3 第3章 32 Bit RISC微处理器 S3C2410Anew-93页精选文档
第3章 32Bit-RISC微处理器 S3C2410A
输入频率与MPLL频率对照表
I/O端口的配置
D端口: A端口: GPACON: 控制寄存器 GPADAT: 数据寄存器 B端口: GPBCON: 控制寄存器 GPBDAT: 数据寄存器 GPBUP :内部上拉电阻 (0:允许,1:禁止) C端口: G端口:
bit5=0 MPLL打开, bit5=1(bit4=1) MPLL关闭; bit4=0 正常模式(FCLK=MPLL),bit4=1慢速模式; 在慢速模式下,当Val=0时,FCLK=输入时钟; 当Val≠0时,FCLK=输入时钟/2/Val
系统供电: VDD3.3V和VDD1.8V VDD3.3V提供给VDDMOP,VDDIO,VDDADC和VCC引脚, VDD1.8V提供给VDDi_X。
3. 55个中断源(4通道DMA,5个定时器,1 个看门狗,2个RTC, 2个ADC中断,1个 IIC,1个SDI,2个USB,1个LCD,9个UART串 口中断, 24通道外部中断,2通道SPI和 1个电池故障) 4. 有8通道10位ADC和触摸屏接口 5. LCD屏幕控制器
S3C2410 时钟和地址空间
MDIV 0 1 1 1 1 1 1 1
PDIV 0 0 0 0 0 1
SDIV 0 1
MPLLCON寄存器的值=0x7F011
CLKDIVN时钟分频寄存器决定HCLK,PCLK
CLKDIVN (最低3位) 1XX 000 001 010 011 HCLK FCLK/4 FCLK FCLK FCLK/2 FCLK/2 PCLK FCLK/4 FCLK FCLK/2 FCLK/2 FCLK/4
S3C2410A芯片及其应用(嵌入式大作业)
论文题目:S3C2410A芯片及其应用姓名:学号:论文要求:针对某一个或一类嵌入式芯片,提出以其为核心的嵌入式系统完整开发方案。
论文结构要求: 1 相应控制器芯片介绍2 硬件开发平台选择与介绍3 软件开发平台选择与介绍4 典型应用实例介绍5 相关参考文献摘要随着计算机技术和通信技术的迅速发展以及Internet的不断扩展,嵌入式系统得到了越来越广泛的应用,成为当前IT产业的焦点之一,呈现出巨大的市场需求。
但同时大量的嵌入式应用也对嵌入式设备的性能和功能提出了更高的要求。
ARM(Advanced RISC Machines)公司的32位RISC处理器,以其高速度、低功耗、低成本、功能强、特有16/32位双指令集等诸多优异的性能,己成为移动通信、手持计算、多媒体数字消费等嵌入式解决方案中的首选处理器。
随着国内嵌入式应用领域的发展,ARM芯片也必然会获得广泛的重视和应用。
在各种嵌入式操作系统中,Linux凭借其在结构清晰、源代码开放等方面的优势,成为了基于监控系统、手持设备等嵌入式系统领域应用中的技术热点。
本文基于ARM9芯片S3C2410A,详细介绍了其芯片功能和结构特点,提出了其硬件开发平台设计方案和软件开发平台设计方案。
并结合智能家居数据采集系统设计实例,重点阐述了利用S3C2410A功能,完成数据采集、数据显示、数据存储以及数据传输(网络控制)的任务。
关键词:嵌入式系统;S3C2410A;开发平台;数据采集1 S3C2410A芯片介绍S3C2410A,是韩国Samsung公司推出的16/32位RISC处理器,它是一颗主频高达203MHz,基于ARM920T内核的高性能微处理器,独立的16KB指令cache和16KB数据cache,MMU虚拟内存管理单元,使得程序运行以及数据存储更加高效,并可以支持,Linux和uCOS-II等多种业内主流的操作系统。
它的低功耗、精简和出色的全静态设计特别适合于低成本和功耗敏感的应用。
s3c2410中文手册
s3c2410中文手册简介S3C2410 是一种嵌入式处理器,由韩国三星电子公司设计和制造。
它是一款高度集成的 ARM 架构芯片,广泛应用于各种移动设备中,如智能手机、平板电脑、PDA 等。
本手册将详细介绍 S3C2410 芯片的特性、功能和使用方法,帮助开发人员更好地理解和应用该芯片。
芯片特性S3C2410 芯片具有以下主要特性:1.ARM920T 内核: S3C2410 芯片采用了 ARM920T 内核,它是一种高性能、低功耗的 32 位 RISC 处理器。
ARM920T 内核支持 ARMv4T 指令集,并具有强大的计算和处理能力。
2.高度集成的外设: S3C2410 芯片内集成了许多常用的外围设备,包括 UART、SPI、I2C、PWM 等。
这些外设可满足各种应用需求,简化了系统设计和连接。
3.多种接口: S3C2410 芯片提供了丰富的接口,如LCD 控制器、触摸屏控制器、SDIO 控制器等。
这些接口允许连接各种外部设备,如显示屏、输入设备、存储卡等,实现更丰富的功能。
4.低功耗设计: S3C2410 芯片采用先进的低功耗设计技术,具有很低的静态功耗和动态功耗。
这使得它非常适合于移动设备,延长了电池寿命。
芯片功能GPIOS3C2410 芯片提供了多个 GPIO 管脚,用来实现输入和输出功能。
GPIO 管脚可以通过软件配置为输入模式或输出模式,并可以设置电平状态。
开发人员可以利用GPIO 实现各种功能,如控制 LED 灯、读取按键状态等。
UARTS3C2410 芯片内集成了多个 UART 模块,用于串口通信。
每个 UART 模块都提供了数据传输和接收的功能,并支持多种通信协议,如 RS232、RS485 等。
开发人员可以使用 UART 实现与外部设备的串口通信。
LCD 控制器S3C2410 芯片具有强大的 LCD 控制器,支持多种显示模式和分辨率。
LCD 控制器可以控制显示屏的像素点,实现图形显示和文字显示功能。
S3C2410X中文数据手册
S3C2410X中文数据手册S3C2410X32位RISC微处理器用户手册第一章产品综述 (5)介绍: (5)1.1特性 (6)体系结构 (6)系统管理器 (6)NAND Flash 启动引导 (7)Cache 存储器 (7)时钟和电源管理 (7)中断控制器 (8)具有脉冲带宽调制功能的定时器 (8)RTC(实时时钟) (8)通用I/O端口 (8)UART (9)DMA控制器 (9)A/D转换和触摸屏接口 (9)LCD控制器STN LCD显示特性 (9)TFT彩色显示屏 (10)看门狗定时器 (10)IIS总线接口 (10)USB主设备 (10)USB从设备 (10)SD主机接口 (11)SPI接口 (11)工作电压 (11)操作频率 (11)封装 (11)1.2 内部结构图 (12)表1-1 272-FBGA引脚分配及顺序 (14)表1-2 272-FBGA封装的引脚分配 (16)表1-3 S3C2410X信号描述 (24)表1-4 S3C2410X特殊功能寄存器 (30)第二章处理器工作模式 (45)2.1 概述 (46)2.2 处理器工作状态 (46)2.3 切换状态 (47)2.4指令长度 (48)2.5操作模式 (48)2.6 寄存器 (49)2.7程序寄存器状态 (51)2.8 异常 (53)第三章 ARM指令集 (59)3.1 指令格式 (60)3.2 条件码 (62)3.3 分支和转换指令(BX) (63)3.4转移及带链接的转移指令(B,BL) (64)3.5 数据处理指令 (65)3.6 PSR 转移指令(MRS,MSR) (71)3.7 乘法及乘加指令(MUL,MLA) (75)3.8 长乘及长乘加指令(MULL,MLAL) (77)3.9单数据传输指令(LDR,STR) (79)3.10半字和带符号的数据传输(LDRH/STRH/LDRSB/LDRSH) (82) 3.11块数据传输(LDM,STM) (87)3.12 单数据传输指令(SWP) (94)3.13 软件中断指令(SWI) (95)3.14 协处理器数据操作(CDP) (97)3.15 协处理器数据传输指令(LDC,STC) (98)3.16 协处理器寄存器传输指令(MRC,MCR) (99)3.17 未定义指令 (99)第五章存储器控制器 (99)5.1 概述 (99)5.2 功能描述 (101)5.2.1 bank0总线宽度 (101)5.2.2 nWAIT引脚的作用 (103)5.2.3 nXBREQ/nXBACK引脚操作 (104)5.3 存储器接口举例 (105)5.4 特殊功能寄存器 (111)5.4.1 总线宽度和等待控制寄存器(BWSCON) (111)5.4.2 总线控制寄存器(BANKCONN:nGCS0-nGCS5) (113)5.4.3 BANK控制寄存器(BANKCONn:nGCS6-nGCS7) (114) 5.4.4 刷新控制寄存器 (115)5.4.5 BANKSIZE 寄存器 (115)5.4.6 SDRAM模式寄存器集寄存器(MRSR) (116)第六章 NAND FLASH寄存器 (117)6.1 概述 (117)6.2 特性 (117)6.2.1 自动导入模式步骤 (118)6.2.3 NAND FLASH存储器时序 (119)6.2.4 管脚配置 (119)6.2.6 NAND Flash存储空间分布 (121)6.3 专用寄存器 (122)6.3.1 NAND FLASH 配置(NFCONF)寄存器 (122)6.3.2 NAND FLASH命令设置(NFCMD)寄存器 (122)6.3.3 NAND flash地址设置(NFADDR)寄存器 (123)6.3.4 NAND FLASH 数据(NFDATA)寄存器 (123)6.3.5 NAND FLASH ECC(NFECC)寄存器 (123)第七章时钟与电源管理 (124)7.1概述: (124)7.2 功能描述 (125)7.2.1 时钟结构: (125)7.2.2锁相环(PLL): (126)7.2.3时钟控制逻辑: (128)7.2.4 加电重启:(XTIpll) (128)7.2.5 USB时钟控制: (130)7.2.7电源管理: (131)7.3 特殊功能寄存器 (138)第8章DMA (141)8.1 概述 (141)8.2 DMA工作过程 (142)8.3 DMA特殊功能寄存器 (146)第九章I/O端口 (152)9.1 概述 (152)9.2 端口功能控制描述 (156)9.3 I/O端口控制专用寄存器 (156)第十章PWM Timer (172)9.1 概述 (172)9.2特性 (173)预定标器和分割器 (174)定时器基本操作 (175)自动加载和双缓冲模式 (175)用手动更新位和逆变器位对定时器进行初始化 (176) 定时器操作步骤: (176)脉宽调制 (177)输出电平控制 (178)死区发生器 (178)DMA请求模式 (179)9.3 PWM定时器专用寄存器 (180)第十一章UART (185)11.1 概述 (185)11.2 UART操作: (186)数据传输: (187)2. 数据接收: (187)3.自动流控制 (187)4.非自动流控制实例(软件控制nRTS及nCTS) (188)5. 中断/DMA请求的产生 (188)6.UART错误状态FIFO (189)7.波特率的产生 (190)8.回环模式 (190)9.红外模式 (191)11.3 UART特殊功能寄存器 (192)第十四章中断控制器 (198)14.1 S3C2410X 中断概述 (198)14.2S3C2410X 中断控制器的操作 (199)14.3S3C2410X 中断源 (199)14.4S3C2410X 中断控制器的特殊功能寄存器 (202) 第十七章RTC (210)17.1 概述 (210)17.2 实时时钟操作 (211)17.3 RTC特殊功能寄存器 (212)第十八章看门狗 (216)18.1 概述 (216)18.2 看门狗定时器特殊功能寄存器 (216)第十九章SD接口 (218)19.1 概述 (218)19.2 SDI特殊功能寄存器 (219)第二十章 IIC (226)20.1 概述 (226)20.2 IIC总线接口 (227)20.3 IIC总线接口特殊功能寄存器 (233)第二十一章IIS总线接口 (235)21.1 概述: (235)21.2 功能描述 (236)21.3 S3C2410X 音频串行接口格式 (236)21.4 S3C2410X IIS接口特殊功能寄存器 (238)第二十二章 SPI (241)22.1 概述 (241)22.2 SPI特殊功能寄存器 (245)第二十三章总线优先权 (248)23.1 概述 (248)23.2 总线优先权 (248)第一章产品综述介绍:本手册描述了三星公司推出的16/32位RISC微处理器S3C2410X。
S3C2410A介绍
内蒙古大学电子信息工程学院
第5章 基于S3C2410的系统硬件设计
NOR 闪存与NAND 闪存
主要区别:NOR 闪存支持随机访问,而NAND 闪存是顺序访问器件。 NOR闪存采用了专用地址线和数据线,而NAND 复用地址数据线 和NOR 相比, NAND 的单位比特成本更低,容量更大,更稳定, 而且容易擦除,编程时间更短。 NAND应用:USB硬盘、mp3 播放器、数字音频记录、数码相机等的存储卡。 NAND接口信号: I/O0 ~ I/O7:用于输入地址/数据/命令,输出数据 CLE:Command Latch Enable,命令锁存使能 ALE:Address Latch Enable,地址锁存使能 CE#:Chip Enable,芯片使能, RE#:Read Enable,读使能 WE#:Write Enable,写使能 WP#:Write Protect,写保护 R/B#:Ready/Busy Output,就绪/忙,主要用于在发送完编程/擦除命令后,检测这 些操作是否完成,忙,表示编程/擦除操作仍在进行中,就绪表示操作完成. Vcc:Power,电源 19 Vss:Ground,接地
中断控制器:55 个中断源(实际56路,LCD 2路)
具有脉冲带宽调制(PWM)的定时器 RTC(实时时钟):秒、分、时、日期,星期,月和年 通用I/O口 UART:3 通道UART DMA控制器 A/D转换和触摸屏接口 :8 通道多路复用ADC 14
内蒙古大学电子信息工程学院
第5章 基于S3C2410的系统硬件设计
GPBCON equ 0x56000010 GPBDAT equ 0x56000014 GPBUP equ 0x56000018 DELAYTIME equ 0x10 AREA LEDTESTASM,CODE,READONLY CODE32 ENTRY
03 32Bit RISC微处理器S3C2410A
17、IIS总线接口 1通道基于DMA操作的IIS总线音频接口; 串行数据传输,每通道8位或16位; 传送和接收各有64字节的FIFO; 改善音频失真
24
S3C2410特点
18、USB HOST接口 2个USB HOST端口
兼容OHCI标准V1.0
支持USB规范V1.1
输入/输出
输入/输出 输入/输出
nXDREQ1
nXDACK1 nXBREQ
–
– –
GPB5
GPB4 GPB3~GPB0
输入/输出
输入/输出 输入/输出
nXBACK
TCLK0 TOUT3 ~TOUT0
–
– –
45
I/O口
I/O口寄存器
(1)端口配置寄存器(GPACON-GPHCON)
在S3C2410中,大部分的引脚是复用的。所以,对 于每个引脚要求定义一个功能。端口配制寄存器(PnCON) 定义每一个引脚的功能。
35
复位、时钟和电源管理
36
复位、时钟和电源管理
2.时钟电路 S3C2410的主时钟由外部晶振或者外部时钟提供,选择后 可以产生3种时钟信号,分别是CPU使用的FCLK、AHB 总线使用的HCLK和APB总线使用的PCKL。
时钟管理模块同时拥有两个锁相环,一个称为MPLL,用 于FCLK、HCLK和PCLK;另一个称为UPLL,用于USB 设备
25
S3C2410特点
19、USB Device接口 1个USB Device端口 5个USB Device节点 支持USB规范V1.1
26
S3C2410特点
20、SD卡接口(secure digital memory card) 支持SD存储卡协议V1.0 传送和接收均有FIFO 基于中断和DMA操作
第三部分ARM芯片S3C2410简介及硬件系统结构设计
8通道10位ADC;
实时时钟及看门狗定时器等。
两个USB主/一个USB从;
9
S3C2410A特性
内核:1.8V I/O及存储器 : 3.3V
电源管理模式: Normal、Slow、Idle、Power off 272-FBGA
10
本节提要
1 S3C2410A概述 2 3 4 最小系统
13
存储器系统的层次结构
寄存器 高速缓存 Cache
主存储器 SDRAM 本地存储器 Flash、 ROM、磁盘
0
时 钟 周 期
1—10 50—100 20000000
网络存储器 Flash、 ROM、磁盘
14
一个实验箱的存储系统
8M NAND FLASH
32M NOR FLASH
64M SDRAM
AHB
AHB主要用于高性能模块(如CPU、DMA和DSP等)之间的连接。 APB APB主要用于低带宽的周边外设之间的连接,例如UART等
6
总线和总线桥
CPU
低速设备
高速总线
桥
低速总线
存储器
高速设备
数据
低速设备
7
S3C2410A的内部结构
8
S3C2410A片上资源
ARM920T核、工作频率203MHz; 16KB 数据Cache, 16KB 指令Cache,MMU,外部存储器控制器; LCD控制器(支持黑白、灰度、Color STN、TFT屏),触摸屏接口; NAND FLASH控制器,SD/MMC接口支持,4个DMA通道; 3通道UART、1个多主I2C总线控制器、1个IIS总线控制器; 4通道PWM定时器及一个内部定时器; 117个通用I/O口; 24个外部中断源;
三星S3C2440微处理器
MMC/SD/SDIO控制器
SD接口框图
MMC/SD/SDIO控制器
SD 操作 串行时钟线同步 5 根数据线上信息的采样和移位,传输频率
是通过设置 SDIPRE 寄存器相应位来控制,可以更改其频 率来调整波特率数据寄存器值。 编程过程(通用) 编程 SDI 模块需要以下几个基本步骤: 1. 设置 SDICON 配制适当的时钟和中断使能。 2. 设置 SDIPRE 配制为适当值。 3. 等待为初始化卡的 74 个 SDCLK 时钟周期。
MMC/SD/SDIO控制器
DAT 通路编程 1. 写数据超时时间到 SDIDTimer。 2. 写块大小(块长度)到 SDIBSize(通常为 0x80 个字) 3. 确定块方式,宽总线或 DMA 等并通过设置 SDIDatCon 启动数据传输。 4. Tx 数据写数据到数据寄存器(SDIDAT),其中 Tx FIFO 为可用
CPU发出的控制信号分为地址码和控制量两部分,地址码用来选址,即 接通需要控制的电路,确定控制的种类;控制量决定该调整的类别(如 对比度、亮度等)及需要调整的量。这样,各控制电路虽然挂在同一条 总线上,却彼此独立,互不相关。
IIC总线接口
S3C2440A RISC 微处理器可以支持一个多主控 IIC 总线串行接口。一条专用串行数据线(SDA)和一条专 用串行时钟线(SCL)传递连接到 IIC 总线的总线主控 和外设之间的信息。SDA 和 SCL 线都为双向的。
IIC总线接口
IIC总线是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数 据。在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率 100kbps。
各种被控制电路均并联在这条总线上,像电话机一样只有拨通各自的号 码才能工作,所以每个电路和模块都有唯一的地址,在信息的传输过程 中,IIC总线上并接的每一模块电路既是主控器(或被控器),又是发 送器(或接收器),这取决于它所要完成的功能。
三星 S3C2410X 32位RISC微处理器 说明书 Revision 1
S3C2410X 32位RISC微处理器用户手册Revision 1修订版1第一章产品概述第一章产品概述 (3)简介 (3)特性 (4)方框图 (8)引脚分配 (9)第一章产品概述简介这个手册描述了SAMSUNG公司的S3C2410X16/32位RISC微处理器。
这个产品计划用于低成本、低功耗和高性能手持设备和一般应用的单片微处理器解决方案。
为了降低系统成本,S3C2410X包含了如下部件:独立的16KB指令和16KB数据缓存,用于虚拟内存管理的MMU 单元,LCD控制器(STN & TFT),非线性(NAND)Flash引导单元,系统管理器(包括片选逻辑和SDRAM控制器),3通道的异步串行口(UART),4个通道的DMA,4个通道的带脉宽调制器(PWM)的定时器,输入输出端口,实时时钟单元(RTC),带有触摸屏接口的8通道10位AD 转换器,IIC总线接口,IIS总线接口,USB的主机(Host)单元,USB的设备(Device)接口,SD卡和MMC(Multi-Media Card)卡接口,2通道SPI接口和锁相环(PLL)时钟发生器。
S3C2410X微处理器是使用ARM920T核、采用0.18um 工艺CMOS标准宏单元和存储编译器开发的。
它的低功耗精简和出色的全静态设计特别适用于对成本和功耗敏感的应用。
应用中,它采用了一种新的总线结构,即高级微控制器总线结构(AMBA)。
S3C2410X的杰出特性是它的CPU核,采用了由ARM公司设计的16/32位ARM920T RISC 处理器。
ARM920T实现了MMU、AMBA总线和独立的16KB指令和16KB数据哈佛结构的缓存,每个缓存均为8个字长度的流水线。
S3C2410X通过提供全面的、通用的片上外设,使系统的全部成本降到最低,并且不需要配置额外的部件。
这个文档将包含以下完整的在片功能的介绍。
1.8V ARM920T内核,1.8V/2.5V/3.3V存储系统,带有3.3V16KB指令和16KB数据缓存及MMU单元的外部O接口的微处理器外部存储器控制(SDRAM控制和芯片选择逻辑)LCD控制器(支持4K颜色的STN或256K色TFT的LCD),带有1个通道的LCD专用DMA控制器 4通道DMA,具有外部请求引脚3通道UART(支持IrDA1.0,16字节发送FIFO及16字节接收FIFO)/2通道SPI接口1个通道多主IIC总线控制器/1通道IIS总线控制器1.0版本SD主机接口及2.11版本兼容的MMC卡协议2个主机接口的USB口/1个设备USB口(1.1版本)4通道PWM定时器/1通道内部计时器看门狗定时器117位通用目的I/O口/24通道外部中断源电源控制:正常、慢速、空闲及电源关闭模式带触摸屏接口的8通道10位ADC带日历功能的实时时钟控制器具有PLL的片上时钟发生器特性体系结构z集成了手持设备和通用嵌入式系统的解决方案z32/16位结构体系和ARM920T CPU核的强大指令体系z增强的ARM MMU体系结构支持WinCE, EPOC 32 和 Linux操作系统z指令缓存、数据缓存、写缓冲器和RAM物理地址标签减少了主存储器带宽和潜在性能的影响 z ARM920T CPU核支持ARM调试体系结构z内置的高级微控制总线体系结构(AMBA)(AMBA2.0,AHB/APB)系统管理器z支持小/大端模式z寻址空间:每个bank 128M字节(总共1G字节)z支持每个bank可编程的8/16/32位数据总线宽度z bank0到bank6具有固定的bank起始地址z bank7具有可编程的bank起始地址和bank大小z共有8个存储器bank:—6个存储器bank用于ROM,SRAM及其它—2个存储器bank用于ROM/SRAM/同步DRAMz所有的存储器bank具有可编程的操作周期z支持外部等待信号延长总线周期z支持掉电时的SDRAM自刷新模式z支持多种类型的引导ROM(NOR/NAND Flash,EEPROM及其它)NAND Flash 引导装载器z支持从NAND flash存储器引导z4KB内置缓冲存储器用于引导z支持引导后从NAND flash存储器向内存加载缓冲存储器z带有指令缓存(16KB)和数据缓存(16KB)的联合缓存装置z每线8字长度,其中每线带有1个有效位和2个无效位z伪随机的或循环移位算法z写通过或写返回缓存来更新主存储器z新缓冲区能够保持16字的数据和4个地址时钟和电源管理z在片MPLL和UPLL:UPLL时钟发生器用于主/从USB操作MPLL时钟发生器用于MCU在极限203MHz@1.8V运行z每一个功能块可以用软件选择时钟z电源模式:正常,慢速,空闲和掉电正常模式:正常操作模式满速模式:不带PLL的低频时钟空闲模式:始终仅使CPU停止下来掉电模式:所有外围设备全部掉电仅内核电源供电z可以从掉电模式借助于EINT[15:0]或RTC报警中断唤醒过来中断控制z55个中断源(1个看门狗定时器,5个定时器,9个通用异步串行口,24个外部中断,4个DMA,2个RTC,2个USB,1个LCD和1个电池故障)z外部中断源具有电平/边沿模式z可编程极性的边沿触发或电平触发z在非常紧急中断的情况下支持快中断请求(FIQ)带脉冲宽度调制器(PWM)的定时器z4通道16位带PWM的定时器/1通道16位基于DMA或基于中断操作的内部定时器z可编程的占空比,频率和极性z失效区发生器z支持外部时钟源RTC(实时时钟)z全部时钟特点:毫秒,秒,分钟,小时)z32.768KHz操作z报警中断z定时中断通用输入输出口:z24个外部中断口z多路输入输出口通用串行异步通讯口(UART)z3通道基于DMA或基于中断操作的UARTz支持5位、6位、7位或8位串行数据发送/接收(Tx/Rx)z可编程的波特率z支持IrDA 1.0z具有测试回送功能z每个通道有内置的16字节发送FIFO和16字节接收FIFODMA控制器z4通道DMA控制器z支持存储器到存储器、IO到存储器、存储器到IO和IO到IO传输z突发传输模式增强了传输速率带触摸屏接口的A/D转换器z8通道多路ADCz最大500KSPS转换速率10位分辨率LCD控制器 STN LCD显示特点z支持3中类型STN LCD面板:4位双屏、4位单屏、8位单屏显示z支持单色模式、4级灰度、16级灰度、256色和4096色STN LCDz支持多种屏幕像素—典型的流行屏幕像素:640x480, 320x240,160x160等—极限虚屏像素:4Mbytes—极限虚屏像素在256色下z显示模式:4096x1024, 2048x2048, 1024x4096等TFT彩色显示特点z支持彩色TFT模式1、2、4或8bpp(位/像素)带调色板彩色显示z支持彩色TFT模式16bpp不带调色板真彩色显示z支持24bpp下最大16M 彩色TFT模式z支持多种屏幕像素—典型的流行屏幕像素:640x480、 320x240、160x160等—极限虚屏像素:4Mbytes—极限虚屏像素在64K色下2048 x1024等看门狗定时器z16位看门狗定时器z超时时发出中断请求或系统复位IIC总线接口z1通道多主IIC总线z串行,能够在标准模式下达到100 Kbit/s或快速模式下达到400 Kbit/s 的8位单向和双向数据传输IIS总线接口z1通道基于DMA的IIS总线用于音频接口z串行,8-/16位每通道数据传输z128字节(64字节+64字节)FIFO用于发送/接收z支持IIS格式和MSB验证数据格式USB主机z2个USB主机口z遵守OHCI 1.0版z兼容USB1.1版本规范USB设备z1个USB设备口z5端点USB设备z兼容USB1.1版本规范SD主接口z与SD存储卡协议1.0版本兼容z与SDIO卡协议1.0版本兼容z具有字节FIFO用于发送/接收z基于DMA或基于中断模式操作z与多媒体卡2.11版本兼容SPI接口z与2通道串行外部接口2.11版本协议兼容z 2 x8位移位寄存器用于发送/接收 z基于DMA或基于中断模式操作工作电压范围z内核1.8Vz存储器:2.5V/3.3Vz输入/输出口:3.3V工作频率z最大203MHZ封装z272-FBGA方框图引脚分配表1-1 272脚FBGA引脚分配——按引脚编号排序(图表3-1)引脚号引脚名引脚号引脚名引脚号引脚名A1DATA19B14ADDR0/GPA0D10ADDR19/GPA4 A2DATA18B15nSRAS D11VDDiA3DATA16B16nBE1:nWBE1:DQM1D12ADDR10A4DATA15B17VSSi D13ADDR5A5DATA11C1DATA24D14ADDR1A6VDDMOP C2DATA23D15VSSMOPA7DATA6C3DATA21D16SCKEA8DATA1C4VDDi D17nGCS0A9ADDR21/GPA6C5DATA12E1DATA31A10ADDR16/GPA1C6DATA7E2DATA29A11ADDR13C7DATA4E3DATA28A12VSSMOP C8VDDi E4DATA30A13ADDR6C9ADDR25/GPA10E5VDDMOPA14ADDR2C10VSSMOP E6VSSMOPA15VDDMOP C11ADDR14E7DATA3A16nBE3:nWBE3:DQM3C12ADDR7E8ADDR26/GPA11A17nBE0:nWBE0:DQM0C13ADDR3E9ADDR23/GPA8B1DATA22C14nSCAS E10ADDR18/GPA3 B2DATA20C15nBE2:nWBE2:DQM2E11VDDMOPB3DATA17C16nOE E12ADDR11B4VDDMOP C17VDDi E13nWEB5DATA13D1DATA27E14nGCS3/GPA14 B6DATA9D2DATA25E15nGCS1/GPA12 B7DATA5D3VSSMOP E16nGCS2/GPA13 B8DATA0D4DATA26E17nGCS4/GPA15 B9ADDR24/GPA9D5DATA14F1TOUT1/GPB1 B10ADDR17/GPA2D6DATA10F2TOUT0/GPB0 B11ADDR12D7DATA2F3VSSMOPB12ADDR8D8VDDMOP F4TOUT2/GPB2 B13ADDR4D9ADDR22/GPA7F5VSSOP引脚号引脚名引脚号引脚名引脚号引脚名F6VSSi H4nXDREQ1/GPB8K13TXD2/nRTS1/GPH6 F7DATA8H5nTRST K14RXD1/GPH5F8VSSMOP H6TCK K15TXD0/GPH2F9VSSi H12CLE/GPA17K16TXD1/GPH4F10ADDR20/GPA5H13VSSOP K17RXD0/GPH3F11VSSi H14VDDMOP L1VD0/GPC8F12VSSMOP H15VSSi L2VD1/GPC9F13SCLK0H16XTOpll L3LCDVF2/GPC7F14SCLK1H17XTIpll L4VD2/GPC10F15nGCS5/GPA16J1TDI L5VDDiarmF16nGCS6:nSCS0J2VCLK:LCD_HCLK/GPC1L6LCDVF1/GPC6F17nGCS7:nSCS1J3TMS L7IICSCL/GPE14G1nXBACK/GPB5J4LEND:STH/GPC0L9EINT11/nSS1/GPG3 G2nXDACK1/GPB7J5TDO L11VDDi_UPLLG3TOUT3/GPB3J6VLINE:HSYNC:CPV/GPC2L12nRTS0/GPH1G4TCLK0/GPB4J7VSSiarm L13UPLLCAPG5nXBREQ/GPB6J11EXTCLK L14nCTS0/GPH0 G6VDDalive J12nRESET L15EINT6/GPF6 G7VDDiarm J13VDDi L16UCLK/GPH8 G9VSSMOP J14VDDalive L17EINT7/GPF7 G11ADDR15J15PWREN M1VSSiarmG12ADDR9J16nRSTOUT/GPA21M2VD5/GPC13 G13nWAIT J17nBATT_FLT M3VD3/GPC11 G14ALE/GPA18K1VDDOP M4VD4/GPC12 G15nFWE/GPA19K2VM:VDEN:TP/GPC4M5VSSiarmG16nFRE/GPA20K3VDDiarm M6VDDOPG17nFCE/GPA22K4VFRAME:VSYNC:STV/GPC3M7VDDiarmH1VSSiarm K5VSSOP M8IICSDA/GPE15 H2nXDACK0/GPB9K6LCDVF0/GPC5M9VSSiarmH3nXDREQ0/GPB10K12RXD2/nCTS1/GPH7M10DP1/PDP0引脚号引脚名引脚号引脚名引脚号引脚名M11EINT23/nYPON/GPG15P8SPICLK0/GPE13T5I2SLRCK/GPE0M12RTCVDD P9EINT12/LCD_PWREN/GPG4T6SDCLK/GPE5M13VSSi_MPLL P10EINT18/GPG10T7SPIMISO0/GPE11 M14EINT5/GPF5P11EINT20/XMON/GPG12T8EINT10/nSS0/GPG2 M15EINT4/GPF4P12VSSOP T9VSSOPM16EINT2/GPF2P13DP0T10EINT17/GPG9M17EINT3/GPF3P14VDDi_MPLL T11EINT22/YMON/GPG1 4N1VD6/GPC14P15VDDA_ADC T12DN0N2VD8/GPD0P16XTIrtc T13OM3N3VD7/GPC15P17MPLLCAP T14VSSA_ADCN4VD9/GPD1R1VDDiarm T15AIN1N5VDDiarm R2VD14/GPD6T16AIN3N6CDCLK/GPE2R3VD17/GPD9T17AIN5N7SDDAT1/GPE8R4VD18/GPD10U1VD15/GPD7N8VSSiarm R5VSSOP U2VD19/GPD11N9VDDOP R6SDDAT0/GPE7U3VD21/GPD13N10VDDiarm R7SDDAT3/GPE10U4VSSiarmN11DN1/PDN0R8EINT8/GPG0U5I2SSDI/nSS0/GPE3N12Vref R9EINT14/SPIMOSI1/GPG6U6I2SSDO/I2SSDI/GPE4 N13AIN7R10EINT15/SPICLK1/GPG7U7SPIMOSI0/GPE12N14EINT0/GPF0R11EINT19/TCLK1/GPG11U8EINT9/GPG1N15VSSi_UPLL R12CLKOUT0/GPH9U9EINT13/SPIMISO1/G PG5N16VDDOP R13R/nB U10EINT16/GPG8N17EINT1/GPF1R14OM0U11EINT21/nXPON/GPG 13P1VD10/GPD2R15AIN4U12CLKOUT1/GPH10 P2VD12/GPD4R16AIN6U13NCONP3VD11/GPD3R17XTOrtc U14OM2P4VD23/nSS0/GPD15T1VD13/GPD5U15OM1P5I2SSCLK/GPE1T2VD16/GPD8U16AIN0P6SDCMD/GPE6T3VD20/GPD12U17AIN2P7SDDAT2/GPE9T4VD22/nSS1/GPD14--引脚号引脚名默认功能I/O状态@BUS REQI/O状态@PWR-offI/O状态@nRESETI/O类型C3DATA21DATA21Hi-z Hi-z I t12 B1DATA22DATA22Hi-z Hi-z I t12 C2DATA23DATA23Hi-z Hi-z I t12 D3VSSMOP VSSMOP P P P s3o E5VDDMOP VDDMOP P P P d3o C1DATA24DATA24Hi-z Hi-z I t12 D2DATA25DATA25Hi-z Hi-z I t12 D4DATA26DATA26Hi-z Hi-z I t12 D1DATA27DATA27Hi-z Hi-z I t12 E3DATA28DATA28Hi-z Hi-z I t12 E2DATA29DATA29Hi-z Hi-z I t12 E4DATA30DATA30Hi-z Hi-z I t12 E1DATA31DATA31Hi-z Hi-z I t12 F3VSSMOP VSSMOP P P P s3o F5VSSOP VSSOP P P P s3o F2TOUT0/GPB0GPB0–/–O(L)/–I t8 F1TOUT1/GPB1GPB1–/–O(L)/–I t8 F4TOUT2/GPB2GPB2–/–O(L)/–I t8 G3TOUT3/GPB3GPB3–/–O(L)/–I t8 G4TCLK0/GPB4GPB4–/––/–I t8 G1nXBACK/GPB5GPB5–/––/–I t8 G5nXBREQ/GPB6GPB6–/––/–I t8 G2nXDACK1/GPB7GPB7–/––/–I t8 G6VDDalive VDDalive P P P d1i G7VDDiarm VDDiarm P P P d1c H1VSSiarm VSSiarm P P P s3i H4nXDREQ1/GPB8GPB8–/––/–I t8 H2nXDACK0/GPB9GPB9–/––/–I t8 H3nXDREQ0/GPB10GPB10–/––/–I t8 H5nTRST nTRST I I I is H6TCK TCK I I I is J1TDI TDI I I I is J3TMS TMS I I I is引脚号引脚名默认功能I/O状态@BUS REQI/O状态@PWR-offI/O状态@nRESETI/O类型J5TDO TDO O O O ot J4LEND:STH/GPC0GPC0–/–O(L)/–I t8 J2VCLK:LCD_HCLK/GPC1GPC1–/–O(L)/–I t8 J6VLINE:HSYNC:CPV/GPC2GPC2–/–O(L)/–I t8 K3VDDiarm VDDiarm P P P d1c J7VSSiarm VSSiarm P P P s3i K2VM:VDEN:TP/GPC4GPC4–/–O(L)/–I t8 K4VFRAME:VSYNC:STV/GPC3GPC3–/–O(L)/–I t8 K1VDDOP VDDOP P P P d3o K5VSSOP VSSOP P P P s3o K6LCDVF0/GPC5GPC5–/–O(L)/–I t8 L6LCDVF1/GPC6GPC6–/–O(L)/–I t8 L3LCDVF2/GPC7GPC7–/–O(L)/–I t8 L1VD0/GPC8GPC8–/–O(L)/–I t8 L2VD1/GPC9GPC9–/–O(L)/–I t8 L4VD2/GPC10GPC10–/–O(L)/–I t8 M3VD3/GPC11GPC11–/–O(L)/–I t8 L5VDDiarm VDDiarm P P P d1c M1VSSiarm VSSiarm P P P s3i M4VD4/GPC12GPC12–/–O(L)/–I t8 M2VD5/GPC13GPC13–/–O(L)/–I t8 N1VD6/GPC14GPC14–/–O(L)/–I t8 N3VD7/GPC15GPC15–/–O(L)/–I t8 N2VD8/GPD0GPD0–/–O(L)/–I t8 N4VD9/GPD1GPD1–/–O(L)/–I t8 P1VD10/GPD2GPD2–/–O(L)/–I t8 P3VD11/GPD3GPD3–/–O(L)/–I t8 P2VD12/GPD4GPD4–/–O(L)/–I t8 R1VDDiarm VDDiarm P P P d1c M5VSSiarm VSSiarm P P P s3i T1VD13/GPD5GPD5–/–O(L)/–I t8 R2VD14/GPD6GPD6–/–O(L)/–I t8 U1VD15/GPD7GPD7–/–O(L)/–I t8引脚号引脚名默认功能I/O状态@BUS REQI/O状态@PWR-offI/O状态@nRESETI/O类型T2VD16/GPD8GPD8–/–O(L)/–I t8 R3VD17/GPD9GPD9–/–O(L)/–I t8 R4VD18/GPD10GPD10–/–O(L)/–I t8 U2VD19/GPD11GPD11–/–O(L)/–I t8 T3VD20/GPD12GPD12–/–O(L)/–I t8 U3VD21/GPD13GPD13–/–O(L)/–I t8 T4VD22/nSS1/GPD14GPD14–/–O(L)/–I t8 P4VD23/nSS0/GPD15GPD15–/–O(L)/–I t8 N5VDDiarm VDDiarm P P P d1c U4VSSiarm VSSiarm P P P s3i M6VDDOP VDDOP P P P d3o R5VSSOP VSSOP P P P s3o T5I2SLRCK/GPE0GPE0–/–O(L)/–I t8 P5I2SSCLK/GPE1GPE1–/–O(L)/–I t8 N6CDCLK/GPE2GPE2–/–O(L)/–I t8 U5I2SSDI/nSS0/GPE3GPE3–/–/––/–/–I t8 U6I2SSDO/I2SSDI/GPE4GPE4–/–/–O(L)/–/–I t8 T6SDCLK/GPE5GPE5–/–O(L)/–I t8 P6SDCMD/GPE6GPE6–/–Hi-z/–I t8 R6SDDAT0/GPE7GPE7–/–Hi-z/–I t8 N7SDDAT1/GPE8GPE8–/–Hi-z/–I t8 P7SDDAT2/GPE9GPE9–/–Hi-z/–I t8 R7SDDAT3/GPE10GPE10–/–Hi-z/–I t8 T7SPIMISO0/GPE11GPE11–/–Hi-z/–I t8 U7SPIMOSI0/GPE12GPE12–/–Hi-z/–I t8 P8SPICLK0/GPE13GPE13–/–Hi-z/–I t8 M7VDDiarm VDDiarm P P P d1c N8VSSiarm VSSiarm P P P s3i L7IICSCL/GPE14GPE14–/–Hi-z/–I d8 M8IICSDA/GPE15GPE15–/–Hi-z/–I d8 R8EINT8/GPG0GPG0–/––/–I t8 U8EINT9/GPG1GPG1–/––/–I t8 T8EINT10/nSS0/GPG2GPG2–/–/––/–/–I t8引脚号引脚名默认功能I/O状态@BUS REQI/O状态@PWR-offI/O状态@nRESETI/O类型L9EINT11/nSS1/GPG3GPG3–/–/––/–/–I t8 P9EINT12/LCD_PWREN/GPG4GPG4–/–/––/O(L)/–I t8 U9EINT13/SPIMISO1/GPG5GPG5–/–/––/Hi-z/–I t8 R9EINT14/SPIMOSI1/GPG6GPG6–/–/––/Hi-z/–I t8 T9VSSOP VSSOP P P P s3o N9VDDOP VDDOP P P P d3o N10VDDiarm VDDiarm P P P d1c M9VSSiarm VSSiarm P P P s3i R10EINT15/SPICLK1/GPG7GPG7–/–/––/Hi-z/–I t8 U10EINT16/GPG8GPG8–/––/–I t6 T10EINT17/GPG9GPG9–/––/–I t6 P10EINT18/GPG10GPG10–/––/–I t6 R11EINT19/TCLK1/GPG11GPG11–/–/––/–/–I t12 P11EINT20/XMON/GPG12GPG12–/–/––/O(L)/–I t12 U11EINT21/nXPON/GPG13GPG13–/–/––/O(L)/–I t12 T11EINT22/YMON/GPG14GPG14–/–/––/O(L)/–I t12 M11EINT23/nYPON/GPG15GPG15–/–/––/O(L)/–I t12 R12CLKOUT0/GPH9GPH9–/–O(L)/–I t12 U12CLKOUT1/GPH10GPH10–/–O(L)/–I t12 M10DP1/PDP0DP1––AI us N11DN1/PDN0DN1––AI us P13DP0DP0––AI us T12DN0DN0––AI us U13NCON NCON––I is R13R/nB R/nB––I is T13OM3OM3––I is U14OM2OM2––I is U15OM1OM1––I is R14OM0OM0––I is P12VSSOP VSSOP P P P s3oT14VSSA_ADC VSSA_ADCP P P s3tN12Vref Vref––AI ia U16AIN0AIN0––AI r10引脚号引脚名默认功能I/O状态@BUS REQI/O状态@PWR-offI/O状态@nRESETI/O类型T15AIN1AIN1––AI r10 U17AIN2AIN2––AI r10 T16AIN3AIN3––AI r10 R15AIN4AIN4––AI r10 T17AIN5AIN5––AI r10 R16AIN6AIN6––AI r10 N13AIN7AIN7––AI r10P15VDDA_ADC VDDA_ADCP P P d3tR17XTOrtc XTOrtc––AO gp P16XTIrtc XTIrtc––AI gp M12RTCVDD RTCVDD P P P d1iP14VDDi_MPLL VDDi_MPLLP P P d1cM13VSSi_MPLL VSSi_MPLLP P P s3iP17MPLLCAP MPLLCAP––AI gpL11VDDi_UPLL VDDi_UPLLP P P d1cN15VSSi_UPLL VSSi_UPLLP P P s3iL13UPLLCAP UPLLCAP––AI gp N16VDDOP VDDOP P P P d3o N14EINT0/GPF0GPF0–/––/–I t8 N17EINT1/GPF1GPF1–/––/–I t8 M16EINT2/GPF2GPF2–/––/–I t8 M17EINT3/GPF3GPF3–/––/–I t8 M15EINT4/GPF4GPF4–/––/–I t8 M14EINT5/GPF5GPF5–/––/–I t8 L15EINT6/GPF6GPF6–/––/–I t8 L17EINT7/GPF7GPF7–/––/–I t8 L16UCLK/GPH8GPH8–/––/–I t8 L14nCTS0/GPH0GPH0–/––/–I t8 L12nRTS0/GPH1GPH1–/–O(H)/–I t8 K15TXD0/GPH2GPH2–/–O(H)/–I t8 K17RXD0/GPH3GPH3–/––/–I t8 K16TXD1/GPH4GPH4–/–O(H)/–I t8 K14RXD1/GPH5GPH5–/––/–I t8引脚号引脚名默认功能I/O状态@BUS REQI/O状态@PWR-offI/O状态@nRESETI/O类型K13TXD2/nRTS1/GPH6GPH6–/–O(H)/–I t8 K12RXD2/nCTS1/GPH7GPH7–/––/–I t8J17nBATT_FLT nBATT_FLT––I isJ16nRSTOUT/GPA21nRSTOUT–/–O(L)/–O b8 J15PWREN PWREN O(H)O(L)O b8 J12nRESET nRESET––I isJ14VDDalive VDDalive P P P d1i J11EXTCLK EXTCLK––AI isJ13VDDi VDDi P P P d1c H17XTIpll XTIpll––AI m26 H16XTOpll XTOpll––AO m26 H15VSSi VSSi P P P s3i H13VSSOP VSSOP P P P s3o H14VDDMOP VDDMOP P P P d3o G17nFCE/GPA22nFCE O(H)/–O(H)/–O b8 G16nFRE/GPA20nFRE O(H)/–O(H)/–O b8 G15nFWE/GPA19nFWE O(H)/–O(H)/–O b8 G14ALE/GPA18ALE O(L)/–O(L)/–O b8 H12CLE/GPA17CLE O(L)/–O(L)/–O b8 G13nWAIT nWAIT––I isF17nGCS7:nSCS1nGCS7Hi-z O(H)O ot F16nGCS6:nSCS0nGCS6Hi-z O(H)O ot F15nGCS5/GPA16nGCS5Hi-z O(H)/–O ot E17nGCS4/GPA15nGCS4Hi-z O(H)/–O ot E14nGCS3/GPA14nGCS3Hi-z O(H)/–O ot E16nGCS2/GPA13nGCS2Hi-z O(H)/–O ot E15nGCS1/GPA12nGCS1Hi-z O(H)/–O ot D17nGCS0nGCS0Hi-z O(H)O ot D16SCKE SCKE Hi-z O(L)O ot D15VSSMOP VSSMOP P P P s3o F14SCLK1SCLK1Hi-z O(L)O t16 C17VDDi VDDi P P P d1c F13SCLK0SCLK0Hi-z O(L)O t16引脚号引脚名默认功能I/O状态@BUS REQI/O状态@PWR-offI/O状态@nRESETI/O类型B17VSSi VSSi P P P s3i E13nWE nWE Hi-z O(H)O(H)ot C16nOE nOE Hi-z O(H)O(H)ot A17nBE0:nWBE0:DQM0DQM0Hi-z O(H)O(H)ot B16nBE1:nWBE1:DQM1DQM1Hi-z O(H)O(H)ot C15nBE2:nWBE2:DQM2DQM2Hi-z O(H)O(H)ot A16nBE3:nWBE3:DQM3DQM3Hi-z O(H)O(H)ot B15nSRAS nSRAS Hi-z O(H)O(H)ot C14nSCAS nSCAS Hi-z O(H)O(H)ot A15VDDMOP VDDMOP P P P d3o F12VSSMOP VSSMOP P P P s3o B14ADDR0/GPA0ADDR0Hi-z/–O(L)/–O(L)ot D14ADDR1ADDR1Hi-z O(L)O(L)ot A14ADDR2ADDR2Hi-z O(L)O(L)ot C13ADDR3ADDR3Hi-z O(L)O(L)ot B13ADDR4ADDR4Hi-z O(L)O(L)ot D13ADDR5ADDR5Hi-z O(L)O(L)ot A13ADDR6ADDR6Hi-z O(L)O(L)ot C12ADDR7ADDR7Hi-z O(L)O(L)ot B12ADDR8ADDR8Hi-z O(L)O(L)ot G12ADDR9ADDR9Hi-z O(L)O(L)ot A12VSSMOP VSSMOP P P P s3o E11VDDMOP VDDMOP P P P d3o D12ADDR10ADDR10Hi-z O(L)O(L)ot E12ADDR11ADDR11Hi-z O(L)O(L)ot D11VDDi VDDi P P P d1c F11VSSi VSSi P P P s3i B11ADDR12ADDR12Hi-z O(L)O(L)ot A11ADDR13ADDR13Hi-z O(L)O(L)ot C11ADDR14ADDR14Hi-z O(L)O(L)ot G11ADDR15ADDR15Hi-z O(L)O(L)ot A10ADDR16/GPA1ADDR16Hi-z O(L)/–O(L)ot B10ADDR17/GPA2ADDR17Hi-z O(L)/–O(L)ot引脚号引脚名默认功能I/O状态@BUS REQI/O状态@PWR-offI/O状态@nRESETI/O类型C10VSSMOP VSSMOP P P P s3o E10ADDR18/GPA3ADDR18Hi-z/–O(L)O(L)ot D10ADDR19/GPA4ADDR19Hi-z/–O(L)O(L)ot F10ADDR20/GPA5ADDR20Hi-z/–O(L)O(L)ot A9ADDR21/GPA6ADDR21Hi-z/–O(L)O(L)ot D9ADDR22/GPA7ADDR22Hi-z/–O(L)O(L)ot E9ADDR23/GPA8ADDR23Hi-z/–O(L)O(L)ot B9ADDR24/GPA9ADDR24Hi-z/–O(L)O(L)ot C9ADDR25/GPA10ADDR25Hi-z/–O(L)O(L)ot E8ADDR26/GPA11ADDR26Hi-z/–O(L)O(L)ot C8VDDi VDDi P P P d1c F9VSSi VSSi P P P s3i D8VDDMOP VDDMOP P P P d3o G9VSSMOP VSSMOP P P P s3o B8DATA0DATA0Hi-z Hi-z Hi-z t12 A8DATA1DATA1Hi-z Hi-z Hi-z t12 D7DATA2DATA2Hi-z Hi-z Hi-z t12 E7DATA3DATA3Hi-z Hi-z Hi-z t12 C7DATA4DATA4Hi-z Hi-z Hi-z t12 B7DATA5DATA5Hi-z Hi-z Hi-z t12 A7DATA6DATA6Hi-z Hi-z Hi-z t12 C6DATA7DATA7Hi-z Hi-z Hi-z t12 A6VDDMOP VDDMOP P P P d3o F8VSSMOP VSSMOP P P P s3o F7DATA8DATA8Hi-z Hi-z Hi-z t12 B6DATA9DATA9Hi-z Hi-z Hi-z t12 D6DATA10DATA10Hi-z Hi-z Hi-z t12 A5DATA11DATA11Hi-z Hi-z Hi-z t12 C5DATA12DATA12Hi-z Hi-z Hi-z t12 B5DATA13DATA13Hi-z Hi-z Hi-z t12 D5DATA14DATA14Hi-z Hi-z Hi-z t12 A4DATA15DATA15Hi-z Hi-z Hi-z t12 B4VDDMOP VDDMOP P P P d3o博创科技第21页共21页表1-2 272脚FPGA引脚分配(图表9-9)引脚号引脚名默认功能I/O状态@BUS REQI/O状态@PWR-offI/O状态@nRESETI/O类型E6VSSMOP VSSMOP P P P s3o C4VDDi VDDi P P P d1c F6VSSi VSSi P P P s3i A3DATA16DATA16Hi-z Hi-z Hi-z t12 B3DATA17DATA17Hi-z Hi-z Hi-z t12 A2DATA18DATA18Hi-z Hi-z Hi-z t12 A1DATA19DATA19Hi-z Hi-z Hi-z t12 B2DATA20DATA20Hi-z Hi-z Hi-z t12备注:1. The @BUS REQ. shows the pin states at the external bus, which is used by the other bus master.2.“- ”标志说明在总线请求模式下引脚状态没有变化。
第3章 32 Bit RISC微处理器 S3C2410A
第3章 32 Bit RISC微处理器 S3C2410A
《嵌入式系统设计 》
20.SD主机接口 ● 兼容SD存储卡协议1.0版; ● 兼容SDIO卡协议1.0版;发送和接收采用字节FIFO; ● 基于DMA或中断模式操作; ● 兼容MMC卡协议2.11版。 21.SPI接口 ● 兼容2通道SPI协议2.11版; ● 发送和接收采用2字节的移位寄存器; ● 基于DMA或中断模式操作。 22.工作电压 ● 内核电压:1.8V,最高工作频率200 MHz(S3C2410A-20); 2.0 V,最高工作频率266 MHz(S3C2410A-26)。 ● 存储器和I/O电压:3.3 V。 23.封装 ● 采用272-FBGA封装。
第3章 32 Bit RISC微处理器 S3C2410A
13.LCD控制器STN LCD显示特性 ● 支持3种类型的STN LCD显示屏:4位双扫描、4位单扫描和8位单扫描显示类 型; ● 对于STN LCD支持单色模式、4级灰度、16级灰度、256彩色和4 096彩色; ● 支持多种屏幕尺寸,典型的屏幕尺寸有:640×480,320×240,160×160; ● 最大虚拟屏幕大小是4 MB; ● 在256彩色模式下支持的最大虚拟屏幕尺寸是:4 096×1 024,2 048×2 048,1 024×4 0960或者其它尺寸。
第3章 32 Bit RISC微处理器 S3C2410A
《嵌入式系统设计 》
10.UAR ● 3通道UART,可以基于DMA模式或中断模式操作; ● 支持5位、6位、7位或者8位串行数据发送/接收(Tx/Rx); ● 支持外部时钟作为UART的运行时钟(UEXTCLK); ● 波特率可编程; ● 支持IrDA 1.0; ● 支持回环(Loopback)测试模式; ● 每个通道内部都具有16字节的发送FIFO和16字节的接收FIFO 。 11.DMA控制器 ● 4通道的DMA控制器; ● 支持存储器到存储器、I/O到存储器、存储器到I/O和I/O到I/O 的传送; ● 采用突发传送模式提高传送速率。 12.A/D转换和触摸屏接口 ● 8通道多路复用ADC; ● 转换速率最大为500 KSPS(Kilo Samples Per Second,每秒采 样千点),10位分辨率。
S3C2410A中文数据手册
S3C2410A中⽂数据⼿册第⼀章产品综述1.1特性 (2)体系结构 (2)系统管理器 (3)NAND Flash 启动引导 (3)Cache 存储器 (3)时钟和电源管理 (3)中断控制器 (4)具有脉冲带宽调制功能的定时器 (4)RTC(实时时钟) (4)通⽤I/O端⼝ (4)UART (4)DMA控制器 (5)A/D转换和触摸屏接⼝ (5)LCD控制器STN LCD显⽰特性 (5)TFT彩⾊显⽰屏 (5)看门狗定时器 (5)IIC总线接⼝ (6)IIS总线接⼝ (6)USB主设备 (6)SD主机接⼝ (6)SPI接⼝ (6)⼯作电压 (7)操作频率 (7)封装 (7)1.2内部结构图 (8)表1-1 272-FBGA 引脚分配及顺序 (9)表1-2 272-FBGA封装的引脚分配 (12)信号描述 (21)表1-3 S3C2410A信号描述 (21)表1-4 S3C2410A 专⽤寄存器 (25)Samsung 公司推出的16/32位RISC处理器S3C2410A,为⼿持设备和⼀般类型应⽤提供了低价格、低功耗、⾼性能⼩型微控制器的解决⽅案。
为了降低整个系统的成本,S3C2410A提供了以下丰富的内部设备:分开的16KB的指令Cache和16KB数据Cache,MMU虚拟存储器管理,LCD控制器(⽀持STN&TFT),⽀持NAND Flash系统引导,系统管理器(⽚选逻辑和SDRAM控制器),3通道UART,4通道DMA,4通道PWM定时器,I/O 端⼝,RTC,8通道10位ADC和触摸屏接⼝,IIC-BUS接⼝,IIC-BUS接⼝,USB主机,USB 设备,SD主卡&MMC卡接⼝,2通道的SPI以及内部PLL时钟倍频器。
S3C2410A采⽤了ARM920T内核,0.18um⼯艺的CMOS标准宏单元和存储器单元。
它的低功耗、精简和出⾊的全静态设计特别适⽤于对成本和功耗敏感的应⽤。
S3C2410X中文数据手册
S3C2410X32位RISC微处理器用户手册第一章产品综述 (5)介绍: (5)1.1特性 (6)体系结构 (6)系统管理器 (6)NAND Flash 启动引导 (7)Cache 存储器 (7)时钟和电源管理 (7)中断控制器 (8)具有脉冲带宽调制功能的定时器 (8)RTC(实时时钟) (8)通用I/O端口 (8)UART (9)DMA控制器 (9)A/D转换和触摸屏接口 (9)LCD控制器STN LCD显示特性 (9)TFT彩色显示屏 (10)看门狗定时器 (10)IIS总线接口 (10)USB主设备 (10)USB从设备 (10)SD主机接口 (11)SPI接口 (11)工作电压 (11)操作频率 (11)封装 (11)1.2 内部结构图 (12)表1-1 272-FBGA引脚分配及顺序 (14)表1-2 272-FBGA封装的引脚分配 (16)表1-3 S3C2410X信号描述 (24)表1-4 S3C2410X特殊功能寄存器 (30)第二章处理器工作模式 (45)2.1 概述 (46)2.2 处理器工作状态 (46)2.3 切换状态 (47)2.4指令长度 (48)2.5操作模式 (48)2.6 寄存器 (49)2.7程序寄存器状态 (51)2.8 异常 (53)第三章 ARM指令集 (59)3.1 指令格式 (60)3.2 条件码 (62)3.3 分支和转换指令(BX) (63)3.4转移及带链接的转移指令(B,BL) (64)3.5 数据处理指令 (65)3.6 PSR 转移指令(MRS,MSR) (71)3.7 乘法及乘加指令(MUL,MLA) (75)3.8 长乘及长乘加指令(MULL,MLAL) (77)3.9单数据传输指令(LDR,STR) (79)3.10半字和带符号的数据传输(LDRH/STRH/LDRSB/LDRSH) (82)3.11块数据传输(LDM,STM) (87)3.12 单数据传输指令(SWP) (94)3.13 软件中断指令(SWI) (95)3.14 协处理器数据操作(CDP) (97)3.15 协处理器数据传输指令(LDC,STC) (98)3.16 协处理器寄存器传输指令(MRC,MCR) (99)3.17 未定义指令 (99)第五章存储器控制器 (99)5.1 概述 (99)5.2 功能描述 (101)5.2.1 bank0总线宽度 (101)5.2.2 nWAIT引脚的作用 (103)5.2.3 nXBREQ/nXBACK引脚操作 (104)5.3 存储器接口举例 (105)5.4 特殊功能寄存器 (111)5.4.1 总线宽度和等待控制寄存器(BWSCON) (111)5.4.2 总线控制寄存器(BANKCONN:nGCS0-nGCS5) (113)5.4.3 BANK控制寄存器(BANKCONn:nGCS6-nGCS7) (114)5.4.4 刷新控制寄存器 (115)5.4.5 BANKSIZE 寄存器 (115)5.4.6 SDRAM模式寄存器集寄存器(MRSR) (116)第六章 NAND FLASH寄存器 (117)6.1 概述 (117)6.2 特性 (117)6.2.1 自动导入模式步骤 (118)6.2.3 NAND FLASH存储器时序 (119)6.2.4 管脚配置 (119)6.2.6 NAND Flash存储空间分布 (121)6.3 专用寄存器 (122)6.3.1 NAND FLASH 配置(NFCONF)寄存器 (122)6.3.2 NAND FLASH命令设置(NFCMD)寄存器 (122)6.3.3 NAND flash地址设置(NFADDR)寄存器 (123)6.3.4 NAND FLASH 数据(NFDATA)寄存器 (123)6.3.5 NAND FLASH ECC(NFECC)寄存器 (123)第七章时钟与电源管理 (124)7.1概述: (124)7.2 功能描述 (125)7.2.1 时钟结构: (125)7.2.2锁相环(PLL): (126)7.2.3时钟控制逻辑: (128)7.2.4 加电重启:(XTIpll) (128)7.2.5 USB时钟控制: (130)7.2.7电源管理: (131)7.3 特殊功能寄存器 (138)第8章DMA (141)8.1 概述 (141)8.2 DMA工作过程 (142)8.3 DMA特殊功能寄存器 (146)第九章I/O端口 (152)9.1 概述 (152)9.2 端口功能控制描述 (156)9.3 I/O端口控制专用寄存器 (156)第十章PWM Timer (172)9.1 概述 (172)9.2特性 (173)预定标器和分割器 (174)定时器基本操作 (175)自动加载和双缓冲模式 (175)用手动更新位和逆变器位对定时器进行初始化 (176)定时器操作步骤: (176)脉宽调制 (177)输出电平控制 (178)死区发生器 (178)DMA请求模式 (179)9.3 PWM定时器专用寄存器 (180)第十一章UART (185)11.1 概述 (185)11.2 UART操作: (186)数据传输: (187)2. 数据接收: (187)3.自动流控制 (187)4.非自动流控制实例(软件控制nRTS及nCTS) (188)5. 中断/DMA请求的产生 (188)6.UART错误状态FIFO (189)7.波特率的产生 (190)8.回环模式 (190)9.红外模式 (191)11.3 UART特殊功能寄存器 (192)第十四章中断控制器 (198)14.1 S3C2410X 中断概述 (198)14.2S3C2410X 中断控制器的操作 (199)14.3S3C2410X 中断源 (199)14.4S3C2410X 中断控制器的特殊功能寄存器 (202)第十七章RTC (210)17.1 概述 (210)17.2 实时时钟操作 (211)17.3 RTC特殊功能寄存器 (212)第十八章看门狗 (216)18.1 概述 (216)18.2 看门狗定时器特殊功能寄存器 (216)第十九章SD接口 (218)19.1 概述 (218)19.2 SDI特殊功能寄存器 (219)第二十章 IIC (226)20.1 概述 (226)20.2 IIC总线接口 (227)20.3 IIC总线接口特殊功能寄存器 (233)第二十一章IIS总线接口 (235)21.1 概述: (235)21.2 功能描述 (236)21.3 S3C2410X 音频串行接口格式 (236)21.4 S3C2410X IIS接口特殊功能寄存器 (238)第二十二章 SPI (241)22.1 概述 (241)22.2 SPI特殊功能寄存器 (245)第二十三章总线优先权 (248)23.1 概述 (248)23.2 总线优先权 (248)第一章产品综述介绍:本手册描述了三星公司推出的16/32位RISC微处理器S3C2410X。
第三章 ARM9_S3C2410片上资源
3.1.4 S3C2410处理器存储器映射 S3C2410处理器存储器映射
S3C2410的存储空间映射如图 所示: S3C2410的存储空间映射如图3-2所示: 的存储空间映射如图3
3.1.5 S3C2410处理器时钟和电源管理 S3C2410处理器时钟和电源管理
1.时钟 S3C2410的主时钟由外部晶振或者外部时钟提供 S3C2410的主时钟由外部晶振或者外部时钟提供,选择后可 的主时钟由外部晶振或者外部时钟提供, 以产生3种时钟信号,分别是CPU使用的 使用的FCLK、AHB总线 以产生3种时钟信号,分别是CPU使用的FCLK、AHB总线 使用的HCLK和APB总线使用的FCKL。 HCLK 总线使用的FCKL 使用的HCLK和APB总线使用的FCKL。时钟管理模块同时 拥有两个锁相环,一个称为MPLL,拥于FCLK、HCLK和 拥有两个锁相环,一个称为MPLL,拥于FCLK、HCLK和 PCLK;另一个称为UPLL, PCLK;另一个称为UPLL, 用于USB设备 设备。 用于USB设备。 时钟源选择 对时钟的选择是通过S3C2410引脚上 对时钟的选择是通过S3C2410引脚上OM[3:2]实现的,JU具 引脚上OM[3:2]实现的,JU具 实现的 体如表3 所示。 体如表3-1所示。
表3-1 时钟源选择
S3C2410引脚的 S3C2410引脚的OM[3:2]=00时,晶体为MPLL CLK和UPLL 引脚的OM[3:2]=00时 晶体为MPLL CLK和 CLK提供时钟源;OM[3:2]=01时,晶体为 提供时钟源; 提供时钟源 时 晶体为MPLL CLK提供 提供 时钟源, 提供时钟源; 时钟源,EXTCLK为UPLL CLK提供时钟源;OM[3:2]=10 为 提供时钟源 提供时钟源, 时,EXTCLK为MPLL CLK提供时钟源,晶体为 为 提供时钟源 晶体为UPLL CLK提供时钟源;OM[3:2]=11时,EXTCLK为MPLL CLK 提供时钟源; 提供时钟源 时 为 提供时钟。 和UPLL CLK提供时钟。 提供时钟
第3章RISC微处理器S3C2410A
● 内部采用先进的微控制器总线体系结构(AMBA)(AMBA2.0 ,AHB/APB)。
PPT文档演模板
2020/11/26
第3章RISC微处理器S3C2410A
为降低系统成本,S3C2410A片上集成了16KB指令Cache和 16KB数据Cache、用于虚拟存储器管理的MMU、支持STN和TFT 的LCD控制器、NAND Flash BootLoader、系统管理器(片选 逻辑和SDRAM控制器)、3通道UART、4通道DMA、4通道PWM定 时器、I/O口、RTC、8通道10位ADC和触摸屏接口、I2C总线接口 、I2S总线接口、USB主设备、USB从设备、SD主卡和MMC(多媒体 卡)卡接口、2通道的SPI(串行外围设备接口)以及PLL时钟发生 器。S3C2410A的CPU内核采用的是16/32位ARM920T内核,还 PPT文采档演模用板 了AMBA(先进的微20控20/11制/26 器总线体系结构第)新3章R型ISC微总处理线器S结3C2构410。A
2个用于ROM、SRAM和同步DRAM;
● 所有的存储器bank都具有可编程的访问周期;
● 支持使用外部等待信号来填充总线周期;
● 支持掉电时的SDRAM自刷新模式;
● 支持各种类型的ROM启动(booting),包括NOR/NAND Flash和 EEPROM等。
PPT文档演模板
2020/11/26
● 支持多种屏幕尺寸,典型的屏幕尺寸有:640×480, 320×240,160×160;
● 最大虚拟屏幕大小是4MB; ● 在256彩色模式下支持的最大虚拟屏幕尺寸是:4096×1024
第3章 32 Bit RISC微处理器 S3C2410A
11.DMA控制器
● 4通道的DMA控制器; ● 支持存储器到存储器、I/O到存储器、存储器到I/O和I/O到I/O的 传送;
● 采用突发传送模式提高传送速率。
12.A/D转换和触摸屏接口
● 8通道多路复用ADC; ● 转换速率最大为500 KSPS(Kilo Samples Per Second,每秒采 样千点),10位分辨率。
2019年7月4日1时33分
嵌入式系统概论
11
13.LCD控制器STN LCD显示特性
● 支持3种类型的STN LCD显示屏:4位双扫描、4位单扫描和8位单扫描 显示类型;
14. TFT(Thin Film Transistor,薄膜场效应晶体管)彩色显示 特性
● 彩色TFT支持1、2、4或8bpp(bit per pixel,每像素所占位数)调色 显示;
● 支持16bpp无调色真彩显示; ● 在24bpp模式下支持最大16M彩色TFT; 支持多种屏幕尺寸,典型的屏幕尺寸有:640×480,320×320, 160×160或者其它尺寸; ● 最大虚拟屏大小是4 MB; ● 在64彩色模式下支持的最大虚拟屏幕尺寸是:2 048×1 024或者其它 尺寸。
第3章 32 Bit RISC微处 理器S3C2410A
2019年7月4日1时33分
嵌入式系统概论
1
3.1 S3C2410A简介
3.1.1 S3C2410A内部结构
S3C2410是Samsung公司推出的16/32位RISC处理器,主要面向高性价 比、低功耗的手持设备应用。S3C2410有S3C2410X和S3C2410A两个 型号,A型是X型的改进型,具有更好的性能和更低的功耗。
S3C2410简介-文档资料
4
S3C2410X和S3C2410A的区别
(1) A/D 9位升到10位; (2) MMC 的接口频率从10M 升到 20M。 其他功能一样!管脚兼容,封装一样。
S3C2410A可以替代S3C2410X。 S3C2410X01已经停产。
2021/4/21
5
2.7.1 内部结构
UARTS USB Devices SDI/MMC Watchdog Timer BUS Cont.
— 可通过软件选择大小端 — 地址空间:每个Bank 128Mbytes (总共 1GB) —除 bank0 (16/32-bit) 外,所有的Bank都可以通过编程选择总线宽度 = (8/16/32-bit) — 共 8 个banks
前6个Bank用于控制 ROM, SRAM, etc. 最后2个Bank用于控制 ROM, SRAM, SDRAM, etc . — 7个Bank固定起始地址; — 最后一个Bank可调整起始地址; — 最后两个Bank大小可编程; —所有Bank存储周期可编程控制。
OM [1:0] = 00
从Nand Flash 启动;
OM [1:0] = 01
从16位宽的动;
OM [1:0] = 10
从32位宽的ROM启动;
OM [1:0] = 11
TEST模式。
2021/4/21
8
2.7.3 存储器控制器
FLASH ROM属于真正的单电压芯片,在使用上很类似 EPROM,因此,有些书籍上便把FLASH ROM作为EPROM的一 种。事实上,二者还是有差别的。
2021/4/21
12
2021/4/21
13
2.7.3 存储器控制器(续2)
第3章32位微处理器指令系统精品PPT课件
一条指令包含操作码和操作数两部分,操作码
(指令助记符)指出该指令要进行的操作,操作数
指出该指令需要的操作数或操作数的地址。操作数
在计算机中的位置及存取方式见表3-1。
表3-1 操作数在计算机中的位置及存取方式
数据存放的位置 寄存器 外设(接口)
内存
存取方式
CPU可直接存取 用IN、OUT指令输入/输出
(3)变址寻址
指令中以源变址寄存器SI或目的变址寄存器DI中值为
16位的偏移地址访问内存,物理地址=段寄存器值
*16+偏移地址。所访问的数据段都是DS数据段。
例【3-18】 MOV AL,[SI]
;访问DS段
MOV DX,[DI]
;访问DS段
关于变址寻址,还有另外一种形式,称为相对变址寻 址,它是在变址寄存器的基础上,加上一个带符号的 8位或16位的位移量。 例【3-19】 MOV AL,[SI-40H] ;访问DS段
2. 32位段
32位 X86 CPU由实地址模式可以进入保护工作 模式,它是一个增强了80286保护模式功能的32位
保护工作模式。在保护工作模式下,32位微处理器 不仅具有段式存储器管理功能,而且还有页式存储 器管理功能,支持虚拟存储器,段基地址和段内偏 移量都是32位,称之为“32位段” 。
3.2 寻址方式
段寄存器 基址寄存器 变址寄存器 比例因子 位移量
DS SS
EAX EBX ECX EDX ESI EDI
ESP EBP
EAX EBX ECX EDX ESI EDI EBP
1
8位
2
32位
4
(带符
8 号数)
说明:
1.在表3-2中,如果以EBP和ESP为基址寄存器,默 认访问的是堆栈段,段寄存器是SS。若以其他6个寄 存器为基址寄存器,默认访问的是数据段,段寄存器 是DS。 2.如果数据存放在内存的附加数据段时,需使用段 超越前缀“ES:”、“FS:”或“GS:”,才能访问到 相应附加数据段中的数据。 3.在串操作时,源串默认的段寄存器是DS,目的串 默认的段寄存器是ES。 4.数据存放在内存的堆栈段时,默认的段寄存器为 SS。 5.比例因子只能是1、2、4、8。
嵌入式技术应用教程——基于S3C2410第三章
第三章汇编语言与C语言3.1 C语言与汇编语言的比较本课程全程使用C语言来开发S3C2410A。
目前很少有用汇编语言来开发ARM系统了。
相比较而言汇编语言的优势是执行效率高,但其劣势是代码效率较低,而C语言正好相反,其代码效率较高,执行效率较低。
什么是执行效率?什么是代码效率?在嵌入式设计领域,一般执行效率就是程序的执行时间可以精确控制,从而可以使程序高效率的运行。
采用汇编语言编写ARM程序,每一条指令的执行时间都是固定不变的(外部时钟确定),所以写出的程序每一步的执行时间都是可以精确控制的。
这是采用汇编语言的优势所在。
但是,相信有过用汇编语言进行程序设计经验的读者在读别人用汇编语言写的程序时都会觉得十分吃力,尤其在碰到一些编程习惯不好的coding,整个程序注释寥寥或者干脆没有,那么对于一般的设计人员来讲,这样的程序就是天书一卷了。
这也就是所谓的程序可读性不高,不便于维护和移植重用。
这也可以说是代码效率底下。
C语言编写的程序相对来说可读性高,便于移植重用,结构灵活。
一个注释完全,结构完整的C程序很容易就读懂了,而且我们还可以把一些常用的代码封装成函数,这样就可以根据需要来直接调用这些函数。
C语言有了这些性质,相对于汇编语言其代码效率就较高了。
C语言有其优点,必然在嵌入式领域内还有其不足的地方。
采用C语言编写的ARM驱动代码需要经过编译器编译而生成相对应的汇编代码,最后生成可下载执行的二进制文件。
在这个过程中,所生成的汇编代码完全由编译器所决定,这样一来对于一条C语句来讲预先不知道所生成的汇编代码有几多,所以也就无从精确判断程序执行的时间,这种特质也就是所谓的执行效率相对较低。
在嵌入式控制领域,有一些设计对于程序的执行时间需要精确的把握,大多数设计对于程序的时间要求没有那么精确。
故此,一般情况下C语言完全能够胜任开发任务。
如果在设计中碰到了需要严格把握程序执行时间的地方,可以根据需要采取C语言和汇编语言混合编程的方法来处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
04.01.2020
华中科技大学计算机学院
图3.1.1 S3C2410A内部结构方框图
04.01.2020
华中科技大学计算机学院
6
3.1.2 S3C2410A的技术特点 S3C2410A具有如下特点: 1.体系结构
● 采用ARM920T CPU内核,具有16/32位RISC体系结构 和强大的指令集,为手持设备和通用嵌入式应用提供片上 集成系统解决方案;
04.01.2020
华中科技大学计算机学院
● 2个USB主设接口/1个USB从设接口(版本1.1); ● 4通道PWM定时器和1通道内部定时器; ● 看门狗定时器; ● 117位通用I/O口和24通道外部中断源; ● 电源控制模式有正常、慢速、空闲和电源关断4
种模式; ● 8通道10位ADC和触摸屏接口; ● 具有日历功能的RTC; ● 使用PLL的片上时钟发生器。 S3C2410A的内部结构方框图如图3.1.1所示。
● 增强的ARM体系结构MMU,支持WinCE、EPOC 32和 Linux;
● 使用指令Cache、数据Cache、写缓冲器和物理地址 TAG RAM减少主存储器带宽和反应时间对性能的影响;
● ARM920T CPU内核支持ARM调试体系结构; ● 内部采用先进的微控制器总线体系结构(AMBA) (AMBA2.0,AHB/APB)。 2.系统管理器 ● 支持小/大端方式。 ● 地址空间:每bank 128 MB(byte)(总共1GB)。
ARM9嵌入式系统基础教程
华中科技大学计算机学院
曹计昌
04.01.2020
华中科技大学计算机学院
1
第3章 32 Bit RISC微 处理器S3C2410A
04.01.2020
华中科技大学计算机学院
3.1 S3C2410A简介
3.1.1 S3C2410A内部结构 S3C2410是Samsung公司推出的16/32位RISC处理器,主要面向高性价比、
04.01.2020
华中科技大学计算机学院
ARM920T采用了MMU,AMBA总线和Harvard高速缓存体系 结构,该结构具有独立的16KB指令Cache和16KB数据 Cache,每个Cache都是由8字长的行组成的。
S3C2410A提供一组完整的系统外围设备接口,从而大大 减少了整个系统的成本,省去了为系统配置额外器件的 开销。S3C2410A集成的片上功能包括: ● 内核电压1.8V/2.0V,存储器电压3.3V,外部I/O 电压3.3V; ● 具有16KB的I-Cache和16KB的D-Cache以及MMU; ● 外部存储器控制器(SDRAM控制和片选逻辑); ● LCD控制器(最大支持4K彩色STN和256K彩色TFT) 提供1通道LCD专用DMA; ● 4通道DMA并有外部请求引脚端; ● 3通道UART(IrDAl.0,16字节Tx FIFO和16字节 Rx FIFO)/2通道SPI; ● 1通道多主设I2C总线和1通道I2S总线控制器; ● 版本1.0SD主接口和2.11兼容版MMC卡协议;
04.01.2020
华中科技大学计算机学院
● 每个bank支持可编程的8/16/32位数据总线宽度。 ● bank0~bank6都采用固定的bank起始地址。 ● bank7具有可编程的bank起始地址和大小。 ● 8个存储器bank: 一6个用于ROM、SRAM及其他; 一2个用于ROM、SRAM和同步DRAM。 ● 所有的存储器bank都具有可编程的访问周期。 ● 支持使用外部等待信号来填充总线周期。 ● 支持掉电时的SDRAM自刷新模式。 ● 支持各种类型的ROM启动(booting),包括
(2.0V内核电压)。
04.01.2020
华中科技大学计算机学院
● 通过软件可以有选择地为每个功能模块提供时钟。 ● 电源模式包括正常、慢速、空闲和掉电模式: 一正常模式为正常运行模式; 一慢速模式为不加PLL的低时钟频率模式; 一空闲模式只停止CPU的时钟; 一掉电模式切断所有外设和内核的电源。 ● 可以通过EINT[15:0]或RTC报警中断从掉电模式
联Cache。 ● 每行8字长度,其中每行带有一个有效位和两个脏
位(dirty bits)。 ● 采用伪随机数或循环替换算法。 ● 采用写直达(Write-through)或写回(Write-
back)Cache操作来更新主存储器。 ● 写缓冲器可以保存16个字的数据值和4个地址值。
5.时钟和电源管理 ● 片上MPLL和UPLL: 一UPLL产生用于USB主机/设备操作的时钟; 一MPLL产生操作MCU的时钟,时钟频率最高可达266 MHz
NOR/NAND Flash和EEPROM等。 3.NAND Flash Boot Loader(启动装载)
● 支持从NAND Flash存储器的启动。
04.01.2020
华中科技大学计算机学院
ቤተ መጻሕፍቲ ባይዱ
采用4 KB内部缓冲器用于启动引导。 ● 支持启动之后NAND存储器仍然作为外部存储器使用。
4.Cache存储器 ● I-Cache(16 KB)和D-Cache(16 KB)为64路组相