)解:∵四边形BFCE 是矩形∴90F ∠=︒,CF EB =∵2AB BE ==∴2CF =……………………………………………4分∵1tan 2FBC ∠=ECD FA B∴4BF =∴6AF = ……………………………………………5分在Rt AFC △中,90F ∠=︒,AC == …………………6分23.解:(1)∵92m =∴将点9(2)2C ,代入4y kx k =+,得34k = ……………………………1分∴一次函数表达式为334y x =+,点A 的坐标为(4,0)−. ……………………………3分 (2)∵当1x −>时,对于x 的每一个值,函数y x =的值大于一次函数40y kx k k =+≠()的值 结合函数图象可知,当=1x −时,41kx k +−≤即可,解得13k −≤∴13k −≤………………………………………………5分24.(1)证明: 连接PO∵AP 切⊙O 于点P ∴OP AP ⊥∴90A AOP ∠+∠=︒ ∵OA OB ⊥∴90POE AOP ∠+∠=︒ ∴=A POE ∠∠∵2POE PBO ∠=∠ ∴2PAO PBO∠=∠……………………………………………3分(2)解:过点P 作PM EB ⊥于点M∵3tan 4PAO ∠=∴3tan 4POM ∠=∴设3,4PM k MO k ==∴5OP k =∵⊙O 半径为5 ∴5OB OP ==∴1k =∴3,4PM MO ==∴9BM BO MO =+=∴在Rt PMB △中,=90PMB ∠︒PB == ……………………………………………6分25.解:(1)83……………………………………………1分 (2)八 该学生的成绩大于八年级样本数据的中位数83,在八年级成绩中排名21名;该学生成绩小于七年级样本数据的中位数,在七年级排名在后25名 ………………………………………3分(3)20300=12050⨯(人)答:估计八年级达到“优秀”的人数是120人. ………………………5分 26.解:(1)∵二次函数的2y x bx c =++图象经过点(1,0)A 与点(0.3)C −∴103b c c ++=⎧⎨=−⎩解得23b c =⎧⎨=−⎩∴二次函数的表达式是223y x x =+−…………………………………………2分顶点P 的坐标为14−−(,)…………………………………………3分 (2)∵二次函数的顶点P 的坐标为14−−(,) ∴当1x =−时,y 有最小值是4−∵当1m x m +≤≤时,y 的取值范围是y m -4≤≤2 ∴21m −−≤≤① 当322m −−≤≤时,当x m =时,=2y m 即2232m m m +−=解得,m =∴m =②当312m −<≤-时,当1x m =+时,=2y m即212132m m m+++−=()()解得,12=0,2m m =−(不合题意)综上所述,m =……………………………………………………6分27.(1)①补全图形如图所示,…………………………………………………1分证明:设PD 交BC 于点E ∵ABC △是等边三角形∴60BAC ABC ACB ∠=∠=∠=︒∵将射线PC 绕点P 顺时针旋转60° ∴60DPC ∠=︒ ∵//l AC∴60DBE ACB ∠=∠=︒ ∴60DBE CPE ∠=∠=︒ ∵BED PEC ∠=∠ ∴BDP PCB ∠=∠……………………………………………………3分 ②BC BD BP=+在BC 上取一点Q 使得BQ =BP ,连接PQ ∵60ABC ∠=︒∴PBQ △是等边三角形 ∴PB =PQ ,∠BPQ =60° ∴BPD CPQ ∠=∠ 又∵BDP PCB ∠=∠ ∴PBD PQC △≌△ ∴BD QC =∵BC BQ QC =+∴BC BD BP =+ …………………………………………………5分(2)BC BD BP =− …………………………………………………7分28(1)①D,10 …………………………………………2分 ②∵直线n 的函数表达式为y =3x +4∴E (0,4),F(3−,0)∴tan 3OF FEO OE ∠== ∴30FEO ∠=︒ OM ME ⊥2OM ∴=∵⊙O 的半径为16PM PN ∴⋅=即⊙O 关于直线n 的“特征数”为6. ………………………………5分(2)直线l 的函数解析式为12977y x =−+或5y x =−+. ……………7分。
重庆市十一中2024年中考数学模拟试卷(九年级下开学考试)附参考答案
重庆市十一中2024年中考数学模拟试卷(九年级下开学考试)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.实数-5的相反数是( ) A.5B.-5C.15D.-152.下图是由几个小正方体搭成的几何体,则这个几何体的左视图为( )3.反比例函数的图象经过点A(3,2),下列各点在此反比例函数图象上的是( ) A.(-3,2)B.(3,-2)C.(-6,-1)D.(-1,6)4.如图,△ABC 与△DEF 是位似图形,点O 为位似中心,位似比为2︰3.若△ABC 的面积为8,△DEF 的面积是( ) A.12B.16C.18D.205.将含45°角的直角三角板按如图所示摆放,直角顶点在直线m 上,其中一个锐角顶点在直线n 上.若m ∥n ,∠1=30°,则∠2的度数为( ) A.45°B.60°C.75°D.90°6.估算√6×√15+1的结果( ) A.在7和8之间B.在8和9之间C.在9和10之间D.在10和11之间7.一组图形按下列规律排序,其中第①个图形有2个爱心,第②个图形有5个爱心,ADF COEB 4题图7题图 ①②③④…5题图mn12D.C. B. A.第③个图形有8个爱心,…,按此规律排列下去,则第⑧个图形的爱心的个数是( ) A.26B.25C.24D.238.如图,AB 是⊙0的直径,BC 是⊙0的切线,连接0C 交⊙0于点D ,连接AD ,若∠A=30°,AD=√3,则CD 的长为( ) A.3B.2C.√3D.19.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,∠EAF=45°.若∠FEC=α,则∠BAE 一定等于( ) A.12αB.90°-12αC.45°-12αD.90°-α10.已知x >y >z >0>m >n ,对多项式x -y+z -m -n ,任意添加绝对值运算(不可添加为单个字母的绝对值或绝对值中含有绝对值的情况)后,称这种操作为“绝对操作”.例如:|x -y|+z -m -n ,x -|y+z|-|m -n|,x -y+|z -m -n|等.对多项式进行“绝对操作”后,可进一步对其进行运算.下列说法其中正确的个数是( ) ①存在八种“绝对操作”,使其化简的结果与原多项式相等. ②不存在任何“绝对操作”,使其运算结果与原多项式之和为0. ③所有的“绝对操作”共有7种不同的结果. A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的横线上. 11.计算:2sin60°-(13)0=______.9题图ADBFCE 8题图12.若一个正n 边形的每个内角为135°,则n 的值为______.13.2023年10月26日上午,神州十七号载人飞船载着杨洪波、唐胜杰、江新林3名航天员奔赴“天宫”,从2003年的神舟五号到2023年的神州十七号,20年中国载人航天工程共有20位航天员问鼎苍穹,截止到目前为止,我国航天员在太空的时间已累计达到近21200个小时,其中,数字21200用科学记数法表为______.14.现有四张完全相同的刮刮卡,涂层下面的文字分别是“赢”、“在”、“一”、“诊”.小明从中随机抽取两张并刮开,则这两张刮刮卡上的文字恰好是“一”和“诊”的概率是______.15.如图,菱形ABCD 的边长为6,∠A=60°,BD̂是以点A 为圆心,AB 长为半径的弧,CD ̂是以点B 为圆心,BC 长为半径的弧,则阴影部分的面积为______(结果保留根号).16.若整数a 使关于x 的不等式组{x −a >2x −3a <−2无解,且使关于y 的分式方程ay y−5-55−y=-3有非负整数解,则满足条件的a 的值之和为______.17.如图,在等腰直角△ABC 中,AC=4,∠C=90°,M 为BC 边上任意一点,连接AM , 将△ACM 沿AM 翻折得到△AC ´M ,连接BC ´,并延长交AC 于点N ,若点N 是AC 的中点,则CM 的长为______.18.一个四位正整数的各个数位上的数字互不相等且均不为0,若满足千位数字与个位数字之和等于百位数字与十位数字之和,则称这个四位数M 为“博雅数”.将“博雅数”M=abcd̅̅̅̅̅̅的千位数字与十位数字对调,百位数字与个位数字对调得到一个新的17题图BANCM C ´15题图C四位数N.若N 能被9整除,则a+d=______.在此条件下,若F(M)=M+N 13为整数,则满足条件的M 的最大值为______.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19.计算.(1)(2a -1)(2a+1)-a(4a -1);(2)(1-1x+1)÷xx 2+2x+1.20.学习了矩形的判定后,小蒋对等腰三角形底边上的高和底角顶点到顶角外角平分线的距离的数量关系进行了拓展性研究.请根据他的思路完成以下作图与填空. 用直尺和圆规,作等腰三角形ABC 的外角∠CAM 的角平分线AN ,再过点C 作CH 上AN 于点H.(只保留作图痕迹)已知:如图,三角形ABC 中AC=AB ,AD 是底边BC 上的高,AN 平分∠CAM ,CH ⊥AN 于点H.求证:AD=CH. 证明:∵AN 平分CAM ∴∠CAN=12∠CAM∵AC=AB ,AD 是底边BC 上的高 ∴①=12∠CMB ,∠ADC=90°又∵∠BAC+∠CAM=180° ∴∠DAH=12(∠CAB+∠CAM)=②又∵CH ⊥AN 于点H ∴③=90°∴四边形ADCH 为矩形 ∴AD=CH小蒋进一步研究发现,任意等腰三角形均有此特征.请你依照题意完成下面命题:等腰三角形底边上的高等于④.21.某公司计划购入语音识别输入软件,提高办公效率.市面上有A 、B 两款语音识别输入软件,该公司准备择优购买.为了解两款软件的性能,测试员小林随机选取了20段短文,其中每段短文都含10个文字.他用标准普通话以相同的语速朗读每段短文来测试这两款软件,并将语音识别结果整理、描述和分析,下面给出了部分信息. A 款软件每段短文中识别正确的字数记录为:5,5,6,6,6,6,6,6,6,7,9,9,9,9,9,10,10,10,10,10.A 、B 两款软件每段短文中识别正确的字数的统计表根据以上信息,解答下列问题.(1)上述表中的a=______,b=______,c=______.B 款软件每段短文中识别正确的字数折线统计图ABCM D(2)若你是测试员小林,根据上述数据,你会向公司推荐哪款软件?请说明理由(写出一条理由即可).(3)若会议记录员用A、B两款软件各识别了800段短文,每段短文有10个文字,请估计两款软件一字不差....地识别正确的短文共有多少段?22.某学校食堂不定期采购某调味加工厂生产的“0添加”有机生态酱油和生态食醋两种食材.(1)该学校花费1720元一次性购买了酱油、食醋共100瓶,已知酱油和食醋的单价分别是18元、16元,求学校购买了酱油和食醋各多少瓶?(2)由于学校食材的消耗量下降和加工厂调味品的价格波动,现该学校分别花费900元、600元一次性购买酱油和食醋两种调味品,已知购买酱油的数量是食醋数量的1.25倍,每瓶食醋比每瓶酱油的价格少3元,求学校购买食醋多少瓶?23.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点D从点B出发,沿着折线B→C→A(含端点)运动,速度为每秒1个单位长度,到达A点停止运动,设点D的运动时间为t,点D到AB的距离DG为y1,请解答下列问题.(1)直接写出y1关于t的函数关系式,并写出t的取值范围.(t>0),在直角坐标系中分别画出y1,y2的图象,并写出函数y1的一(2)若函数y2=15t条性质.(3)根据函数图象,直接估计当y1≥y2时t的取值范围.(保留1位小数,误差不超过0.2)C24.小明和小红相约周末游览合川钓鱼城,如图,A ,B ,C ,D ,E 为同一平面内的五个景点.已知景点E 位于景点A 的东南方向400√6米处,景点D 位于景点A 的北偏东60°方向1500米处,景点C 位于景点B 的北偏东30°方向,若景点A ,B 与景点C ,D 都位于东西方向,且景点C ,B ,E 在同一直线上. (1)求景点A 与景点B 之间的距离.(结果保留根号)(2)小明从景点A 出发,从A 到D 到C ,小红从景点E 出发,从E 到B 到C ,两人在各景点处停留的时间忽略不计.已知两人同时出发且速度相同,请通过计算说明谁先到达景点C.(参考数据:√3≈1.73)25.如图,抛物线y=a x ²+5a x +b 经过点D(-1,-5),且交x 轴于A(-6,0),B 两点(点A 在点B 的左侧),交y 轴于点C. (1)求抛物线的解析式.(2)如图1,过点D 作DM ⊥x 轴,垂足为M ,点P 在直线AD 下方抛物线上运动,过点P 作PE ⊥AD ,PF ⊥DM ,求√2PE+PF 的最大值,以及此时点P 的坐标.(3)将原抛物线沿射线CA 方向平移√52个单位长度,在平移后的抛物线上存在点G ,使得∠CAG=45°,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过程.EABCD30°60°45°26.如图,在△ABC 中,∠ACB=90°,∠A=60°,点D 是边AB 上一动点,连接CD ,将CD 绕点D 逆时针旋转α度得到线段DE.(1)如图1所示,α=90°,连接CE ,作EF ⊥BC 交BC 于F ,若CD=4,∠ACD=∠BDE ,求EF 的长.(2)如图2,α=60°,G 为AB 中点,连接GE ,延长GE 交BC 于F ,问:DG ,EG ,EF 之间的关系.(3)如图3,在(2)小问的基础上,AC=4,在线段CG 上取一点P ,使得3CP=GP ,Q 为CB 上一动点,将△CPQ 沿PQ 翻折得到△C ´PQ ,点D ,P 在运动过程中,当C ´E 最短时,请直接写出△ABE 的面积.重庆市十一中2024年中考数学模拟试卷(九年级下开学考试)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右图2ABCDF G E图3A BCF G D EQ C ´ P图1A B CEFD图2侧正确答案所对应的方框涂黑. 1.实数-5的相反数是( ) A.5B.-5C.15D.-151.解:互为相反数的数之和为0,故选A 。
北师大版九年级中考数学模拟试卷(含答案)
北师大版九年级中考数学模拟试卷(满分150分 时间120分钟)一.选择题(共40分) 1.2023的相反数是( )A.2023B.12023 C.﹣12023 D.﹣20232.如图四个几何体中,主视图、左视图、俯视图都相同的几何体是( )A. B. C. D. 3.神舟十五号载人飞船,搭载3名航天员于2022年11月29日成功发射,它的飞行速度大 约是474000米/分,这个数字用科学记数法表示为( )A.4.74×105B.4.74×106C.47.4×104D.0.474×1064.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=40°,则∠1=( ) A.60° B.50° C.40° D.30°(第4题图) (第 6题图) (第7题图) 5.下列标志图中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 6.数a 、b 、c 在数轴上的位置如图所示,其中b 、c 到原点的距离相等,下列式子正确的 是( )A.a+c >0B.a+b >0C.b+c >0D.a -b <07.在如图所示的电路图,当随机闭合开关K 1、K 2、K 3中的任意两个时,能使灯泡发亮的概率为( )A.13 B.12 C.23 D.34 8.计算mm -1+11-m 的结果是( )A.1B.﹣1C.2D.﹣29.如图,在△ABC 中,已知∠B=45°,∠C=30°,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若DE=3,则AB 的长为( )A.5√2B.5C.3√6D.4√3(第9题图)10.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点为整点.对于题目:抛物线 y=ax (x -4)+m (a ≠0)与x 轴分别交于M 、N 两点(点M 在点N 的左侧),MN=2,线段 MN 与抛物线围成的封闭区域记作G (包括边界),若区域G 内有6个整点,求a 的取值范围.则( )A.3≤a <4B.﹣4<a ≤﹣3C.﹣4<a ≤﹣3或3≤a <4D.﹣4<a <﹣3或3≤a <4 二.填空题(共24分)11.分解因式:x 2-116= .12.正方形地板由9块边长均相等的小正方形组成,一粒米随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区域的概率是 。
2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
河南省南阳市2023-2024学年华东师大版九年级上学期数学期末模拟试卷(含答案)
河南省南阳市2023-2024学年华东师大版九年级上学期数学期末模拟试卷一.选择题(共10小题,30分)1.下列二次根式中,最简二次根式的是( )A.B.C.D.2.下列说法正确的是( )A.“山川异域,风月同天”是随机事件B.买中奖率为1%的奖券100张,一定会中奖C.“同旁内角互补”是必然事件D.一枚硬币连抛100次,可能50次正面朝上3.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )A.k>B.k>且k≠0C.k<D.k≥且k≠04.在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3C.y=x2+1 D.y=x2﹣15.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是( )A.B.C.D.6.在大力发展现代化农业的形势下,现有A、B两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10030050010003000 A出芽率0.990.940.960.980.97B出芽率0.990.950.940.970.96下面有三个推断:①当实验种子数量为100时,两种种子的出芽率均为0.99,所以A、B两种新玉米种子出芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是( )A.①②③B.①②C.①③D.②③7.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为( )A.B.C.D.8.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2,下列对方程20t﹣5t2=15的两根t1=1与t2=3的解释正确的是( )A.小球的飞行高度为15m时,小球飞行的时间是1sB.小球飞行3s时飞行高度为15m,并将继续上升C.小球从飞出到落地要用4sD.小球的飞行高度可以达到25m9.西周数学家商高总结了用“矩”(如图1)测量物高的方法:把矩的两边放置成如图2的位置,从矩的一端A(人眼)望点E,使视线通过点C,记人站立的位置为点B,量出BG长,即可算得物高EG.令BG=x(m),EG=y(m),若a=30cm,b=60cm,AB=1.6m,则y关于x的函数表达式为( )A.y=x B.y=x+1. C.y=2x+1.6D.y=+1.610.某小区有一块绿地如图中等腰直角△ABC所示,计划在绿地上建造一个矩形的休闲书吧PMBN,其中点P,M,N分别在边AC,BC,AB上,记PM=x,PN=y,图中阴影部分的面积为S,当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是( )A.正比例函数关系,一次函数关系B.一次函数关系,二次函数关系C.一次函数关系,一次函数关系D.正比例函数关系,二次函数关系二.填空题(共5小题,15分)11.使有意义的x的取值范围是 .12.已知=,那么的值是 .13.如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是 .14.如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .15.如图,在Rt△ABC中,∠C=90°,AC=BC=2,点M为边BC的中点,点D为边BC上一动点,连接AD,将边AC沿直线AD翻折得到线段AE,连接ME,则ME长度的取值范围为 .三.解答题(共8小题,75分)16.解方程:(x+2)(x﹣5)=1.(5分)17.《小猪佩奇》这部动画片,估计同学们都非常喜欢.周末,小猪佩奇一家4口人(小猪佩奇,小猪乔治,小猪妈妈,小猪爸爸)来到一家餐厅就餐,包厢有一圆桌,旁边有四个座位(A,B,C,D).(8分)(1)小猪佩奇随机到A座位的概率是 ;(2分)(2)若现在由小猪佩奇,小猪乔治两人先后选座位,用树状图或列表的方法计算出小猪佩奇和小猪乔治坐对面的概率.(6分)18.如图,在△ABC中,AB=AC=5,BC=4,BD⊥AC于点D.(9分)(1)求tan∠ABC的值;(5分)(2)求BD的长.(4分)19.在体育考试中,一名男生掷实心球,已知实心球出手时离地面2米,当实心球行进的水平距离为4米时实心球被掷得最高,此时实心球离地面3.6米,设实心球行进的路线是如图所示的一段抛物线.(10分)(1)求实心球行进的高度y(米)与行进的水平距离x(米)之间的函数关系式;(6分)(2)如果实心球考试优秀成绩为9.6米,那么这名男生在这次考试中成绩是否能达到优秀?请说明理由.(4分)20.【材料阅读】2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度,其基本原理之一是三角高程测量法,在山顶上立一个标杆,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为(其中d为两点间的水平距离,R为地球的半径,R取m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.【问题解决】某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山顶标杆顶端E的仰角为37°,测量点A处的海拔高度为1800m.(10分)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)请你计算该山的海拔高度(要计算球气差,结果精确到0.01m).21.戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒.(10分)(1)若商家要使日利润达400元,又想尽快销售完该款口罩,问每盒售价应定为多少元?(5分)(2)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.(5分)22.阅读与思考(11分)下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是 (从下面选项中选出两个即可);(2分)A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(6分)(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为 .(3分)23.【综合与实践】数学综合实践课上,同学们以“等腰三角形的旋转”为主题,开展如下探究活动:(12分)(1)【操作探究】如图1,△ABC为等边三角形,将△ABC绕点A旋转180°,得到△ADE,连接BE,则∠EBC= °.若F是BE的中点,连接AF,则AF与DE的数量关系是 .(2分)(2)【迁移探究】如图2,将(1)中的△ABC绕点A逆时针旋转30°,得到△ADE,其他条件不变,求出此时∠EBC的度数及AF与DE的数量关系.(6分)(3)【拓展应用】如图3,在Rt△ABC中,AB=AC=2,∠BAC=90°,将△ABC绕点A旋转,得到△ADE,连接BE,F是BE的中点,连接AF.在旋转过程中,当∠EBC=15°时,直接写出线段AF的长.(4分)九年级数学模拟答案一.选择题(共10小题)1. C.2. D.3. B.4.D.5.A.6.D.7.B.8.C.9.B.10.B.二.填空题(共5小题)11. x≤2 12. 13 (1,0) 14. 15. ﹣2≤EM≤ 三.解答题(共8小题)16.解:原方程可化为x2﹣3x﹣11=0.∵a=1,b=﹣3,c=﹣11,且△=(﹣3)2﹣4×1×(﹣11)=53>0,∴,∴,.17.解:(1)小猪佩奇随机到A座位的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中小猪佩奇和小猪乔治坐对面的结果数为4,所以小猪佩奇和小猪乔治坐对面的概率==.18.解:(1)如图,过点A作AE⊥BC交BC于点E,∵AB=AC,AE⊥BC,∴,∠AEB=90°,∵BC=4,∴,在Rt△AEB中,∵∠AEB=90°,∴AE2=AB2﹣BE2,∵AB=AC=5,BE=2,∴AE2=52﹣22=21,∴.在Rt△AEB中,∵∠AEB=90°,,BE=2,∴.(2)如图,同(1),过点A作AE⊥BC交BC于点E,∵AE⊥BC,∴,又∵BD⊥AC,∴,∴,∵AC=5,BC=4,又∵由(1)求得,∴.19.解:(1)由抛物线顶点是(4,3.6),设抛物线解析式为:y=a(x﹣4)2+3.6,把点(0,2)代入得a=﹣,∴抛物线解析式为:y=﹣(x﹣4)2+3.6;(2)当y=0时,0=﹣(x﹣4)2+3.6,解得,x1=﹣2(舍去),x2=10,即这名男生在这次考试中成绩是10米,能达到优秀.20.解:如图,过点C作CH⊥BE于点H,由题意,得AB=CH=800m,AC=BH=1.5m,在Rt△ECH中,EH=CH⋅tan37°≈600(m),又DE=2,∴DB=EH﹣DE+BH=599.5(m),由题意,得,∴599.5+0.043+1800≈2399.54(m),故山的海拔高度为2399.54m.21.解:(1)设每盒售价降低x元,根据题意可知:(20+2x)(20﹣x)=400,解得:x1=0(舍去),x2=10,∴售价应定为70﹣10=60(元),答:若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为60元;(2)设当每盒售价降低x元时,商家获得的利润为W元,由题意可知:W=(20+2x)(20﹣x)=﹣2x2+20x+400,∵a=﹣2<0,∴抛物线开口向下,当x=﹣=5时,W有最大值,即W=450元,∴售价应定为70﹣5=65(元),答:当每盒售价定为65元时,商家可以获得最大日利润,最大日利润为450元.22.解:(1)上面小论文中的分析过程,主要运用的数学思想是AC;故AC;(2)a>0时,抛物线开口向上,当Δ=b2﹣4ac<0时,有4ac﹣b2>0.∵a>0,∴顶点纵坐标>0∴顶点在x轴的上方,抛物线与x轴无交点,如图,∴一元二次方程ax2+bx+c=0(a≠0)无实数根;(3)可用函数观点认识二元一次方程组的解;故可用函数观点认识二元一次方程组的解(答案不唯一).23.解:(1)90,AF=DE;(2)∵等边三角形△ABC绕点A逆时针旋转30°,得到△ADE,∴AB=AD=AE,∠CAE=30°,∴∠BAE=∠BAC+∠CAE=90°,∴△ABE是等腰直角三角形,∴∠ABE=45°,∴∠EBC=∠ABC﹣∠ABE=60°﹣45°=15°;∵F是BE的中点,∴∠AFB=90°,∴△AFB是等腰直角三角形,∴AF=AB,∵AB=BC=DE,∴AF=DE;答:∠EBC的度数为15°,AF与DE的数量关系为AF=DE;(3)AF的长为1或.。
九年级中考数学模拟试题
2022第1页( 共6页)2022年九年级中考模拟考试数学试题考生注意:1.本试卷共三大题24小题,卷面满分120分,考试时间120分钟;2.本试卷分试题卷和答题卡两部分,请将各题答案写在答题卡上每题对应的答题区域内,写在试题卷上无效;考试结束,只上交答题卡.3.参考公式:l 弧长=n πR 180;抛物线y =ax 2+bx +c 的顶点坐标是(-b 2a ,4ac -b 24a ).一、选择题(本大题满分33分,共11小题,每小题3分)下列各小题都给出了四个选项,其中只有一个符合题目要求,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.1.若a =-2 022,则a 的绝对值是(☆☆☆).A .2 022B .-2 022C .12022D .-120222.国际数学家大会每四年举行一次,是全世界数学家交流、展示、研讨数学发展的国际性会议.下列四个图形分别是四届大会的会标,其中是轴对称图形的是(☆☆☆).3.北京冬奥会开幕式于2022年2月4日在国家体育场鸟巢举行. 本届冬奥会共招募志愿者39000余人.数据39000用科学记数法表示为(☆☆☆).A .3.9×103 B .3.9×104 C .3.9×105 D .39×1034.如图,是某个几何体的三视图,则该几何体是(☆☆☆).A .圆锥 B .长方体C .圆柱D .三棱柱5.九年级(1)班共有40名同学.在一次数学课上,老师提问后要求同学举手回答,结果有30名同学举手,其中男生10名,女生20名.若老师在举手的同学中随机选择一名同学回答问题,恰好选中女生的概率是(☆☆☆).A .14B .13C .12D .236.下列运算正确的是(☆☆☆).A .a 3+a 2=a 5B .a 3-a 2=aC .a 3﹒a 2=a 5D .(a 3)2=a 5(第4题)A B CD2022第2页( 共6页)7.将三角尺ABC 和DEF (其中∠B =30°,∠F =45°)按如图方式放置,其中斜边EF ∥AB ,顶点C ,D 分别在EF ,AB 上,AC 与DE 相交于点P ,则∠APE 的度数是(☆☆☆).A .105° B .90° C .75° D .60°8.如图,四边形ABCD 内接于⊙O ,若∠D =130°,则∠AOC 的度数是(☆☆☆).A .130° B .100° C .65° D .50°9.要使代数式xx +1有意义,则x 应满足的条件是( ).A .x =0B .x ≠0C .x =1D .x ≠-110.如图,线段MN 的垂直平分线l 与MN 相交于点Q ,P 是l 上一点,若tan M =34,则sin β的值为(☆☆☆).A .45 B .35 C .43 D .3411.如图,矩形ABCD 的面积为8,设AB =x ,AD =y ,则在下列图象中,能大致反映x 与y 之间的关系的图象是(☆☆☆).二、填空题(本大题满分12分,共4小题,每小题3分)请将下列各题的答案写在答题卡上指定的位置.12.计算5×(-1)2+(-3)的结果是☆☆☆ .13.为落实国家“双减”政策,某市在《义务教育阶段学生书面作业设计指南》中规定,九年级学生语文、数学、英语、物理、化学、道德与法治、历史学科每周周末书面作业总时长分别是(单位:min ):60,80,40,45,45,0,0.这组数据的中位数是 ☆☆☆.A B C DxyO42yxO42yxO42xyO42☆☆☆(第7题)ADC BEPF(第8题)AC BOD A BDC(第11题)x y(第10题)MNP Q l β2022第3页( 共6页)14.如图,平面直角坐标系中,点B 的坐标为(-3,2),BA ⊥x 轴,垂足是点A ,将△OAB 绕点O 顺时针旋转90°得到△OA ′B ′,则点B 的对应点B'的坐标是 ☆☆☆.15.如图,边长为2的正方形ABCD 的中心与半径为2的⊙O 的圆心重合,E ,F 分别是边AD ,BA 的延长与⊙O 的交点,则图中阴影部分的面积是 ☆☆☆.(结果保留π)三、解答题(本大题满分75分,共9小题)请将下列各题的解答过程写在答题卡上指定的位置.16.(本题满分6分)解不等式组:⎩⎪⎨⎪⎧x +23<1,3(x +1)≥x -1.17.(本题满分6分)如图,△ABC 是等边三角形,D 是BC 上的点,点E 在△ABC 外,且∠BAD =∠CAE ,AD =AE .求证: (1)△ABD ≌△ACE ;(2)CE ∥AB .18.(本题满分7分)如图,在5×5的正方形网格中,点A ,B ,C 都在小正方形的顶点上,一条圆弧经过A ,B ,C 三点.(1)请你确定这条圆弧所在圆的圆心O ;连接OA ,OC ,则∠AOC 的度数为 ;(2)设最小正方形的边长为1,求AC 的长(结果保留根号).(第18题)ACB(第15题)AFE B CDO(第14题)xy O BAA ′B ′(第17题)AEDCB2022 第4页共6页19.(本题满分7分)3月22日是“世界水日”,设立“世界水日”的宗旨是唤醒公众的节水意识,保护水资源. 生活中,如果水龙头关闭不严会造成滴水浪费. 为调查漏水量与漏水时间的关系,某实验小组观察了一漏水水龙头,得到漏水量与滴水时间的一组数据如下表(表中w 表示漏水量,t 表示滴水时间):(1)根据表中数据,在下列直角坐标系中描出各点,并顺次连接各点; (2)请你判断这些点近似地在哪种函数图象上?写出此函数的解析式; (3)请你估算该水龙头在这种漏水状态下一天的漏水量.20.(本题满分8分)为配合全市开展“清除违法建设”工作,某学校举行了以“清除违章建筑,建设美丽当阳”为主题的演讲比赛. 赛后组委会整理参赛同学成绩,将成绩按分数段分为A ,B ,C ,D 四组,并制作了如下不完整的频数分布表和频数分布直方图.请根据图表提供的信息,解答下列问题: (1)①表中a =,b =;②补全频数分布直方图;(2)若用扇形统计图描述成绩分布情况,求B 组所对应扇形的圆心角的度数; (3)比赛结果显示,成绩不低于90分的4名同学中正好有2名男生和2名女生. 学校从这4名同学中随机抽取2名同学接受电视台记者采访,求正好抽到1名男生和1名女生的概率(用列表或树状图法).时间t /min 0 5 10 15 20 25 30 … 水量w /mL102028405260…组别 成绩x (分) 频数(人) 百分比 A 60≤x <70 8 20% B 70≤x <80a 30% C 80≤x <90 16b % D90≤x <100410%w /min(第19题)(第20题)/分2022 第5页共6页21.(本题满分8分)如图,菱形ABCD 的对角线AC ,BD 相交于点E ,△ABE 的外接圆⊙O 交边AD 于点F ,过点E 作PQ ⊥AD 交AD 于点P ,交BC 于点Q . (1)求证:PQ 是⊙O 的切线; (2)若DF =2,PE =:5①求⊙O 的半径r ;②试比较菱形ABCD 的面积S 菱形ABCD 与⊙O 的面积S ⊙O 的大小.22.(本题满分10分)某企业为新能源汽车生产配件. 2021年该配件销售单价为1 000元,月均销售量2万件;每件配件的成本包括材料成本、人力成本和其他成本三部分,其中材料成本是人力成本的14倍,人力成本比其他成本多20元,总成本合计780元. (1)求每件配件的材料成本、人力成本和其他成本各是多少元?(2)2022年,这种配件每件的材料成本下降了40元,人力成本增加了20%,其他成本保持不变. 从2022年开始,该企业对这种配件实行降价销售,与2021年相比,销售单价降低的百分数为0.5a ,实现月均销售量增加,增加的百分数为a . 这样,2022年一季度销售总利润为1 320万元,求a 的值.(销售利润=销售收入-总成本)(第21题)2022 第6页共6页23.(本题满分11分)如图,矩形ABCD 中,AB =3,AD =5,E 是BC 边上的点,BE =1,连接DE . P 是AD 边上的动点,过点P 作PQ ∥DE 交边AB 于点Q . (1)如图1,求证:△APQ ∽△CED ;(2)如图2,若点H 是线段DE 上的点,P 是AD 的中点,连接PH ,QH ,若PQ 平分∠APH ,求证:△HPQ ≌△APQ ;(3)如图3,当点P 在AD 边上运动时,设PA =x ,若点H 在直线DE 的下方,线段QH经过点E ,那么,是否存在实数x ,使以P ,Q ,H 为顶点的三角形与△APQ 全等?若存在,求出x 的值;若不存在,说明理由.24.(本题满分12分)如图,平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴和y轴的正半轴上,点B 在第一象限,OA =n ,OC =(n >0).抛物线L :y =-x 2+bx +cn 212经过B ,C 两点.(1)求的值;bc(2)如图1,设Q 是抛物线L 上位于x 轴上方的动点,当△QBC 的面积最大且与矩形OABC的面积相等时,求此时矩形OABC 的周长;(3)如图2,设线段EF 的两个端点坐标为E (1,4),F (5,4),过点F 作x 轴的垂线,垂足为点H ,连接EH .①若抛物线L 与直线EH 有且只有一个公共点,求n 的值;②当抛物线L 与△EFH 有公共点时,探究其公共点的个数及对应n 的取值范围.(第23题 图3 供参考)AB C E PQ H FE AH QB C DP(第23题 图2)(第23题 图1)AQ B C DP(第24题 图1)(第24题 图2 供参考)。
2023年+辽宁省大连市高新园区名校联盟九年级+数学模拟试卷及答案(4月)
答案第1 页2023年初中毕业升学模拟检测数学答案及评分标准一㊁选择题:1.D ;2.C ;3.C ;4.C ;5.B ;6.D ;7.A ;8.D ;9.A ;10.B .二㊁填空题:11.x >2;12.35;13.6;14.13π2;15.x 3+2=x -92;16.54.三㊁解答题17.解:原式[a +2(a +2)(a -2)-3(a +2)(a -2)]㊃a (a +2)a -14分 =a +2-3(a +2)(a -2)㊃a (a +2)a -15分 =a -1(a +2)(a -2)㊃a (a +2)a -16分 =a a -29分 18.解:(1)50,10,15;6分(2)1600ˑ1650=512(人),9分 答:估计该校本次活动捐款为10元的学生大约有512人.10分 19.证明:ȵ四边形A B C D 是菱形,ʑC D =B C ,4分 在әC D F 和әB C E 中,ø1=ø2C D =B C øC =øC ìîíïïïïʑәC D F =әC B E (A S A )8分 ʑD F =B E 10分 20.解:(1)设每件甲奖品x 元,每件乙奖品y 元,1分 根据题意得,x +4y =2402x +y =165{3分 解得,x =60y =45{5分 答:每件甲奖品60元,每件乙奖品45元;6分 (2)设购买乙奖品a 件,则购买甲奖品(40-a )件,根据题意得,60(40-a )+45a ɤ2140,7分 解得,a ȡ1713,8分 ȵa 为整数,ʑa 的最小值为18,9分 答:至少购买乙奖品18件.10分四㊁解答题21.解:(1)设P 与V 的函数关系式为P =k v,1分答案第2 页将V =1,P =100代入上式,解得k =1ˑ100=100,2分 所以P 与V 的函数关系式为P =100V ;3分 (2)当v =2时,p =50,即气压是50k p a ;5分 (3)P =100V ɤ150,解得V ȡ23,7分 ȵ100>0,ʑ当V >0时,P 随着V 的增大而减小,8分所以气球的体积应不小于23m 3.9分 22.解:(1)20;2分 (2)如图,过点C 作C F ʅA D ,垂足为F ,过点C 作C G ʅB E ,垂足为G ,(第22题)则øC G E =øG E F =øC F E =90ʎ,四边形G E F C 是矩形,ʑG E =C F ,3分 在R t әA B E 中,øA E B =90ʎ,øA =60ʎ,A B =24c m ,ʑs i n A =B E A B,4分 ʑB E =A B ㊃s i n 60ʎ=24ˑ32=123(c m ),5分 在R t әB G C 中,øB G C =90ʎ,øC B E =20ʎ,B C =10c m ,ʑc o s øG B C =G B B C ,6分 ʑB G =B C ㊃c o s 20ʎʈ10ˑ0.94=9.4(c m ),7分 ʑC F =G E =B E -B G =123-9.4ʈ12ˑ1.73-9.4ʈ11.4(c m ),9分 ʑ点C 到A D 的距离约为11.4c m .10分 23.(1)证明:如图1,连接O D .ȵC D 是O D 的切线,ʑO D ʅC D .ʑøO D C =90ʎ,1分 ʑøC D B +øB D O =90ʎ,ȵA B 为直径,ʑøA D B =90ʎ,2分 ʑøB D O +øA D O =90ʎ,ʑøC D B =øA D O .ȵO D =O A ,ʑøA D O =øA .3分 ȵøA =øD E B ,4分ʑøC D B =øD E B ;5分答案第3页(第23题)(2)解:如图2,过D 作D F ʅB E 于F ,ȵB D =B E ,ʑE F =12B E ,6分 ȵB E =4.8,ʑE F =2.4,在R t әD F E 中,øD F E =90ʎ,D E =3,根据勾股定理,D F =D E 2-E F 2=32-2.42=1.8.7分 ȵøD F E =øA D B =90ʎ,øE =øA ,ʑәD F E ʐәB D A .8分 ʑD F B D =D E B A ,ʑ1.83=3B A ,ʑB A =5.9分 ʑO A =12B A =2.5,ʑ☉O 的半径为2.510分 五㊁解答题24.解:(1)当点F 与点B 重合时,如图1,A D =D B =12A B =25c m ,ȵøA D E =øC =90ʎ,øE A D =øB A C ,ʑәA E D ʐәA B C ,1分 ʑA D A E =A C A B ,即25A E =845,ʑA E =5c m ,ʑ2t =5,解得t =52s ,故当点F 与点B 重合时,t 的值为52s ;2分 (第24题)(2)当0<t <52时,如图2,A E =2t c m ,在R t әA B C 中,根据勾股定理,B C =A B 2-A C 2=(45)2-82=4(c m ),3分 由(1)知:әA E D ʐәA B C ,ʑD E B C =A D A C =A E A B ,即D E 4=A D 8=2t 45,答案第4 页ʑD E =255t c m ,A D =455t c m ,5分 ʑS әA D E =12A D ㊃D E =12ˑ455t ㊃255t =45t 2,ȵәF D E 与әA D E 关于直线D E 对称,ʑәF D E ɸәA D E ,ʑS =45t 2,且0<t <52;6分 (第24题)当52ɤt <4时,如图3,设E F 交B C 于G ,取A B 的中点N ,作MN ʅA B 交A C 于M ,连接B M ,由(1)得:AM =B M =5c m ,ʑC M =A C -AM =8-5=3(c m ),7分 ȵMN ʅA B ,D E ʅA B ,ʑøMN A =øE D A =90ʎ,ʑMN ʊD E ,ʑøA E D =øAMN ,ȵøA E F =2øA E D ,øAM B =2øAMN ,ʑøA E F =øAM B ,ʑE F ʊM B ,ʑәC E G ʐәC M B ,8分 ʑC E C M =C G B C ,ȵA E =2t c m ,ʑC E =A C -A E =(8-2t )c m ,ʑ8-2t 3=C G 4,ʑC G =4(8-2t )3c m ,9分 ʑS =S әA B C -S әA D E -S әC E G =12ˑ8ˑ4-12ˑ455t ㊃255t -12ˑ(8-2t )ˑ4(8-2t )3=-5215t 2+643t -803,11分综上所述,S 与t 的函数关系式为S =45t 2(0ɤt <52)-5215t 2+643t -803(52ɤt ɤ4)ìîíïïïïï.(第24题)25.(1)证明:ȵC E ʅA D ,ʑøA E C =90ʎ,ʑøE A C =90ʎ-øA C E ,ȵA B =A C ,ʑøA B C =øA C B =180ʎ-øB A C 2=90ʎ-12øB A C ,1分 ȵøA C E =12øB A C ,ʑøE A C =90ʎ-12øB A C ,ʑøA C B =øE A C ,即øA C B =øD A C ;2分 (2)证明:如图1,过A 作AH ʅB C 于H ,ȵA B =A C ,ʑB H =H C =12B C ,3分 ȵøE A C =øA C H ,øA E C =øAH C =90ʎ,A C =C A ,ʑәE A C ɸәH C A (A A S ).ʑE A =H C ,4分 ȵB K =2B D ,D K =2A E ,ʑ设B D =2a ,则B K =4a ,D K =6a ,ȵD K =2A E ,ʑA E =3a ,ʑC H =B H =3a ,DH =B H -B D =3a -2a =a ,5分 ȵøD A C =øA C D ,ʑA D =C D ,又ȵA E =C H ,ʑA D -A E =C D -C H ,即D E =DH =a ,ʑA D =A E +D E =4a ,ʑA D =B K ;6分 (第25题)(3)如图2,过A 作A P ʊC K 交C F 延长线于点P ,过A 作AH ʅB C 于H ,(第25题)(2)得D E =a ,ȵD E =2,ʑa =2,ʑD C =4a =8,K C =10a =20,A E =3a =6,7分 ȵA P ʊC K ,ʑәA P E ʐәD C E ,ʑA P D C =A E D E ,ʑA P 8=62,ʑA P =24,8分 ȵA P ʊC D ,ʑәA P F ʐәK C F ,ʑA F K F =A P K C ,ʑA F K F =2420=65,9分 在R t әA DH 中,根据勾股定理,AH =A D 2-DH 2=82-22=215,在R t әA KH 中,根据勾股定理,A K =AH 2+KH 2=(215)2+(14)2=16.10分ȵA F K F =65,ʑK F =56A F ,ȵA F +K F =A K =16,ʑA F +56A F =16,ʑA F =9611.11分 方法二:(第25题)方法三:(第25题)26.(1)把A ㊁C 两点坐标代入y =a x 2+2x +c 可得(-2)2a +2ˑ(-2)+c =0c =6{解得a =-12c =6ìîíïïïï,ʑy =-12x 2+2x +6,1分 令-12x 2+2x +6=0,解得x 1=6,x 2=-2ʑB (6,0)2分 设l :y =k x +b (k ʂ0),把B (6,0),C (0,6)代入可得,6k +b =0b =6{,解得k =-1b =6{ʑl :y =-x +63分(第26题)(2)如图1,过点D 做D F ʅx 轴交直线C B 于点E 4分设D (m ,-12m 2+2m +6),则点E (m ,6-m ),F (m ,0)ʑD E =(-12m 2+2m +6)-(6-m )=-12m 2+3m D F =-12m 2+2m +65分 ʑS ΔC D B S ΔO B D =12㊃D E ㊃O B 12㊃D F ㊃O B =57,ʑD E D F =57即-12m 2+3m -12m 2+2m +6=57,6分 ʑm 1=5,m 2=6,ȵ0<m <6,ʑm =5,经检验,符合题意,ʑ-12ˑ52+2ˑ5+6=72ʑD (5,72)7分 (3)法一:(第26题)如图2,设A P 1与y 轴交于M 点,A P 2与y 轴交于N 点,设A D 交y 轴于K ,过M 做MH ʅA D ,ȵøP 1A B =øP 2A B =2øD A B ,ʑøP A D =øB A D ,M ㊁N 关于x 轴对称,ȵMH ʅA D ,C O ʅA O ,ʑøMHA =øK O A =90ʎ,ȵøMKH =øA K O ,ʑәKHM ʐәK O A ,ʑKH K O =KM K A =HM O A ,8分 设l A D :y =p x +q (p ʂ0),把A (-2,0),D (5,72)代入得y =12x +1,ʑK (0,1),ʑO K =1,ʑK A =A O 2+O K 2=22+12=5,设M (0,n ),ʑKH 1=n -15=HM 2,ʑKH =55(n -1),HM =255(n -1),9分 ȵøMHA =øK O A =90ʎ,øMAH =øK A O ,ʑәAHM ʐәA O K ,ʑMH K O =AH A O ,ʑ255(n -1)1=55(n -1)+52,ʑn =83,ʑK (0,83)10分 l A M :y =43x +83,ʑ43x +83=-12x 2+2x +6,解得x 1=103,x 2=-2(舍),ʑP 1(103,649)11分 ʑN (0,-83),ʑl A N :y =-43x -83,-43x -83=-12x 2+2x +6,解得x 1=263,x 2=-2(舍),ʑP 2(263,-1289).12分 法二:(第26题)法三:(第26题)法四:(第26题)法五:(第26题)其它方法同理给分㊂。
2023年湖北省武汉市勤学早九年级中考四调数学模拟试卷(一)(含解析)
2023年湖北省武汉市勤学早九年级四调数学模拟试卷(一)一、选择题(共9小题,每题3分,共30分)1.(3分)8的相反数是( )A.﹣8B.8C.﹣D.±82.(3分)下列事件中,必然事件是( )A.甲在罚球线上投篮一次,投中B.经过有交通信号灯的路口,遇到红灯C.任意画一个三角形,其内角和是360°D.掷一枚正方体骰子,朝上一面的点数小于73.(3分)利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是( )A.B.C.D.4.(3分)计算(﹣3a3)2的结果是( )A.﹣3a6B.3a6C.﹣9a6D.9a65.(3分)如图所示的几何体的俯视图是( )A.B.C.D.6.(3分)已知点(x1,y1)和(x2,y2)都在反比例函数y=的图象上,如果x1<x2,那么y1与y2的大小关系是( )A.y1<y2B.y1=y2C.y1>y2D.无法判断7.(3分)如图所示的游泳池内蓄满了水,现打开深水区底部的出水口匀速放水,在这个过程中,可以近似地刻画出泳池水面高度h与放水时间t之间的变化情况的是( )A.B.C.D.8.(3分)为庆祝五四青年节,志远中学举办乒乓球比赛活动,九(4)班有三名男生、两名女生参加比赛,那么从这五名学生中任选两人,正好组成一男一女的混合双打的概率是( )A.B.C.D.9.(3分)在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中的△ABC是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI所对应的S,N,L分别是S=7,N=3,L=10.经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c,其中a,b,c为常数,则当N=82,L=38时,S的值为( )A.44B.43C.100D.99二、填空题(共6小题,每题3分,共18分)10.(3分)计算的结果是 .11.(3分)某班为了解学生每周“家务劳动”情况,随机调查了7名学生每周的劳动时间,一周内累计参加家务劳动的时间分别为:2小时,3小时,2小时,3小时,2.5小时,3小时,1.5小时,则这组数据的中位数为 小时.12.(3分)计算(1﹣)÷的结果是 .13.(3分)如图,小明去爬山,在坡比为5:12的山坡AB上走1300m,此时小明看山顶C 的仰角为60°,BC=300m,则山高CD为 m(结果保留根号).14.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠c),且a﹣b+c=0.下列四个结论:①若b=﹣2a,则抛物线经过点(3,0);②抛物线与x轴一定有两个不同的公共点;③一元二次方程﹣a(x﹣2)2+bx=2b+c有一个根x=3;④点A(x1,y1)、B(x2,y2)在抛物线上,若当x1>x2>2时,总有y1>y2,则5a+c≤0.其中正确的是 (填写序号).15.(3分)如图,在边长为6的正方形ABCD中,将BC绕点B逆时针旋转α(0°<α<90°)得到BE,F是BE上一点,且EF=2BF,连接CF,则DE+CF的最小值为 .三、解答题(共8题,共72分)16.(8分)解不等式组,请按下列步骤完成解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来.17.(8分)如图AB∥CD,AE,DF分别平分∠BAD,∠CDA,交BC于点E,F.(1)求证:AE∥DF;(2)若∠BAD=72°,∠BCD=32°,求∠OFD的度数.18.(8分)2022年某市居民人均消费支出构成情况如下面的图所示.表1:2022年全国居民人均消费支出构成情况种类饮食衣着居住生活用品交通通信教育文娱医疗其他消费(元)a160056001500320024002100600请根据其中的信息回答以下问题:(1)2022年该市居民人均总支出为 元,图2中其他支出所对应扇形的圆心角的度数为 ;(2)请将图1补充完整.(3)小明家2022年人均消费总支出为3万元,请你估计小明家2022年的人均饮食支出约为多少元?19.(8分)如图,在△ABC中,∠C=90°,O为AB边上一点,以点O为圆心,OA为半径作⊙O,与BC相交于E,F两点,与AB交于点D,连接AE,AF,DE.(1)求证:∠CAF=∠EAD;(2)若OD=DB,F为的中点,求tan∠CAF的值.20.(8分)如图是由小正方形组成的7×7网格,每个小正方形的顶点叫做格点,△ABC 的三个顶点都是格点,P是网格线上的一点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图1中,先画出△ABC的角平分线BD,再在AC上画点E,使△BCE∽△DCB;(2)在图2中,先画出点P关于直线AC的对称点Q,再画∠QAR,使∠QAR=2∠BAC.21.(10分)行驶中的汽车刹车后,由于惯性还会继续向前滑行一段距离,这段距离称为“刹车距离”.已知汽车A刹车后刹车距离y(单位:m)与刹车时的速度x(单位:m/s)的函数关系满足y=ax2+bx.当汽车的速度为10m/s时,刹车距离为17m;当汽车的速度为20m/s时,刹车距离为50m.(1)求y关于x的函数解析式;(2)行驶中的汽车A突然发现正前方100m处有一辆抛锚的危险用品运输车,紧急刹车,此时汽车A的速度为30m/s,通过计算判断汽车A是否会撞上运输车;(3)若汽车B刹车后刹车距离y(单位:m)与刹车时的速度x(单位:km/h)的函数关系满足y=x2+cx(c>0),当30≤x≤50时,在相同的车速下汽车A的“刹车距离”始终比汽车B的“刹车距离”大,直接写出c的取值范围.22.(10分)如图1,在△ABC中,AB=AC,D是BC延长线上一点,CD=nBC(n>),连接AD,E是BA延长线上一点,∠E=∠DAC.问题提出:当n=1时,探究的值.(1)先将问题特殊化.如图2,当∠ABC=60°时,直接写出的值;(2)再将问题一般化.如图1,证明(1)中的结论仍成立;问题拓展:(3)如图3,过点C作CM⊥BE于点M,若=,直接写出的值(用含n的式子表示).23.(12分)如图1,抛物线C1:y=x2+bx﹣4与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C,且tan∠CAB=2.(1)求b的值;(2)E为第四象限抛物线上一点,ED∥AC交BC于点D.若DE=AC,求点E的坐标;交抛物线C2于M,N两点.若OM+ON=9,求m的值.2023年湖北省武汉市勤学早九年级四调数学模拟试卷(一)参考答案与试题解析一、选择题(共9小题,每题3分,共30分)1.【分析】根据相反数的概念求解即可.【解答】解:相反数指的是只有符号不同的两个数,因此8的相反数是﹣8.故选:A.【点评】本题主要考查相反数的概念,熟练掌握相反数的概念并注意区分相反数和倒数是解题的关键.2.【分析】根据随机事件的定义,必然事件的定义、不可能事件的定义进行逐项判断即可.【解答】解:A、甲在罚球线上投篮一次,投中是随机事件,不符合题意;B、经过有交通信号灯的路口,遇到红灯是随机事件,不符合题意;C、任意画一个三角形,其内角和是360°是不可能事件,不符合题意;D、投掷一枚正方体的骰子,朝上一面的点数小于7是必然事件,符合题意;故答案为:D.【点评】本题考查随机事件和三角形内角和定理,掌握必然事件的定义是解题的关键.3.【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【解答】解:A、图形不是中心对称轴图形,是轴对称图形,此选项正确;B、图形是中心对称轴图形,也是轴对称图形,此选项错误;C、图形是中心对称轴图形,不是轴对称图形,此选项错误;D、图形是中心对称轴图形,也是轴对称图形,此选项错误;故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.【分析】根据积的乘方和幂的乘方法则进行计算即可.【解答】解:(﹣3a3)2=9a6,故选:D.【点评】本题考查了对积的乘方和幂的乘方法则的应用,主要考查学生运用法则进行计算的能力,注意:①积的乘方,把积的每个因式分别乘方,再把所得的幂相乘,②幂的乘方,底数不变,指数相乘.5.【分析】根据俯视图是从上面看到的图形判定即可.【解答】解:由题意,从上面看该图形的俯视图为.故选:C.【点评】本题主要考查了简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.6.【分析】分x1,x2同号和异号两种情况讨论.【解答】解:∵1+k2>0,∴图象在第一、三象限,在每个象限y随x的增大而减小,当x1,x2同号,即0<x1<x2或x1<x2<0,y1>y2,当x1,x2异号时,即x2>0>x1,y1<y2;故选:D.【点评】本题考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.7.【分析】根据题意和图形,可以得到浅水区和深水区h随t的变化情况,从而可以解答本题.【解答】解:由题意可得,在浅水区,h随t的增大而减小,h下降的速度比较慢,在深水区,h随t的增大而减小,h下降的速度比较快,故选:C.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.【分析】画树状图得出所有等可能的结果数以及选到一男一女的结果数,再利用概率公式可得出答案.【解答】解:将三名男生分别记为A,B,C,两名女生分别记为D,E,画树状图如下:共有20种等可能的结果,其中选到一男一女的结果有:AD,AE,BD,BE,CD,CE,DA,DB,DC,EA,EB,EC,共12种,∴从这五名学生中任选两人,正好组成一男一女的混合双打的概率是=.故选:B.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.9.【分析】根据格点多边形的面积S=aN+bL+c,结合图中的格点△ABC、格点多边形DEFGHI、格点四边形FGHI的S、N、L数值,列出三元一次方程组,解方程组,求出a、b、c的值,即可解决问题.【解答】解:由题意得:四边形FGHI是格点四边形,S=4,N=1,L=8,∵任意格点多边形的面积S=aN+bL+c,由图中的格点△ABC、格点多边形DEFGHI、格点四边形FGHI得:,解得:,∴S=N+L﹣1,将N=82,L=38代入得:S=82+×38﹣1=100,故选:C.【点评】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.二、填空题(共6小题,每题3分,共18分)10.【分析】利用二次根式的性质计算即可.【解答】解:法一、=|﹣2|=2;法二、==2.故答案为:2.【点评】本题考查了二次根式的性质,掌握“=|a|”是解决本题的关键.11.【分析】7个数据由小到大排序,找出第4个数据,就是中位数.【解答】解:7个数据由小到大排序:1.5,2,2,2.5,3,3,3.第4个数据是2.5.这组数据中的中位数是2.5小时.故答案为:2.5.【点评】本题考查了中位数的定义,关键是数据由小到大的排序.12.【分析】根据分式混合运算的顺序,利用分式的运算法则计算即可.【解答】解:原式==.故答案为:.【点评】本题考查分式的混合运算,掌握分式混合运算顺序和分式的运算法则时解题的关键.13.【分析】过点B作BE⊥AD于点E,作BF⊥CD于点F,根据正弦的定义求出CF,根据坡度的概念求出BE,进而求出DF,计算即可.【解答】解:过点B作BE⊥AD于点E,作BF⊥CD于点F,则四边形FDEB为矩形,∴DE=FB,DF=BE,在Rt△BFC中,BC=300m,∠CBF=60°,则CF=BC•sin∠CBF=300×=150(m),设BE=5x m,∵斜坡AB的坡比为5:12,∴AE=12x m,由勾股定理得:AB2=BE2+AE2,即13002=(5x)2+(12x)2,解得:x=100(负值舍去),∴BE=500m,则DF=BE=500m,∴CD=CF+DF=(150+500)m,故答案为:(150+500).【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,掌握锐角三角函数的定义、熟记坡度的概念是解题的关键.14.【分析】由题意可得,抛物线的对称轴为直线x=1,图象经过点(﹣1,0),由抛物线的对称性即可判断①;由Δ=b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2≥0,即可判断②;由a﹣b+c=0,则方程a(2﹣x)2+b(2﹣x)+c=0在2﹣x=﹣1是成立,求得x=3,即可判断③;由题意可知,由题意可知,抛物线开口向上,且﹣≤2,则﹣b≤4a,结合a﹣b+c=0,即可判断④.【解答】解:∵抛物线y=ax2+bx+c(a,b,c是常数),a﹣b+c=0,∴(﹣1,0)是抛物线与x轴的一个交点.①∵b=﹣2a,∴对称轴为直线x=﹣=1,∵抛物线经过点(﹣1,0),∴抛物线经过点(3,0),即①正确;②Δ=b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2≥0,∴抛物线与x轴一定有公共点,∵a≠c,∴抛物线与x轴一定有两个不同的公共点.故②正确;③方程﹣a(x﹣2)2+bx=2b+c整理得,a(2﹣x)2+b(2﹣x)+c=0,∵a﹣b+c=0,∴当2﹣x=﹣1时,a﹣b+c=0,∴x=3,∴一元二次方程﹣a(x﹣2)2+bx=2b+c有一个根x=3;故③正确;④由题意可知,抛物线开口向上,且﹣≤2,∴﹣b≤4a,∵a﹣b+c=0,∴﹣b=﹣a﹣c,∴﹣a﹣c≤4a,∴5a+c≥0.故④错误.故答案为:①②③.【点评】本题考查了二次函数图象与系数的关系,二次函数的性质,二次函数图象与x 轴的交点等问题,掌握相关知识是解题基础.15.【分析】在BC上取点M,使CM=2BM,连结EM,DM.可证△BCF≌△BEM,CF=EM,当D,E,M三点共线时,DE+EM最小,即DF+CF的值最小.再根据勾股定理求出最小值.【解答】解:在BC上取点M,使CM=2BM,连结EM,DM.∵EF=2BF,CM=2BM,BE=BC,∴BF=BM,∵∠CBF=∠EBM,BE=BC,∴△BCF≌△BEM(SAS).∴CF=EM,当D,E,M三点共线时,DE+EM的值最小.Rt△CDM中,CM2+CD2=DM2,∵CD=6,CM=4,∴DM=2.∴DE+EM的最小值为2.∴DE+CF的最小值为2.故答案为:2.【点评】本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,关键是添加合适的辅助线得出全等,利用两点之间线段最短解决问题.三、解答题(共8题,共72分)16.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:,(1)解不等式①,得x≥﹣3;(2)解不等式②,得x<4;(3)把不等式①和②的解集在数轴上表示如下:故不等式组的解集为﹣3≤x<4.故答案为:(1)x≥﹣3;(2)x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.【分析】(1)先根据平行线的性质定理证得∠BAO=∠CDO,再根据角平分线的定义证得∠FDO=∠EAO,根据内错角相等,两直线平行证得AE∥DF;(2)先根据AB∥CD证得∠CDO=72°,再根据角平分线的定义求出∠CDF=36°,进而利用外角的性质求出∠OFD的度数.【解答】(1)证明:∵AB∥CD,∴∠BAO=∠CDO,∵AE,DF分别平分∠BAD,∠CDA,∴∠FDO=∠CDO,∠EAO=∠BAO,∴∠FDO=∠EAO,∴AE∥DF;(2)解:∵AB∥CD,∠BAD=72°,∴∠CDA=∠BAD=72°,∵DF分别平分∠CDA,∴∠CDF=36°,∵∠BCD=32°,∴∠OFD=∠CDF+∠BCD=36°+32°=68°.【点评】本题考查了平行线的判定和性质,熟练运用平行线的性质和判定定理是解题的关键.应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.18.【分析】(1)用生活用品消费支出数量除以它所占百分比即可得出2022年该市居民人均总支出;用360°乘其他支出所占比例即可得出圆心角的度数;(2)用人均总支出分别减去其它各项支出,即可得出a的值,进而将图1补充完整;(3)用样本估计总体即可.【解答】解:(1)2022年该市居民人均总支出为:1500÷6.25%=24000(元),图2中其他支出所对应扇形的圆心角的度数为:360°×=9°,故答案为:24000;9°;(2)饮食支出为24000﹣1600﹣5600﹣1500﹣3200﹣2400﹣2100﹣600=7000(元),将图1补充完整如下:(3)3×=0.875(万元)=8750(元),答:估计小明家2022年的人均饮食支出约为8750元.【点评】本题主要考查条形统计图和扇形统计图,解题的关键是掌握从条形图可以很容易看出数据的大小、从扇形图上可以清楚地看出各部分数量和总数量之间的关系及两者间的联系.19.【分析】(1)根据圆内接四边形的性质得∠CFA=∠ADE,根据圆周角定理得∠AED=90°,再根据等角的余角相等即可得∠CAF=∠EAD;(2)连AE、DE、OF,可证出△ACF∽△AED,得比例线段证出CF与AF的关系,则tan ∠CAF可求.【解答】解:(1)∵四边形FADE为⊙O的内接四边形,∴∠CFA=∠ADE,∵∠ACF=∠AED=90°,∴∠CAF+∠CFA=90°,∠EAD+∠ADE=90°,∴∠CAF=∠EAD;(2)如图,连OF,∵F为的中点,∴OF⊥AE,∵AD为⊙O的直径,∴∠AED=90°,∴OF∥DE,∴DE=OF,∵四边形FADE为⊙O的内接四边形,∵∠ACF=∠AED=90°,∴△ACF∽△AED,∴=,∵OF=AD,∴CF=AF,∴AC=CF,∴tan∠CAF==.【点评】本题考查圆周角定理,勾股定理,相似三角形的判定与性质,锐角三角函数,解题的关键是掌握圆周角定理和圆内接四边形的性质.20.【分析】(1)取格点E、F、G,连接CF、EG交于点O,连接BO交AC于点D,线段BD即为所求,连接BE,△BCE即为所求;(2)作点P关于直线AC的对称点Q,取格点K,连接CK、HK,CK交AP于L,过点L作AB的垂线交HK于点R,∠QAR即为所求.【解答】解:(1)如图1,连接矩形CEFG的对角线CF、EG交于点O,连接BO交AC 于点D,即BD是△ABC的角平分线,连接BE,则△BCE∽△DCB,则BD和BE即为所求;(2)如图2,点P与点Q关于直线AC对称,连接AP交CK于L,过点L作AB的垂线交HK于R,连接AR,如图所示,∠QAR即为所求.【点评】本题考查作图﹣轴对称变换,解题的关键是掌握三角形的高,中线,轴对称变换的性质,属于中考常考题型.21.【分析】(1)依据题意,把x=10m/s时,y=17m;x=20m/s时,y=50m代入y=ax+bx2,得到方程组,解方程组即可得到结论;(2)依据题意,将x=30代入(1)所求解析式求出刹车距离与100m比较即可得解;(3)依据题意,由在相同的车速下汽车A的“刹车距离”始终比汽车B的“刹车距离”大,可列式(0.08x2+0.9x)﹣(0.06x2+cx)=0.02x2+(0.9﹣c)x>0,结合题意可得c<,又c>0,进而可以得解.【解答】解:(1)对于函数y=ax2+bx,由x=10m/s时,y=17m;x=20m/s时,y=50m,∴,解得,∴y关于x的函数表达式为y=0.08x2+0.9x(x>0).(2)汽车A不会撞上运输车.理由:当x=30时,y=0.08×302+0.9×30=99,∵99<100,∴汽车A不会撞上运输车.(3)由题意,∵在相同的车速下汽车A的“刹车距离”始终比汽车B的“刹车距离”大,∴(0.08x2+0.9x)﹣(0.06x2+cx)=0.02x2+(0.9﹣c)x>0.∵30≤x≤50,∴0.02x+0.9﹣c>0.∴c<0.02x+0.9.当x=30时,c<0.02×30+0.9=;当x=50时,c<0.02×50+0.9=,∴c<.又c>0,∴0<c<.【点评】本题主要考查二次函数的应用,解题的关键是读懂题意,用待定系数法求出函数解析式.22.【分析】(1)可推出△ABC是等边三角形,进而得出CD=AC,可推出∠BAD=90°,进而得出AD=AB,CE=AB,进一步得出结果;(2)以C为圆心,CB长为半径画弧,交AB于点F,连接CF,可推出∠B=∠ACB=∠CFB=∠ACB,从而得出∠AFC=∠ACD,进而得出△ACD∽△EFC,进一步得出结果;(3)由(2)得:CF=CB,△ACD∽△EFC,从而,从而,设BM=FM =t,AE=3a,AB=2a,从而,从而表示出t=进一步得出结果.【解答】(1)解:如图1,∵n=1,CD=nBC,∴CD=BC,∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ACB=60°,∴CD=AC,∴∠CAD=∠D=30°,∴∠BAD=60°+30°=90°,∴AD=AB•tan60°=AB,∵∠E=∠DAC=30°,∴∠BCE=180°﹣60°﹣30°=90°,∴CE=BC•tan60°=BC=AB,∴==1;(2)证明:如图2,以C为圆心,CB长为半径画弧,交AB于点F,连接CF,∴CB=CF,∴∠B=∠CFB,∵AB=AC,∴∠B=∠ACB,∴∠CFB=∠ACB,∴∠AFC=∠ACD,∵∠E=∠CAD,∴△ACD∽△EFC,∴=n;(3)解:如图3,以C为圆心,CB长为半径画弧,交AB于点F,连接CF,由(2)得:CF=CB,△ACD∽△EFC,∴,∵AB=AC,∴,∵CM⊥AB,∴BM=FM,设BM=FM=t,AE=3a,AB=2a,AE=3a,∴BE=AB+AE=5a,∴EF=BE﹣BF=5a﹣2t,∴,∴t=,∴BM=∴=.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,解直角三角形等知识,解决问题的关键是作辅助线,构造相似三角形.23.【分析】(1)由待定系数法即可求解;(2)求出DE的表达式为:y=﹣2(x﹣m)﹣m﹣4,得到x E=﹣1+,则x E﹣x D =1=﹣1+﹣m,即可求解;(3)求出OM2=+=+(﹣)2=(x1+)2,同理可得:ON2=+=+(﹣)2=(x2+)2,即可求解.【解答】解:(1)由抛物线的表达式知,OC=4,∵tan∠CAB=2,则OA=2,则点A(﹣2,0),将点A的坐标代入抛物线表达式得:0=﹣2b﹣4,解得:b=﹣;(2)由(1)知,抛物线的表达式为:y=x2﹣x﹣4①,由点B、C的坐标得,直线BC的表达式为:y=x﹣4,设点D(m,m﹣4),同理可得,直线AC的表达式为:y=﹣2x﹣4,AC=2=2DE,则DE=,则x E﹣x D=1,∵ED∥AC,则直线DE的表达式为:y=﹣2(x﹣m)+m﹣4②,联立①②得:x2﹣x﹣4=﹣2(x﹣m)+m﹣4,解得:x E=﹣1+,则x E﹣x D=1=﹣1+﹣m,解得:m=1或3,则点E(2,﹣)或(4,﹣4);(3)∵平移抛物线C1得到抛物线C2,使其顶点为(0,﹣),∴抛物线C2的解析式为y=x2﹣,设D(x1,y1),E(x2,y2),则y1=﹣,y2=﹣,由x2﹣=x+m,整理得:4x2﹣8x﹣9﹣12m=0,则x1+x2=2,x1x2=,则OM2=+=+(﹣)2=++=(+)2,同理可得:ON2=+=+(﹣)2=(+)2,则OM+ON=(+)+(+)=[(x1+x2)2﹣2x1x2]+=(4+)+=9,解得:m=.【点评】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,相似三角形的判定和性质,抛物线的平移变换,一元二次方程根与系数的关系的应用,利用平行线分线段成比例解决问题是本题的关键.。
北京市北京师范大学第二附属中学西城实验学校2023年4月九年级数学零模试题
北师大二附中西城实验学校初三数学零模试卷2023.04一.选择题1.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.2.北京冬奥村是2022年北京冬季奥运会、冬残奥会最大的非竞赛类场馆之一,总建筑面积约38.66万平方米.其中38.66万用科学记数法可表示为()A .60.386610⨯B .53.910⨯C .53.86610⨯D .438.6610⨯3.如图是一个由5个小正方体和1个圆锥组成的立体图形,这个立体图形的主视图是()A .B .C .D .4.如图,在O 中,AD 是直径,35ABC ∠=︒,则CAD ∠等于()A .75︒B .65︒C .55︒D .45︒5.学校组织春游,安排给九年级三辆车,小明和小慧都可以从这三辆车中任选辆乘坐,小明和小慧乘坐同一辆车的概率是()A .12B .13C .29D .496.如果31a =-,那么代数式21(111aa a +÷--的值为()A .3B 32C .33D 37.如图是30名学生A ,B 两门课程成绩的统计图,若记这30名学生A 课程成绩的方差为21s ,B 课程成绩的方差为22s ,则21s ,22s 的大小关系为()A .21s <22s B .21s =22s C .21s >22s D .不确定8.如图①,底面积为30cm²的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h (cm )与注水时间t (s )之间的关系如图②.若“几何体”的下方圆柱的底面积为15cm²,求“几何体”上方圆柱体的底面积为()cm²A .24B.12C.18D.21二.填空题9.若代数式31x +有意义,则实数x 的取值范围是.10.分解因式:2428a ab -=.11.写出一个函数,满足当x >0时,y 随x 的增大而减小且图象过(1,3),则这个函数的表达式为.12.有一圆柱形木材,埋在墙壁中,其横截面如图所示,测得木材的半径为15cm ,露在墙体外侧的弦长18AB cm =,其中半径OC 垂直平分AB ,则埋在墙体内的弓形高CD =cm .13.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:九百九十文钱共买一千个苦果和甜果,其中四文钱可买苦果七个,十一文钱可买甜果九个.问苦、甜果各几个?设苦果x 个,甜果y 个,则可列方程为.14.如图,在ABC ∆中,AB AC =,40A ∠=︒,以点C 为圆心,CA 长为半径画弧,交直线BC 于点P ,连结AP ,则BAP ∠的度数是.12题14题15题16题15.如图,在ABC ∆中,90C ∠=︒,6AC =,8BC =,点E ,F 分别是边AC 和AB 上的点,点A 关于EF 的对称点D 恰好落在BC 边上,当BDF ∆是直角三角形时,CD 的长是.16.如图,在Rt △AOB 中,OA =OB =2,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为.三.解答题17.(1)01113(4)2sin 604-°+π---+(;(2)解不等式组:3222(12)410x xx x -<⎧⎨-+⎩.18.已知x 2+2x ﹣1=0,求代数式(x +1)2+x (x +4)+(x ﹣3)(x +3)的值.19.关于x的一元二次方程x2﹣(m+3)x+m+2=0.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m的最小值.20.先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:设计方案图2设计作图步骤,完成作图图3推理论证请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.21.在平面直角坐标系xOy中,一次函数y=﹣x+b经过点(0,2).(1)求这个一次函数的解析式;(2)当x<4时,对于x的每一个值,函数y=﹣x+b的值与函数y=kx﹣k的值之和都大于0,直接写出k的取值范围.22.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长.23.为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a.这30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图:b.下表是这30名学生两次知识竞赛的获奖情况相关统计:参与奖优秀奖卓越奖人数101010第一次竞赛平均分828795人数21216第二次竞赛平均分848793c.第二次竞赛获卓越奖的学生成绩如下:90909191919192939394949495959698d.两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m87.588第二次竞赛90n91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出m,n的值;(3)可以推断出第次竞赛中初三年级全体学生的成绩水平较高,理由是.24.某公园在人工湖里安装一个喷泉,在湖心处竖直安装一根水管,在水管的顶端安一个喷水头,水柱从喷水头喷出到落于湖面的路径形状可以看作是抛物线的一部分,若记水柱上某一位置与水管的水平距离为d 米,与湖面的垂直高度为h 米,下面的表中记录了d 与h 的五组数据:d (米)01234h (米)0.51.251.51.250.5根据上述信息,解决以下问题:(1)在如下网格中建立适当的平面直角坐标系,并根据表中所给数据画出表示h 与d 函数关系的图象;(2)若水柱最高点距离湖面的高度为m 米,则m =;(3)现公园想通过喷泉设立新的游玩项目,准备通过只调节水管露出湖面的高度,使得游船能从水柱下方通过,如图所示,为避免游船被喷泉淋到,要求游船从水柱下方中间通过时,顶棚上任意一点到水柱的竖直距离均不小于0.5米.已知游船顶棚宽度为3米,顶棚到湖面的高度为1.5米,那么公园应将水管露出湖面的高度(喷水头忽略不计)至少调节到多少米才能符合要求?请通过计算说明理由(结果保留一位小数).25.如图,在Rt △ABC 中,∠BAC =90°,点D 为BC 边的中点,以AD 为直径作⊙O ,分别与AB ,AC 交于点E ,F ,过点E 作EG ⊥BC 于G .(1)求证:EG 是⊙O 的切线;(2)若AF =6,⊙O 的半径为5,求BE 的长.26.在平面直角坐标系xOy 中,已知抛物线y =x 2﹣2ax ﹣3.(1)求该抛物线的对称轴(用含a 的式子表示);(2)A (x 1,y 1),B (x 2,y 2)为该抛物线上的两点,若x 1=1﹣2a ,x 2=a +1,且y 1>y 2,求a 的取值范围.27.已知正方形ABCD,将边AB绕点A顺时针旋转α至线段AE,∠DAE的角平分线所在直线与直线BE 相交于点F.过点C作直线BE的垂线CH,垂足为点H.(1)当α为锐角时,依题意补全图形,并直接写出∠DEB的度数;(2)在(1)的条件下,写出线段BE和FH之间的数量关系,并证明;(3)设直线CH与直线DE相交于点P,若AB=2,直接写出线段AP长的最大值和最小值.28.对于平面内的点M和点N,给出如下定义:点P为平面内的一点,若点P使得△PMN是以∠M为顶角且∠M小于90°的等腰三角形,则称点P是点M关于点N的锐角等腰点.如图,点P是点M关于点N 的锐角等腰点.M在平面直角坐标系xOy中,点O是坐标原点.(1)已知点A(2,0),在点P1(0,2),P2(1,),P3(﹣1,),P4(,﹣)中,是点O关于点A的锐角等腰点的是.(2)已知点B(3,0),点C在直线y=2x+b上,若点C是点O关于点B的锐角等腰点,求实数b的取值范围.(3)点D是x轴上的动点,D(t,0),E(t﹣2,0),点F(m,n)是以D为圆心,2为半径的圆上一个动点,且满足n≥0.直线y=﹣2x+4与x轴和y轴分别交于点H,K,若线段HK上存在点E关于点F的锐角等腰点,请直接写出t的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
A
Q
B
23.(本题 10 分)已知抛物线 y ax2 bx c 经过 A(-1,0) 、B(3,0) 、C(0,3)三点, 直线 l 是抛物线的对称轴.(1)求抛物线的函数关系式; (2)设点 P 是直线 l 上的一个动点, 当△ PAC 的周长最小时,求点 P 的坐标; (3)在直线 l 上是否存在点 M,使△ MAC 为等腰三角形,若存在,直接写出 所有符合条件的 .... 点 M 的坐标;若不存在,请说明理由.
2
D. y x 2 2
B. y x 2 2 )
BP 的值是 BQ
; 第 15 题图
(2)在四边形 OABC 旋转过程中,当 0 ≤ 180° 时,存在这样的点 P 和点 Q,使 BP BQ 。请求出点 P 的坐标 2 y B A Q C B P
3. 今年我市参加中考的人数大约有 41300 人,将 41300 用科学记数法表示为( B. 41.3 10 ) B.相交 ) B.8
乙图中阴影部分面积
3
C. 4.13 10
4
D. 0.413 10
4. 已知⊙ O1 、⊙ O2 的半径分别为 3 cm、5 cm,且它们的圆心距为 8 cm,则⊙ O1 与⊙ O2 的位置关系是( A.外切 则⊙O 的半径为( A.10 C.内切 D.内含
1 3
1 1 a a 2 ,那么 0 a 1 ;②如果 a 2 a , a a 1 2 那么 a 1 ;③如果 a a ,那么 1 a 0 ; a 1 2 ④如果 a a 时,那么 a 1 。则( ) a
①如果 A.正确的命题是①④ C.正确的命题是①② 11. 因式分解: m n 9mn =__________
6 1 12 2
2 1 ,∴抛物线的对称轴 l 为:直线 x 1 . 2 1
1 3
如图,连接 BC 交对称轴 l 于点 P,因为点 A 与点 B 关于对称轴 l 成轴对称,所以点 P 为所 求的点. 解法一:设直线 l 交 x 轴于点 N,则 ON=1. ∵B(3,0) ,∴OB=3,∴BN=2. ∵ l // y 轴,∴△BPN∽△BCO,
8.
如图是某几何体的三视图,则该几何体的体积是( A. 18 3 B. 54 3 C. 108 3 D. 216 3
1
。
9.
在 Rt△ ABC 中,∠C=90° ,若 AB=4,sinA= A.
64 25
B.
48 25
3 ,则斜边上的高等于( 5 16 12 C. D. 5 5
)
A O (图 1)
=3-1+1 =3
1 2
a b c 0, a 1, 23 解: (1)由题意,得 9a 3b c 0, 解得 b 2, c 3. c 3.
∴抛物线的函数关系式为: y x 2 2 x 3 . (2)∵ x
14. 如图,PA、PB 是⊙O 的切线,切点分别为 A、B,点 C 在⊙O 上,如果∠ACB=70° ,那么∠P 的度数是___ __度. 15. 如图,将矩形 ABCD 沿 CE 折叠,点 B 恰好落在边 AD 的
1 k 1 2
1 2
)
2 2
AB 2 ,那么 tan DCF 的值是________. BC 3 0) ,直线 16. 在平面直角坐标系中,O 为坐标原点,点 A 的坐标为 (8, 6) , C (0, 6) ,将四边形 OABC 绕点 O 按顺时针方 BC 经过点 B(8, OA BC ,此时直线 OA 、直线 BC 分别与 向旋转 度得到四边形
F 处,如果 直线 BC 相交于点 P、Q.如图 1 (1)四边形 OABC 的形状是 ,当 90° 时,
第 14 题图
7. 将抛物线 y x2 1 先向左平移 2 个单位,再向下平移 3 个单位, 那么所得抛物线的函数关系式是( A. y x 2 2
2
C. y x 2 2
15. _____________ (2)
20.(本题 8 分) 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点 C 的切线,垂足为 D. (1)求证:AC 平分∠BAD; (2)若 AC= 2 5 ,CD=2,求⊙O 的直径.
三、全面答一答(本题有 8 个小题,共 66 分)
1 17.(本题 6 分)计算: 9- +2sin30° 2
九年级数学参考答案
1——10:A DC A C BBCBD.
2 11. mn m 9 mn m 3 m 3
20 1600 = -3 x + 3 3
因为 x 为正整数,所以当 x=7 时,每天销售毛利润最大,最大值为 533. 答:每件降价 7 元时,每天最大销售毛利润为 533 元。 22.小明的爷爷晚饭后出去散步,5 分钟后到达离家 2 千米的公园,在公园里的健身器材处锻 炼了 6 分钟,由于即将下雨,小明爷爷花了 4 分钟就赶回了家里。请问小明爷爷回家的速度 比出去时的速度快多少?
3
B.错误 的命题是②③④ .. D.错误 的命题只有③ ..
2. 下列图形中,既是轴对称图形,又是中心对称图形的是( A.平行四边形 B.等边三角形 C.等腰梯形 A. 413 10
2
二、认真填一填(本题有 6 个小题,每小题 4 分,共 24 分) 12. 在平面直角坐标系中,点 P( m, m 2 )在第一象限,则 m 的取值范围是__ 13. 在 Rt△ ABC 中,∠C=90° ,AB=2BC,现给出下列结论:①sinA= ___.
AC 2 CD 2
2 5
2
22 4 .
PN BN , CO BO PN 2 ,∴PN=2. ∴ 3 3 ∵点 P 在对称轴 l 上,∴点 P 的坐标是(1,2).
∴
AC AD AC 2 ,∴ AB . AB AC AD
解法二: 设直线 BC 的函数关系式为 y kx m , 将B (3, 0) 、 C (0, 3) 代入, 得
0
18.(本题 6 分)先化简: 1
a 1 a2 1 2 ,再选取一个你喜欢的 a 的值代入计算. a a 2a
21.(本题 8 分)某商场购进一批 L 型服装(数量足够多) ,进价为 40 元/件,以 60 元/件销售, 每天销售 20 件。根据市场调研,若每件每降价 1 元,则每天销售数量比原来多 3 件。现 商场决定对 L 型服装开展降价促销活动,每件降价 x 元(x 为正整数) 。在促销期间,商 场要想每天获得最大销售毛利润,每件应降价多少元?每天最大销售毛利润为多少?
22.(本题 10 分)看图说故事. 请你编写一个故事,使故事情境中出现的一对变量 x、y 满足图示的函数关系,要求:① 指出变量 x 和 y 的含义;②利用图中的数据说明这对变量变化过程的实际意义,其中必须涉及 “速度”这个量.
24. (本题 12 分)如图,菱形 ABCD 的边长为 2cm,∠DAB=60° ,点 P 从 A 点出发,以 3 cm/s 的速度,沿 AC 向 C 做匀速运动;与此同时,点 Q 也从 A 点出发,以 1cm/s 的速度, 沿射线 AB 做匀速运动; 当 P 运动到 C 点时, P、 Q 都停止运动。 设点 P 运动的时间为 t s。 (1)当 P 异于 A、C 时,请说明 PQ∥BC; (2)以 P 为圆心,PQ 长为半径作圆,请问:在整个运动过程中,t 为怎样的值时,⊙P 与边 BC 分别有 1 个公共点和 2 个公共点? D C
1 3 ;②cosB= ; 2 2
5. 如图,AB 是⊙O 的直径,弦 CD⊥AB,垂足为 P.若 CD=8,OP=3, C.5 D.3
③tanA=
3 ;④tanB= 3 ,其中正确的结论是__________(只需填上正确结论的序号) 3
6. ) , 则有( A. k 2 C. ) B. 1 k 2 D. 0 k
C
x
缙云县实验中学 2013 学年第二学期第一次阶段性检测 九年级数学答题卷
一、选择题: (每小题 3 分,共 30 分) 题号 答案 二、填空题: (每小题 4 分,共 24 分) 11. 14. 16.(1) 12. , 13. 1 2 3 4 5 6 7 8 9 10
座位号
19. (本题 6 分)甲、乙、丙、丁 4 名同学进行一次羽毛球单打比赛,要从中选出 2 名同学首 场比赛。求下列事件的概率: (1)已确定甲打第一场,再从其余 3 名同学中随机选取 1 名,恰好选中乙同学; (2)随机选取 2 名同学,其中有乙同学.
10. 给出下列命题及函数 y x , y x 2 和 y
1 的图象 x
九年级数学模拟试题卷姓名
满分 120 分,考试时间 120 分钟 一、仔细选一选(本题有 10 个小题,每小题 3 分,共 30 分) 1. -3 的绝对值是( A.3 ) B.-3 C.±3 ) D.正方形 )
5
D.
2
12。 m 2 13。 ③③④
14.40
15.
5 2
16.矩形(长方形) (1 分)
BP 4 (1 分) BQ 7
点 P 的坐标是 P 1 9 17.原式=3-1+2×
3 7 (各 1 分) 6, 6 , P2 , 6 . 2 4
a 1 a a 2 a2 1 18.解:原式 1 . 1 a a 1 a 1 a 1 a 1
选取合适的值代入计算正确. (注: a 的取值为 0、1、-1、-2 时,不给分.) 19. (1)P(甲打第一场,恰好选中乙同学)= ; (2)P(随机选取 2 名同学,其中有乙同学)= 20.解: (1)证明:如图,连接 OC. ∵直线 DC 切⊙O 于点 C,∴OC⊥DC. ∵AD⊥DC,∴OC//AD, ∴∠OCA=∠DAC. ∵OA=OC,∴∠OAC=∠OCA, ∴∠DAC=∠OAC,即 AC 平分∠BAD. (2)解:在 Rt△ ADC 中,由勾股定理,得 AD 连接 BC,∵AB 是⊙O 的直径,∴∠ACB=90°. 又∵∠DAC=∠OAC,∴Rt△ ADC∽Rt△ ACB, ∴