陈卓平方根与立方根_学案与练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲 平方根与立方根
一、 知识点梳理:
( 一)平方根。
如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2
≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。因此:
1.当a=0时,它的平方根只有一个,也就是0本身;
2.当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。
3.当a <0时,也即a 为负数时,它不存在平方根。
( 二)算术平方根
(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根
号a”,其中,a 称为被开方数。特别规定:0的算术平方根仍然为0。
(2)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。
(3)算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。因此,算术平方根只有一个值,并且是非负数,它只表示为:
a ;而平方根具有两个互为相反数的值,表示为:a ±。 ( 三)立方根
(1)如果x 的立方等于a ,那么,就称x 是a 的立方根,或者三次方根。记做:3a ,读作,3次根号a 。注意:这里的
3表示的是根指数。一般的,平方根可以省写根指数,但是,当根指数在两次以上的时候,则不能省略。
(2)平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才
能有平方根。
二.经典例题
例1.
(1) 的平方是64,所以64的平方根是 ;
(2) 的平方根是它本身。
(3)若x 的平方根是±2,则x= ;16的平方根是
(4)当x 时,x 23-有意义。
(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?
例2.
(1)下列说法正确的是 ( )
A .1的立方根是1±;
B .24±=; (
C )、81的平方根是3±; (
D )、0没有平方根;
(2)下列各式正确的是( )
A 、981±=
B 、14.314.3-=-ππ
C 、3927-=-
D 、235=-
(3)
2)3(-的算术平方根是 。 (4)若x x -+有意义,则=+1x ___________。
(5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32=-+-b a ,求c 的取值范围。
(6)已知:A=y x y x -++3是3++y x 的算术平方根,B=322+-+y x y x 是y x 2+的立方根。求A -B 的平方根。 (7)(提高题)如果x 、y 分别是4- 3 的整数部分和小数部分。求x - y 的值.
例3.
(1)64的立方根是
(2)若9.28,89.233==ab a ,则b 等于( )
A. 1000000
B. 1000
C. 10
D. 10000
(3)下列说法中:①3±都是27的立方根,②y y
=33,③64的立方根是2,④()4832
±=±。 其中正确的有 ( )
A 、1个
B 、2个
C 、3个
D 、4个
当堂训练
一.选择
1、若a x =2,则( ) A 、x>0 B 、x≥0 C 、a>0 D 、a≥0
2、一个数若有两个不同的平方根,则这两个平方根的和为( )
A 、大于0
B 、等于0
C 、小于0
D 、不能确定
3、一个正方形的边长为a ,面积为b ,则( )
A 、a 是b 的平方根
B 、a 是b 的的算术平方根
C 、b a ±=
D 、a b =
4、若a≥0,则24a 的算术平方根是( )
A 、2a
B 、±2a
C 、a 2
D 、| 2a |
5、若正数a 的算术平方根比它本身大,则( )