中考数学题库系列:1500道压轴题题库(冲刺2019版)精选答案

合集下载

2019全国各地中考数学压轴题汇编附答案(一)

2019全国各地中考数学压轴题汇编附答案(一)

2019全国各地中考数学压轴题汇编附答案(一)1、如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,过A,B两点的抛物线y=ax2+bx+c与x轴交于点C(﹣1,0).(1)求抛物线的解析式;(2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作EF∥BC,交AB于点F,当△BEF的面积是时,求点E的坐标;(3)在(2)的结论下,将△BEF绕点F旋转180°得△B′E′F,试判断点E′是否在抛物线上,并说明理由.2、把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.3、如图,在平面直角坐标系中,直线y=﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.4、如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.5、某农作物的生长率p与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似用函数p=t﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:生长率p0.2 0.25 0.3 0.35提前上市的天数m(天)0 5 10 15①请运用已学的知识,求m关于p的函数表达式;②请用含t的代数式表示m.(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).6、小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC =6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM ⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM 的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.7、如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段PA交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.8、箭头四角形模型规律如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B.因为凹四边形ABOC形似箭头,其四角具有“∠BOC=∠A+∠B+∠C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=.②如图3,∠ABE、∠ACE的2等分线(即角平分线)BF、CF交于点F,已知∠BEC=120°,∠BAC=50°,则∠BFC =.③如图4,BO i、CO i分别为∠ABO、∠ACO的2019等分线(i=1,2,3,…,2017,2018).它们的交点从上到下依次为O1、O2、O3、…、O2018.已知∠BOC=m°,∠BAC=n°,则∠BO1000C=度.(2)拓展应用:如图5,在四边形ABCD中,BC=CD,∠BCD=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:四边形OBCD是菱形.9、如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△PAM=S△PAC?若存在,请求出点M的坐标;若不存在,请说明理由.10、如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.11、如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.(1)如图1,连接BE,CD,BE的廷长线交AC于点F,交CD于点P,求证:BP⊥CD;(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=6,AD=3,求△PDE的面积.12、如图,已知锐角三角形ABC内接于⊙O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD= OA.②当OA=1时,求△ABC面积的最大值。

2019届中考数学压轴冲刺卷:四边形(含解析答案)

2019届中考数学压轴冲刺卷:四边形(含解析答案)

四边形1.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.2.定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF、BE上,折痕为CD.则四边形ABCD为矩形.(1)证明:四边形ABCD为矩形;(2)点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN的值;②连接CM,作BR⊥CM,垂足为R.若AB=,求DR的最小值.3.如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,点C在y轴上,点B的坐标为(8,4),动点D从点O向点A以每秒两个单位的速度运动,动点E从点C向点O以每秒一个单位的速度运动,设D、E两点同时出发,运动时间为t秒,将△ODE沿DE翻折得到△FDE.(1)若四边形ODFE为正方形,求t的值;(2)若t=2,试证明A、F、C三点在同一直线上;4.已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一直线上,AB=EF=6cm,BC =FP=8cm,∠EFP=90°,如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s,EP与AB交于点G,与BD交于点K;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连接AF,PQ,当点Q停止运动时,△EFP也停止运动设运动事件为(s)(0<t<6),解答下列问题:(1)当为何值时,PQ∥BD?(2)在运动过程中,是否存在某一时刻,使S五边形AFPQM:S矩形ABCD=9:8?若存在,求出t的值;若不存在,请说明理由.(3)在运动过程中,当t为秒时,PQ⊥PE.5.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为.(2)拓展研究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE 中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=2,且∠BPD=90°,请直接写出点A到BP的距离.6.如图,矩形ABCD(AB>AD)中,点M是边DC上的一点,点P是射线CB上的动点,连接AM,AP,且∠DAP=2∠AMD.(1)若∠APC=76°,则∠DAM=;(2)猜想∠APC与∠DAM的数量关系为,并进行证明;(3)如图1,若点M为DC的中点,求证:2AD=BP+AP;(4)如图2,当∠AMP=∠APM时,若CP=15,=时,则线段MC的长为.7.如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D 以1cm/s的速度运动;Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动.(1)当运动时间为t秒时,用含t的代数式表示以下线段的长:AP=BQ=;(2)当运动时间为多少秒时,四边形PQCD为平行四边形?(3)当运动时间为多少秒时,四边形ABQP为矩形?8.在四边形ABCD中,点E是线段AC上一点,BE∥CD,∠BEC=∠BAD.(1)如图1已知AB=AD;①找出图中与∠DAC相等的角,并给出证明;②求证:AE=CD;(2)如图2,若BC∥ED,,∠BEC=45°,求tan∠ABE的值.9.如图,已知△ABC,∠ABC=90°,AB=BC,AC=4,点E为直线AC上一点,以BE为边,点B为直角顶点作等腰直角三角形BEF.(1)如图①,当点E在线段AC上时,EF交BC于点D,连接CF;①找出一对全等三角形为;②若四边形ABFC的面积为7,则AE的长是.(2)如图②,当点E在AC的延长线上时,BE交CF于点D.①△CDE的面积记为m,△BDF的面积记为n,探究m、n之间的数量关系并说明理由;②当△CDE的面积为1时,求AE的长.10.如图,正方形ABCD的边长为2,O是BC边的中点,P是正方形内一动点,且OP=2,连接DP,将线段DP绕点D逆时针旋转90°到DQ,连接AP,CQ.(1)直接写出线段AP和CQ的关系.(2)当A,O,P三点共线时,求线段DP的长.(3)连接PQ,求线段PQ的最小值.11.课题学习:矩形折纸中的数学实践操作折纸不仅是一项有趣的活动,也是一项益智的数学活动.数学课上,老师给出这样一道题将矩形纸片ABCD沿对角线AC翻折,使点B落在矩形所在平面内,B'C和AD相交于点E,如图1所示.探素发现(1)在图1中,①请猜想并证明AE和EC的数量关系;②连接B'D,请猜想并证明B'D和AC的位置关系;(2)第1小组的同学发现,图1中,将矩形ABCD沿对角线AC翻折所得到的图形是轴对称图形.若沿对称轴EF 再次翻折所得到的图形仍是轴对称图形,展开后如图2所示,请你直接写出该矩形纸片的长、宽之比;(3)若将图1中的矩形变为平行四边形时(AB≠BC),如图3所示,(1)中的结论①和结论②是否仍然成立,请直接写出你的判断.拓展应用(4)在图3中,若∠B=30°,AB=2,请您直接写出:当BC的长度为多少时,△AB'D恰好为直角三角形.12.已知矩形ABCD,作∠ABC的平分线交AD边于点M,作∠BMD的平分线交CD边于点N.(1)若N为CD的中点,如图1,求证:BM=AD+DM;(2)若N与C点重合,如图2,求tan∠MCD的值;(3)若=,AB=6,如图3,求BC的长.13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D为AB边上一点,且AD=1,点P从点C出发,沿射线CA以每秒1个单位长度的速度运动,以CP、DP为邻边作▱CPDE.设▱CPDE和△ABC重叠部分图形的面积为S(平方单位),点P的运动时间为t(秒)(t>0)(1)连结CD,求CD的长;(2)当▱CPDE为菱形时,求t的值;(3)求S与t之间的函数关系式;(4)将线段CD沿直线CE翻折得到线段C′D′.当点D′落在△ABC的边上时,直接写出t的值.14.如图,在矩形ABCD中,AB=4,BC=5,E是BC边上的一个动点,DF⊥AE,垂足为点F,连结CF (1)若AE=BC①求证:△ABE≌△DFA;②求四边形CDFE的周长;③求tan∠FCE的值;(2)探究:当BE为何值时,△CDF是等腰三角形.15.如图,在平面直角坐标系xOy中有矩形OABC,A(4,0),C(0,2),将矩形OABC绕原点O逆时针旋转得到矩形OA′B′C′.(Ⅰ)如图1,当点A′首次落在BC上时,求旋转角;(Ⅱ)在(Ⅰ)的条件下,求点B′的坐标;(Ⅲ)如图2,当点B′首次落在x轴上时,直接写出此时点A′的坐标.16.我们定义:有一组对角为直角的四边形叫做“对直角四边形”.如图1,四边形ABCD中,∠A=∠C=90°,则四边形ABCD是“对直角四边形”.(1)“对角线相等的对直角四边形是矩形”是命题;(填“真”或“假”)(3)如图3,在△ABC中,∠C=90°,AC=6,BC=8,过AB的中点D作射线DP∥AC,交BC于点O,∠BDP与∠ADP的角平分线分别交BC,AC于点E、F.①图中是“对直角四边形”的是;②当OP的长是时,四边形DEPF为对直角四边形.参考答案1.(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG=EF,∠BAD=∠EAG=∠ADC=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∠ADG=90°=∠ABE,∴∠BAE=∠DAG,在△ADG和△ABE中,,∴△ADG≌△ABE(AAS).(2)解:∠FCN=45°,理由如下:作FH⊥MN于H,如图1所示:则∠EHF=90°=∠ABE,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,在△EFH和△ABE中,,∴△EFH≌△ABE(AAS),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∵∠FHC=90°,∴∠FCN=45°.(3)解:当点E由B向C运动时,∠FCN的大小总保持不变,理由如下:作FH⊥MN于H,如图2所示:由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=8,∴CH=BE,∴==;在Rt△FEH中,tan∠FCN====,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=.2.(1)证明:设正方形ABEF的边长为a,∵AE是正方形ABEF的对角线,∴∠DAG=45°,由折叠性质可知AG=AB=a,∠FDC=∠ADC=90°,则四边形ABCD为矩形,∴△ADG是等腰直角三角形,∴AD=DG=,∴AB:AD=a:=:1,∴四边形ABCD为矩形;(2)解:①作OP⊥AB,OQ⊥BC,垂足分别为P,Q,如图b所示:∵四边形ABCD是矩形,∠B=90°,∴四边形BQOP是矩形.∴∠POQ=90°,OP∥BC,OQ∥AB.∴=,=,∵O为AC中点,∴OP=BC,OQ=AB,∵∠MON=90°,∴∠QON=∠POM,∴===,∴tan∠OMN==;②如图c所示:∵四边形ABCD为矩形,AB=,∴BC=AD=1,∵BR⊥CM,∴点R在以BC为直径的圆上,记BC的中点为I,∴CI=BC=,∴DR最小=﹣=﹣=.3.(1)解:∵矩形OABC中,B(8,4),∴OA=8,OC=4,∵四边形ODEF为正方形,∴OE∥DF,OE=DF,∵△ODE沿DE翻折得到△FDE,∴OD=DF,∵OD=2t,OE=4﹣t,∴2t=4﹣t,t=;(2)证明:连接AC,作OG⊥AC于G,如图1所示:∵t=2,∴OE=BE=2,OD=DE=4,∴DE是△OAC的中位线,∴DE∥AC,且DE=AC,∴==,∴DE垂直平分OF,由折叠的性质得:DE垂直平分OF,∴G与F点重合,即A、C、F三点在同一条直线;(3)解:存在,理由如下:如图2所示:∵S△BDE=S△ABC﹣S△BCE﹣S△ABD﹣S△ODE=32﹣t×8﹣×4×(8﹣2t)﹣×2t(4﹣t)=32﹣4t﹣16+4t﹣4t+t2=t2﹣4t+16=(t﹣2)2+12,∴t=2时,S△BDE有最小值为12;即存在实数t,使△BDE的面积最小,t=2秒.4.解:(1)∵PQ∥BD,∴=,∴=,解得t=,∴当t=时,PQ∥BD.(2)假设存在.∵S五边形AFPQM=S△ABF+S矩形ABCD﹣S△PQC﹣S△MQD=×(8﹣t )×6+6×8﹣(8﹣t )×t ﹣×(6﹣t )×(6﹣t )=t 2﹣t +.又∵S 五边形AFPQM :S 矩形ABCD =9:8,∴(t 2﹣t +):48=9:8, 整理得:t 2﹣20t +36=0,解得t =2或18(舍弃),∴t =2s 时,S 五边形AFPQM :S 矩形ABCD =9:8.(3)∵PQ ⊥PE ,∴∠QPE =90°,∵∠EFP =∠C =90°,∴∠EPF +∠QPC =90°,∠QPC +∠PQC =90°,∴∠EPF =∠PQC ,∴△EPF ∽△PQC ,∴=,∴=,解得t =,∴当t =时,PQ ⊥PE .故答案为. 5.解:问题发现(1)①∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,DC =CE ,∠ACB =∠DCE =∠CDE =60°=∠CED∵点A 、D 、E 在同一条直线上,∴∠ADC =120°∵∠ACB ﹣∠DCB =∠DCE ﹣∠DCB∴∠ACD =∠BCE ,且AC =BC ,DC =CE∴△ACD ≌△BCE (SAS )∴∠ADC =∠CEB =120°∴∠ABE =∠CEB ﹣∠CED =60°②∵△ACD ≌△BCE∴AD=BE故答案为:60°,AD=BE(2)拓展研究:猜想:①∠AEB=90°,②AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.且AC=BC,CD=CE∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.解决问题:(3)∵点P满足PD=2,∴点P在以D为圆心,2为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=2=BC,∠BCD=90°∴BD=4,∵∠BPD=90°∴BP==2∵∠BPD=90°=∠BAD∴点A,点B,点D,点P四点共圆∴∠APB=∠ADB=45°,且AH⊥BP∴∠HAP=∠APH=45°∴AH=HP在Rt△AHB中,AB2=AH2+BH2,∴8=AH2+(2﹣AH)2,∴AH=+1(不合题意),或AH=﹣1若点P在CD的右侧,同理可得AH=+1综上所述:点A到BP的距离为: +1或﹣11.解:(1)∵AD∥CP,∠APC=76°,∴∠DAP=104°,∵∠DAP=2∠AMD,∴∠AMD=52°,又∵∠D=90°,∴∠DAM=38°,故答案为:38°;(2)∠APC=2∠DAM,理由如下:∵四边形ABCD是矩形,∴∠D=90°,AD∥BC,∵点P是射线BC上的点,∴AD∥CP,∴∠DAP+∠APC=180°,∵∠DAP=2∠AMD,∴2∠AMD+∠APC=180°,在Rt△AMD中,∠D=90°,∴∠AMD=90°﹣∠DAM,∴2(90°﹣∠DAM)+∠APC=180°,∴∠APC=2∠DAM,故答案为:∠APC=2∠DAM;(3)如图1,延长AM交BC的延长线于点E,延长BP到F,使PF=AP,连接AF,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠ABC=90°,∴AD∥BE,AB⊥BE,∴∠DAM=∠E,∵M是DC中点,∴DM=CM,又∵∠1=∠2,∴△AMD≌△EMC(AAS),∴AD=CE,∴BE=BC+CE=2AD,∵∠APC=2∠DAM,∴∠APC=2∠E,∵PA=PF,∴∠PAF=∠F,∴∠APC=2∠F,∴∠E=∠F,∴AE=AF,又∵AB⊥BE,∴BE=BF,又∵BF=BP+PF=BP+AP,∴2AD=BP+AP;(4)如图2,延长MD到点E,使DE=MD,连接AE,过点E作EF⊥MA于点F,设AM=3x,AD=2x,则DM=DE=x,AE=AP=3x,∵∠AMD=∠EMF,∠ADM=∠EFM=90°,∴△ADM∽△EFM,∴=,即=,解得EF=x,∴AF==x,∵DE=MD,AD⊥CE,∴∠AME=∠AEM,则∠EAF=2∠AMD,∵AD∥BC,∠DAP=2∠AMD,∴∠APB=∠DAP=2∠AMD,∴∠EAF=∠APB,又∵∠EFA=∠B=90°,AE=AP,∴△EAF≌△APB(AAS),∴PB=AF=x,由AD=BC得x+15=2x,解得x=9,∴AB==12,∴MC=DC﹣DM=AB﹣DM=3,故答案为:3.2.解:(1)由题意知AP=t,BQ=26﹣3t,故答案为:t,26﹣3t;(2)由题意可得:PD=AD﹣AP=24﹣t,QC=3t,∵AD∥BC,∴PD∥QC,设当运动时间为t秒时PD=QC,此时四边形PQCD为平行四边形.由PD=QC得,24﹣t=3t,解得t=6,∴当运动时间为6秒时,四边形PQCD为平行四边形.(3)∵AD∥BC,∴AP∥BQ,设当运动时间为t秒时AP=BQ,四边形ABQP为平行四边形.由AP=BQ得:t=26﹣3t,解得:t=,又∵∠B=90°∴平行四边形ABQP为矩形.∴当运动时间为秒时,四边形ABQP为矩形.3.解:(1)①∠ABE=∠CAD,理由如下:以D为圆心,DC为半径画圆,交AC于F,连接DF,则CD=DF,∴∠DFC=∠DCF,∵BE∥CD,∴∠BEC=∠FCD,∴∠BEC=∠DFC,∴∠AEB=∠AFD,∠BEC=∠BAE+∠ABE,∠BAD=∠BAE+∠DAF,∠BEC=∠BAD,∴∠ABE=∠DAF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴∠ABE=∠CAD,②∵△ABE≌△DAF,∴AE=DF,∵CD=DF,∴AE=CD;(3)过点D作DG⊥CD交AC于点G,∵BE∥CD,∴∠DCA=∠BEC=45°,∴∠AEB=∠DGA=135°,DG=DC,∵∠AEB=∠DGA,∠ABE=∠DAG,∴△ABE∽△DAG,∴==,∵BC∥DE,BE∥CD,∴四边形BCDE为平行四边形,∴BE=CD,过点A作AH垂直于BE交BE的延长线于点H,设AH=EH=m,则AE=m,DG=CD=BE=2m,∴BH=BE+EH=2m+m,tan∠ABE===.4.解:(1)①△ABE≌△CBF理由如下:∵∠ABC=∠EBF=90°,∴∠ABE=∠CBF,且AC=BC,EB=BF∴△ABE≌△CBF(SAS)故答案为:△ABE≌△CBF②如图,过点B作BM⊥AC于M,∵∠ABC=90°,AB=BC,AC=4,BM⊥AC,∴AM=CM=BM=2∴S△ABC=×4×2=4∵S四边形ABFC=7∴S△CBF=3=S△ABM,∴=3∴AE=3故答案为:3(2)①4+m=n理由如下:∵△ABE≌△CBF∴S△ABE=S△CBF,∴S△ABC+S△CBD+S△CDE=S△CBD+S△BDF,∴4+m=n②∵△CDE的面积为1,m+4=n∴n=5∴S△BDE=5,如图,过点B作BG⊥AC,BH⊥FC,∵△ABE≌△CBF∴AE=CF,∠A=∠BCH=45°=∠ACB,且BG⊥AC,BH⊥FC,∴BG=BH=2,∠ACF=90°∵S△BDE=5,∴DF×BH=5∴DF=5,∴设CE=x,则AE=4+x=CF,∴CD=4+x﹣5=x﹣1∵S△CDE=CD×CE=1∴1=×x×(x﹣1)∴x=2,x=﹣1(舍去)∴AE=2+x=6,5.解:(1)AP=CQ,AP⊥CQ;理由如下:延长QC、AP交于点E,AP的延长线交BC于F,如图1所示:∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠BCD=90°,AD∥BC,由旋转的性质得:∠PDQ=90°,DP=DQ,∴∠ADP=∠CDQ,在△ADP和△CDQ中,,∴△ADP≌△CDQ(SAS),∴AP=CQ,∠DAP=∠DCQ,∵∠BCD=90°,∴∠DCQ+∠ECF=90°,∵AD∥BC,∴∠DAP=∠CFE,∴∠CFE+∠ECF=90°,∴∠CEF=90°,∴AE⊥QE,∴AP⊥CQ;(2)作DH⊥AP于H,如图2所示:∵O是BC边的中点,∴OB=BC=,当A,O,P三点共线时,由勾股定理得:AO===5,∵四边形ABCD是正方形,∴∠B=90°,AD∥BC,∴∠DAH=∠BOA,∴sin∠DAH=sin∠BOA==,cos∠DAH=cos∠BOA==,∴DH=AD×sin∠DAH=2×=4,AH=AD×cos∠DAH=2×=2,∴PH=AO﹣AH﹣OP=5﹣2﹣2=1,∴DP==;(3)连接OD,如图3所示:∵DQ=DP,∠PDQ=90°,∴PQ=DP,OD===5,∵OP+DP≥OD,∴DP≥OD﹣OP=5﹣2=3,∴PQ≥3,∴线段PQ的最小值为3.6.解:(1)∵AD∥CP,∠APC=76°,∴∠DAP=104°,∵∠DAP=2∠AMD,∴∠AMD=52°,又∵∠D=90°,∴∠DAM=38°,故答案为:38°;(2)∠APC=2∠DAM,理由如下:∵四边形ABCD是矩形,∴∠D=90°,AD∥BC,∵点P是射线BC上的点,∴AD∥CP,∴∠DAP+∠APC=180°,∴2∠AMD+∠APC=180°,在Rt△AMD中,∠D=90°,∴∠AMD=90°﹣∠DAM,∴2(90°﹣∠DAM)+∠APC=180°,∴∠APC=2∠DAM,故答案为:∠APC=2∠DAM;(3)如图1,延长AM交BC的延长线于点E,延长BP到F,使PF=AP,连接AF,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠ABC=90°,∴AD∥BE,AB⊥BE,∴∠DAM=∠E,∵M是DC中点,∴DM=CM,又∵∠1=∠2,∴△AMD≌△EMC(AAS),∴AD=CE,∴BE=BC+CE=2AD,∵∠APC=2∠DAM,∴∠APC=2∠E,∵PA=PF,∴∠PAF=∠F,∴∠E=∠F,∴AE=AF,又∵AB⊥BE,∴BE=BF,又∵BF=BP+PF=BP+AP,∴2AD=BP+AP;(4)如图2,延长MD到点E,使DE=MD,连接AE,过点E作EF⊥MA于点F,设AM=3x,AD=2x,则DM=DE=x,AE=AP=3x,∵∠AMD=∠EMF,∠ADM=∠EFM=90°,∴△ADM∽△EFM,∴=,即=,解得EF=x,∴AF==x,∵DE=MD,AD⊥CE,∴∠AME=∠AEM,则∠EAF=2∠AMD,∵AD∥BC,∠DAP=2∠AMD,∴∠APB=∠DAP=2∠AMD,∴∠EAF=∠APB,又∵∠EFA=∠B=90°,AE=AP,∴△EAF≌△APB(AAS),∴PB=AF=x,由AD=BC得x+15=2x,解得x=9,∴AB==12,∴MC=DC﹣DM=AB﹣DM=3,故答案为:3.7.解:(1)由题意知AP=t,BQ=26﹣3t,故答案为:t,26﹣3t;(2)由题意可得:PD=AD﹣AP=24﹣t,QC=3t,∵AD∥BC,∴PD∥QC,设当运动时间为t秒时PD=QC,此时四边形PQCD为平行四边形.由PD=QC得,24﹣t=3t,解得t=6,∴当运动时间为6秒时,四边形PQCD为平行四边形.(3)∵AD∥BC,∴AP∥BQ,设当运动时间为t秒时AP=BQ,四边形ABQP为平行四边形.由AP=BQ得:t=26﹣3t,解得:t=,又∵∠B=90°∴平行四边形ABQP为矩形.∴当运动时间为秒时,四边形ABQP为矩形.8.解:(1)①∠ABE=∠CAD,理由如下:以D为圆心,DC为半径画圆,交AC于F,连接DF,则CD=DF,∴∠DFC=∠DCF,∵BE∥CD,∴∠BEC=∠FCD,∴∠BEC=∠DFC,∴∠AEB=∠AFD,∠BEC=∠BAE+∠ABE,∠BAD=∠BAE+∠DAF,∠BEC=∠BAD,∴∠ABE=∠DAF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴∠ABE=∠CAD,②∵△ABE≌△DAF,∴AE=DF,∵CD=DF,∴AE=CD;(3)过点D作DG⊥CD交AC于点G,∵BE∥CD,∴∠DCA=∠BEC=45°,∴∠AEB=∠DGA=135°,DG=DC,∵∠AEB=∠DGA,∠ABE=∠DAG,∴△ABE∽△DAG,∴==,∵BC∥DE,BE∥CD,∴四边形BCDE为平行四边形,∴BE=CD,过点A作AH垂直于BE交BE的延长线于点H,设AH=EH=m,则AE=m,DG=CD=BE=2m,∴BH=BE+EH=2m+m,tan∠ABE===.9.解:(1)①△ABE≌△CBF理由如下:∵∠ABC=∠EBF=90°,∴∠ABE=∠CBF,且AC=BC,EB=BF∴△ABE≌△CBF(SAS)故答案为:△ABE≌△CBF②如图,过点B作BM⊥AC于M,∵∠ABC=90°,AB=BC,AC=4,BM⊥AC,∴AM=CM=BM=2∴S△ABC=×4×2=4∵S四边形ABFC=7∴S△CBF=3=S△ABM,∴=3∴AE=3故答案为:3(2)①4+m=n理由如下:∵△ABE≌△CBF∴S△ABE=S△CBF,∴S△ABC+S△CBD+S△CDE=S△CBD+S△BDF,∴4+m=n②∵△CDE的面积为1,m+4=n∴n=5∴S△BDE=5,如图,过点B作BG⊥AC,BH⊥FC,∵△ABE≌△CBF∴AE=CF,∠A=∠BCH=45°=∠ACB,且BG⊥AC,BH⊥FC,∴BG=BH=2,∠ACF=90°∵S△BDE=5,∴DF×BH=5∴DF=5,∴设CE=x,则AE=4+x=CF,∴CD=4+x﹣5=x﹣1∵S△CDE=CD×CE=1∴1=×x×(x﹣1)∴x=2,x=﹣1(舍去)∴AE=2+x=6,10.解:(1)AP=CQ,AP⊥CQ;理由如下:延长QC、AP交于点E,AP的延长线交BC于F,如图1所示:∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠BCD=90°,AD∥BC,由旋转的性质得:∠PDQ=90°,DP=DQ,∴∠ADP=∠CDQ,在△ADP和△CDQ中,,∴△ADP≌△CDQ(SAS),∴AP=CQ,∠DAP=∠DCQ,∵∠BCD=90°,∴∠DCQ+∠ECF=90°,∵AD∥BC,∴∠DAP=∠CFE,∴∠CFE+∠ECF=90°,∴∠CEF=90°,∴AE⊥QE,∴AP⊥CQ;(2)作DH⊥AP于H,如图2所示:∵O是BC边的中点,∴OB=BC=,当A,O,P三点共线时,由勾股定理得:AO===5,∵四边形ABCD是正方形,∴∠B=90°,AD∥BC,∴∠DAH=∠BOA,∴sin∠DAH=sin∠BOA==,cos∠DAH=cos∠BOA==,∴DH=AD×sin∠DAH=2×=4,AH=AD×cos∠DAH=2×=2,∴PH=AO﹣AH﹣OP=5﹣2﹣2=1,∴DP==;(3)连接OD,如图3所示:∵DQ=DP,∠PDQ=90°,∴PQ=DP,OD===5,∵OP+DP≥OD,∴DP≥OD﹣OP=5﹣2=3,∴PQ≥3,∴线段PQ的最小值为3.11.解:(1)如图1中,①结论:EA=EC.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACB,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.②连接DB′.结论:DB′∥AC.∵EA=EC,∴∠EAC=∠ECA,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(2)如图2中,①当AB:AD=1:1时,四边形ABCD是正方形,∴∠BAC=∠CAD=∠EAB′=45°,∵AE=AE,∠B′=∠AFE=90°,∴△AEB′≌△AEF(AAS),∴AB′=AF,此时四边形AFEB′是轴对称图形,符合题意.②当AD:AB=时,也符合题意,∵此时∠DAC=30°,∴AC=2CD,∴AF=FC=CD=AB=AB′,∴此时四边形AFEB′是轴对称图形,符合题意.(3)如图3中,当四边形ABCD是平行四边形时,仍然有EA=EC,DB′∥AC.理由:∵四边形ABCD是平行四边形,∴AD∥BC,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.∵EA=EC,∴∠EAC=∠ECA,∵AD=BC=CB′,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(4)①如图3﹣1中,当∠AB′C=90°时,易证∠BAC=90°,BC==.②如图3﹣2中,当∠ADB′=90°时,易证∠ACB=90°,BC=AB•cos30°=.③如图3﹣3中,当∠DAB′=90°时,易证∠B=∠ACB=30°,BC=2•AB•cos30°=2.④如图3﹣4中,当∠DAB′=90°时,易证:∠B=∠CAB=30°,BC==,综上所述,满足条件的BC的长为或或2或12.(1)证明:如图1,延长MN、BC交于点E,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠ABC=90°,∴∠D=∠NCE,∠DMN=∠NEC,∵N是DC的中点,∴DN=CN,∴△DNM≌△CNE(AAS),∴DM=CE,∵BM平分∠ABC,∠ABC=90°,∴∠ABM=∠MBE=45°,∵AD∥BC,∴∠AMB=∠EBM=45°,∴∠BMD=180°﹣45°=135°,∵MN平分∠BMD,∴∠BMN=∠DMN=67.5°,∴∠E=∠DMN=67.5°,∴∠BMN=∠E=67.5°,∴BM=BE=BC+CE=AD+DM;(2)解:如图2,当N与C重合时,由(1)知:∠BMC=∠DMN=∠BCM,∴BC=BM,设AB=x,则BM=BC=x,∵AD=BC,∴DM=x﹣x,Rt△DMC中,tan∠MCD===﹣1;(3)解:如图3,延长MN、BC交于点G,∵四边形ABCD是矩形,∴CD=AB=6,∵,∴CN=2,DN=4,∵△ABM是等腰直角三角形,∴BM=6,由(1)知:BM=BG=6,∵DM∥CG,∴△DMN∽△CGN,∴=2,设CG=m,则DM=2m,6=6+2m+m,m=2﹣2,∴BC=6+2m=2+4.13.解:(1)过点D作DF⊥AC于点F.如图1中.在Rt△ABC中,∠ACB=90°,∴AB===5,∵DF∥BC,∴△AFD∽△ACB.∴==,∴==,∴AF=,DF=,∴CF=AC﹣AF=3﹣=,在Rt△CDF中,∠CFD=90°,∴CD===.(2)当▱CPDE为菱形时,如图2中,连接BP交CD于O.∵四边形PCED是菱形,∴PD=PC,∵BD=BC=1,∴PB垂直平分线段CD,∴点E在直线PB上,∵∠CPO+∠PCO=90°,∠CPB+∠PBC=90°,∴∠PCO=∠PBC,∵∠POC=∠PCB,∴△COP∽△BCP∴=,∴=.∴t=.(3)当0<t≤时,如图3中,重叠部分是四边形PCED..S=t•=t.当<t≤3时,如图4中,重叠部分是四边形PCFD.S=(4×+t)﹣=t+.当t>3时,如图 5中,重叠部分是四边形ACFD,S=(4×+3)﹣=.综上所述,S=.(4)如图6中,当点D′落在AB上时,延长CE交AB于O,易知OC⊥AB,OC=.AO=,∴OD=OA﹣AD=,∵DE∥AC,∴=,∴=,∴DE=,此时t=,如图7中,当点D′落在BC上时,延长DE交BC于F,作OM⊥BC于M,ON⊥CD于N.∵∠DCO=∠OCB,ON⊥CD,OM⊥CB,∴ON=OM,∵S△DCB=S△CDO+S△BCO,∴×4×=××ON+×4×OM,∴OM=,∵OM∥AC,∴=,∴BM=,CM=,∵EF∥OM,∴=,可得EF=,∴CP=DE=﹣=,此时t=,综上所述,满足条件的t的值为s或s.14.解:(1)①如图1中,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∴∠AEB=∠DAF.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD=90°,又∵AE=BC,∴AE=AD,∴△ABE≌△DFA(AAS).②如图1中,在Rt△ABE中,∠B=90°,根据勾股定理,得BE===3,∵△ABE≌△DFA,∴DF=AB=DC=4,AF=BE=3.∵AE=BC=5,∴EF=EC=2,∴四边形CDFE的周长=2(DC+EC)=2×(4+2)=12.③如图2中,过点F作FM⊥BC于点M.∴sin∠AEB==,cos∠AEB==,在Rt△FME中,FM=EF=,ME=EF=,∴MC=ME+EC=+2=,在Rt△FMC中,tan∠FCE==.(2)如图3﹣1中,当DF=DC时,则DF=DC=AB=4.∵∠AEB=∠DAF,∠B=∠AFD=90°,∴△ABE≌△DFA(AAS).∴AE=AD=5,由②可知,BE=3,∴当BE=3时,△CDF是等腰三角形.…(11分)如图3﹣2中,当CF=CD时,过点C作CG⊥DF,垂足为点H,交AD于点G,则CG∥AE,DH=FH.∴AG=GD=2.5.∵CG∥AE,AG∥EC,∴四边形AECG是平行四边形,∴EC=AG=2.5,∴当BE=2.5时,△CDF是等腰三角形.…(13分)如图3﹣中,当FC=FD时,过点F作FQ⊥DC,垂足为点Q.则AD∥FQ∥BC,DQ=CQ,∴AF=FE=AE.∵∠B=∠AFD=90°,∠AEB=∠DAF,∴△ABE∽△DFA,∴=,即AD×BE=AF×AE.设BE=x,∴5x=×,解得x1=2,x2=8(不符合题意,舍去)∴当BE=2时,△CDF是等腰三角形.综上所述,当BE为3或2.5或2时,△CDF是等腰三角形.15.解:(Ⅰ)∵A(4,0),C(0,2),∴OA=4,OC=2,由旋转的性质得:OA'=OA=4,∵四边形OABC是矩形,∴∠OCB=90°,OA∥BC,在Rt△OCA'中,OC=OA',∴∠OA'C=30°,∵OA∥BC,∴∠AOA'=∠OA'C=30°,即当点A′首次落在BC上时,旋转角为30°;(Ⅱ)由矩形和旋转的性质得:OA′=OA=4,A′B′=AB=OC=2,作B'E⊥BC于E,如图1所示:∵BC∥AO,∴∠OA′C=∠A′OA=30°,∴∠B′A′E=60°,B′E=sin∠B′A′E×BB′=×2=,EA′=cos∠B′A′E×BB′=×2=1,A′C=cos∠OA′C×OA′=×4=2,∴CE=CA′﹣EA′=2﹣1,B′的纵坐标为:2+,∴点B′的坐标为:(2﹣1,2+);(Ⅲ)过点A'作A'F⊥x轴于F,如图2所示:∵∠B'A'O=90°,A'F⊥B'O,∴B'O==2,∠A'FO=90°,∵∠A'OF=∠B'OA',∴△B'A'O∽△A'FO,∴==,即==,解得:OF=,A'F=,∴点A的坐标为(﹣,).16.(1)解:结论:真.理由:如图1﹣1中,∵∠BAD=∠BCD=90°,∴A,B,C,D四点共圆,∴BD是⊙O的直径,∵AC=BD,∴AC也是⊙O的直径,∴∠ADC=∠ABC=90°,∴四边形ABCD是矩形.故答案为真.(2)证明:如图2中,∵四边形ABCD是对直角四边形,∠DAB<90°,∴∠D=∠B=90°,∴AD2+DC2=AC2,AB2+BC2=AC2,∴AD2+DC2=AB2+BC2,∵AD+DC=AB+BC∴(AD+DC)2=(AB+BC)2,即:AD2+2AD•DC+DC2=AB2+2AB•BC+BC2,∴2AD•DC=2AB•BC,∴•AD•DC=•AB•BC,即:S△ADC=S△ABC.(3)①结论:四边形ECFD是“对直角四边形”.理由:如图3中,∵DE平分∠BDP,DF平分∠ADP,∴∠EDP=∠BDP,∠FDP=∠ADP,∴∠EDF=(∠BDP+∠ADP)=90°,∵∠C=90°,∴四边形ECFD是“对直角四边形”.故答案为四边形ECFD.②如图3中,当OP=2时,四边形DEPF是“对直角四边形”.理由:在Rt△ABC中,∵∠C=90°,BC=8,AC=6,∴AB==10,∵BD=AD=5,DP∥AC,∴OB=OC,∴OD=AC=3,∵OP=2,∴DP=5,∵∠PDF=∠DFA=∠ADF,∴AD=AF=5,∴DP=AF,DP∥AF,∴四边形ADPF是平行四边形,∴∠A=∠DPF,∵DP=DB,DE=DE,∠EDB=∠EDP,∴△EDB≌△EDP(SAS),∴∠DPE=∠B,∴∠EPF=∠DPE+∠DPF=∠B+∠A=90°,∵∠EDF=90°,∴四边形DEPF是“对直角四边形”.故答案为2.。

2019全国中考数学真题精选分类汇编:压轴题(含答案解析)

2019全国中考数学真题精选分类汇编:压轴题(含答案解析)

2019年全国中考数学真题精选汇编压轴题: 1-39页2019年全国中考数学真题精选压轴题剖析(分析、详解、点睛):40-229页1.(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴; (2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.2.(2020·四川初三期末)综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值;(3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.3.(2019·内蒙古中考真题)(问题)如图1,在Rt ABC 中,90,ACB AC BC ∠=︒=,过点C 作直线l 平行于AB .90EDF ∠=︒,点D 在直线l 上移动,角的一边DE 始终经过点B ,另一边DF 与AC 交于点P ,研究DP 和DB 的数量关系.(探究发现)(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P 与点C 重合时,通过推理就可以得到DP DB =,请写出证明过程;(数学思考)(2)如图3,若点P 是AC 上的任意一点(不含端点A C 、),受(1)的启发,这个小组过点D 作DG CD ⊥交BC 于点G ,就可以证明DP DB =,请完成证明过程;(拓展引申)(3)如图4,在(1)的条件下,M 是AB 边上任意一点(不含端点A B 、),N 是射线BD 上一点,且AM BN =,连接MN 与BC 交于点Q ,这个数学兴趣小组经过多次取M 点反复进行实验,发现点M 在某一位置时BQ 的值最大.若4AC BC ==,请你直接写出BQ 的最大值.4.(2019·内蒙古中考真题)已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.5.(2019·辽宁中考真题)如图,在平面直角坐标系中,Rt ABC ∆的边BC 在x 轴上,90ABC ∠=,以A 为顶点的抛物线2y x bx c =-++经过点(3,0)C ,交y 轴于点(0,3)E ,动点P 在对称轴上.(1)求抛物线解析式;(2)若点P 从A 点出发,沿A B →方向以1个单位/秒的速度匀速运动到点B 停止,设运动时间为t 秒,过点P 作PD AB ⊥交AC 于点D ,过点D 平行于y 轴的直线l 交抛物线于点Q ,连接,AQ CQ ,当t 为何值时,ACQ ∆的面积最大?最大值是多少? (3)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点,,,P M E C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,请说明理由.6.(2019·辽宁中考真题)抛物线229y x bx c =-++与x 轴交于1,05,0A B (-),()两点,顶点为C ,对称轴交x 轴于点D ,点P 为抛物线对称轴CD 上的一动点(点P 不与,C D 重合).过点C 作直线PB 的垂线交PB 于点E ,交x 轴于点F .()1求抛物线的解析式;()2当PCF 的面积为5时,求点P 的坐标;()3当△PCF 为等腰三角形时,请直接写出点P 的坐标.7.(2019·广东中考真题)如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴; (2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.8.(2019·重庆中考真题)如图,在平面在角坐标系中,抛物线y=x 2-2x-3与x 轴交与点A ,B (点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN ⊥BD 交抛物线于点N (点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF+FP+13PC 的最小值;(2)在(1)中,当MN 取得最大值HF+FP+1/3PC 取得小值时,把点P 向上平移个2单位得到点Q ,连结AQ ,把△AOQ 绕点O 瓶时针旋转一定的角度α(0°<α<360°),得到△AOQ ,其中边AQ 交坐标轴于点C 在旋转过程中,是否存在一点G 使得''Q Q OG ∠=∠?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.9.(2019·安徽初三月考)如图,已知抛物线213y x bx c =++经过点(1,0)A -、(5,0)B .(1)求抛物线的解析式,并写出顶点M 的坐标;(2)若点C 在抛物线上,且点C 的横坐标为8,求四边形AMBC 的面积(3)定点(0,)D m 在y 轴上,若将抛物线的图象向左平移2各单位,再向上平移3个单位得到一条新的抛物线,点P 在新的抛物线上运动,求定点D 与动点P 之间距离的最小值d (用含m 的代数式表示)10.(2019·湖北中考真题)如图1,在平面直角坐标系xOy 中,已知抛物线228y ax ax a =--与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点(0,4)C-.(1)点A的坐标为__________,点B的坐标为__________,线段AC的长为__________,抛物线的解析式为__________.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE CA交线段BC于点E,过点P作直线x t=交BC于点F,交x轴于点G,记P E f=,求f关于t的函数解析式;当t取m和14(02) 2m m-<<时,试比较f的对应函数值1f和2f的大小.11.(2019·湖北中考真题)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:()1如图1,点A B C,,在O上,ABC∠的平分线交O于点D,连接AD CD,.求证:四边形ABCD是等补四边形;探究:()2如图2,在等补四边形ABCD中AB AD,=,连接AC AC,是否平分?BCD∠请说明理由.运用:()3如图3,在等补四边形ABCD 中,AB AD =,其外角EAD ∠的平分线交CD 的延长线于点105F CD AF ,=,=,求DF 的长.12.(2019·湖北中考真题)如图①,在平面直角坐标系xOy 中,已知()2,2A -,()()()2,0,0,2,2,0B C D -四点,动点M B C D →→运动(M 不与点B 、点D 重合),设运动时间为t (秒).(1)求经过A 、C 、D 三点的抛物线的解析式;(2)点P 在(1)中的抛物线上,当223x 27y -M 为BC 的中点时,若PAM PBM ∆≅∆,求点P 的坐标;(3)当M 在CD 上运动时,如图②.过点M 作MF x ⊥轴,垂足为F ,ME AB ⊥,垂足为E .设矩形MEBF 与BCD ∆重叠部分的面积为S ,求S 与t 的函数关系式,并求出S 的最大值;(4)点Q 为x 轴上一点,直线AQ 与直线BC 交于点H ,与y 轴交于点K .是否存在点Q ,使得HOK ∆为等腰三角形?若存在,直接写出符合条件的所有Q 点的坐标;若不存在,请说明理由.13.(2019·湖北中考真题)如图,在直角坐标系中,直线132y x =-+与x 轴,y 轴分别交于点B ,点C ,对称轴为1x =的抛物线过,B C 两点,且交x 轴于另一点A ,连接AC .(1)直接写出点A ,点B ,点C 的坐标和抛物线的解析式;(2)已知点P 为第一象限内抛物线上一点,当点P 到直线BC 的距离最大时,求点P 的坐标;(3)抛物线上是否存在一点Q (点C 除外),使以点Q ,A ,B 为顶点的三角形与ABC ∆相似?若存在,求出点Q 的坐标;若不存在,请说明理由.14.(2019·湖北中考真题)已知抛物线()22y a x c =-+经过点()2,0A 和 90,4C ⎛⎫ ⎪⎝⎭,与x 轴交于另一点B ,顶点为D .(1)求抛物线的解析式,并写出D 点的坐标;(2)如图,点,E F 分别在线段,AB BD 上(E 点不与,A B 重合),且DEF A ∠=∠,则DEF ∆能否为等腰三角形?若能,求出BE 的长;若不能,请说明理由;(3)若点P 在抛物线上,且PBD CBDS m S ∆∆=,试确定满足条件的点P 的个数.15.(2019·河南初三期中)如图,抛物线()21y x k =-+与x 轴相交于,A B 两点(点A 在点B 的左侧),与y 轴相交于点()0,3C-.P 为抛物线上一点,横坐标为m ,且0m >.⑴求此抛物线的解析式;⑵当点P 位于x 轴下方时,求ABP ∆面积的最大值;⑶设此抛物线在点C 与点P 之间部分(含点C 和点P )最高点与最低点的纵坐标之差为h .①求h 关于m 的函数解析式,并写出自变量m 的取值范围;②当9h =时,直接写出BCP ∆的面积.16.(2019·吉林初三开学考试)教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在ABC ∆中,,D E 分别是边,BC AB 的中点,,AD CE 相交于点G ,求证:13GEGDCE AD ==,证明:连结ED .请根据教材提示,结合图①,写出完整的证明过程.结论应用:在ABCD 中,对角线AC BD 、交于点O ,E 为边BC 的中点,AE 、BD 交于点F .(1)如图②,若ABCD 为正方形,且6AB =,则OF 的长为 . (2)如图③,连结DE 交AC 于点G ,若四边形OFEG 的面积为12,则ABCD的面积为 .17.(2019·广东初三期中)如图,在平面直角坐标系中,矩形ABCD 的边AB 在x 轴上,AB 、BC 的长分别是一元二次方程27120x x -+=的两个根()BC AB >,2OA OB =,边CD 交y 轴于点E ,动点P 以每秒1个单位长度的速度,从点E 出发沿折线段ED DA -向点A 运动,运动的时间为(06)t t ≤≤秒,设BOP ∆与矩形AOED 重叠部分的面积为S .(1)求点D 的坐标;(2)求S 关于t 的函数关系式,并写出自变量的取值范围;(3)在点P 的运动过程中,是否存在P ,使BEP ∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.18.(2019·黑龙江中考真题)如图,抛物线2y x bx c =++的对称轴为直线x =2,抛物线与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(-1,0).(1)求抛物线的函数表达式;(2)将抛物线2y x bx c =++图象x 轴下方部分沿x 轴向上翻折,保留抛物线在x 轴上的点和x 轴上方图象,得到的新图象与直线y =t 恒有四个交点,从左到右四个交点依次记为D ,E ,F ,G .当以EF 为直径的圆过点Q (2,1)时,求t 的值;(3)在抛物线2y x bx c =++上,当m ≤x ≤n 时,y 的取值范围是m ≤y ≤7,请直接写出x的取值范围.19.(2019·黑龙江中考真题).已知:在矩形ABCD 中,BD 是对角线,AE BD ⊥于点E ,CF BD ⊥于点F ;(1)如图1,求证:AE CF =;(2)如图2,当30ADB ∠=︒时,连接AF .CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.20.(2019·黑龙江中考真题)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?21.(2020·上海初三专题练习)如图1,AD 、BD 分别是△ABC 的内角∠BAC 、∠ABC 的平分线,过点A 作AE 上AD ,交BD 的延长线于点E.(1)求证:∠E =12∠C ;(2)如图2,如果AE =AB ,且BD :DE =2:3,求cos ∠ABC 的值;(3)如果∠ABC 是锐角,且△ABC 与△ADE 相似,求∠ABC 的度数,并直接写出ADE ABC S S 的值.22.(2019·江苏中考真题)如图①,抛物线2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知ABC ∆的面积为6.(1)求a 的值;(2)求ABC ∆外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,点Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,QPB ∆的面积为2d ,且PAQ AQB ∠=∠,求点Q 的坐标.23.(2020·江苏初三专题练习)如图1,在矩形ABCD 中,BC=3,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作PAB ∆关于直线PA 的对称'PAB ∆,设点P 的运动时间为()t s(1)若AB =①如图2,当点B’落在AC 上时,显然△PCB’是直角三角形,求此时t 的值②是否存在异于图2的时刻,使得△PCB’是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由(2)当P 点不与C 点重合时,若直线PB’与直线CD 相交于点M ,且当t <3时存在某一时刻有结论∠PAM=45°成立,试探究:对于t >3的任意时刻,结论∠PAM=45°是否总是成立?请说明理由.24.(2019·江苏中考真题)如图,抛物线2y x bx c =++交x 轴于A 、B 两点,其中点A 坐标为()1,0,与y 轴交于点()0,3C -.(1)求抛物线的函数表达式;(2)如图①,连接AC ,点P 在抛物线上,且满足2PAB ACO ∠=∠.求点P 的坐标; (3)如图②,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM DN +是否为定值?如果是,请求出这个定值;如果不是,请说明理由.25.(2019·浙江初二期中)如图,已知等边△ABC 的边长为8,点P 是AB 边上的一个动点(与点A 、B 不重合),直线l 是经过点P 的一条直线,把△ABC 沿直线l 折叠,点B 的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC 边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l //AC ,则BB’的长度为 ;(3)如图3,点P 在AB 边上运动过程中,若直线l 始终垂直于AC ,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l 变化过程中,求△ACB’面积的最大值.26.(2020·江苏初三专题练习)问题情境:如图1,在正方形ABCD 中,E 为边BC 上一点(不与点B 、C 重合),垂直于AE 的一条直线MN 分别交AB 、AE 、CD 于点M 、P 、N .判断线段DN 、MB 、EC 之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上,(1)如图2,若垂足P 恰好为AE 的中点,连接BD ,交MN 于点Q ,连接EQ ,并延长交边AD 于点F .求∠AEF 的度数;(2)如图3,当垂足P 在正方形ABCD 的对角线BD 上时,连接AN ,将△APN 沿着AN 翻折,点P 落在点P'处.若正方形ABCD 的边长为4 ,AD 的中点为S ,求P'S 的最小值.问题拓展:如图4,在边长为4的正方形ABCD 中,点M 、N 分别为边AB 、CD 上的点,将正方形ABCD 沿着MN 翻折,使得BC 的对应边B'C '恰好经过点A ,C'N 交AD 于点F .分别过点A 、F 作AG ⊥MN ,FH ⊥MN ,垂足分别为G 、H .若AG =52,请直接写出FH 的长.27.(2019·江苏中考真题)如图所示・二次函数()212y k x =-+的图像与一次函数2y kx k =-+的图像交于A 、B 两点,点B 在点A 的右侧,直线AB 分别与x 、y 轴交于C 、D 两点,其中k 0<.(1)求A 、B 两点的横坐标;(2)若OAB 是以OA 为腰的等腰三角形,求k 的值;(3)二次函数图像的对称轴与x 轴交于点E ,是否存在实数k ,使得2ODC BEC ∠=∠,若存在,求出k 的值;若不存在,说明理由.28.(2019·浙江中考真题)如图,矩形ABCD 中,AB a =,BC b =,点,M N 分别在边AB ,CD 上,点,E F 分别在BC ,AD 上,MN ,EF 交于点P ,记:k M N E F =.(1)若:a b 的值是1,当MN EF ⊥时,求k 的值.(2)若:a b 的值是12,求k 的最大值和最小值.(3)若k 的值是3,当点N 是矩形的顶点,60MPE ∠=︒,3MP EF PE ==时,求:a b 的值.29.(2019·浙江中考真题)如图,已知锐角ABC △内接于⊙O , OD BC ^于点D ,连结AO.⑴若60BAC ∠=︒.①求证:12OD OA =;②当1OA =时,求ABC △面积的最大值;⑵点E 在线段OA 上,OE OD =,连接DE ,设A B C m O E D ??,ACB n OED ??(m 、n 是正数),若ABC ACB ??,求证:20m n -+=30.(2019·浙江中考真题)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是矩形点,A C 分别在x 轴和y 轴的正半轴上,连结AC ,3OA =,an t OAC =∠,D 是BC 的中点.(1)求OC 的长和点D 的坐标;(2)如图2,M 是线段OC 上的点,OM OC =,点P 是线段OM 上的一个动点,经过,,P D B 三点的抛物线交x 轴的正半轴于点E ,连结DE 交AB 于点F①将DBF ∆沿DE 所在的直线翻折,若点B 恰好落在AC 上,求此时BF 的长和点E 的坐标;②以线段DF 为边,在DF 所在直线的右上方作等边DFG ∆,当动点P 从点O 运动到点M 时,点G 也随之运动,请直接写出点G 运动路径的长.31.(2020·浙江初三专题练习)如图,在平面直角坐标系中,直线142y x =-+分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某点Q 1向终点Q 2匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长;(2)设点Q 2为(m ,n),当17nm =tan ∠EOF 时,求点Q 2的坐标;(3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合. ①延长AD 交直线BC 于点Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q =s ,AP =t ,求s 关于t 的函数表达式.②当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.32.(2019·浙江中考真题)如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DE AC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD 的长.(2)若点M 是线段AD 的中点,求EFDF 的值.(3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得60CPG ∠=︒?33.(2019·浙江中考真题)如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是BA 延长线上的一点,连接PC 交AD 于点F ,AP FD =.(1)求AFAP 的值;(2)如图1,连接EC ,在线段EC 上取一点M ,使EM EB =,连接MF ,求证:MF PF =;(3)如图2,过点E 作EN CD ⊥于点N ,在线段EN 上取一点Q ,使AQ AP =,连接BQ ,BN .将A Q B ∆绕点A 旋转,使点Q 旋转后的对应点'Q 落在边AD 上.请判断点B 旋转后的对应点'B 是否落在线段BN 上,并说明理由.34.(2019·浙江中考真题)如图1,O 经过等边ABC ∆的顶点A ,C (圆心O 在ABC ∆内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =时,求AE 的长。

2019中考数学压轴题精编(含参考答案与试题解析共300页)

2019中考数学压轴题精编(含参考答案与试题解析共300页)

2019中考数学压轴题精编(含参考答案与试题解析共300页)中考数学压轴题精选(共120题,共两部分:前一部分为试题+参考答案与试题解析,后一部分为纯试题汇编)第一部分1.(2014•黔南州)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l 与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.考点:二次函数综合题.专题:压轴题.分析:(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标.解答:解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(3分)(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,∴抛物线的对称轴l与⊙C相交.(7分)(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;(8分)设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).(10分)点评:此题考查了二次函数解析式的确定、相似三角形的判定和性质、直线与圆的位置关系、图形面积的求法等知识.2.(2014•巴中)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0)和点B,与y 轴交于点C,直线x=1是该抛物线的对称轴.(1)求抛物线的解析式;(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值.考点:二次函数综合题.分析:(1)根据抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,得到方程组,解方程组即可求出抛物线的解析式;(2)由于点M到达抛物线的对称轴时需要3秒,所以t≤3,又当点M到达原点时需要2秒,且此时点H 立刻掉头,所以可分两种情况进行讨论:①当0<t≤2时,由△AMP∽△AOC,得出比例式,求出PM,AH,根据三角形的面积公式求出即可;②当2<t≤3时,过点P作PM⊥x轴于M,PF⊥y轴于点F,表示出三角形APH的面积,利用配方法求出最值即可.解答:解:(1)∵抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,∴,解得:,∴抛物线的解析式是:y=x2﹣x﹣4,(2)分两种情况:①当0<t≤2时,∵PM∥OC,∴△AMP∽△AOC,∴=,即=,∴PM=2t.解方程x2﹣x﹣4=0,得x1=﹣2,x2=4,∵A(﹣2,0),∴B(4,0),∴AB=4﹣(﹣2)=6.∵AH=AB﹣BH=6﹣t,∴S=PM•AH=×2t(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9,当t=2时S的最大值为8;②当2<t≤3时,过点P作PM⊥x轴于M,作PF⊥y轴于点F,则△COB∽△CFP,又∵CO=OB,∴FP=FC=t﹣2,PM=4﹣(t﹣2)=6﹣t,AH=4+(t﹣2)=t+1,∴S=PM•AH=(6﹣t)(t+1)=﹣t2+4t+3=﹣(t﹣)2+,当t=时,S最大值为.综上所述,点M的运动时间t与△APQ面积S的函数关系式是S=,S的最大值为.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,三角形的面积,二次函数的最值等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键..3.(2014•潍坊)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.考点:二次函数综合题.分析:(1)先把C(0,4)代入y=ax2+bx+c,得出c=4①,再由抛物线的对称轴x=﹣=1,得到b=﹣2a②,抛物线过点A(﹣2,0),得到0=4a﹣2b+c③,然后由①②③可解得,a=﹣,b=1,c=4,即可求出抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F 的坐标为(t,﹣t2+t+4),则FH=﹣t2+t+4,FG=t,先根据三角形的面积公式求出S△OBF=OB•FH=﹣t2+2t+8,S△OFC=OC•FG=2t,再由S四边形ABFC=S△AOC+S△OBF+S△OFC,得到S四边形ABFC=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,由△=(﹣4)2﹣4×5=﹣4<0,得出方程t2﹣4t+5=0无解,即不存在满足条件的点F;(3)先运用待定系数法求出直线BC的解析式为y=﹣x+4,再求出抛物线y=﹣x2+x+4的顶点D(1,),由点E在直线BC上,得到点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).分两种情况进行讨论:①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,解方程﹣m2+2m=,求出m的值,得到P1(3,1);②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,解方程m2﹣2m=,求出m的值,得到P2(2+,2﹣),P3(2﹣,2+).解答:解:(1)∵抛物线y=ax2+bx+c(a≠0)过点C(0,4),∴c=4 ①.∵对称轴x=﹣=1,∴b=﹣2a ②.∵抛物线过点A(﹣2,0),∴0=4a﹣2b+c ③,由①②③解得,a=﹣,b=1,c=4,∴抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),其中0<t<4,则FH=﹣t2+t+4,FG=t,∴S△OBF=OB•FH=×4×(﹣t2+t+4)=﹣t2+2t+8,S△OFC=OC•FG=×4×t=2t,∴S四边形ABFC=S△AOC+S△OBF+S△OFC=4﹣t2+2t+8+2t=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,则△=(﹣4)2﹣4×5=﹣4<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F;(3)设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),∴,解得,∴直线BC的解析式为y=﹣x+4.由y=﹣x2+x+4=﹣(x﹣1)2+,∴顶点D(1,),又点E在直线BC上,则点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,由﹣m2+2m=,解得:m=1或3.当m=1时,线段PQ与DE重合,m=1舍去,∴m=3,P1(3,1).②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,由m2﹣2m=,解得m=2±,经检验适合题意,此时P2(2+,2﹣),P3(2﹣,2+).综上所述,满足题意的点P有三个,分别是P1(3,1),P2(2+,2﹣),P3(2﹣,2+).点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数、一次函数的解析式,四边形的面积,平行四边形的判定等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.4.(2014•重庆)如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标;(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM 的面积最大时,求△BPN的周长;(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.考点:二次函数综合题.分析:(1)依据抛物线的解析式直接求得C的坐标,令y=0解方程即可求得A、B点的坐标;(2)△BCM的面积最大,则过点M作直线L∥BC,直线L应与抛物线相切,即只有一个交点,设直线L 的解析式为y=﹣x+b,则﹣x2+2x+3=﹣x+b的,△=9﹣4b+12=0求得b的值,从而求得三角形的三边长,求得周长;(3)分三种情况:①当∠CQN=90°时;②当∠CNQ=90°时;③当∠NCQ=90°时;讨论求解.解答:解:(1)由抛物线的解析式y=﹣x2+2x+3,∴C(0,3),令y=0,﹣x2+2x+3=0,解得x=3或x=﹣1;∴A(﹣1,0),B(3,0).(2)过点M作直线L∥BC,当与抛物线相切时,三角形BCM的面积最大,∵直线BC的解析式为y=﹣x+3,设直线L的解析式为y=﹣x+b,则﹣x2+2x+3=﹣x+b,只有一个解,整理得x2﹣3x+b﹣3=0,∴△=9﹣4b+12=0,解得b=,代入﹣x2+2x+3=﹣x+b,解得x=,把x=代入y=﹣x2+2x+3,M(,),代入直线BCy=﹣x+3,则P(,),N(,0),∴BN=,PN=,PB=,∴C△BCN=BN+PN+PB=3+.(3)作抛物线的对称轴x=1,设Q(1,h),①∠CQN=90°时,则CN2=CQ2+QN2,∴32+32=22+h2+12+(h﹣3)2,整理得h2﹣6h﹣2=0,解得:h=或,∴Q(1,)或Q(1,);②当∠CNQ=90°时,则Q点应在x轴的下方,∴CQ2=CN2+QN2,∴12+(3﹣h)2=22+h2+32+32,解得h=﹣2,∴Q(1,﹣2);③当∠NCQ=90°时,则Q应在x轴的上方,∴NQ2=CQ2+CN2h2+22=12+(h﹣3)2+32+32,解得h=4,∴Q(1,4).点评:此题考查了二次函数与坐标轴的交点的性质、三角形面积的确定、二次函数的应用等知识,难度较大.二次函数这部分经常利用数形结合以及分类讨论思想相结合,综合性较强注意不要漏解.5.(2014•福州)如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.考点:二次函数综合题.分析:(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P的坐标,并进而求出点Q的坐标.解答:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).此时点Q坐标为(3,1)或(,).点评:本题是二次函数压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE 为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意解答中求EP2最小值的具体方法.6.(2014•济宁)如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM 是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)首先求出对称点A′的坐标,然后代入抛物线解析式,即可判定点A′是否在抛物线上.本问关键在于求出A′的坐标.如答图所示,作辅助线,构造一对相似三角形Rt△A′EA∽Rt△OAC,利用相似关系、对称性质、勾股定理,求出对称点A′的坐标;(3)本问为存在型问题.解题要点是利用平行四边形的定义,列出代数关系式求解.如答图所示,平行四边形的对边平行且相等,因此PM=AC=10;利用含未知数的代数式表示出PM的长度,然后列方程求解.解答:解:(1)∵y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,∴,解得.∴抛物线的解析式为y=x2﹣x﹣.(2)如答图所示,过点A′作A′E⊥x轴于E,AA′与OC交于点D,∵点C在直线y=2x上,∴C(5,10)∵点A和A′关于直线y=2x对称,∴OC⊥AA′,A′D=AD.∵OA=5,AC=10,∴OC===.∵S△OAC=OC•AD=OA•AC,∴AD=.∴AA′=,在Rt△A′EA和Rt△OAC中,∵∠A′AE+∠A′AC=90°,∠ACD+∠A′AC=90°,∴∠A′AE=∠ACD.又∵∠A′EA=∠OAC=90°,∴Rt△A′EA∽Rt△OAC.∴,即.∴A′E=4,AE=8.∴OE=AE﹣OA=3.∴点A′的坐标为(﹣3,4),当x=﹣3时,y=×(﹣3)2+3﹣=4.所以,点A′在该抛物线上.(3)存在.理由:设直线CA′的解析式为y=kx+b,则,解得∴直线CA′的解析式为y=x+…(9分)设点P的坐标为(x,x2﹣x﹣),则点M为(x,x+).∵PM∥AC,∴要使四边形PACM是平行四边形,只需PM=AC.又点M在点P的上方,∴(x+)﹣(x2﹣x﹣)=10.解得x1=2,x2=5(不合题意,舍去)当x=2时,y=﹣.∴当点P运动到(2,﹣)时,四边形PACM是平行四边形.点评:本题是二次函数的综合题型,考查了二次函数的图象及性质、待定系数法、相似、平行四边形、勾股定理、对称等知识点,涉及考点较多,有一定的难度.第(2)问的要点是求对称点A′的坐标,第(3)问的要点是利用平行四边形的定义列方程求解.7.(2014•泰安)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.考点:二次函数综合题.分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式;(2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解;(3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.解答:解:(1)由题设可知A(0,1),B(﹣3,),根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MN、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=﹣1,故当N(﹣1,4)时,MN和NC互相垂直平分.点评:本题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用,利用二次函数的性质可以解决实际问题中求最大值或最小值问题.8.(2014•泸州)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG 的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.考点:二次函数综合题.分析:(1)首先利用待定系数法求出二次函数解析式,然后求出其最大值;(2)联立y1与y2得,求出点C的坐标为C(,),因此使y2>y1成立的x的取值范围为0<x<,得s=1+2+3=6;将s的值代入分式方程,求出a的值;(3)第1步:首先确定何时四边形DEFG的面积最大.如答图1,四边形DEFG是一个梯形,将其面积用含有未知数的代数式表示出来,这个代数式是一个二次函数,根据其最值求出未知数的值,进而得到面积最大时点D、E的坐标;第2步:利用几何性质确定PD+PE最小的条件,并求出点P的坐标.如答图2,作点D关于x轴的对称点D′,连接D′E,与x轴交于点P.根据轴对称及两点之间线段最短可知,此时PD+PE最小.利用待定系数法求出直线D′E的解析式,进而求出点P的坐标.解答:解:(1)∵二次函数y2=﹣x2+mx+b经过点B(0,1)与A(2﹣,0),∴,解得∴l:y1=x+1;C′:y2=﹣x2+4x+1.y2=﹣x2+4x+1=﹣(x﹣2)2+5,∴y max=5;(2)联立y1与y2得:x+1=﹣x2+4x+1,解得x=0或x=,当x=时,y1=×+1=,∴C(,).使y2>y1成立的x的取值范围为0<x<,∴s=1+2+3=6.代入方程得解得a=;(3)∵点D、E在直线l:y1=x+1上,∴设D(p,p+1),E(q,q+1),其中q>p>0.如答图1,过点E作EH⊥DG于点H,则EH=q﹣p,DH=(q﹣p).在Rt△DEH中,由勾股定理得:DE2+DH2=DE2,即(q﹣p)2+[(q﹣p)]2=()2,解得q﹣p=2,即q=p+2.∴EH=2,E(p+2,p+2).当x=p时,y2=﹣p2+4p+1,∴G(p,﹣p2+4p+1),∴DG=(﹣p2+4p+1)﹣(p+1)=﹣p2+p;当x=p+2时,y2=﹣(p+2)2+4(p+2)+1=﹣p2+5,∴F(p+2,﹣p2+5)∴EF=(﹣p2+5)﹣(p+2)=﹣p2﹣p+3.S四边形DEFG=(DG+EF)•EH=[(﹣p2+p)+(﹣p2﹣p+3)]×2=﹣2p2+3p+3∴当p=时,四边形DEFG的面积取得最大值,∴D(,)、E(,).如答图2所示,过点D关于x轴的对称点D′,则D′(,﹣);连接D′E,交x轴于点P,PD+PE=PD′+PE=D′E,由两点之间线段最短可知,此时PD+PE最小.设直线D′E的解析式为:y=kx+b,则有,解得∴直线D′E的解析式为:y=x﹣.令y=0,得x=,∴P(,0).点评:本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、待定系数法、函数最值、分式方程的解、勾股定理、轴对称﹣最短路线等知识点,涉及考点众多,难度较大.本题难点在于第(3)问,涉及两个最值问题,第1个最值问题利用二次函数解决,第2个最值问题利用几何性质解决.9.(2014•益阳)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.考点:二次函数综合题.分析:(1)先求出直线y=﹣3x+3与x轴交点A,与y轴交点B的坐标,再将A、B两点坐标代入y=a(x﹣2)2+k,得到关于a,k的二元一次方程组,解方程组即可求解;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF 与Rt△BQE中,用勾股定理分别表示出AQ2=AF2+QF2=1+m2,BQ2=BE2+EQ2=4+(3﹣m)2,由AQ=BQ,得到方程1+m2=4+(3﹣m)2,解方程求出m=2,即可求得Q点的坐标;(3)当点N在对称轴上时,由NC与AC不垂直,得出AC为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,此时,MF=NF=AF=CF=1,且AC⊥MN,则四边形AMCN为正方形,在Rt△AFN中根据勾股定理即可求出正方形的边长.解答:解:(1)∵直线y=﹣3x+3与x轴、y轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线抛物线y=a(x﹣2)2+k经过点A(1,0),B(0,3),∴,解得,故a,k的值分别为1,﹣1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+(3﹣m)2,∵AQ=BQ,∴1+m2=4+(3﹣m)2,∴m=2,∴Q点的坐标为(2,2);(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.又∵对称轴x=2是AC的中垂线,∴M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,其坐标为(2,1).此时,MF=NF=AF=CF=1,且AC⊥MN,∴四边形AMCN为正方形.在Rt△AFN中,AN==,即正方形的边长为.点评:本题是二次函数的综合题型,其中涉及到的知识点有二元一次方程组的解法,等腰三角形的性质,勾股定理,二次函数的性质,正方形的判定与性质,综合性较强,难度适中.10.(2014•兰州)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.考点:二次函数综合题.分析:(1)由待定系数法建立二元一次方程组求出求出m、n的值即可;(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD的值,再以点C为圆心,CD为半径作弧交对称轴于P1,以点D为圆心CD为半径作圆交对称轴于点P2,P3,作CE垂直于对称轴与点E,由等腰三角形的性质及勾股定理就可以求出结论;(3)先求出BC的解析式,设出E点的坐标为(a,﹣a+2),就可以表示出F的坐标,由四边形CDBF 的面积=S△BCD+S△CEF+S△BEF求出S与a的关系式,由二次函数的性质就可以求出结论.解答:解:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤x≤4).=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1).点评:本题考查了待定系数法求一次函数的解析式的运用,二次函数的解析式的运用,勾股定理的运用,等腰三角形的性质的运用,四边形的面积的运用,解答时求出函数的解析式是关键.11.(2014•钦州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)将A(1,0),B(0,4)代入y=﹣x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)由E(m,0),B(0,4),得出P(m,﹣m2﹣m+4),G(m,4),则PG=﹣m2﹣m+4﹣4=﹣m2﹣m;(3)先由抛物线的解析式求出D(﹣3,0),则当点P在直线BC上方时,﹣3<m<0.再运用待定系数法求出直线BD的解析式为y=x+4,于是得出H(m,m+4).当以P、B、G为顶点的三角形与△DEH相似时,由于∠PGB=∠DEH=90°,所以分两种情况进行讨论:①△BGP∽△DEH;②△PGB∽△DEH.都可以根据相似三角形对应边成比例列出比例关系式,进而求出m的值.解答:解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1,0),与y轴交于点B(0,4),∴,解得,∴抛物线的解析式为y=﹣x2﹣x+4;(2)∵E(m,0),B(0,4),PE⊥x轴交抛物线于点P,交BC于点G,∴P(m,﹣m2﹣m+4),G(m,4),∴PG=﹣m2﹣m+4﹣4=﹣m2﹣m;(3)在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似.∵y=﹣x2﹣x+4,∴当y=0时,﹣x2﹣x+4=0,解得x=1或﹣3,∴D(﹣3,0).当点P在直线BC上方时,﹣3<m<0.设直线BD的解析式为y=kx+4,将D(﹣3,0)代入,得﹣3k+4=0,解得k=,∴直线BD的解析式为y=x+4,∴H(m,m+4).分两种情况:①如果△BGP∽△DEH,那么=,即=,由﹣3<m<0,解得m=﹣1;②如果△PGB∽△DEH,那么=,即=,由﹣3<m<0,解得m=﹣.综上所述,在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或﹣.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数、一次函数的解析式,线段的表示,相似三角形的性质等知识,综合性较强,难度适中.运用数形结合、方程思想及分类讨论是解题的关键.12.(2014•贵港)如图,抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),连接BC.(1)求该抛物线的解析式和对称轴,并写出线段BC的中点坐标;(2)将线段BC先向左平移2个单位长度,在向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,求此时点C1的坐标和m的值;(3)若点P是该抛物线上的动点,点Q是该抛物线对称轴上的动点,当以P,Q,B,C四点为顶点的四边形是平行四边形时,求此时点P的坐标.考点:二次函数综合题.分析:(1)把点A(﹣1,0)和点C(0,2)的坐标代入所给抛物线可得a、b的值,进而得到该抛物线的解析式和对称轴,再求出点B的坐标,根据中点坐标公式求出线段BC的中点坐标即可;(2)根据平移的性质可知,点C的对应点C1的横坐标为﹣2,再代入抛物线可求点C1的坐标,进一步得到m的值;(3)B、C为定点,可分BC为平行四边形的一边及对角线两种情况探讨得到点P的坐标.解答:解:(1)∵抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),∴,解得.∴抛物线的解析式为y=﹣x2+x+2=﹣(x﹣1)2+2,∴对称轴是x=1,∵1+(1+1)=3,∴B点坐标为(3,0),∴BC的中点坐标为(1.5,1);(2)∵线段BC先向左平移2个单位长度,再向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,∴点C1的横坐标为﹣2,当x=﹣2时,y=﹣×(﹣2)2+×(﹣2)+2=﹣,∴点C1的坐标为(﹣2,﹣),m=2﹣(﹣)=5;(3)①若BC为平行四边形的一边,∵BC的横坐标的差为3,∵点Q的横坐标为1,∴P的横坐标为4或﹣2,∵P在抛物线上,∴P的纵坐标为﹣3,∴P1(4,﹣3),P2(﹣2,﹣3);②若BC为平行四边形的对角线,则BC与PQ互相平分,∵点Q的横坐标为1,BC的中点坐标为(1.5,1),∴P点的横坐标为1.5+(1.5﹣1)=2,∴P的纵坐标为﹣×22+×2+2=2,∴P3(2,2).综上所述,点P的坐标为:P1(4,﹣3),P2(﹣2,﹣3),P3(2,2).点评:考查了二次函数综合题,涉及待定系数法求函数解析式,抛物线的对称轴,中点坐标公式,平移的性质,平行四边形的性质,注意分BC为平行四边形的一边或为对角线两种情况进行探讨.13.(2014•厦门)如图,已知c<0,抛物线y=x2+bx+c与x轴交于A(x1,0),B(x2,0)两点(x2>x1),与y 轴交于点C.(1)若x2=1,BC=,求函数y=x2+bx+c的最小值;(2)过点A作AP⊥BC,垂足为P(点P在线段BC上),AP交y轴于点M.若=2,求抛物线y=x2+bx+c顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.考点:二次函数综合题.分析:(1)根据勾股定理求得C点的坐标,把B、C点坐标代入y=x2+bx+c即可求得解析式,转化成顶点式即可.(2)根据△AOM∽△COB,得到OC=2OB,即:﹣c=2x2;利用x22+bx2+c=0,求得c=2b﹣4;将此关系式代入抛物线的顶点坐标,即可求得所求之关系式.解答:解:(1)∵x2=1,BC=,∴OC==2,∴C(0,﹣2),把B(1,0),C(0,﹣2)代入y=x2+bx+c,得:0=1+b﹣2,解得:b=1,∴抛物线的解析式为:y=x2+x+﹣2.转化为y=(x+)2﹣;∴函数y=x2+bx+c的最小值为﹣.(2)∵∠OAM+∠OBC=90°,∠OCB+∠OBC=90°,∴∠OAM=∠OCB,又∵∠AOM=∠BOC=90°,∴△AOM∽△COB,∴,∴OC=•OB=2OB,∴﹣c=2x2,即x2=﹣.∵x22+bx2+c=0,将x2=﹣代入化简得:c=2b﹣4.抛物线的解析式为:y=x2+bx+c,其顶点坐标为(﹣,).令x=﹣,则b=﹣2x.y==c﹣=2b﹣4﹣=﹣4x﹣4﹣x2,∴顶点的纵坐标随横坐标变化的函数解析式为:y=﹣x2﹣4x﹣4(x>﹣).点评:本题考查了勾股定理、待定系数法求解析式、三角形相似的判定及性质以及抛物线的顶点坐标的求法等.14.(2014•重庆)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC 交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.考点:二次函数综合题.分析:(1)通过解析式即可得出C点坐标,令y=0,解方程得出方程的解,即可求得A、B的坐标.(2)设M点横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,矩形PMNQ的周长d=﹣2m2﹣8m+2,将﹣2m2﹣8m+2配方,根据二次函数的性质,即可得出m的值,然后求得直线AC的解析式,把x=m代入可以求得三角形的边长,从而求得三角形的面积.(3)设F(n,﹣n2﹣2n+3),根据已知若FG=2DQ,即可求得.解答:解:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3),令y=0,则0=﹣x2﹣2x+3,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1,设M点的横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2=﹣2(m+2)2+10,∴当m=﹣2时矩形的周长最大.∵A(﹣3,0),C(0,3),设直线AC解析式为;y=kx+b,解得k=1,b=3,∴解析式y=x+3,当x=﹣2时,则E(﹣2,1),∴EM=1,AM=1,∴S=•AM•EM=.(3)∵M点的横坐标为﹣2,抛物线的对称轴为x=﹣1,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4)∴DQ=DC=,∵FC=2DQ,∴FG=4,设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方,∴(n+3)﹣(﹣n2﹣2n+3)=4,解得:n=﹣4或n=1.∴F(﹣4,﹣5)或(1,0).点评:本题考查了二次函数与坐标轴的交点的求法,矩形的性质,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.15.(2014•德州)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.。

2019年全国中考数学真题精选分类汇编:压轴题+含答案解析

2019年全国中考数学真题精选分类汇编:压轴题+含答案解析

2019年全国中考数学真题精选分类汇编:压轴题含答案解析1.(2019•北京)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E 分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2.(2019•上海)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.3.(2019•广州)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.4.(2019•深圳)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标(直接写出);②求的最大值.5.(2019•武汉)在△ABC中,∠ABC=90°,=n,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:=.②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)6.(2019•武汉)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.7.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.8.(2019•天津)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.9.(2019•天津)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5时,求t的取值范围(直接写出结果即可).10.(2019•成都)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.11.(2019•安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.12.(2019•长沙)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.13.(2019•苏州)如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.14.(2019•青岛)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE ⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.15.(2019•枣庄)已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求点M的坐标.16.(2019•陕西)问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)17.(2019•恩施州)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.18.(2019•黄冈)如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△P AM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.19.(2019•朝阳)如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y=﹣2x2+bx+c过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当EF=BF时,求sin∠EBA的值.(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.20.(2019•连云港)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P 落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=,请直接写出FH的长.21.(2019•衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC 于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?22.(2019•鞍山)在平面直角坐标系中,过点A(3,4)的抛物线y=ax2+bx+4与x轴交于点B(﹣1,0),与y轴交于点C,过点A作AD⊥x轴于点D.(1)求抛物线的解析式.(2)如图1,点P是直线AB上方抛物线上的一个动点,连接PD交AB于点Q,连接AP,当S△AQD =2S△APQ时,求点P的坐标.(3)如图2,G是线段OC上一个动点,连接DG,过点G作GM⊥DG交AC于点M,过点M作射线MN,使∠NMG=60°,交射线GD于点N;过点G作GH⊥MN,垂足为点H,连接BH.请直接写出线段BH的最小值.2019年全国中考数学真题精选分类汇编:压轴题含答案解析参考答案与试题解析一.解答题(共22小题)1.(2019•北京)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E 分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE为直径的半圆,的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,①当t=时,要注意圆心P在DE 上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.【解答】解:(1)如图2,以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC=,D,E分别是AB,AC的中点,∴BC===4,DE=BC=×4=2,∴弧=×2π=π;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE垂直平分线FP,作EG⊥AC交FP于G,①当t=时,C(2,0),∴D(0,1),E(1,1),F(,1),设P(,m)由三角形中内弧定义可知,圆心在线段DE上方射线FP上均可,∴m≥1,∵OA=OC,∠AOC=90°∴∠ACO=45°,∵DE∥OC∴∠AED=∠ACO=45°作EG⊥AC交直线FP于G,FG=EF=根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;∴m≤综上所述,m≤或m≥1.②如图4,设圆心P在AC上,∵P在DE中垂线上,∴P为AE中点,作PM⊥OC于M,则PM=,∴P(t,),∵DE∥BC∴∠ADE=∠AOB=90°∴AE===,∵PD=PE,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP∴AP=PD=PE=AE由三角形中内弧定义知,PD≤PM∴AE≤,AE≤3,即≤3,解得:t≤,∵t>0∴0<t≤.如图5,设圆心P在BC上,则P(t,0)PD=PE==,PC=3t,CE=AC==由三角形中内弧定义知,∠PEC<90°,∴PE2+CE2≥PC2即+≥(3t)2,∵t>0∴0<t≤;综上所述,t的取值范围为:0<t≤.【点评】此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.2.(2019•上海)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.【分析】(1)由题意:∠E=90°﹣∠ADE,证明∠ADE=90°﹣∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,=,由BD:DE=2:3,可得cos∠ABC===.(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【解答】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=(∠ABC+∠BAC)=90°﹣∠C,∴∠E=90°﹣(90°﹣∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,=,∵BD:DE=2:3,∴cos∠ABC===.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时=2﹣.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时=2﹣.综上所述,∠ABC=30°或45°,=2﹣或2﹣.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.3.(2019•广州)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.【分析】(1)抛物线有最低点即开口向上,m>0,用配方法或公式法求得对称轴和函数最小值.(2)写出抛物线G的顶点式,根据平移规律即得到抛物线G1的顶点式,进而得到抛物线G1顶点坐标(m+1,﹣m﹣3),即x=m+1,y=﹣m﹣3,x+y=﹣2即消去m,得到y与x的函数关系式.再由m>0,即求得x的取值范围.(3)法一:求出抛物线恒过点B(2,﹣4),函数H图象恒过点A(2,﹣3),由图象可知两图象交点P应在点A、B之间,即点P纵坐标在A、B纵坐标之间.法二:联立函数H解析式与抛物线解析式组成方程组,整理得到用x表示m的式子.由x与m的范围讨论x的具体范围,即求得函数H对应的交点P纵坐标的范围.【解答】解:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3∴抛物线G1顶点坐标为(m+1,﹣m﹣3)∴x=m+1,y=﹣m﹣3∴x+y=m+1﹣m﹣3=﹣2即x+y=﹣2,变形得y=﹣x﹣2∵m>0,m=x﹣1∴x﹣1>0∴x>1∴y与x的函数关系式为y=﹣x﹣2(x>1)(3)法一:如图,函数H:y=﹣x﹣2(x>1)图象为射线x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4∴函数H的图象恒过点B(2,﹣4)∵抛物线G:y=m(x﹣1)2﹣m﹣3x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3∴抛物线G恒过点A(2,﹣3)由图象可知,若抛物线与函数H的图象有交点P,则y B<y P<y A∴点P纵坐标的取值范围为﹣4<y P<﹣3法二:整理的:m(x2﹣2x)=1﹣x∵x>1,且x=2时,方程为0=﹣1不成立∴x≠2,即x2﹣2x=x(x﹣2)≠0∴m=>0∵x>1∴1﹣x<0∴x(x﹣2)<0∴x﹣2<0∴x<2即1<x<2∵y P=﹣x﹣2∴﹣4<y P<﹣3【点评】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.4.(2019•深圳)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标,F2(5,0)(直接写出);②求的最大值.【分析】(1)连接ED,证明∠EDO=90°即可,可通过半径相等得到∠EDB=∠EBD,根据直角三角形斜边上中线等于斜边一半得DO=BO=AO,∠ODB=∠OBD,得证;(2)①分两种情况:a)F位于线段AB上,b)F位于BA的延长线上;过F作AC的垂线,构造相似三角形,应用相似三角形性质可求得点F坐标;②应用相似三角形性质和三角函数值表示出=,令y=CG2(64﹣CG2)=﹣(CG2﹣32)2+322,应用二次函数最值可得到结论.【解答】解:(1)证明:如图1,连接DE,∵BC为圆的直径,∴∠BDC=90°,∴∠BDA=90°∵OA=OB∴OD=OB=OA∴∠OBD=∠ODB∵EB=ED∴∠EBD=∠EDB∴EBD+∠OBD=∠EDB+∠ODB即:∠EBO=∠EDO∵CB⊥x轴∴∠EBO=90°∴∠EDO=90°∵点D在⊙E上∴直线OD为⊙E的切线.(2)①如图2,当F位于AB上时,过F作F1N⊥AC于N,∵F1N⊥AC∴∠ANF1=∠ABC=90°∴△ANF∽△ABC∴∵AB=6,BC=8,∴AC===10,即AB:BC:AC=6:8:10=3:4:5∴设AN=3k,则NF1=4k,AF1=5k∴CN=CA﹣AN=10﹣3k∴tan∠ACF===,解得:k=∴即F1(,0)如图3,当F位于BA的延长线上时,过F2作F2M⊥CA于M,∵△AMF2∽△ABC∴设AM=3k,则MF2=4k,AF2=5k∴CM=CA+AM=10+3k∴tan∠ACF=解得:∴AF2=5k=2OF2=3+2=5即F2(5,0)故答案为:F1(,0),F2(5,0).②方法1:如图4,过G作GH⊥BC于H,∵CB为直径∴∠CGB=∠CBF=90°∴△CBG∽△CFB∴∴BC2=CG•CF∴===≤∴当H为BC中点,即GH=BC时,的最大值=.方法2:设∠BCG=α,则sinα=,cosα=,∴sinαcosα=∵(sinα﹣cosα)2≥0,即:sin2α+cos2α≥2sinαcosα∵sin2α+cos2α=1,∴sinαcosα≤,即≤∴的最大值=.【点评】本题是一道难度较大,综合性很强的有关圆的代数几何综合题,主要考查了圆的性质,切线的性质和判定定理,直角三角形性质,相似三角形性质和判定,动点问题,二次函数最值问题等,构造相似三角形和应用求二次函数最值方法是解题关键.5.(2019•武汉)在△ABC中,∠ABC=90°,=n,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:=.②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)【分析】(1)如图1中,延长AM交CN于点H.想办法证明△ABM≌△CBN(ASA)即可.(2)①如图2中,作CH∥AB交BP的延长线于H.利用全等三角形的性质证明CH=BM,再利用平行线分线段成比例定理解决问题即可.②如图3中,作CH∥AB交BP的延长线于H,作CN⊥BH于N.不妨设BC=2m,则AB=2mn.想办法求出CN,PN(用m,n表示),即可解决问题.【解答】(1)证明:如图1中,延长AM交CN于点H.∵AM⊥CN,∴∠AHC=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∠BCN+∠CMH=90°,∵∠AMB=∠CMH,∴∠BAM=∠BCN,∵BA=BC,∠ABM=∠CBN=90°,∴△ABM≌△CBN(ASA),∴BM=BN.(2)①证明:如图2中,作CH∥AB交BP的延长线于H.∵BP⊥AM,∴∠BPM=∠ABM=90°,∵∠BAM+∠AMB=90°,∠CBH+∠BMP=90°,∴∠BAM=∠CBH,∵CH∥AB,∴∠HCB+∠ABC=180°,∵∠ABC=90°,∴∠ABM=∠BCH=90°,∵AB=BC,∴△ABM≌△BCH(ASA),∴BM=CH,∵CH∥BQ,∴==.②解:如图3中,作CH∥AB交BP的延长线于H,作CN⊥BH于N.不妨设BC=2m,则AB=2mn.则BM=CM=m,CH=,BH=,AM=m,∵•AM•BP=•AB•BM,∴PB=,∵•BH•CN=•CH•BC,∴CN=,∵CN⊥BH,PM⊥BH,∴MP∥CN,∵CM=BM,∴PN=BP=,∵∠BPQ=∠CPN,∴tan∠BPQ=tan∠CPN===.方法二:易证:===,∵PN=PB,tan∠BPQ====.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.6.(2019•武汉)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.【分析】(1)y=(x﹣1)2﹣4向左平移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)①易求点A(3,0),b=4,设D(0,4)关于x轴的对称点为D',则D'(0,﹣4),则可求直线AD'的解析式为y=x﹣4,联立方程,可得P点横坐标为;②同理可得P点横坐标为﹣;(3)设经过M与E的直线解析式为y=k(x﹣m)+m2,∴,则可知△=k2﹣4km+4m2=(k﹣2m)2=0,求得k=2m,得出直线ME的解析式为y=2mx﹣m2,同理:直线NE的解析式为y=2nx﹣n2,则可求E(,mn),再由面积[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,可得(m﹣n)3=8,即可求解;【解答】解:(1)y=(x﹣1)2﹣4向左平移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)如图1,①设抛物线C1与y轴交于C点,直线AB与y轴交于D点,∵C1:y=(x﹣1)2﹣4,∴A(3,0),C(0,﹣3),∵直线y=﹣x+b经过点A,∴b=4,∴D(0,4),∵AP=AQ,PQ∥y轴,∴P、Q两点关于x轴对称,设D(0,4)关于x轴的对称点为D',则D'(0,﹣4),∴直线AD'的解析式为y=x﹣4,由,得x1=3,x2=,∴x Q=,∴x P=x Q=,∴P点横坐标为;②P点横坐标为﹣;(3)设经过M与E的直线解析式为y=k(x﹣m)+m2,∴,则有x2﹣kx+km﹣m2=0,△=k2﹣4km+4m2=(k﹣2m)2=0,∴k=2m,∴直线ME的解析式为y=2mx﹣m2,同理:直线NE的解析式为y=2nx﹣n2,∴E(,mn),∴[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,∴(m﹣n)3﹣=4,∴(m﹣n)3=8,∴m﹣n=2;【点评】本题考查二次函数的图象及性质;是二次函数的综合题,熟练掌握直线与二次函数的交点求法,借助三角形面积列出等量关系是解决m与n的关系的关键.7.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.【分析】(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,即可求解;②BC长度为定值,△ABC面积的最大值,要求BC边上的高最大,即可求解;(2)∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=∠BOC=∠DOC,而∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,即可求解.【解答】解:(1)①连接OB、OC,则∠BOD=∠BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.【点评】本题为圆的综合运用题,涉及到解直角三角形、三角形内角和公式,其中(2),∠AOD=∠COD+∠AOC是本题容易忽视的地方,本题难度适中.8.(2019•天津)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.【分析】(Ⅰ)将点A(﹣1,0)代入y=x2﹣bx+c,求出c关于b的代数式,再将b代入即可求出c 的值,可进一步写出抛物线解析式及顶点坐标;(Ⅱ)将点D(b,y D)代入抛物线y=x2﹣bx﹣b﹣1,求出点D纵坐标为﹣b﹣1,由b>0判断出点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,过点D作DE⊥x轴,可证△ADE为等腰直角三角形,利用锐角三角函数可求出b的值;(Ⅲ)将点Q(b+,y Q)代入抛物线y=x2﹣bx﹣b﹣1,求出Q纵坐标为﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,点N(0,1),过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,设点M(m,0),则可用含b的代数式表示m,因为AM+2QM=,所以[(﹣)﹣(﹣1)]+2[(b+)﹣(﹣)]=,解方程即可.【解答】解:(Ⅰ)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),∴1+b+c=0,即c=﹣b﹣1,当b=2时,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(Ⅱ)由(Ⅰ)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,∵点D(b,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴y D=b2﹣b•b﹣b﹣1=﹣b﹣1,由b>0,得b>>0,﹣b﹣1<0,∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,∴AD=AE,由已知AM=AD,m=5,∴5﹣(﹣1)=(b+1),∴b=3﹣1;(Ⅲ)∵点Q(b+,y Q)在抛物线y=x2﹣bx﹣b﹣1上,∴y Q=(b+)2﹣b(b+)﹣b﹣1=﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,∵AM+2QM=2(AM+QM),∴可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由∠GAM=45°,得AM=GM,则此时点M满足题意,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,∴QH=MH,QM=MH,∵点M(m,0),∴0﹣(﹣﹣)=(b+)﹣m,解得,m=﹣,∵AM+2QM=,∴[(﹣)﹣(﹣1)]+2[(b+)﹣(﹣)]=,∴b=4.【点评】本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题关键是能够根据给定参数判断点的位置,从而构造特殊三角形来求解.9.(2019•天津)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5时,求t的取值范围(直接写出结果即可).【分析】(Ⅰ)由已知得出AD=OA﹣OD=4,由矩形的性质得出∠AED=∠ABO=30°,在Rt△AED 中,AE=2AD=8,由勾股定理得出ED=4,即可得出答案;(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′∥O′C′∥OB,得出∠E′FM=∠ABO=30°,在Rt△MFE′中,MF=2ME′=2t,FE′===t,求出S△MFE′=ME′•FE′=×t×t=,S矩形C′O′D′E′=O′D′•E′D′=2×4=8,即可得出答案;②当S=时,O'A=OA﹣OO'=6﹣t,由直角三角形的性质得出O'F=O'A=(6﹣t),得出方程,解方程即可;当S=5时,O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,由直角三角形的性质得出O'G=(6﹣t),D'F=(4﹣t),由梯形面积公式得出S=[(6﹣t)+(4﹣t)]×2=5,解方程即可.【解答】解:(Ⅰ)∵点A(6,0),∴OA=6,∵OD=2,∴AD=OA﹣OD=6﹣2=4,∵四边形CODE是矩形,∴DE∥OC,∴∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,ED===4,∵OD=2,∴点E的坐标为(2,4);(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′∥O′C′∥OB,∴∠E′FM=∠ABO=30°,∴在Rt△MFE′中,MF=2ME′=2t,FE′===t,∴S△MFE′=ME′•FE′=×t×t=,∵S矩形C′O′D′E′=O′D′•E′D′=2×4=8,∴S=S矩形C′O′D′E′﹣S△MFE′=8﹣,∴S=﹣t2+8,其中t的取值范围是:0<t<2;②当S=时,如图③所示:O'A=OA﹣OO'=6﹣t,∵∠AO'F=90°,∠AFO'=∠ABO=30°,∴O'F=O'A=(6﹣t)∴S=(6﹣t)×(6﹣t)=,解得:t=6﹣,或t=6+(舍去),∴t=6﹣;当S=5时,如图④所示:O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,∴O'G=(6﹣t),D'F=(4﹣t),∴S=[(6﹣t)+(4﹣t)]×2=5,解得:t=,∴当≤S≤5时,t的取值范围为≤t≤6﹣.【点评】本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、勾股定理、平移的性质、直角三角形的性质、梯形面积公式等知识;本题综合性强,有一定难度,熟练掌握含30°角的直角三角形的性质时是解题的关键.10.(2019•成都)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.【分析】(1)根据待定系数法,把点A(﹣2,5),B(﹣1,0),C(3,0)的坐标代入y=ax2+bx+c 得到方程组求解即可;(2)设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB =4,求出C′H的长,可得∠C′BH=60°,求出DH的长,则D坐标可求;(3)由题意可知△C′CB为等边三角形,分两种情况讨论:①当点P在x轴的上方时,点Q在x 轴上方,连接BQ,C′P.证出△BCQ≌△C′CP,可得BP垂直平分CC′,则D点在直线BP上,可求出直线BP的解析式,②当点P在x轴的下方时,点Q在x轴下方.同理可求出另一直线解析式.【解答】解:(1)由题意得:解得,∴抛物线的函数表达式为y=x2﹣2x﹣3.(2)∵抛物线与x轴交于B(﹣1,0),C(3,0),∴BC=4,抛物线的对称轴为直线x=1,如图,设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB=4,在Rt△BHC′中,由勾股定理,得C′H===2,∴点C′的坐标为(1,2),tan,∴∠C′BH=60°,由翻折得∠DBH=∠C′BH=30°,在Rt△BHD中,DH=BH•tan∠DBH=2•tan30°=,∴点D的坐标为(1,).(3)解:取(2)中的点C′,D,连接CC′,∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形.分类讨论如下:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.∵△PCQ,△C′CB为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,∴∠BCQ=∠C′CP,∴△BCQ≌△C′CP(SAS),∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ,∴C′P=CQ=CP,又∵BC′=BC,∴BP垂直平分CC′,由翻折可知BD垂直平分CC′,∴点D在直线BP上,设直线BP的函数表达式为y=kx+b,则,解得,∴直线BP的函数表达式为y=.②当点P在x轴的下方时,点Q在x轴下方.。

(完整)中考数学压轴题精选含答案

(完整)中考数学压轴题精选含答案

一、解答题1.如图,在直角梯形ABCD 中,AB ∥CD ,∠B =90°,AB =4,BC =8,CD =2m (m >2),P 为CD 中点,以P 为圆心,CP 为半径作半圆P ,交线段AC 于点E ,交线段AD 于点F .(1)当E 为CA 中点时,①求证:E 是弧CF 的中点.②求此时m 的值.(2)连结PF ,若PF 平行△ABC 的某一边时求出满足条件的m 值.(3)连结PE ,将PE 绕着点E 顺时针旋转90°得到EP ',连结AP ',当AP '⊥AC 时,求此时CE 的长.2.如图1,在菱形ABCD 中,∠D =120°,AB =8,点M 从A 开始,以每秒1个单位的速度向点B 运动;点N 从C 出发,沿C →D →A 方向,以每秒2个单位的速度向点A 运动,若M 、N 同时出发,其中一点到达终点时,另一个点也随之停止运动.设运动的时间为t 秒,过点N 作NQ ⊥DC ,交AC 于点Q .(1)当t =2时,求线段NQ 的长;(2)设△AMQ 的面积为S ,直接写出S 与t 的函数关系式及t 的取值范围;(3)在点M 、N 运动过程中,是否存在t 值,使得△AMQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线2y x bx c =-++,与y 轴交于点A 与x 轴交于点E 、B .且点()0,5A ,()5,0B ,点P 为抛物线上的一动点.(1)求二次函数的解析式;(2)如图1,过点A 作AC 平行于x 轴,交抛物线于点C ,若点P 在AC 的上方,作PD 平行于y 轴交AB 于点D ,连接PA ,PC ,当245AOE APCD S S ∆=四边形时,求点P 坐标; (3)设抛物线的对称轴与AB 交于点M ,点Q 在直线AB 上,当以点M 、E 、P 、Q 为顶点的四边形为平行四边形时,请直接写出点Q 的坐标.4.如图,抛物线2y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,OA =1,OB =OC =3.(1)求抛物线的表达式;(2)如图1,点D 为第一象限抛物线上一动点,连接DC ,DB ,BC ,设点D 的横坐标为m ,△BCD 的面积为S ,求S 的最大值;(3)如图2,点P (0,n )是线段OC 上一点(不与点O 、C 重合),连接PB ,将线段PB 以点P 为中心,旋转90°得到线段PQ ,是否存在n 的值,使点Q 落在抛物线上?若存在,请求出满足条件的n 的值,若不存在,请说明理由.5.如图,抛物线223y x x =--+与x 轴交于A 、B 两点,与y 轴交于C 点.(1)在第二象限内的抛物线上确定一点P ,使四边形PBOC 的面积最大.求出点P 的坐标.(2)点M 为抛物线上一动点,x 轴上是否存在一点Q ,使点B 、C 、M 、Q 的顶点的四边形是平行四边形,若存在,请直接写出Q 点的坐标;若不存在,请说明理由.6.已知抛物线经过()30A -,,()1,0B ,52,2C ⎛⎫ ⎪⎝⎭三点,其对称轴交x 轴于点H ,一次函数()0y kx b k =+≠的图象经过点C ,与抛物线交于另一点D (点D 在点C 的左边),与抛物线的对称轴交于点E . (1)求抛物线的解析式;(2)在抛物线上是否存在点F ,使得点A 、B 、E 、F 构成的四边形是平行四边形,如果存在,求出点F 的坐标,若不存在请说明理由(3)设∠CEH=α,∠EAH =β,当αβ>时,直接写出k 的取值范围7.如图1,直线l 1:y =kx 与直线l 2:y =﹣12x +b 相交于点A (4,3),直线l 2:y =﹣12x +b 与x 轴交于点B ,点E 为线段AB 上一动点,过点E 作EF ∥y 轴交直线l 1于点F ,连接BF .(1)求k、b的值;(2)如图2,若点F坐标为(8,6),∠OFE的角平分线交x轴于点M.①求线段OM的长;②点N在直线l1的上方,当△OFN和△OFM全等时,直接写出点N的坐标.8.如图,抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C.直线l与抛物线交于A、D两点,与y轴交于点E,点D的坐标为(4,3).(1)求抛物线的解析式与直线l的解析式;(2)若点P是抛物线上的点且在直线l上方,连接PA、PD,求当△PAD面积最大时点P 的坐标及该面积的最大值;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.9.如图,在△ABC中,AB=AC,⊙是△ABC的外接圆,连接BO并延长交边AC于点D.(1)如图1,求证:∠BAC=2∠ABD;(2)如图2,过点B作BH⊥AC于点H,延长BH交⊙O于点G,连接OC,CG,OC交BG于点F,求证:BF=2HG;(3)如图3,在(2)的条件下,若AD=2,CD=3,求线段BF的长.10.如图1,在平面直角坐标系中,抛物线y=ax2+154x+c与x轴负半轴相交于点A(﹣20,0),与y轴相交于点B(0,﹣15).(1)求抛物线的函数表达式及直线AB的函数表达式;(2)如图2,点C是第三象限内抛物线上的一个动点,连接AC、BC,直线OC与直线AB 相交于点D,当△ABC的面积最大时,求此时△ABC面积的最大值及点C的坐标;(3)在(2)的条件下,点E为线段OD上的一个动点,点E从点O开始沿OD以每秒10个单位长度的速度向点D运动(运动到点D时停止),以OE为边,在OD的左侧做正方形OEFG,设正方形OEFG与△OAD重叠的面积为S,运动时间为t秒.当t>3时,请直接写出S与t之间的函数关系式为(不必写出t的取值范围).11.在平面直角坐标系xOy中,点A(a,b)和点B(c,d).给出如下定义:以AB为边,作等边三角形ABC,按照逆时针方向排列A,B,C三个顶点,则称等边三角形ABC为点A,B的逆序等边三角形.例如,当1,0,3,0a b c d=-===时,点A,B的逆序等边三角形ABC如图①所示.(1)已知点A(-1,0),B(3,0),则点C的坐标为___;请在图①中画出点C,B的逆序等边三角形CBD,点D的坐标为___.(2)图②中,点B(3,0),点A在以点M(-2,0)为圆心1为半径的圆上,求点A,B的逆序等边三角形ABC的顶点C的横坐标取值范围.(3)图③中,点A在以点M(-2,0)为圆心1为半径的圆上,点B在以N(3,0)为圆心2为半径的圆上,且点B的纵坐标0d>,点A,B的逆序等边三角形ABC如图③所示.若点C 恰好落在直线y x t=+上,直接写出t的取值范围.12.已知:如图1,一次函数y=mx+5m的图像与x轴、y轴分别交于点A、B,与函数y=-23x的图像交于点C,点C的横坐标为-3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=2S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规.....作图找到点P的位置; (保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.13.在平面直角坐标系xOy中,⊙O的半径为1.对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到⊙O的弦A′B′,则称线段AB是⊙O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”.(1)如图,线段CD,EF,GH中是⊙O的以直线l为对称轴的“反射线段”有;(2)已知A点坐标为(0,2),B点坐标为(1,1),①若线段AB是⊙O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标.②若将“反射线段”AB沿直线y=x的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为12≤yM136≤,求S.(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN=1,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积.(4)已知点M,N是在以(2,013MN2=MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围.14.△ABC为等边三角形,AB=4,AD⊥BC于点D,点E为AD的中点.(1)如图1,将AE绕点A顺时针旋转60°至AF,连接EF交AB于点G,求证:G为EF中点.(2)如图2,在(1)的条件下,将△AEF绕点A顺时针旋转,旋转角为α,连接BE,H为BE的中点,连接DH,GH.当30°<α<120°时,猜想∠DHG的大小是否为定值,并证明你的结论.(3)在△AEF绕点A顺时针旋转过程中,H为BE的中点,连接CH,问线段CH何时取得最大值,请说明理由,并直接写出此时△ADH的面积.15.在ABC中,AB AC=,D是边AC上一点,F是边AB上一点,连接BD、CF交于点E,连接AE,且.(1)如图1,若90BAC∠=︒,,,求点B到AE的距离;(2)如图2,若E为BD中点,连接FD,FD平分,G为CF上一点,且,求证:;(3)如图3,若,12BC=,将ABD△沿着AB翻折得,点H为的中点,连接HA、HC,当周长最小时,请直接写出的值.16.在平面直角坐标系xOy中,已知抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于C点,D为抛物线顶点.(1)连接AD,交y轴于点E,P是抛物线上的一个动点.①如图一,点P是第一象限的抛物线上的一点,连接PD交x轴于F,连接,若,求点P的坐标.②如图二,点P在第四象限的抛物线上,连接AP、BE交于点G,若,则w有最大值还是最小值?w的最值是多少?(2)如图三,点P是第四象限抛物线上的一点,过A、B、P三点作圆N,过点P作PM x⊥轴,垂足为I,交圆N于点M,点P在运动过程中,线段是否变化?若有变化,求出MI的取值范围;若不变,求出其定值.(3)点Q是抛物线对称轴上一动点,连接OQ、AQ,设AOQ外接圆圆心为H,当的值最大时,请直接写出点H的坐标.17.如图,在平面直角坐标系中,矩形OABC,点A在y轴上,点C在x轴上,其中B(﹣2,3),已知抛物线y=﹣34x2+bx+c经过点A和点B.(1)求抛物线解析式;(2)如图1,点D (﹣2,﹣1)在直线BC 上,点E 为y 轴右侧抛物线上一点,连接BE 、AE ,DE ,若S △BDE =4S △ABE ,求E 点坐标;(3)如图2,在(2)的条件下,P 为射线DB 上一点,作PQ ⊥直线DE 于点Q ,连接AP ,AQ ,PQ ,若△APQ 为直角三角形,请直接写出P 点坐标.18.如图1,点A ,点B 的坐标分别(a ,0),(0,b ),且b =+4,将线段BA 绕点B 逆时针旋转90°得到线段BC .(1)直接写出a = ,b = ,点C 的坐标为 ;(2)如图2,作CD ⊥x 轴于点D ,点M 是BD 的中点,点N 在△OBD 内部,ON ⊥DN ,求2+ON =DN .(3)如图3,点P 是第二象限内的一个动点,若∠OPB =90°,求线段CP 的最大值.19.如图1,已知抛物线)(3343y x x =+-与x 轴交于A 、B 两点,与y 轴交于点C ,(1)写出A 、B 、C 三点的坐标.(2)若点P 为OBC 内一点,求OP BP CP ++的最小值.(3)如图2,点Q 为对称轴左侧抛物线上一动点,点()4,0D ,直线DQ 分别与y 轴、直线AC 交于E 、F 两点,当CEF △为等腰三角形时,请直接写出CE 的长.20.已知等边△ABC ,M 在边BC 上,MN ⊥AC 于N ,交AB 于点P .(1)求证:BP =BM ;(2)若MC =2BM ,求证:MP =MN .(3)若E ,F 分别在AB 、AC 上,且△MEF 为等边三角形,当MEF ABC S S ∆∆的值最小时,BM BC= .【参考答案】**科目模拟测试 一、解答题 1.(1)①见解析;②5m =;(2)m 的值为25或6;(3)25CE =【解析】【分析】(1)①连接DE ,证明ADC ∆是等腰三角形,根据“三线合一”的性质可得ADE CDE ∠=∠,证得EC EF =,从而可得结论;②根据勾股定理得到AC 45=,由E 为AC 中点得EC 25=,再证明DEC CBA ,由相似三角形的性质列出比例式,求出m 的值即可;(2)分PF //AC 和PF //BC 两种情况求解即可; (3)设CE =x ,作PG ⊥AC ,则2x GE =,45AE x =- 证明PGE EAP '≅得AP GE '=,再证明AP EBAC ',列比例式求出x 的值即可.【详解】解:(1)如图,连接DE∵CD 是圆P 的直径,∴∠DEC =90°,即DE ⊥AC∵E 为CA 中点∴AE =CE∴AD =CD∴ADE CDE ∠=∠∴EC EF =∴E 是CF 的中点;②在Rt △ABC 中,∠B =90°,AB =4,BC =8,∴22224845AC AB BC +=+∵E 是AC 的中点∴11452522EC AC ==⨯= ∵AB //CD ,90B ∠=︒∴90B DCB ∠+∠=︒∴90DCB∠=︒,即90DCE BCA∠+∠=︒∵90CDE DCE∠+∠=︒∴CDE BCA∠=∠又90B DEC∠=∠=︒∴DEC CBA∆∆∽∴CE DCAB AC=,即252=445m解得,5m=;(2)分两种情况:①当PF//AC时,如图,则有PDF CDA∆∆∴PF PDAC CD=,即245PF mm=∴25=PF∴25m=②当PF//BC时,如图,过点A作AH⊥DC,垂足为H,则四边形AHCB是矩形,∴AH//BC,HC=AB=4,AH=BC=8∴PF//AH∵90DCB∠=︒∴90FPD∠=︒∴45PDF PFD∠=∠=︒∴45HAD HDA∠=∠=︒∴DH=AH,即248m-=解得,6m=综上,m的值为256;(3)过点P 作PG AC ⊥于点G ,如图,∵PE =PC ∴1,2GE CE EPG CPG =∠=∠ ∵90PEP '∠=︒∴90P EA PEG '∠+∠=︒又90PEG GPE ∠+∠=︒∴P EA EPG '∠=∠又90P AE PGE '∠=∠=︒,PE P E '=∴P AE EPG '∆≅∆∴AP GE '=设CE x =,则45,2x AE x GE AP '=== ∵90,90BCA DCA GPC PCH ∠+∠=︒∠+∠=︒∴GPC BCA ∠=∠∴EPG BCP ∠=∠∴P EA BCA '∠=∠又90P AE B '∠=∠=︒∴AP E BAC '∆∆ ∴AP AB AE BC '=42825x = ∴5x =25CE =【点睛】本题主要考查了全等三角形的判定与性质,圆的基本概念,相似三角形的判定与性质,正确作出辅助线以及进行分类讨论是解答本题的关键.2.(143;(2)S =()()22330434348t t t ⎧+≤≤⎪⎪⎨⎪≤⎪⎩<;(3)存在,当t =247s 或(32-163)s或163s时,△AMQ为等腰三角形.【解析】【分析】(1)首先求得CN的长,在直角△CNQ中利用三角函数即可求得NQ的长;(2)当0≤t≤4时,N在CD上,首先求得CQ,则AQ长即可求得,再根据△CAB=30°,AM=t,据此即可求得△AMQ的长;当4<t≤8时,利用相似求得AQ的长,进而求得△AMQ的面积,得到函数解析式;(3)分三种情形讨论求解即可.【详解】解:(1)当t=2时,CN=2×2=4,∵在△ACD中,AD=DC,∴∠DCA=1801202︒-︒=30°,在直角△CNQ中,NQ=CN•tan30°=4×33=433;(2)由题意得,AM=t,当0≤t≤4时,CN=2t,∵∠D=120°,AB=CD=8,∴∠DCA=30°,连接BD,与AC相交于点定O,过点Q作QG⊥AB于点G,∴OC=CD•cos30︒3AC3∴在Rt△CNQ中,NQ23t,CQ43t,∴AQ=AC-CQ343,QG=12AQ,∴S=12AM• QG =233t+,当4<t≤8时,延长QN,交AB于G,交CD延长线于H,如图:ND =2t -8,∠HDN =60°,∴HD =12ND =t -4, ∴CH =t -4+8=t +4,∴CQ =23cos303CH =︒(t +4), ∴AQ =AC -CQ =83-233(t +4),QG =12AQ , S =12•AM • QG 234363t t =-+. 综上,S =()()223230433434863t t t t t t ⎧-+≤≤⎪⎪⎨⎪-+≤⎪⎩<; (3)①当0<t ≤4时,只有MA =MQ 符合条件,过点M 作ME ⊥AC 于点E ,则AE =EQ =AM •cos30︒=32t , ∴AQ =3t ,由(2)知AQ 343, 3433, 解得t =247; ②当4<t ≤8时,由(2)知AQ 323t +4),AQ =AM 时,)4t +=t ,解得tAQ =MQ 时,AM ,t )4t ⎤+⎥⎦, 解得t =163.综上所述,当t =247s 或(s 或163s 时,△AMQ 为等腰三角形. 【点睛】本题考查了菱形的性质以及三角函数,正确进行分请情况进行讨论是关键.3.(1)245y x x =-++;(2)1(2,9)P ,2(3,8)P ;(3)1(9,4)Q -,2(0,5)Q ,3(1,6)Q -,4(5,10)Q -【解析】【分析】(1)直接将(0,5)A ,(5,0)B 代入2y x bx c =-++,求解即可;(2)先求出AB 的解析式,设点P 的横坐标为t ,则()2,45P t t t -++,(,5)D t t -+,用t 表示出PD ,最后利用245AOE APCD S S ∆=四边形求出结果; (3)分三种情况讨论解答:①当EM 为平行四边形的对角线时;②当EP 为对角线时;③当EQ 为对角线时.【详解】(1)将点(0,5)A ,(5,0)B 分别代入2y x bx c =-++得25505b c c -++=⎧⎨=⎩, 45b c =⎧∴⎨=⎩, ∴二次函数的解析式为245y x x =-++;(2)//AC x 轴,点()0,5A ,∴当5y =时,2455x x -++=,10x ∴=,24x =,()4,5C ∴,4AC ∴=,设直线AB 的解析式为y mx n =+,将(0,5)A ,(5,0)B 分别代入得505n m n =⎧⎨=+⎩, 解得:1m =-,5n =∴直线AB 的解析式为5y x =-+;设点P 的横坐标为t ,则()2,45P t t t -++,(,5)D t t -+()2245(5)5PD t t t t t ∴=-++--+=-+,4AC =,()22114521022APCD S AC PD t t t t ∴=⨯=⨯⨯-+=-+四边形 函数245y x x =-++,当0y =时,有2450x x -++=,11x ∴=-,25x =,(1,0)E ∴-,1OE ∴=,又5OA =,11515222AOE S OE OA ∆∴=⨯⨯=⨯⨯=, 245AOE APCD S S ∆=四边形, 22452101252t t ∴-+=⨯=, 解得:12t =,23t =,∴点1(2,9)P ,2(3,8)P ;(3)∵2(2)9y x =--+,∴当x =2时,y =-2+5=3,∴M (2,3),设P (m ,2(2)9m --+,(,5)Q n n -+,而E (-1,0),①当EM 为平行四边形的对角线时,(平行四边形的对角线互相平分)得:21222(2)950322m n m n +-+⎧=⎪⎪⎨--+-++⎪=⎪⎩, 解得121261,52m m n n ==-⎧⎧⎨⎨=-=⎩⎩ (舍), ∴点Q 的坐标为(-5,10);②当EP 为对角线时,212220(2)93522m m m n -++⎧=⎪⎪⎨--+-+⎪=⎪⎩,解得121223,10m m n n ==⎧⎧⎨⎨=-=⎩⎩, ∴点Q 的坐标为(-1,6)或(0,5);③当EQ 为对角线时,21222053(2)922n m n m -++⎧=⎪⎪⎨-+--+⎪=⎪⎩, 解得121261,92m m n n ==-⎧⎧⎨⎨==⎩⎩(舍), 点Q 的坐标为(9,-4),综上所得:1(9,4)Q -,2(0,5)Q ,3(1,6)Q -,4(5,10)Q -.【点睛】本题考查了待定系数法求函数关系式,平行四边形的性质和判定,解本题的关键是分类思想的运用.4.(1)2y x 2x 3=-++;(2)278;(3)存在,n =1或n 3+33- 【解析】【分析】(1)通过待定系数法求解函数解析式即可;(2)作DF ⊥x 轴于点F ,交BC 于点E ,根据12S DE OB =⋅求得S 关于m 的解析式,根据二次函数的性质求解即可;(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N ,利用全等三角形的性质求解即可.【详解】解:(1)设函数关系式为2y ax bx c =++由题意,得A (-1,0),B (3,0),C (0,3)∴(1)(3)y a x x =+-把C (0,3)代入得,1a =-∴2y x 2x 3=-++(2)作DF ⊥x 轴于点F ,交BC 于点E设直线BC 关系式为y =kx +b ,代入(3,0),(0,3)得k =-1,b =3,∴y =-x +3∵点D 的横坐标为m ,则DF =223m m -++,EF =-m +3∴DE =23m m -+22133327(3)()22228S DE OB m m m =⋅=-+=--+ ∵302-<,∴S 的最大值是278(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N∴1290Q MP Q NP BOP ∠=∠=∠=︒∵1190Q PM PQ M ∠+∠=︒,190Q PM BPO ∠+∠=︒,∴1PQ M BPO ∠=∠又∵1BP PQ =,∴1Q PM PBO △≌△∴1MQ OP n ==,3MP OB ==,∴1()3Q n n +,代入抛物线,得2323n n n +=-++解得11n =,20n =(舍去)同理,2PN Q PBO ≌,∴2Q (-n ,n -3)代入抛物线,得2323n n n =-+-- 解得13+33n -=2333n --=舍去) 综上,存在n 的值,n =1或n 3+33-【点睛】 此题考查了二次函数与几何的综合应用,涉及了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,解题的关键是熟练掌握二次函数以及全等三角形的判定与性质.5.(1)315,24⎛⎫- ⎪⎝⎭;(2)Q 1(-5,0),Q 2(-1,0),Q 3 ()720,,Q 4)720,. 【解析】【分析】(1)分别求出点B 、C 的坐标,连接PB ,PC ,PO ,设点P 坐标为()2,23m m m --+,四边形PBOC 的面积为S ,根据=BOP COP S S S +△△得到S 关于m 的二次函数解析式,根据二次函数的性质即可求解;(2)分点M 在x 轴上方或点M 在x 轴下方两种情况讨论,分别求出点M 的坐标,根据平行四边形的性质即可求出点Q 的坐标. 【详解】解:(1)把0x =代入223y x x =--+得y =3, ∴点C 坐标为(0,3);把y =0代入223y x x =--+得2x 2x 30--+=, 解得123,1x x =-=, ∵点B 在x 轴负半轴上, ∴点B 坐标为(-3,0); 如图1,连接PB ,PC ,PO ,∵点P 在第二象限抛物线223y x x =--+上,∴设点P 坐标为()2,23m m m --+(-3<m <0),设四边形PBOC 的面积为S , ∴=BOP COP S S S +△△2211232m m OB O m C =--++ ()()2332223m m m +=+--- 2399222m m =--+, ∵302-<,∴当322b m a =-=-时,S 有最大值, 此时,215234m m --+=, ∴当点P 坐标为315,24⎛⎫- ⎪⎝⎭时,四边形PBOC 的面积最大;(2)存在,如图2,分点M 在x 轴上方或点M 在x 轴下方两种情况讨论. ①当点M 在x 轴上方时,点M 与点C 纵坐标相等,∴2233x x --+=, 解得122,0x x =-=, ∴CM 1=2,∵四边形BQCM 1是平行四边形, ∴CM =BQ =2,∴满足条件的点Q 有两个,分别是Q 1(-5,0),Q 2(-1,0); ②当点M 在x 轴下方时,点M 与点C 纵坐标互为相反数, ∴2233x x --+=-, 解得1271,71x x =--=-,∴点M 2坐标为()713---,,点M 3坐标为()713--,,由平行四边形的性质得点B 向右平移3个单位,向上平移3个单位得到点C ,∴点M 2向右平移3个单位,向上平移3个单位得到点Q 3,点M 3向右平移3个单位,向上平移3个单位得到点Q 4,∴Q 3的坐标为()720-+,,Q 4的坐标为()720+,;综上所述,满足条件的点Q 的坐标有四个,分别是Q 1(-5,0),Q 2(-1,0),Q 3()720-+,,Q 4()720+,.【点睛】本题为二次函数综合题,难度较大,解决第(1)步,关键是理解函数图象上点的坐标特点,将四边形分割为两个三角形,分别表示出三角形面积,得到函数解析式,并利用二次函数性质求解;解决第(2)步关键是理解平行四边形的性质,利用分类讨论思想求解,注意要充分考虑各种情况,不要漏解.6.(1)y =12x 2+x −32;(2)(3,6)或(-5,6)或(−1,-2);(3)−12<k <56且k≠0或56<k<43【解析】【分析】(1)把A(−3,0),B(1,0),52,2C⎛⎫⎪⎝⎭代入y=ax2+bx+c,解方程组即可;(2)把C点坐标代入直线CD,得2k+b=52,分两种情况:①若AB为平行四边形的边时,②若AB为平行四边形的对角线时,得关于k、b的方程组,解方程组即可求解;(3)分两种情况:①当E点在x轴上方时,②E点在x轴下方时,根据当α=β时,列方程,可求出k的值,进而求出k的取值范围.【详解】解:(1)设抛物线的解析式为y=ax2+bx+c,∵抛物线经过A(−3,0),B(1,0),C(2,52)三点,∴9305 422a b ca b ca b c⎧⎪-+=⎪++=⎨⎪⎪++=⎩,∴12132abc⎧⎪⎪⎨⎪⎪-⎩===,∴抛物线的解析式为y=12x2+x−32;(2)如图1所示,将C点坐标代入直线CD,得2k+b=52,当x=−1时,y=−k+b,即E(−1,−k+b).①若AB为平行四边形的边时,则F(-1+4,−k+b)或F(-1-4,−k+b),即:F(3,−k +b )或F (-5,−k +b ), 把F (3,−k +b )代入y =12x 2+x −32,得−k +b =6, 把F (-5,−k +b ),代入y =12x 2+x −32,得−k +b =6, 又∵2k +b =52, ∴k =76-,b =296∴F (3,6)或(-5,6);②若AB 为平行四边形的对角线时,则F 和E 关于x 轴对称, ∴F (−1,k -b ), ∴k -b =-2, 又∵2k +b =52, ∴k =16,b =136,∴F (−1,-2),综上所述:F 的坐标为(3,6)或(-5,6)或(−1,-2); (3)如图2所示,①当E 点在x 轴上方时,如图2所示,当α=β时,∵∠EHA =90°, ∴∠AEC =90°, ∴∠AEH =∠EGH , ∵∠AHF =∠FHG =90°, ∴AHF FHG ∽, ∴AE AHEG EH=, ∵A (−3,0),E (−1,−k +b ),G (bk-,0),∴()()2222221k bk bbk bk+-+=-+⎛⎫-++-+⎪⎝⎭,∴k2−bk−2=0,联立方程220522k bkk b⎧--=⎪⎨+=⎪⎩,解得k=−12(k=43舍去),随着E点向下移动,∠CEH的度数越来越大,∠EAH的度数越来越小,当E点和H点重合时(如图3所示),α和β均等于0,此时联立方程522k bk b⎧+⎪⎨⎪-+⎩==,解得5656kb⎧=⎪⎪⎨⎪=⎪⎩,因此当−12<k<56且k≠0时,α>β;②E点在x轴下方时,如图4所示,当α=β时,∵∠EHA=90°,∴∠AEC=90°,根据①可得此时k=43(k=−12舍去),随着E点向下移动,∠CEH的度数越来越小,∠EAH的度数越来越大,因此当56<k <43时,α>β.综上所述可得,当α>β时,k 取值范围为−12<k <56且k ≠0或56<k <43.【点睛】本题考查的是一次函数、二次函数和相似三角形的判定和性质的综合应用,掌握待定系数法求函数解析式和数形结合思想方法是解题的关键.7.(1)34k =,5b =;(2)①OM =5;②()3,6N 或724,55N ⎛⎫ ⎪⎝⎭【解析】 【分析】(1)分别将将(4,3)A 代入y kx =和12y x b =-+中,求解即可;(2)①设直线AB 与y 轴交与点C ,与FM 交于点D ,证明△AFD ≌△EFD ,得到AD =ED ,利用中点坐标公式求得点D 坐标,用待定系数法求得直线FD 的函数表达式,令0y =,即可求得点M 的坐标,从而求得OM ;②点N 在直线l 1的上方,当△OFN 和△OFM 全等时,满足题意的点N 有两个,分别画出相关的图形,分类讨论求解即可. 【详解】解:(1)∵直线l 1:y kx =和直线l 2:12y x b =-+相交于点A∴将(4,3)A 代入y kx =中,得:43k = 解得:34k =∴将(4,3)A 代入12y x b =-+中,得:1432b -⨯+=解得:5b =∴3,54k b == (2)① 设直线AB 与y 轴交与点C ,与FM 交于点D ,如下图:∵34k =,5b = ∴直线l 1的函数表达式为34y x =,直线l 2的函数表达式为152y x =-+∵(4,3)A ∴22345OA +设直线AB 与y 轴交与点C ,与FM 交于点D 则()0,5C ∴5OC = ∴5OA OC == ∴∠OCA =∠OAC ∵//FE y 轴 ∴∠OCA =∠FEA 又∵∠OAC =∠FAE ∴∠FAE =∠FEA ∴FA =FE又∵FM 是∠OFE 的角平分线 ∴∠AFM =∠EFM 又∵FD =FD ∴△AFD ≌△EFD ∴AD =ED ∴点D 为AE 的中点 ∵//FE y 轴∴点F 和点E 的横坐标相同 将8x =代入152y x =-+中,得1y =∴()8,1E ∵(4,3)A ,()8,1E ∴()6,2D设线段FM 所在的直线函数表达式为()0y ax b a =+≠将()()8,6,6,2F D 代入y ax b =+中,得:8662k b k b +=⎧⎨+=⎩解得:210k b =⎧⎨=-⎩∴线段FM 所在的直线函数表达式为210y x =- 令0y =,得2100x -= 解得:5x = ∴()5,0M ∴OM =5② 当,OFN FOM 全等时,有两种情况,情况一,如下图所示:∵OFN FOM ≅△△∴∠OFN =∠FOM ,FN =OM ,ON =FM ∴//FN OM ∵OM =5 ∴FN =5,8F x =∴853N x =-=,6N F y y == ∴()3,6N情况二,当△OMF 和△ONF 关于直线l 1对称时,如下图所示:∵OFN FOM ≅△△∴ON =OM =5,∠NOF =∠MOF ∵OP =OP ∴△NOP ≌△MOP ∴PN =PM ∵()8,6F∴10OF 又∵1122OMFF SOM y OF PM =⋅=⋅ ∴F OM y OF PM ⋅=⋅ ∴56==310PM ⨯∴MN =2PM =6,OP 4 ∵1122OMN N S MN OP OM y =⋅=⋅△ ∴642455N y ⨯==∴75N x ==∴724,55N ⎛⎫⎪⎝⎭综上所述,满足题意点有两个,分别是:()3,6N 或724,55N ⎛⎫⎪⎝⎭【点睛】本题考查用待定系数法求一次函数表达式,三角形全等的性质和证明,两条直角交点的求法以及三角形的等面积法等知识点,牢记相关内容并能灵活应用数形结合思想解题是本题的关键.8.(1)y 14=-x 2+x +3;y 12=x +1;(2)△PAD 的面积的最大值为274,P (1,154);(3)点Q 的坐标为(0,133)或(0,﹣9) 【解析】 【分析】(1)由A (﹣2,0)、B (6,0)设抛物线的解析式为y =a (x +2)(x ﹣6),把D (4,3)的代入解析式解方程即可,再利用待定系数法求解一次函数的解析式; (2)如图1中,过点P 作PT y ∥轴交AD 于点T .设P (m ,14- m 2+m +3),则T(m,12m+1),再利用面积列函数关系式,再利用二次函数的性质求解最值即可;(3)如图2中,将线段AD绕点A逆时针旋转90°得到AT,则T(﹣5,6),设DT交y轴于点Q,则∠ADQ=45°,再求解直线DT的解析式为y13=-x133+,作点T关于AD的对称点T′(1,﹣6),求解直线DT′的解析式为y=3x﹣9,设DQ′交y轴于点Q′,则∠ADQ′=45°,从而可得答案.【详解】解:(1)∵抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,∴设抛物线的解析式为y=a(x+2)(x﹣6),∵D(4,3)在抛物线上,∴3=a(4+2)×(4﹣6),解得a14 =-,∴抛物线的解析式为y14=-(x+2)(x﹣6)14=-x2+x+3,∵直线l经过A(﹣2,0)、D(4,3),设直线l的解析式为y=kx+m(k≠0),则2043k mk m-+=⎧⎨+=⎩,解得,121km⎧=⎪⎨⎪=⎩,∴直线l的解析式为y12=x+1;(2)如图1中,过点P作PT y∥轴交AD于点T.设P(m,14-m2+m+3),则T(m,12m+1).∵S△PAD12=•(xD﹣xA)•PT=3PT,∴PT的值最大值时,△PAD的面积最大,∵PT14=-m2+m+312-m﹣114=-m212+m+214=-(m﹣1)294+,∵14-<0,抛物线开口向下,∴m=1时,PT的值最大,最大值为94,此时△PAD的面积的最大值为274,P(1,154).(3)如图2中,将线段AD绕点A逆时针旋转90°得到AT,过D作DM x⊥轴于,M过T作TN x轴于,N90,,TNA AMD TAD AD AT90,TAN ATN TAN DAM,ATN DAM,ATN DAM≌6,3,235,TN AM AN DM ON∴T(﹣5,6),设DT交y轴于点Q,则∠ADQ=45°,∵D(4,3),∴直线DT的解析式为y13=-x133+,∴Q(0,133),作点T关于AD的对称点T',同理可得T'(1,﹣6),则直线DT′的解析式为y=3x﹣9,设DQ′交y轴于点Q′,则∠ADQ′=45°,∴Q′(0,﹣9),综上所述,满足条件的点Q的坐标为(0,133)或(0,﹣9).【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建二次函数解决最值问题,学会构造特殊三角形解决问题,属于中考压轴题.二次函数综合题中面积问题的解题通法:(1)直角坐标系中图形面积的求法,以“S三角形=12×水平底×铅直高”为基础求解.(2)图形面积的数量关系:①找出所求图形的顶点,其中动点的坐标根据函数关系式用含未知数的代数式表示出来;②结合图形作辅助线,并将关键线段的长度用含未知数的代数式表示出来;③利用面积公式用含未知数的代数式表示出图形的面积;④列方程求解.(3)图形面积的最值,解题思路跟(1)中的前三步相同,然后利用函数的增减性求解.9.(1)证明见解析;(2)证明见解析,(3)15714BF=.【解析】【分析】(1)连接OA并延长AO交BC于E,证明∠BAC=2∠BAE和∠ABD=∠BAE即可得结论,(2)利用直角三角形两锐角互余、圆周角定理进行导角,得出MCG△和△FCG是等腰三角形,得出BM=MC=FG=CG,MH=HG,进而由BF=BM+MH-FH=FG-FH+HG,得出结论;(3)过O点作OP⊥AC,由垂径定理得出12PD=,再由52ABOADOS AB BOS AD OD===和平行线分线段成比例定理求出7724DH DP==,由勾股定理进而可求BH,再利用相似三角形对应边成比例求出HG,即可得BF长.【详解】解:(1)连接OA并延长AO交BC于E,∵AB=AC,∴AB AC=,∵AE过圆心O,∴AE BC⊥,BE EC=,∴∠BAC=2∠BAE,∵OA=OB,∴∠ABD=∠BAE,∴∠BAC=2∠ABD;(2)如解图(2),连接OA并延长AO交BC于E,AE交BF于M,连接MC,设2BACα∠=,则ABD BAE EACα∠=∠=∠=∵AE =EC ,AE ⊥BC ,∴BM =MC ,∴∠MBC =∠MCB ,∵BG ⊥AC ,AE ⊥BC ,∴∠EAC +∠ACE =90°,∠HBC +∠ACE =90°,∴EAC HBC MCB α∠=∠=∠=,∴2CMG MBC MCB α∠=∠+∠=,∵BC BC =,∴2G BAC α∠=∠=,∴∠G =∠CMG ,∴CG =CM =BM ,∵AC ⊥BG ,∴MH =HG ,∵OA =OC ,∴ACO EAC α∠=∠=∴9090CFG ACO α∠=︒-∠=︒-,∵180FCG CFG G ∠=︒-∠-∠,即180(90)290FCG ααα∠=︒-︒--=︒-,∴FCG CFG ∠=∠,∴FG =CG ,∴BM =MC =FG =CG ,又∵MH =HG ,∴BF =BM +MH -FH =FG -FH +HG ,∴BF =2HG .(3)过O 点作OP ⊥AC ,如解图(3)∵AO 是∠BAC 的角平分线,∴点O 到AB 、AC 的距离相等, ∴ABO ADO SAB BO S AD OD==, ∵AD =2,CD =3,∴AB =AC =5, ∴5=2BO OD ,即:2=7OD BD , ∵OP ⊥AC ,∴52AP PC ==,12PD =, ∵BH AC ⊥, ∴OP //BH ,∴27DP OP OD DH BH BD ===, ∴7724DH DP ==, ∴154AH AD DH =+=,5-4HC DC DH ==,∵在Rt ABH中,BH == ∵BAH G ∠=∠,AHB GHC ∠=∠, ∴AHB GHC △△,∴AH BH HG CH = 即:AH HC BHHG =, 51544=⨯, ∴HG =, 由(2)得BF =2HG ,∴BF = 【点睛】 本题是圆的综合题,主要考查了圆周角定理,涉及了相似三角形的判定和性质、勾股定理、等腰三角形的判定和性质等知识点,解题关键是利用同弧或等弧所对圆周角相等、直角三角形的两锐角相等找出图中角之间的关系,从而利用相似或勾股定理解题.10.(1)291515404y x x =+-,y =﹣34x ﹣15;(2)面积最大值225,C (﹣10,﹣30);(3)S =﹣2553t +160t ﹣240. 【解析】【分析】(1)利用待定系数法将点A (﹣20,0),B (0,﹣15)代入抛物线y =ax 2+154x +c 即可求出抛物线的函数表达式;设AB 的函数表达式是y =kx +b ,然后利用待定系数法将点A (﹣20,0),B (0,﹣15)代入y =kx +b 即可求出直线AB 的函数表达式;(2)作CE ⊥OA 于E ,交AB 于F ,设C (a ,940a 2+154a ﹣15),F (a ,﹣34a ﹣15),根据题意表示出CF 的长度,进而表示出ABC S ∆,然后利用二次函数的性质求解即可;(3)作AN ⊥OD 于N ,AD 与FG 交于点I ,首先根据题意求出OC 的解析式,然后联立33154y x y x =⎧⎪⎨=--⎪⎩求出点D 的坐标,然后求出AD OD =,利用等腰三角形三线合一性质求出ON 的长度,进而利用勾股定理求出AN 的长度,表示出S △AON ,然后证明出△GFI ∽△OGH ∽△ANO ,利用相似三角形的性质表示出S △IJF =803(t ﹣3)2,S △GOH =253t ,最后利用面积之间的关系即可求出S 与t 之间的函数关系式.【详解】解:(1)由题意得,将点A (﹣20,0),B (0,﹣15)代入抛物线y =ax 2+154x +c 得, 21515(20)(20)04c a c =-⎧⎪⎨-+⨯-+=⎪⎩, ∴15940c a =-⎧⎪⎨=⎪⎩, ∴291515404y x x =+-, 设AB 的函数表达式是y =kx +b ,将点A (﹣20,0),B (0,﹣15)代入y =kx +b 得,∴15200b k b =-⎧⎨-+=⎩, ∴1534b k =-⎧⎪⎨=-⎪⎩, ∴y =﹣34x ﹣15; (2)如图1,作CE ⊥OA 于E ,交AB 于F ,设C (a ,940a 2+154a ﹣15),F (a ,﹣34a ﹣15), ∴FC =(﹣315)4a -﹣(2940a +154a ﹣15)=﹣2940a ﹣92a , ∴ABC S ∆=12CF •AO =12(﹣2940a ﹣92a )×20=﹣94(a +10)2+225, ∴当a =﹣10时,ABC S ∆=225, 当a =﹣10时,y =29(10)40⨯-+()15104⨯-﹣15=﹣30, ∴C (﹣10,﹣30);(3)如图2,作AN ⊥OD 于N ,∵C (﹣10,﹣30),∴OC 的解析式是:y =3x ,由33154y x y x =⎧⎪⎨=--⎪⎩得, 412x y =-⎧⎨=-⎩, ∴D (﹣4,﹣12),∵A (﹣20,0),OD 22412+10∴AD ()2220412-++=20,∴AD OD=,又∵AN⊥OD,∴ON=12OD=AN=S△AON=1160 22AN ON=⨯=,∵OE,OD=,∴DE=,∴JE=3(),∴FJ=EF﹣JEt﹣3(t)=(t﹣3),∵OG AN FJ∥∥,∴GOH OAN DAN AJF∠=∠=∠=∠,又∵90G ANO F∠=∠=∠=︒,∴△GFI∽△OGH∽△ANO,∴IJFAONSS∆∆=(FJAN)2=2,GOHAONSS∆∆=(OGAN)2)2,∴S△IJF=803(t﹣3)2,S△GOH=253t,∴S=S正方形OEFG﹣S△IJF﹣S△GOH=10t2﹣53t2﹣803(t﹣3)2=﹣2553t+160t﹣240,故答案是:S=﹣2553t+160t﹣240.【点睛】此题考查了待定系数法求二次函数和一次函数表达式,二次函数与一次函数综合问题,相似三角形的性质和判定,二次函数中最大面积问题等知识,解题的关键是正确分析题目中的条件,设出点的坐标,根据相似三角形的性质以及勾股定理表示出相应的线段和面积.11.(1)(1,,图见解析(2)1322Cx-≤≤1122t<≤【解析】【分析】(1)根据等边三角形的性质,勾股定理求解即可;(2)根据题意以MB为边作等边三角形MM B',以M'为圆心1为半径作M',根据线段中点坐标公式求解即可;(3)在(2)的基础上,先求得最小值,再确定2个圆心,第1个是A 点运动点C 对应的圆心P ',第2个是点B 的运动时点C 轨迹的对应的圆心P ,进而根据线段和最大,当,,P P Q '共线时候,t 最大,根据(2)的方法求解即可.(1)过点C 作CE x ⊥轴于点E ,作出点C ,B 的逆序等边三角形CBD ,如图1,()()1,03,0A B -,,ABC 是等边三角形()1131222AE BE AB ∴===--=,33CE AE ==()1,0E ∴,(1,3C ,ABC BCD 是等边三角形∴60DCB ABC ∠=∠=︒,AB AC BC CD BD ====,CD AB CD AB ∴=∥(5,23D ∴ 故答案为:(1,23,(5,23(2)如图2,以MB 为边作等边三角形MM B ',以M '为圆心1为半径作M ', 点B (3,0),点A 在以点M (-2,0)为圆心1为半径的圆上, ∴点A ,B 的逆序等边三角形ABC 的顶点C 在M '23122M x '-+∴== M '的半径为1∴111122C x -≤≤+ 即1322C x -≤≤(3)如图3,设N 与x 轴交于点G ,以GM 为边向上作等边三角形MGH ,以点H 为圆心1为半径,作H ,设直线y x =为1l ,y x t =+为2l ,过点H 作1HJ l ⊥,交x 轴于点J ,交1l 于点S ,交2l 于点L ,过点H ,作HI x ⊥轴于点I ,设2l 与x 轴的交点为T ,则OT t =根据题意,当C 点在第二象限时,能找到t 的最小值,根据定义可知,B 点与G 点重合时,A 点在M 上运动,则C 点在H 上运动,当2l 与H 相切时,t 最小, ()2,0M -,()3,0N ,M 的半径为1,N 的半径为2, 2,321OM OG ∴==-=3MG ∴=33HI ∴=1322MI MG == 1,02I ⎛⎫∴- ⎪⎝⎭ 1332H ⎛∴- ⎝⎭1l 与x 轴的夹角为45°,1HJ l ⊥,HI x ⊥轴, HIJ ∴是等腰直角三角形 HI IJ ∴=HJ ∴===12OI =12OJ ∴1,02J ⎫∴⎪⎪⎝⎭1LJ HJ HL ∴=-=12l l ∥ LTJ ∴是等腰直角三角形1TJ ∴===⎝3122OJ =1122TO TJ JO ⎫=-==⎪⎪⎝⎭即t 12, B 的纵坐标0d >,则12t > 如图4,作,M N 的逆序等边三角形MNP ',以P '为圆心,1为半径作P ',则1PP AM '==,连接,AM PP ',ANP MNP '是等边三角形,,,60AN NP MN NP ANP MNP ''∴==∠=∠=︒PNP ANM '∴∠=∠PP N AMN '≌∴当,,P P Q '共线时候,t 最大以P 为圆心,2为半径作半圆P ,当直线y x t =+与半圆P 相切时,设切点为Q ,当C 点与Q 点重合时,即可取得t 的最大值,最大值即为T O '的长,()()2,0,3,0M N - ∴1532P ⎛' ⎝⎭过点P '作P P x '''⊥轴于点P '',如图,。

2019-中考数学押题卷及答案

2019-中考数学押题卷及答案

猜押终究扫扫刊——数学5.1 —特别题型猜押题型一解析图形和函数图象,判断结论正确性1. 如图①,在矩形ABCD中 , AC、BD交于点O,点P在边AD上运动 ,PM ⊥AC于点M,PN BD 于点 N .设PM﹦x,PN y ,且 y 与x满足一次函数关系,其图象如图②所示,其中 a ﹦6.以下判断中,不正确的选项是()A.Rt △ABD中斜边BD上的高为6B. 无论点P在AD上哪处,PM与PN的和向来保持不变C.当x﹦3 时,OP垂直均分ADD.若AD﹦10,则矩形ABCD 的面积为60第1题图题型二结论正误判断2.如图,将矩形 ABCD沿直线EF折叠,使点 C与点 A重合,折痕交 AD于点 E、交 BC于点 F,连接AF、 CE.① AF=CD′;②△CEF 是等腰三角形;③四边形AFCE为菱形;④设AE=a, ED=b, DC=c,则 a、b、c 三者之间的数量关系式为a2=b2+c2,其中正确的结论是.(将所有正确结论的序号都填在横线上)2019-2020年中考数学押题卷及答案题型三中位线及勾股定理的相关计算3.如图,在△ ABC中, BC=AC=4,∠ACB=90°,点M是边 AC的中点,点P是边 AB上的动点,则 PM +PC的最小值为.第3题图题型四二次函数的性质应用4.如图,抛物线表示的是某企业年利润y(万元)与新招员工数 x(人)的函数关系,当新招员工 200 人时,企业的年利润达到最大值900 万元 .( 1)求y与x的函数关系式;( 2)为了响应国家号召,增加更多的就业机遇,又要保证企业的年利润达800万元,那么该企业应招新员工多少人?(3)若该企业原有员工 400 人,那么应招新员工多少人时才能令人均创立的年利润与原来的相同?第4题图题型五一次函数、反比率函数、二次函数结合的实质应用题5. 某工艺品厂生产一种汽车装饰品,每件生产成本为20 元,销售价格在30 元至 80 元之间(含 30 元和 80 元),销售过程中的管理、仓储、运输等各种花销(不含生产成本)总计50 万元 . 其销售量y (万个)与销售价格(元/ 个)的函数关系以以下图所示.(1)当 30≤x≤ 60 时,求y与x的函数关系式;(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?第5题图题型六解直角三角形的实质应用6.某地下车库出口处“两段式栏杆” 如图①所示,点 A是栏杆转动的支点,点 E 是栏杆两段的连接点 . 当车辆经过时,栏杆AEF升起所的地址如图②所示,其表示图如图③所示,其中 AB⊥ BC,EF∥ BC,∠ EAB=143°, AB= AE 米,求当车辆经过时,栏杆 EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到米,栏杆宽度忽略不计 .参照数据: sin37 °≈ 0.60 , cos37 °≈ 0.80 , tan37 °≈ 0.75 )第6题图题型七几何图形的证明与计算题1.涉及三角形相似的证明及性质7.如图,已知四边形 ABCD是圆内接四边形,点 E 在线段 CB的延长线上,且∠ EAB=∠ CAD.(1)当BC⊥CD时,求证:∠EAC= 90°;(2)求证:ABAC=ADAE.第7题图题型八着手操作题8. 如图,把一个边长为 6 的正方形经过三次对折后沿图④中平行于MN的虚线剪下,获得图⑤,它张开后获得的图形的面积为32,则AN的长为.第8题图创新题猜押命题点一新定义问题1. 设二次函数y1、y2的图象的极点分别为( a,b) 、(c,d),当a=c, b=2d,且张口方向相同时,则称 y1是 y2的“反倍顶二次函数”.(1)请写出二次函数y=x2+x+1 的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y1 =x2+和二次函数2=2, 函数y1+ 2正是y1nx y nx +x yy2的“反倍顶二次函数”,求n.名校内部模拟试题命题点一一次函数、反比率函数、二次函数结合的实质应用题1.( 淮北五校联考模拟) 某水果店试营销一种新进水果,进价为20元/件,试营销期为销售价 y (元/件)与销售天数x (天)满足当1≤x≤ 9 时,错误!未找到引用源。

(完整版)2019中考数学压轴题(可编辑修改word版)

(完整版)2019中考数学压轴题(可编辑修改word版)

2 3 x 13 3 2 3 x 3 3 3 3 2019 中考数学压轴题52.(2017 内蒙古赤峰市,第 21 题,10 分)如图,一次函数于点 A 、B ,以线段 AB 为边在第一象限作等边△ABC.y = ky = -3x +1 3的图象与 x 轴、y 轴分别交 (1) 若点 C 在反比例函数 x 的图象上,求该反比例函数的解析式;(2) 点 P ( 2 ,m )在第一象限,过点 P 作 x 轴的垂线,垂足为 D ,当△PAD 与△OAB 相似时,P 点 是否在(1)中反比例函数图象上?如果在,求出 P 点坐标;如果不在,请加以说明.【答案】(1)y =;(2)P ( 2 ,1)在反比例函数图象上. 【分析】(1)由直线解析式可求得 A 、B 坐标,在 Rt△AOB 中,利用三角函数定义可求得∠BAO=30°,且可求得 AB 的长,从而可求得 CA⊥OA,则可求得 C 点坐标,利用待定系数法可求得反比例函数解析式; (2)分△PAD∽△ABO 和△PAD∽△BAO 两种情况,分别利用相似三角形的性质可求得 m 的值,可求得 P 点坐标,代入反比例函数解析式进行验证即可.【解析】(1)在 y = - 3x +1 3中,令 y=0 可解得 x= ,令 x=0 可得 y=1,∴A( ,0),B (0,1),∴OB = = tan∠BAO=OA 33 ,∴∠BAO=30°,∵△ABC 是等边三角形,∴∠BAC=60°,∴∠CAO=90°, y = k在Rt △BOA 中,由勾股定理可得 AB=2,∴AC=2,∴C( ,2),∵点 C 在反比例函数 x 的图象上,∴k=2× =2 y =,∴反比例函数解析式为 ;PD =AD(2)∵P( 2m =,m )在第一象限,∴AD=OD﹣OA= 2 ﹣ = ,PD=m ,当△ADP∽△AOB 时,则有OB OA ,即 1 ,解得 m=1,此时 P 点坐标为( 2 ,1);3 3 3 3 3 3 3 3 33PD =AD m = 当△PDA∽△AOB 时,则有 OA OB ,即y = 3 1 ,解得 m=3,此时 P 点坐标为( 2 ,3);把 P (2 ,3)代入 x 可得 3≠ ,∴P( 2 ,3)不在反比例函数图象上,把 P ( 2 ,1)代入反比例函数解析式得 1= ,∴P( 2 ,1)在反比例函数图象上;综上可知 P 点坐标为( 2 ,1).点睛:本题为反比例函数的综合应用,涉及待定系数法、等边三角形的性质、三角函数、勾股定理、相似三角形的性质及分类讨论思想等知识.在(1)中求得 C 点坐标是解题的关键,在(2)中利用相似三角形的性质得到 m 的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强, 难度适中.考点:反比例函数综合题;分类讨论;综合题.53.(2017 内蒙古赤峰市,第 26 题,14 分)如图,二次函数 y = ax 2+ bx + c (a≠0)的图象交 x 轴于 A 、B两点,交 y 轴于点 D ,点 B 的坐标为(3,0),顶点 C 的坐标为(1,4).(1) 求二次函数的解析式和直线 BD 的解析式;(2) 点 P 是直线 BD 上的一个动点,过点 P 作 x 轴的垂线,交抛物线于点 M ,当点 P 在第一象限时,求线段 PM 长度的最大值;(3) 在抛物线上是否存在异于 B 、D 的点 Q ,使△BDQ 中 BD 边上的高为2 若不存在请说明理由.?若存在求出点 Q 的坐标;9【答案】(1) y = -x 2+ 2x + 3 ,y=﹣x+3;(2) 4 ;(3)Q (﹣1,0)或(4,﹣5).【分析】(1)可设抛物线解析式为顶点式,由 B 点坐标可求得抛物线的解析式,则可求得 D 点坐标,利用待定系数法可求得直线 BD 解析式; (2) 设出 P 点坐标,从而可表示出 PM 的长度,利用二次函数的性质可求得其最大值; (3) 过 Q 作 QG∥y 轴,交 BD 于点 G ,过 Q 和 QH⊥BD 于 H ,可设出 Q 点坐标,表示出 QG 的长度,由条件可证得△DHG 为等腰直角三角形,则可得到关于 Q 点坐标的方程,可求得 Q 点坐标. 【解析】(1)∵抛物线的顶点 C 的坐标为(1,4),∴可设抛物线解析式为 y=a (x ﹣1)2+4,∵点 B (3,0)在该抛物线的图象上,∴0=a (3﹣1)2+4,解得 a=﹣1,∴抛物线解析式为 y=﹣(x ﹣1)2+4,即 y = -x 2 + 2x + 3 ,∵点 D 在y 轴上,令 x=0 可得 y=3,∴D 点坐标为(0,3),∴可设直线 BD 解析式为 y=kx+3,把 B 点坐标代入可得 3k+3=0,解得 k=﹣1,∴直线 BD 解析式为 y=﹣x+3;3 3 2 32 3 2 3 3 3 2 32 3 3 3 2(2)设P 点横坐标为m(m>0),则P(m,﹣m+3),M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=-(m -3)2+9 3 92 4 ,∴当 m= 2 时,PM 有最大值4 ;点睛:本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在(1)中主要是待定系数法的考查,注意抛物线顶点式的应用,在(2)中用 P 点坐标表示出 PM 的长是解题的关键,在(3)中构造等腰直角三角形求得 QG 的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题.54.(2017 内蒙古通辽市,第26 题,12 分)在平面直角坐标系xOy 中,抛物线y=ax2+bx+2过点A(﹣2,0),B(2,2),与 y 轴交于点 C.(1)求抛物线y =ax2 +bx + 2 的函数表达式;(2)若点 D 在抛物线y =ax2 +bx + 2 的对称轴上,求△ACD的周长的最小值;(3)在抛物线y =ax2 +bx + 2 的对称轴上是否存在点 P,使△ACP是直角三角形?若存在直接写出点 P 的坐标,若不存在,请说明理由.5 5 2 5 5 4a + 2b + 2 = 2【答案】(1)y =- 1 x 2 + 1 x + 2 4 2;(2) 2 + 2 ;(3)存在,P (1,1)或(1,﹣3). 【分析】(1)利用待定系数法求抛物线的函数表达式;(2) 由轴对称的最短路径得:因为 B 与 C 关于对称轴对称,所以连接 AB 交对称轴于点 D ,此时△ACD 的周长最小,利用勾股定理求其三边相加即可; (3) 存在,当 A 和 C 分别为直角顶点时,画出直角三角形,设 P (1,y ),根据三角形相似列比例式可得 P 的坐标.【解析】(1)把点 A (﹣2,0),B (2,2)代入抛物线⎧a = - 1y = ax 2 + bx + 2 ⎧4a - 2b + 2 = 0⎨ 中,得: ⎩ ,解得: ⎪ ⎨⎪b = ⎩ 412 ,∴抛物线函数表达式为: y = - 1 x 2 + 1 4 2x + 2;(2)∵ y = - 1 x 2 + 1 x + 2 4 2 - 1 (x -1)2 + 9= 4 4 ,∴对称轴是:直线 x=1,如图 1,过 B 作 BE⊥x 轴于 E ,∵C(0, 2),B (2,2),对称轴是:x=1,∴C 与 B 关于 x=1 对称,∴CD=BD,连接 AB 交对称轴于点 D ,此时△ACD的周长最小,∵BE=2,AE=2+2=4,OC=2,OA=2,∴AB= =2 ,AC= = 2 ,∴△ACD的周长=AC+CD+AD=AC+BD+AD=AC+AB=2 + 2 .答:△ACD 的周长的最小值是2 (3)存在,分两种情况:+ 2 ;①当∠ACP=90°时,△ACP 是直角三角形,如图 2,过 P 作 PD⊥y 轴于D ,设 P (1,y ),则△CGP∽△AOC,∴ PG = CG 1 = CGOC AO ,∴ 2 2 ,∴CG=1,∴OG=2﹣1=1,∴P(1,1);AE =PE②当∠CAP=90°时,△ACP 是直角三角形,如图 3,设 P (1,y ),则△PEA∽△AOC,∴OC AO ,∴3 =PE2 2 ,∴PE=3,∴P(1,﹣3);2 22 + 42 22 + 222 2 ⎪3 3 3 3 综上所述,△ACP 是直角三角形时,点 P 的坐标为(1,1)或(1,﹣3).点睛:本题是二次函数的综合题,难度适中,考查了利用待定系数法求二次函数的解析式、轴对称的最短路径问题、直角三角形问题,第 3 问采用了分类讨论的思想,与三角形相似结合,列比例式可解决问题.考点:二次函数综合题;最值问题;分类讨论;存在型;压轴题. 55.(2017 吉林省,第 23 题,8 分)如图①,BD 是矩形 ABCD 的对角线,∠ABD=30°,AD=1.将△BCD 沿射线 BD 方向平移到△B'C'D'的位置,使 B'为 BD 中点,连接 AB',C'D ,AD',BC',如图②. (1) 求证:四边形 AB'C'D 是菱形; (2) 四边形 ABC'D′的周长为 ; (3) 将四边形 ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.【答案】(1)证明见解析;(2) 4 ;(3)6+ 或 2 +3.【分析】(1)有一组邻边相等的平行四边形是菱形,据此进行证明即可;(2) 先判定四边形 ABC'D'是菱形,再根据边长AB=AD= ,即可得到四边形 ABC'D′的周长为4 ; (3)根据两种不同的拼法,分别求得可能拼成的矩形周长.【解析】(1)∵BD 是矩形 ABCD 的对角线,∠ABD=30°,∴∠ADB=60°,由平移可得,B'C'=BC=AD ,∠ D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'1∴四边形 AB'C'D 是平行四边形,∵B'为 BD 中点,∴Rt△ABD 中,AB'= 2 BD=DB',又∵∠ADB=60°,∴△ ADB'是等边三角形,∴AD=AB',∴四边形 AB'C'D 是菱形; (2) 由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形 ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形 ABC'D'是菱形,∵AB=AD= ,∴四边形 ABC'D′的周长为4 ,故答案为:4 ; (3) 将四边形 ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:3 3 3 3 3 33 3 x⎨ ⎪∴矩形周长为 6+ 或 2 +3.点睛:本题主要考查了菱形的判定与性质,矩形的性质以及勾股定理的运用,解题时注意:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.考点:菱形的判定与性质;矩形的性质;图形的剪拼;平移的性质;操作型;分类讨论. 56.(2017 吉林省,第 25 题,10 分)如图,在 Rt △ABC 中,∠ACB=90°,∠A=45°,AB=4cm .点 P 从点 A 出发,以 2cm/s 的速度沿边 AB 向终点 B 运动.过点 P 作 PQ⊥AB 交折线 ACB 于点 Q ,D 为 PQ 中点,以 DQ 为边向右侧作正方形 DEFQ .设正方形 DEFQ 与△ABC 重叠部分图形的面积是 y (cm2),点 P 的运动时间为 x (s ).(1) 当点 Q 在边 AC 上时,正方形 DEFQ 的边长为 cm (用含 x 的代数式表示); (2) 当点 P 不与点 B 重合时,求点 F 落在边 BC 上时 x 的值; (3) 当 0<x <2 时,求 y 关于 x 的函数解析式; (4) 直接写出边 BC 的中点落在正方形 DEFQ 内部时 x 的取值范围.⎧ 2(0 < x≤ 4)5 ⎪ y = ⎪- ⎪ 23 x 2 + 20x - 8 ( 4 2 5 < x ≤ 1)4 【答案】(1)x ;(2)x=5 ;(3) ⎪ 1 x 2- 2x + 2 (1 < x < 2)⎩ 2 3 ;(4)1<x <2 . 【分析】(1)国际已知条件得到∠AQP=45°,求得 PQ=AP=2x ,由于 D 为 PQ 中点,于是得到 DQ=x ;(2) 如图①,延长 FE 交 AB 于 G ,由题意得 AP=2x ,由于 D 为 PQ 中点,得到 DQ=x ,求得 GP=2x ,列方程于是得到结论;4 4(3) 如图②,当 0<x≤ 5 时,根据正方形的面积公式得到 y=x2;如图③,当 5 <x≤1 时,过 C 作 CH⊥AB 于 H ,交 FQ 于 K ,则 CH=2,根据正方形和三角形面积公式得到 y 的解析式;如图④,当 1<x <2 时,PQ=4﹣2x ,根据三角形的面积公式得到结论;(4) 当 Q 与 C 重合时,E 为 BC 的中点,得到 x=1,当 Q 为 BC 的中点时,BQ= 得到结论.,得到 x 的值,于是【解析】(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,∴∠AQP=45°,∴PQ=AP=2x,∵D 为 PQ 中点,∴ DQ=x ,故答案为:x ; (2) 如图①,延长 FE 交 AB 于 G ,由题意得 AP=2x ,∵D 为 PQ 中点,∴DQ=x,∴GP=2x,∴2x+x+2x=4,∴x=2 ⎪2 x⎨ ⎪ 4 5 ;4(3)如图②,当 0<x≤ 5 时,y=S 正方形 DEFQ=DQ2=x2,∴ y = x 2;4 1如图③,当 5 <x≤1 时,过 C 作 CH⊥AB 于 H ,交 FQ 于 K ,则 CH=2 AB=2,∵PQ=AP=2x,CK=2﹣2x ,∴1 1MQ=2CK=4﹣4x ,FM=x ﹣(4﹣4x )=5x ﹣4,∴y=S 正方形 DEFQ ﹣S△MNF=DQ2﹣ 2 FM2,∴y=x2﹣ 2 (5x ﹣4) y = - 23x 2 + 20x - 82,∴ 2 ;1 1y = 1x 2 - 2x + 2如图④,当 1<x <2 时,PQ=4﹣2x ,∴DQ=2﹣x ,∴y=S△DEQ= 2 DQ2,∴y= 2 (2﹣x )2,∴ 2 ;⎧ 2(0 < x ≤ 4)5 ⎪ y = ⎪- ⎪ 23 x 2 + 20x - 8 ( 4 2 5 < x ≤ 1)综上所述: ⎪ 1 x 2 - 2x + 2 (1 < x < 2) ⎩ 2(4)当Q 与C 重合时,E 为BC 的中点,即2x=2,∴x=1,当Q 为BC 的中点时,BQ= ,PB=1,∴AP=3,∴2x=3,3 3∴x=2 ,∴边 BC 的中点落在正方形 DEFQ 内部时 x 的取值范围为:1<x < 2 .点睛:本题考查了等腰直角三角形的性质,正方形的性质,图形面积的计算,正确的作出图形是解题的关键.考点:四边形综合题;动点型;分类讨论;分段函数;压轴题. 57.(2017 吉林省,第 26 题,10 分)《函数的图象与性质》拓展学习片段展示:⎪【问题】如图①,在平面直角坐标系中,抛物线则 a= .y = a (x - 2)2- 43 经过原点 O ,与 x 轴的另一个交点为 A , 【操作】将图①中抛物线在 x 轴下方的部分沿 x 轴折叠到 x 轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为 G ,如图②.直接写出图象 G 对应的函数解析式.【探究】在图②中,过点 B (0,1)作直线 l 平行于 x 轴,与图象 G 的交点从左至右依次为点 C ,D ,E ,F , 如图③.求图象 G 在直线 l 上方的部分对应的函数 y 随 x 增大而增大时 x 的取值范围.【应用】P 是图③中图象 G 上一点,其横坐标为 m ,连接 PD ,PE .直接写出△PDE 的面积不小于 1 时 m 的取值范围.⎧1(x - 2)2 - 4 (x ≤ 0或x ≥ 4) y = ⎪3 3 1 【答案】【问题】: 3 ;【操作】: ⎨ ⎪- 1 (x - 2)2 + 4 ⎩ 3 3(0 < x < 4);【探究】:当 1<x <2 或 x >2+时,函数 y 随 x 增大而增大;【应用】:m=0 或 m=4 或 m≤2﹣ 10 或 m≥2+ 10 .【分析】【问题】:把(0,0)代入可求得 a 的值;【操作】:先写出沿 x 轴折叠后所得抛物线的解析式,根据图象可得对应取值的解析式;【探究】:令 y=0,分别代入两个抛物线的解析式,分别求出四个点 CDEF 的坐标,根据图象呈上升趋势的部分,即 y 随 x 增大而增大,写出 x 的取值;【应用】:先求 DE 的长,根据三角形面积求高的取值 h≥1; 分三部分进行讨论:1 (m - 2)2 - 4 ①当 P 在 C 的左侧或 F 的右侧部分时,设 P[m ,3 3 ],根据 h≥1,列不等式解出即可; ②如图③,作对称轴由最大面积小于 1 可知:点 P 不可能在 DE 的上方;③P 与 O 或 A 重合时,符合条件,m=0 或 m=4. 【解析】【问题】y = a (x - 2)2 - 4 0 = a (0 - 2)2 - 4 1 1∵抛物线3 经过原点 O ,∴ y = 1 (x - 2)2 - 43 ,a= 3 ,故答案为: 3 ; 【操作】:如图①,抛物线: 33 ,对称轴是:直线 x=2,由对称性得:A (4,0),沿 x 轴折叠后所得抛物线为:y = - 1 (x - 2)2 + 43 3 ,如图②,图象 G 对应的函数解析式为: 77 ⎧1(x - 2)2 - 4 (x ≤ 0或x ≥ 4) y = ⎪3 3 ⎨ ⎪- 1 (x - 2)2 + 4 ⎩ 3 3(0 < x < 4) ;【探究】:如图③,由题意得:1 (x - 2)2 - 4 当 y=1 时,3 3 =0,解得:x1=2+ - 1 (x - 2)2 + 4= 0,x2=2﹣ ,∴C(2﹣,1),F (2+,1),当 y=1时, 33 ,解得:x1=3,x2=1,∴D (1,1),E (3,1),由图象得:图象 G 在直线 l 上 方的部分,当 1<x <2 或 x >2+ 时,函数 y 随 x 增大而增大;1【应用】:∵D(1,1),E (3,1),∴DE=3﹣1=2,∵S△PDE=2 DE•h≥1,∴h≥1; 1 (m - 2)2 -41 (m - 2)2 - 4①当P在C 的左侧或F的右侧部分4 4 1 ②如图③,作对称轴交抛物线 G 于 H ,交直线 CD 于 M ,交 x 轴于 N ,∵H(2, 3 ),∴HM=3 ﹣1= 3 <1,∴ 当点 P 不可能在 DE 的上方; ③∵MN=1,且 O (0,0),a (4,0),∴P 与 O 或 A 重合时,符合条件,∴m=0 或 m=4; 综上所述,△PDE 的面积不小于 1 时,m 的取值范围是:m=0 或 m=4 或 m≤2﹣ 10 或 m≥2+ 10 . 点睛:本题是二次函数的综合题,考查了利用待定系数法求二次函数的解析式、对称性、二次函数的性质、图形和坐标特点、折叠的性质;运用了数形结合的思想和分类讨论的思想,应用部分有难度, 根据面积的条件,先求出底边的长和确定高的取值是关键. 考点:二次函数综合题;翻折变换(折叠问题);分类讨论;阅读型;压轴题. 58.(2017 吉林省长春市,第 23 题,10 分)如图①,在 Rt△ABC 中,∠C=90°,AB=10,BC=6,点 P 从点 A 出发,沿折线 AB ﹣BC 向终点 C 运动,在 AB 上以每秒5 个单位长度的速度运动,在 BC 上以每 4秒 3 个单位长度的速度运动,点 Q 从点 C 出发,沿 CA 方向以每秒 3 个单位长度的速度运动,P ,Q 两 点同时出发,当点 P 停止时,点 Q 也随之停止.设点 P 运动的时间为 t 秒. (1) 求线段 AQ 的长;(用含 t 的代数式表示) (2)连结 PQ ,当 PQ 与△ABC 的一边平行时,求 t 的值; (3) 如图②,过点 P 作 PE⊥AC 于点 E ,以 PE ,EQ 为邻边作矩形 PEQF ,点 D 为 AC 的中点,连结 7 7 7 7 ⎪102 - 62⎨ DF .设矩形 PEQF 与△ABC 重叠部分图形的面积为 S .①当点 Q 在线段 CD 上运动时,求 S 与 t 之间的函数关系式;②直接写出 DF 将矩形 PEQF 分成两部分的面积比为 1:2 时 t 的值.⎧-16t 2 + 24t (0 ≤ t ≤ 3) ⎪⎪S = ⎪- ⎪ 16 t 2+ 40t - 48 ( 3 3 2 2 < t ≤ 2)4 3 ⎪- 20 t 2+ 30t - 24 (2 < t ≤ 3)【答案】(1)AQ=8﹣ 3 t (0≤t≤4);(2)t= 2 s 或 3s ;(3)① ⎩⎪ 3;②t=3 65 s 或 5 s .【分析】(1)利用勾股定理先求出 AC ,根据 AQ=AC ﹣CQ 即可解决问题; (2) 分两种情形列出方程求解即可;3 3(3) ①分三种情形 a 、如图 1 中,当 0≤t≤ 2 时,重叠部分是四边形 PEQF .b 、如图 2 中,当 2 <t≤2 时,重叠部分是四边形 PNQE .C 、如图 3 中,当 2<t≤3 时,重叠部分是五边形 MNPBQ .分别求解即可;②分两种情形 a 、如图 4 中,当 DE :DQ=1:2 时,DF 将矩形 PEQF 分成两部分的面积比为 1:2.b 、如图 5 中,当 NE :PN=1:2 时,DF 将矩形 PEQF 分成两部分的面积比为 1:2.分别列出方程即可解决问题; 【解析】(1)在 Rt△ABC 中,∵∠C=90°,AB=10,BC=64= =8,∵CQ= 3 t ,∴4AQ=8﹣ 3 t (0≤t≤4).AP =AQ5t =8 - 4 t 3 3 (2) ①当 PQ∥BC 时, AB AC ,∴10 8 4 t,∴t= 2 s . CQ =CP 3 = 6 - 3(t - 2) ②当 PQ∥AB 时, CA CB ,∴ 8 6 ,∴t=3.3综上所述,t=2 s 或 3s 时,当 PQ 与△ABC 的一边平行. 3(3) ①如图 1 中,a 、当 0≤t≤2 时,重叠部分是四边形 PEQF . AB 2 - BC 24S=PE•EQ=3t•(8﹣4t﹣3 t)= -16t 2 + 24t .3b、如图 2 中,当2 <t≤2 时,重叠部分是四边形 PNQE.1 4 5 4 3 5 4S=S 四边形 PEQF﹣S△PFN=(16t2﹣24t)﹣2 •5 [5t﹣4 (8﹣3 t)]•5 [5t﹣4 (8﹣3 t0]=-16t 2+ 40t - 48 3 .C.如图 3 中,当 2<t≤3 时,重叠部分是五边形 MNPBQ.4 1 4 3 4S =S 四边形 PBQF -S△FNM= 3 t•[6﹣3(t﹣2)]﹣2 •[3 t﹣4(t﹣2)]•4 [ 3 t﹣4(t﹣2)]=-20t 2+ 30t - 24 3 .⎨ ⎧-16t 2 + 24t (0 ≤ t ≤ 3) ⎪⎪S =⎪- ⎪ 16 t 2 + 40t - 48 ( 3 3 2 2 < t ≤ 2) ⎪- 20 t 2+ 30t - 24 (2 < t ≤ 3)综上所述: ⎩⎪ 3;②a、如图 4 中,当 DE :DQ=1:2 时,DF 将矩形 PEQF 分成两部分的面积比为 1:2.4 3 则有(4﹣4t ):(4﹣3 t )=1:2,解得 t= 5 s ; b 、如图 5 中,当 NE :PN=1:2 时,DF 将矩形 PEQF 分成两部分的面积比为 1:2.4 6∴DE:DQ=NE :FQ=1:3,∴(4t ﹣4):(4﹣3 t )=1:3,解得 t= 5 s .3 6综上所述,当 t=5 s 或 5 s 时,DF 将矩形 PEQF 分成两部分的面积比为 1:2. 点睛:本题考查四边形综合题、矩形的性质、勾股定理、相似三角形的性质和判定、平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考压轴题.考点:相似三角形的判定与性质;四边形综合题;分段函数;分类讨论;动点型;压轴题. 59.(2017 吉林省长春市,第 24 题,12 分)定义:对于给定的两个函数,任取自变量 x 的一个值,当 x <0 时,它们对应的函数值互为相反数;当 x≥0 时,它们对应的函数值相等,我们称这样的两个⎧⎪-x +1( x < 0) y = ⎨函数互为相关函数.例如:一次函数 y=x ﹣1,它的相关函数为 ⎪⎩x -1( x ≥ 0) .(1) 已知点 A (﹣5,8)在一次函数 y=ax ﹣3 的相关函数的图象上,求 a 的值;⎨ax - 3(x ≥ 0) ⎨ ⎨(2) 已知二次函数y = -x 2 + 4x - 12 .3①当点 B (m ,2 )在这个函数的相关函数的图象上时,求 m 的值; y = -x 2 + 4x - 1②当﹣3≤x≤3 时,求函数2 的相关函数的最大值和最小值;1 9(3) 在平面直角坐标系中,点 M ,N 的坐标分别为(﹣ 2 ,1),( 2 ,1}),连结 MN .直接写出线段 MN与二次函数y = -x 2+ 4x + n 的相关函数的图象有两个公共点时 n 的取值范围.43 1【答案】(1)1;(2)①m=2﹣ 或 m=2+ 或 m=2﹣ ;②最大值为 2 ,最小值为﹣2 ;(3)﹣3<n≤5﹣1 或 1<n≤4 .【分析】(1)函数 y=ax ﹣3 的相关函数为求解即可;y = ⎧-ax + 3(x < 0)⎩ ,将然后将点 A (﹣5,8)代入 y=﹣ax+3⎧x 2- 4x + 1 (x < 0) y = ⎪ 2 11 (2) 二次函数 y = -x2 + 4x -2 的相关函数为 ⎪-x 2 + 4x - ⎩ (x ≥ 0)2 ,①分为 m <0 和 m≥0 两种情况将点 B 的坐标代入对应的关系式求解即可;②当﹣3≤x<0 时,y = -x 2 + 4x - 1y = -x 2 + 4x - 12 ,然后可 此时的最大 值和最小值,当 0≤x≤3 时,函数3 时的最大值和最小值;2 ,求得此时的最大值和最小值,从而可得到当﹣3≤x≤ (3) 首先确定出二次函数y = -x 2+ 4x + n 的相关函数与线段 MN 恰好有 1 个交点、2 个交点、3 个交点时 n 的值,然后结合函数图象可确定出 n 的取值范围.y = ⎧-ax + 3(x < 0)ax - 3(x ≥ 0)【解析】(1)函数 y=ax ﹣3 的相关函数为 ⎩ ,将点 A (﹣5,8)代入 y=﹣ax+3 得:5a+3=8,解得:a=1.5 2 2②当﹣3≤x<0 时,y =x2- 4x+ 12 ,抛物线的对称轴为x=2,此时 y 随x 的增大而减小,∴此时 y 的43最大值为2 .y =-x2+ 4x -1 1当0≤x≤3时,函数 2 ,抛物线的对称轴为 x=2,当 x=0 有最小值,最小值为﹣2 ,当x=27时,有最大值,最大值 y= 2 .综上所述,当﹣3≤x≤3时,函数y =-x2+ 4x -12 的相关函数的最大值为43 12 ,最小值为﹣2 ;(3)如图 1 所示:线段 MN 与二次函数y =-x2 + 4x +n 的相关函数的图象恰有 1 个公共点.所以当 x=2 时,y=1,即﹣4+8+n=1,解得 n=﹣3.如图 2 所示:线段 MN 与二次函数y =-x2 + 4x +n 的相关函数的图象恰有 3 个公共点∵抛物线y =-x2 + 4x +n 与y 轴交点纵坐标为 1,∴﹣n=1,解得:n=﹣1,∴当﹣3<n≤﹣1 时,线段MN 与二次函数y =-x2 + 4x +n 的相关函数的图象恰有 2 个公共点.如图 3 所示:线段 MN 与二次函数y =-x2 + 4x +n 的相关函数的图象恰有 3 个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图 4 所示:线段 MN 与二次函数y =-x2 + 4x +n 的相关函数的图象恰有 2 个公共点.1 1 5 5∵抛物线y=x2-4x-n经过点 M(﹣2,1),∴ 4+2﹣n=1,解得:n= 4,∴1<n≤4时,线段 MN 与二次函数y =-x2 + 4x +n 的相关函数的图象恰有 2 个公共点.5综上所述,n 的取值范围是﹣3<n≤﹣1 或1<n≤4 .点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y =-x2 + 4x +n 的相关函数与线段 MN 恰好有 1 个交点、2 个交点、3 个交点时 n 的值是解题的关键.⎨ 考点:二次函数综合题;新定义;二次函数的最值;最值问题;分类讨论;压轴题.60.(2017 四川省内江市,第 28 题,12 分)如图,在平面直角坐标系中,抛物线y = ax 2+ bx + c (a≠0)与 y 轴交与点 C (0,3),与 x 轴交于 A 、B 两点,点 B 坐标为(4,0),抛物线的对称轴方程为 x=1.(1) 求抛物线的解析式; (2) 点 M 从 A 点出发,在线段 AB 上以每秒 3 个单位长度的速度向 B 点运动,同时点 N 从 B 点出发, 在线段 BC 上以每秒 1 个单位长度的速度向 C 点运动,其中一个点到达终点时,另一个点也停止运动, 设△MBN 的面积为 S ,点 M 运动时间为 t ,试求 S 与 t 的函数关系,并求 S 的最大值; (3) 在点 M 运动过程中,是否存在某一时刻 t ,使△MBN 为直角三角形?若存在,求出 t 值;若不存在,请说明理由.【答案】(1)y = - 3 x 2 + 3 x + 3 8 4;(2)S= - 9 t 2 + 9 t10 5 9 ,运动 1 秒使△PBQ 的面积最大,最大面积是10 ;24 30(3)t=17 或 t= 19 . 【分析】(1)把点 A 、B 、C 的坐标分别代入抛物线解析式,列出关于系数 a 、b 、c 的解析式,通过解方程组求得它们的值; (2) 设运动时间为 t 秒.利用三角形的面积公式列出 S△MBN 与 t 的函数关系式.利用二次函数的图象性质进行解答; (3) 根据余弦函数,可得关于 t 的方程,解方程,可得答案. 【解析】(1)∵点 B 坐标为(4,0),抛物线的对称轴方程为 x=1,∴A(﹣2,0),把点 A (﹣2,0)、B (4,0)、⎧a = - 3 ⎪⎪ ⎪点 C (0,3),分别代入 y = ax 2+ bx + c ⎧4a - 2b + 3 = 0 (a≠0),得: ⎩16a + 4b + 3 = 0 ⎨b = ⎪ ⎪c = 3 ,解得: ⎪⎩ ,所以该抛物线的解析式为:y = - 3 x 2 + 3x + 38 4 ; (2) 设运动时间为 t 秒,则 AM=3t ,BN=t ,∴MB=6﹣3t .由题意得,点 C 的坐标为(0,3).在 Rt△BOCHN = BN中,BC= =5.如图1,过点 N 作 NH⊥AB 于点 H ,∴NH∥CO,∴△BHN∽△BOC,∴ OC BC ,即HN =t 3 1 1 3 - 9 t 2 + 9 t - 9 (t -1)2 + 9 3 5 ,∴ HN= 5 t ,∴ S△ MBN= 2 MB•HN= 2 ( 6﹣3t )• 5 t ,即 S= 10 5 = 10 10 ,当△ PBQ9存在时,0<t <2,∴当 t=1 时,S△PBQ 最大= 10 .32 + 424 389答:运动 1 秒使△PBQ 的面积最大,最大面积是10 ;OB=4(3)如图2,在Rt△OBC中,cos∠B=BC 5 .设运动时间为 t 秒,则 AM=3t,BN=t,∴MB=6﹣3t.BN=4 t=4 24①当∠MNB=90°时,cos∠B=MB 5 ,即6 - 3t 5 ,化简,得 17t=24,解得 t= 17 ;6 - 3t=4 30②当∠BMN=90°时,cos∠B= t 5 ,化简,得19t=30,解得t= 19 .24 30综上所述:t= 17 或t= 19 时,△MBN为直角三角形.点睛:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.考点:二次函数综合题;最值问题;二次函数的最值;动点型;存在型;分类讨论;压轴题.61.(2017 四川省南充市,第 25 题,10 分)如图 1,已知二次函数y=ax2+bx+c(a、b、c 为常数,a≠0)-8的图象过点 O(0,0)和点 A(4,0),函数图象最低点 M 的纵坐标为 3 ,直线 l 的解析式为 y=x.(1)求二次函数的解析式;(2)直线 l 沿x 轴向右平移,得直线l′,l′与线段 OA 相交于点 B,与x 轴下方的抛物线相交于点C,过点 C 作CE⊥x轴于点 E,把△BCE沿直线l′折叠,当点 E 恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y 轴交于点 N,把△BON绕点O 逆时针旋转135°得到△B′ON′,P 为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点 P 的坐标.y =2x2-8x 3 2 + 3 -3 3 3 2 - 3 - 3 3【答案】(1) 3 3 ;(2)y=x﹣3;(3)P 坐标为(0,﹣3)或( 2 , 2 )3 2 + 3 + 3 3 或(23 2 - 3 + 3 3, 2 ).-8y =a(x - 2)2-8【分析】(1)由题意抛物线的顶点坐标为(2, 3 ),设抛物线的解析式为 3 ,把(0,0)2代入得到 a= 3 ,即可解决问题;2m2-8m -2m2+11m(2)如图1 中,设E(m,0),则C(m,3 3m + (-2m2+11m)3 3),B( 3 3,0),由E、B 关于对称轴对称,可得2=2,由此即可解决问题;(3)分两种情形求解即可①当 P1 与N 重合时,△P1B′N′是等腰三角形,此时 P1(0,﹣3).②当N′=N′B′时,设 P(m,m﹣3),列出方程解方程即可;-8【解析】(1)由题意抛物线的顶点坐标为(2, 3 ),设抛物线的解析式为y =a(x - 2)2-83 ,把(0,0)2代入得到 a= 3 ,∴抛物线的解析式为y =2(x - 2)2-83 3 ,即2m2-8my =2x2-8x3 3 .-2m2+11m(2)如图1 中,设E(m,0),则C(m,3 3),B( 3 3,0),∵E′在抛物线上,∴E、B 关于对称轴对称,∴m + (-2m2+11m)3 32 =2,解得m=1 或6(舍弃),∴B(3,0),C(1,﹣2),∴直线l′的解析式为 y=x﹣3.(3)如图 2 中,①当 P1 与N 重合时,△P1B′N′是等腰三角形,此时 P1(0,﹣3).(m -3 2)2+ (m - 3 -3 2)2= (3 2)2 3 2 + 3 - 3 3②当N′=N′B′时,设P(m,m﹣3),则有 2 2 ,解得m= 23 2 + 3 + 3 3或2,∴P2(3 2 + 3 - 3 323 2 - 3 - 3 3, 2 ),P3(3 2 + 3 + 3 323 2 - 3 + 3 3, 2 ).综上所述,满足条件的点 P 坐标为(0,﹣3)或(3 2 - 3 + 3 33 2 + 3 - 3 323 2 - 3 - 3 3, 2 )或(3 2 + 3 + 3 32 ,2 ).点睛:本题考查二次函数综合题、待定系数法、等腰三角形的判定和性质、两点间距离公式等知识,解题的关键是学会用分类讨论的思想思考问题,学会根据方程,属于中考压轴题.考点:二次函数综合题;几何变换综合题;分类讨论;压轴题.62.(2017 四川省宜宾市,第24 题,12 分)如图,抛物线y=-x2+bx+c与x 轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点 C,作 CD 垂直X 轴于点 D,链接 AC,且 AD=5,CD=8,将Rt△ACD沿x 轴向右平移 m 个单位,当点 C 落在抛物线上时,求 m 的值;(3)在(2)的条件下,当点 C 第一次落在抛物线上记为点 E,点 P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点 Q,使以点 B、E、P、Q 为顶点的四边形是平行四边形?若存在,请出点 Q 的坐标;若不存在,请说明理由.-25 + 5b + c = 0 c = 5 【答案】(1)y = -x 2 + 4x + 5 ;(2)m 的值为 7 或 9;(3)Q 点的坐标为(﹣2,﹣7)或(6,﹣7) 或(4,5).【分析】(1)由 A 、B 的坐标,利用待定系数法可求得抛物线的解析式; (2) 由题意可求得 C 点坐标,设平移后的点 C 的对应点为 C′,则 C′点的纵坐标为 8,代入抛物线解析式可求得 C′点的坐标,则可求得平移的单位,可求得 m 的值; (3) 由(2)可求得 E 点坐标,连接 BE 交对称轴于点 M ,过 E 作 EF⊥x 轴于点 F ,当 BE 为平行四边形的边时,过 Q 作对称轴的垂线,垂足为 N ,则可证得△PQN≌△EFB,可求得 QN ,即可求得 Q 到对称轴的距离,则可求得 Q 点的横坐标,代入抛物线解析式可求得 Q 点坐标;当 BE 为对角线时,由 B 、E 的坐标可求得线段 BE 的中点坐标,设 Q (x ,y ),由 P 点的横坐标则可求得 Q 点的横坐标,代入抛物线解析式可求得 Q 点的坐标. 【解析】(1) ∵抛物线⎧b = 4y = -x 2 + bx + c ⎧-1- b + c = 0⎨ 与x 轴分别交于 A (﹣1,0),B (5,0)两点,∴ ⎩ ,解得: ⎨⎩,∴抛物线解析式为 y = -x 2 + 4x + 5 ; (2) ∵AD=5,且 OA=1,∴OD=6,且 CD=8,∴C (﹣6,8),设平移后的点 C 的对应点为 C′,则 C′点的纵坐标为 8,代入抛物线解析式可得 8=-x 2 + 4x + 5 ,解得 x=1 或 x=3,∴C′点的坐标为(1,8) 或(3,8),∵C(﹣6,8),∴当点 C 落在抛物线上时,向右平移了 7 或 9 个单位,∴m 的值为 7 或 9;(3)∵ y = -x 2 + 4x + 5 = -(x - 2)2+ 9 坐标为(1,8),分两种情况讨论:,∴抛物线对称轴为 x=2,∴可设 P (2,t ),由(2)可知 E 点①当 BE 为平行四边形的边时,连接 BE 交对称轴于点 M ,过 E 作 EF⊥x 轴于点 F ,当 BE 为平行四边形的边时,过 Q 作对称轴的垂线,垂足为 N ,如图,则∠BEF=∠BMP=∠QPN,在△PQN 和△EFB 中,∵∠QPN=∠ BEF ,∠PNQ=∠EFB,PQ=BE ,∴△PQN≌△EFB(AAS ),∴NQ=BF=OB﹣OF=5﹣1=4,设 Q (x ,y ),则 QN=|x ﹣2|, ∴|x﹣2|=4,解得x=﹣2 或x=6,当x=﹣2 或x=6 时,代入抛物线解析式可求得y=﹣7,∴Q 点坐标为(﹣2, ﹣7)或(6,﹣7);②当 BE 为对角线时,∵B(5,0),E (1,8),∴线段 BE 的中点坐标为(3,4),则线段 PQ 的中点坐标为(3,4),设 Q (x ,y ),且 P (2,t ),∴x+2=3×2,解得 x=4,把 x=4 代入抛物线解析式可求得 y=5,∴Q (4,5);综上可知 Q 点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).点睛:本题为二次函数的综合应用,涉及待定系数法、平移的性质、全等三角形的判定和性质、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)注意待定系数法的应用,在(2)中求得平移后 C 点的对应点的坐标是解题的关键,在(3)中确定出 Q 点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.考点:二次函数综合题;平移的性质;分类讨论;存在型;压轴题.。

2019中考数学压轴题专题试卷精选汇编(有解析答案)

2019中考数学压轴题专题试卷精选汇编(有解析答案)

压轴题专题东城区28.给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点 P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,,22M⎛⎝⎭,22N⎛-⎝⎭.在A(1,0),B(1,1),)C三点中, 是线段MN关于点O的关联点的是;(2)如图3, M(0,1),N1,22⎛⎫-⎪⎪⎝⎭,点D是线段MN关于点O的关联点.①∠MDN的大小为°;②在第一象限内有一点E),m,点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线23y x=-+上,当∠MFN≥∠MDN时,求点F的横坐标Fx的取值范围.28. 解:(1)C ; --------------2分 (2)① 60°;② △MNE 是等边三角形,点E 的坐标为);--------------5分③ 直线2y =+交 y 轴于点(0,2),交x 轴于点()T 0.∴2OK =,OT =∴60OKT ∠=︒. 作OG ⊥T 于点G ,连接MG .∵()M 0,1, ∴OM =1.∴M 为O 中点 . ∴ MG =M =OM =1.∴∠MGO =∠MOG =30°,OG ∴3.2G ⎫⎪⎪⎝⎭, ∵120MON ∠=︒, ∴ 90GON ∠=︒.又OG =1ON =, ∴30OGN ∠=︒. ∴60MGN ∠=︒.∴G 是线段MN 关于点O 的关联点.经验证,点)E在直线2y =+上. 结合图象可知, 当点F 在线段GE 上时 ,符合题意. ∵G F E x x x ≤≤,∴F x 分 西城区28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ).已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r . (1)如图,当r①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A 是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k =r 的取值范围.(3)若存在r的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C直接写出b 的取值范围.x【解析】(1(2)①如图,当1r =时,不妨设直线QM 与⊙C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥,x∵(1,0)Q -,(1,0)C ,1r =, ∴2CQ =,1CM =,∴MQ =此时2MQk CQ== ②如图,若直线QM 与⊙C 不相切,设直线QM 与⊙C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理), 作CD QM ⊥于点D ,则MD ND =,x∴()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=, ∵2CQ =, ∴2MQ NQ DQ k DQ CQ CQ+===,∴当kDQ =此时1CD =, 假设⊙C 经过点Q ,此时2r =, ∵点Q 早⊙C 外,∴r 的取值范围是12r <≤. (3)b <<. 海淀区28.在平面直角坐标系xOy 中,对于点P 和C ,给出如下定义:若C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在C 上,则称P 为C 的反射点.下图为C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A 的反射点是____________;②点P 在直线y x =-上,若P 为A 的反射点,求点P 的横坐标的取值范围;(2)C 的圆心在x 轴上,半径为2,y 轴上存在点P 是C 的反射点,直接写出圆心C 的横坐标x的取值范围.28.解(1)①A 的反射点是M ,N . ………………1分②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D作⊥DH x 轴于点H ,如图.可求得点D 的横坐标为. 同理可求得点E ,F ,G 的横坐标分别为点P 是A 的反射点,则A 上存在一点T ,使点P 关于直线OT 的对称点'P 在A 上,则'OP OP =.∵1'3≤≤OP ,∴13≤≤OP . 反之,若13≤≤OP ,A 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A相交.因此点P 是A 的反射点.∴点P 的横坐标x的取值范围是22≤x --22≤x .………………4分 (2)圆心C 的横坐标x 的取值范围是44≤≤x -. ………………7分 丰台区28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x .已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点可以成为点A 和⊙G 的“中立点”,求点的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.28.解:(1)点A 和线段BC(2)点A 和⊙G 的“中立点”在以点O 为圆心、半径为1的圆上运动.因为点在直线y =- x +1上, 设点的坐标为(x ,- x +1),则x 2+(- x +1)2=12,解得x 1=0,x 2=1.所以点的坐标为(0,1)或(1,0). ………5分(3)(说明:点N 与⊙C 的“中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动.圆P 与y 轴相切时,符合题意.) 所以点N 的横坐标的取值范围为-6≤x N ≤-2. ………8分石景山区28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图....(1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B 在直线y =+ 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.28.解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.xy xy①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =,∴2BE AE ==.∴22B-(,. ②当0b <时,则点'B 在第四象限.同理可得'22B -(.综上所述,点B的坐标为22-(或22-. ………………… 6分(3)5m -≤或11m ≥. ………………… 8分 朝阳区28. 对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为 线段AB 的伴随点.(1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是 ; ②在直线y =2x +b 上存在线段AB 的伴随点M 、N , 且MN =,求b 的取值范围;(2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.28. 解:(1)①线段AB 的伴随点是 23,P P . …………………2分②如图1,当直线y =2x +b 经过点(-3,-1)时,b =5,此时b 取得最大值.…………………………………………4分如图2,当直线y =2x +b 经过点(-1,1)时,b =3,此时b 取得最小值. ……………………………………………5分∴ b 的取值范围是3≤b ≤5. ……………………………………6分(2)t 的取值范围是-12.2t ≤≤…………………………………………8分燕山区28.在Rt △ABC 中, ∠ACB =90°,CD 是AB 边的中线,DE ⊥BC 于E , 连结CD ,点P 在射线CB 上(与B ,C 不重合).(1)如果∠A =30°图1图2①如图1,∠DCB = °②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;( 2 )如图3,若点P 在线段CB 的延长线上,且∠A =α (0°<α<90°) ,连结DP , 将线段DP 绕点逆时针旋转 α2得到线段DF ,连结BF , 请直接写出DE 、BF 、BP 三者的数量关系(不需证明).28.解:(1) ①∠DCB=60°…………………………………1′②补全图形CP=BF …………………………………3′△ DCP ≌△ DBF …………………………………6′(2)BF-BP=2DE ⋅tan α…………………………………8′门头沟区28. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”.(1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;11②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图直接.....写出半径r 的取值范围.28.(本小题满分8分)解: (1)①)5,3()5,1(21C C 或. ……………………………………………2分②由图可知,B )3,5( ∵A (1,3) ∴AB =4∵ABC ∆为等腰直角三角形 ∴BC =4∴)1,5()7,5(21-C C 或设直线AC 的表达式为(0)y kx b k =+≠ 当)7,5(1C 时,⎩⎨⎧=+=+753b k b k ⎩⎨⎧==∴21b k2+=∴x y …………………………………3分 当)1,5(2-C 时,⎩⎨⎧-=+=+153b k b k ⎩⎨⎧=-=∴41b k4+-=∴x y …………………………………4分 ∴综上所述,直线AC 的表达式是2+=x y 或4+-=x y (2)当点F 在点E 左侧时:12大兴区28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.图图2如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N .(1)点N 的横坐标为 ;(2)已知一直角为点,,N M K 的“平横纵直角”, 若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围.28.(1)9 ………………………………………………………………… 1分 (2)方法一M ⊥MN ,∴要使线段OC 上存在不同的两点M 1、M 2,使相应的点1、2都与点F 重合,也就是使以FN 为直径的圆与OC 有两个交点,即m r >.29=r ,1329<∴m . 又0>m , 290<<∴m . ………………………………………………4分 方法二:0>m ,∴点在x 轴的上方.过N 作NW ⊥OC 于点W ,设OM x =,OK y =, 则 CW =OC -OW =3,WM =9x -. 由△MO ∽△NWM , 得,∴9y x x m=-. ∴x m x m y 912+-=.当m y =时,219m x x m m=-+, 化为0922=+-m x x . 当△=0,即22940m -=, 解得92m =时, 线段OC 上有且只有一点M ,使相应的点与点F 重合.0>m ,∴ 线段OC 上存在不同的两点M 1、M 2,使相应的点1、2都与点F 重合时,m 的取值范围为290<<m . ………………………………………………………………………………4分(3)设抛物线的表达式为:)12)(3(-+=x x a y (a ≠0),又 抛物线过点F (0,m ),a m 36-=∴.m a 361-=∴.14m x m x x m y 1625)29(361)12)(3(3612+--=-+-=∴. …………………………………5分 过点Q 做QG ⊥x 轴与FN 交于点RFN ∥x 轴 ∴∠QRH =90°tan BG BQG QG∠=,2516QG m =,152BG =∴,又4560QHN ︒≤∠≤︒,∴3045BQG ︒≤∠≤︒∴当30BQG ∠=︒时,可求出3524=m ,………………………………… 6分 当45BQG ∠=︒时,可求出524=m . ……………………………………7分 m ∴的取值范围为245m ≤≤. …………………………………8分 平谷区28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”. (1)已知点A (2,0),B (,则以AB 为边的“坐标菱形”的最小内角为_______;(2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式; (3)⊙O点P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.1528.解:(1)60; ····························· 1 (2)∵以CD 为边的“坐标菱形”为正方形, ∴直线CD 与直线y =5的夹角是45°. 过点C 作CE ⊥DE 于E .∴D (4,5)或()2,5-. ............. 3 ∴直线CD 的表达式为1y x =+或3y x =-+. (5)(3)15m ≤≤或51m -≤≤-. (7)怀柔区28. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PAPB≤3,则点P 为⊙C 的“特征点”. (1)当⊙O 的半径为1时.①在点P 1(2,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ; ②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.16y x–1–2–3–4–512345–1–2–3–4–512345O28.(1)①P 1(2,0)、P 2(0,2)…………………………………………………………………2分②如图, 在y=x+b 上,若存在⊙O 的“特征点”点P ,点O 到直线y=x+b 的距离m≤2. 直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt△DOE 中,可知OE=22. 可得b 1=22.同理可得b 2=-22.∴b 的取值范围是22-≤b ≤22. …………………………………………………6分 (2)x>3或 3-<x . …………………………………………………………………………8分 延庆区1728.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点. 已知:点C (3,4)(1)下列各点中, 与点C 互为反等点; D (-3,-4),E (3,4),F (-3,4)(2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围;(3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点,求r 的取值范围.28.(1)F ……1分(2) -3≤p x ≤3 且p x ≠0 ……4分(3)4 < r≤5 ……7分顺义区点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”. 例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个图2同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'. (1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由;(3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.28.(1)是.∴k2+(k 2)2=(2k)2.∴k=(舍负)由对称性可取k=综上,k=.………………………… 6分(3)m的取值范围是m>1,k与m之间的关系式为k 2=m2-1 .……… 8分19。

2019全国各地中考数学压轴题汇编附答案(一)

2019全国各地中考数学压轴题汇编附答案(一)

2019全国各地中考数学压轴题汇编附答案(⼀)2019全国各地中考数学压轴题汇编附答案(⼀)1、如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,过A,B两点的抛物线y=ax2+bx+c与x轴交于点C(﹣1,0).(1)求抛物线的解析式;(2)连接BC,若点E是线段AC上的⼀个动点(不与A,C重合),过点E作EF∥BC,交AB于点F,当△BEF的⾯积是时,求点E的坐标;(3)在(2)的结论下,将△BEF绕点F旋转180°得△B′E′F,试判断点E′是否在抛物线上,并说明理由.2、把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P 的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为(⽤含m的代数式表⽰)(2)若a=﹣1,当≤x≤t时,函数C1的最⼤值为y1,最⼩值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.3、如图,在平⾯直⾓坐标系中,直线y=﹣x+4分别交x轴、y轴于点B,C,正⽅形AOCD的顶点D在第⼆象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某⼀点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的⼀边平⾏时,求所有满⾜条件的AP的长.4、如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针⽅向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直⾓三⾓形?若存在,求CE的长;若不存在,试说明理由.5、某农作物的⽣长率p与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似⽤函数p=t﹣刻画;当25≤t≤37时可近似⽤函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与⽣长率p满⾜函数关系:⽣长率p0.2 0.25 0.3 0.35提前上市的天数m(天)0 5 10 15②请⽤含t的代数式表⽰m.(3)天⽓寒冷,⼤棚加温可改变农作物⽣长速度.在(2)的条件下,原计划⼤棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前⼀天上市售出(⼀次售完),销售额可增加600元.因此给⼤棚继续加温,加温后每天成本w(元)与⼤棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最⼤?并求这个最⼤利润(农作物上市售出后⼤棚暂停使⽤).6、⼩波在复习时,遇到⼀个课本上的问题,温故后进⾏了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正⽅形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC =6,AD=4,求正⽅形PQMN的边长.(2)操作:能画出这类正⽅形吗?⼩波按数学家波利亚在《怎样解题》中的⽅法进⾏操作:如图2,任意画△ABC,在AB上任取⼀点P',画正⽅形P'Q'M'N',使Q',M'在BC边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM ⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.⼩波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正⽅形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM 的度数,并尝试证明.请帮助⼩波解决“温故”、“推理”、“拓展”中的问题.7、如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上⼀点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第⼆象限的点,线段PA交BE于点M,交y轴于点N,△BMP和△EMN的⾯积分别为m、n,求m﹣n的最⼤值.8、箭头四⾓形模型规律如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B.因为凹四边形ABOC形似箭头,其四⾓具有“∠BOC=∠A+∠B+∠C”这个规律,所以我们把这个模型叫做“箭头四⾓形”.模型应⽤(1)直接应⽤:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=.②如图3,∠ABE、∠ACE的2等分线(即⾓平分线)BF、CF交于点F,已知∠BEC=120°,∠BAC=50°,则∠BFC =.③如图4,BO i、CO i分别为∠ABO、∠ACO的2019等分线(i=1,2,3,…,2017,2018).它们的交点从上到下依次为O1、O2、O3、…、O2018.已知∠BOC=m°,∠BAC=n°,则∠BO1000C=度.(2)拓展应⽤:如图5,在四边形ABCD中,BC=CD,∠BCD=2∠BAD.O是四边形ABCD内⼀点,且OA=OB=OD.求证:四边形OBCD是菱形.9、如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在⼀点P,使得△PAC的周长最⼩,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;M的坐标;若不存在,请说明理由.10、如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的⼀个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第⼆象限内,且PE=OD,求△PBE的⾯积.(3)在(2)的条件下,若M为直线BC上⼀点,在x轴的上⽅,是否存在点M,使△BDM是以BD为腰的等腰三⾓形?若存在,求出点M的坐标;若不存在,请说明理由.11、如图,△ABC和△ADE是有公共顶点的等腰直⾓三⾓形,∠BAC=∠DAE=90°.(1)如图1,连接BE,CD,BE的廷长线交AC于点F,交CD于点P,求证:BP⊥CD;(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=6,AD=3,求△PDE的⾯积.12、如图,已知锐⾓三⾓形ABC内接于⊙O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD= OA.②当OA=1时,求△ABC⾯积的最⼤值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档