422不等式的基本性质

合集下载

不等式的基本性质知识点

不等式的基本性质知识点

不等式的基本性质知识点1 .不等式的定义:a-b>0 a>b, a-b=O a=b, a-b<O L> a<b。

①其实质是运用实数运算来定义两个实数的大小关系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

如证明y=x3为单增函数,3 3 2 2 2设x1, X2《(-m,+ m), X<X2, f(x i)_f(X 2)=X1 _X2 =(X1_X2)(X1 +X1X2+X2 )=(X1_X2)[(X l+ -)3+ X22]5 3再由(X什- )2+ X22>0, X1-X2<0,可得 f(X l)<f(X2), ••• f(X)为单增。

2.不等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:(1)a>b三b<a (对称性)(2)a>b, b>c 二a>c (传递性)⑶ a>b = a+c>b+c (c € R)(4) c>0 时,a>b A,ac>bcc<0 时,a>b ac<bc。

运算性质有:(1) a>b, c>d —a+c>b+d。

⑵ a>b>0,c>d>0 ac>bd。

⑶ a>b>0 —a n>b n(n € N, n>1)。

⑷ a>b>0= 川>w (n € N, n>1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:“ ”和“ ”即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

不等式的性质八年级数学下学期重要考点精讲精练

不等式的性质八年级数学下学期重要考点精讲精练

2.2不等式的性质不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a >b ,那么a±c >b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc(或). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变. 用式子表示:如果a >b ,c <0,那么ac <bc(或). 注意:对不等式的基本性质的理解应注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.题型1:利用不等式的性质判定正误1.如果a >b ,那么下列结论一定正确的是( )A .a ﹣3<b ﹣3B .>C .a +3<b +3D .﹣3a >﹣3b【变式1-1】已知a <b ,则( )A .a +1<b +2B .a ﹣1>b ﹣2C .ac <bcD .>(c ≠0)【变式1-2】以下是两位同学在复习不等式过程中的对话:小明说:不等式a >2a 永远都不会成立,因为如果在这个不等式两边同时除以a ,就会出现1>2这样的错误结论!a b c c>a b c c <题型2:利用不等式确定字母的取值范围2.已知x>1,x+a=1,则a的取值范围是()A.a<0B.a≤0C.a>0D.a≥0【变式2-1】若x<y,且(6﹣a)x>(6﹣a)y,则a的取值范围是.题型3:利用不等式的性质将不等式变形3.根据不等式的性质,把下列不等式化成x>a或x<a的形式.(1)x+7>9;(2)6x<5x﹣3;(3);(4)﹣.【变式3-1】根据要求,回答下列问题:(1)由2x>x﹣,得2x﹣x>﹣,其依据是;(2)由x>x﹣,得2x>6x﹣3,其依据是;(3)不等式x>(x﹣1)的解集为.【变式3-2】根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:(1)x﹣2<3;(2)4x>3x﹣5;(3)x<;(4)﹣8x<10.题型4:利用不等式的性质比较大小4.若﹣2a>﹣2b,则a与b的大小关系为.题型5:利用不等式的性质化简不等式5.已知关于x的不等式(m﹣1)x>6,两边同除以m﹣1,得x<,试化简:|m﹣1|﹣|2﹣m|.【变式5-1】已知关于x的不等式(1﹣a)x>2,两边都除以(1﹣a),得x<,试化简:|a﹣1|+|a+2|.【变式5-2】已知x满足不等式组,化简|x+3|+|x﹣2|.题型6:利用不等式的性质求最值6.代数式|x﹣1|﹣|x+4|﹣5的最大值为()A.0B.﹣10C.﹣5D.3【变式6-1】已知0≤m﹣n≤2,2≤m+n≤4,则当m﹣2n达到最小值时,3m+4n=.题型7:数轴与不等式7.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<【变式7-1】已知有理数a、b、c在数轴上对应的位置如图所示,则下列式子中正确的是()A.ab2>ac2B.ab<ac C.ab>ac D.c+b>a+b【变式7-2】已知实数a、b、c在数轴上对应的点如图所示,请判断下列不等式的正确性.(1)bc>ab(2)ac>ab(3)c﹣b<a﹣b(4)c+b>a+b(5)a﹣c>b﹣c(6)a+c<b+c.题型8:不等式的简单应用8.江南三大名楼指的是:滕王阁、黄鹤楼、岳阳楼.其中岳阳楼位于湖南省岳阳市的西门城头、紧靠洞庭湖畔,始建于三国东吴时期.自古有“庭天下水,岳阳天下楼”之誉,因北宋范仲淹脍炙人口的《岳阳楼记》而著称于世.某兴趣小组参观过江南三大名楼的人数,同时满足以下三个条件:(1)参观过滕王阁的人数多于参观过岳阳楼的人数;(2)参观过岳阳楼的人数多于参观过黄鹤楼的人数;(3)参观过黄鹤楼的人数的2倍多于参观过滕王阁的人数.若参观过黄鹤楼的人数为4,则参观过岳阳楼的人数的最大值为()A.4B.5C.6D.7【变式8-1】如图,一个倾斜的天平两边分别放有2个小立方体和3个砝码,每个砝码的质量都是5克,每个小立方体的质量都是m克,则m的取值范围是()A.m<15B.m>15C.m>D.m<【变式8-2】有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上。

不等式的基本性质

不等式的基本性质

等式的基本性质1:等式两边同时加上(或减去)同一 个代数式,所得结果仍是等式。
a b a c b c
a b a c b c
不等式的基本性质1:不等式的两边都加上(或减去)同 一个整式,不等号的方向不变。
等式的基本性质2: 等式两边同时乘同一个数(或除以同一个不为0的 数),所得结果仍是等式。 a b
a c b c , a b c c
c 0
不等式的基本性质2: 不等式的两边都乘以(或除以)同一个正数,不等号
不变 的方向____。 不等式的基本性质3:
不等式的两边都乘以(或除以)同一个负数,不等号 的方向____。 改变
在上一节课中,我们猜想,无论绳长l取何值,
l2 l2 圆的面积总大于正方形的面积,即 4 16
你相信这个结论吗?你能利用不等式的基本 性质解释这一结论吗?
4 1 6 1 1 4 16 2 l 0 l2 l2 4 16
(根据不等式的基本性质2)
例1 将下列不等式化成“x>a”或“x<a”的形式:
(1) x 5 1
(2) 2 x 3
解:(1)根据不等式的基本性质1,两边都加上5, 得 即
成立
成立
你今天这节 课有什么收 获呢?
我今天学到了 ……
P
9
习题1.2
完成下列填空:
2 3 , 2 5 ___3 5 ; 1 1 2 3 , 2 ___3 ; 2 2
2 3 , 2 (1) ___ 3 (1) ; 2 3 , 2 (5) ___3 (5) ; 1 1 2 3 , 2 ( ) ___3 ( ) ; 2 2
x 1 5 x4

不等式的基本性质[整理] [其它]

不等式的基本性质[整理] [其它]

第34课 不等式的基本性质【考点指津】1.不等式的概念用不等号(>、<或≠)联结而成的式子叫做不等式.2.两个实数大小的比较设a 、b ∈R ,则a>b 0>-⇔b a ,0<-⇔<b a b a ,这是比较两个实数大小和运用比较法的根据.3.不等式的性质性质1 a b b a <⇔> (对称性)性质2 a>b ,c a c b >⇒> (传递性)性质3 a>b ,c b c a +⇒+性质4 a>b ,bc ac c >⇒>0,a>b ,bc ac c <⇒<0以上是不等式的基本性质,以下是不等式的运算性质.性质5 a>b ,d b c a d c +>+⇒> (加法法则)性质6 a>b>0,bd ac d c >⇒>>0 (乘法法则)性质7 a>b>0,n n b a N n >⇒∈* (乘方法则)性质8 a>b>0,n n b a N n >⇒∈* (开方法则)不等式性质在证明不等式和解不等式中有广泛的应用,它也是高考的热点,通常是以客观题形式考查某些性质,有时在证不等式或解不等式过程中间接考查不等式性质. 在复习中,对不等式性质的条件与结论,要彻底弄清,特别是对不等式两边平方、开方或同乘上某个数(或式子)时,要注意所得不等式与原不等式是否同向,否则在解题时往往因忽略了某些条件而造成错误. 从知识的联系上看,不等式的性质与函数的单调性是相互联系的,因此比较一些实数大小的问题,从不等式性质与函数性质结合的角度去认识是必要的.【知识在线】1.下列命题中,正确的命题是( )①若a>b ,c>b ,则a>c ; ②a>b ,则0lg >ba ; ③若a>b ,c>d ,则ac>bd ; ④若a>b>0,则b a 11<;⑤若db c a >,则ad>bc ; ⑥若a>b ,c>d ,则a-d>b-c . A . ①② B . ④⑥ C . ③⑥ D . ③④⑤2.下列命题中,正确的命题是( )A .a 3>b 3,ab>0ba 11>⇒ B . m>n>0,a>0a a n m >⇒ C .b ac b c a >⇒> D . a 2>b 2,ab>0ba 11<⇒ 3.下列命题中正确的是( )A .若|a|>b ,则a 2>b 2B . 若a>b>c ,则(a-b)c>(b-a)cC . 若a>b ,c>d ,则a-b>c-dD . 若a>b>0,c>d>0,即c bd a > 4.下列命题中,正确的命题是( )A . 若ac>bc ,则a>bB . 若a 2>b 2,则a>bC . 若ba 11>,则a<b D . 若b a <,则a<b 5.设命题甲:x 和y 满足⎩⎨⎧<<<+<3042xy y x 命题乙:x 和y 满足⎩⎨⎧<<<<3210y x ,那么( )A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲是乙的充分条件,也不是乙的必要条件【讲练平台】例1(2000年全国卷) 若a>b>1,P=b a lg lg ⋅,)lg (lg 21b a Q +=,)2lg(b a R +=,则( ).A . R<P<QB . p<Q<RC . Q<P<RD . P<Q<R分析一 借助对数函数单调性用基本不等式求解.解法一 ∵ a>b>1,∴ lga>lgb>0. ∴2lg lg lg lg b a b a +<⋅,即P<Q .又∵2b a ab +<, ∴ 2lg lg b a ab +<. ∴ )2lg()lg (lg 21b a b a +<+,即Q<R . ∴ P<Q<R ,故选B .分析二 用特殊值法解解法二 取a=10000,b=100,则lga=4,lgb=2.∴ P=22,Q=3,R=lg5050.显然P<Q ,R=lg5050>lg1000=3=Q .∴可排除A 、C 、D . 故选B .点评 不等式性质的考查常与幂函数、指数函数和对数函数的性质的考查结合起来,一般多以选择题的形式出现. 此类题目要求考生有较好、较全面的基础知识,一般难度不大.例2 若函数f(x),g(x)的定义域和值域为R ,则f(x)>g(x)(x ∈R )成立的充要条件是( ).A . 有1个x ∈R ,使得f(x)>g(x)B . 有无穷多个x ∈R ,使得f(x)>g(x)C . 对R 中任意的x ,都有f(x)>g(x)+1D . R 中不存在x ,使得f(x)≤g(x)分析 4个命题的关系在证明问题过程中经常使用. 原命题:若A 成立,则B 成立,逆命题:若B 成立,则A 成立;否命题:若A 成立则B 成立;逆否命题:若B 成立,则A 成立. 其中A ⇒B 与A B ⇒互为充要条件.由于对任意x ∈R ,f(x)>g(x)成立的逆否命题为:在R 中不存在x ,使f(x)≤g(x)成立. 答 选D .点评 本题也可通过构造特殊函数,采用排除法解决. 值得强调的是:不等式的性质的考查方向将更加注重基础性、全面性. 题型灵活多变.例3 已知1≤a+b ≤5,-1≤a-b ≤3,求3a-2b 的取值范围.分析 本题应视a+b 与a-b 为两个整体.解 设a+b=u ,a-b=v ,则2v u a +=,2v u b -=. ∴v u b a 252123+=-. 由已知1≤u ≤5,-1≤v ≤3,易得-2≤3a-2b ≤10.点评 本题常见的错误解法是:由已知,得0≤a ≤4,-1≤b ≤3.进一步,得0≤3a ≤12,-6≤-2b ≤2.从而,得-6≤3a-2b ≤14.由解题过程知,u 与v 各自独立地在区间[1,5]与[-1,3]内取值,从而知v u 2521+可取[-2,10]内的一切值.在错误解法中,得到的0≤a ≤4,-1≤b ≤3已不表明a 与b 可各自独立地在区间[0,4]与[-1,3]内取值了. 如a=4,b=3,a+b=7已不满足1≤a+b ≤5. 得到的区间[0,4]与[-1,3]应这样理解:对于任意给定的p ∈[1,5]与q ∈[-1,3],存在a ∈[0,4],b ∈[-1,3],使得a+b=p ,a-b=q .不等式的性质与等式的性质不一样,一般不具有可逆性. 掌握不等式性质时要谨防与等式性质做简单类比而致错.【知能集成】1.对不等式性质,关键是正确理解和运用,要弄清每一性质的条件和结论、注意条件的放宽和加强,以及条件与结论之间的相互联系;不等式性质包括“单向性”和“双向性”两个方面. 单向性主要用于证明不等式,双向性是解不等式的基础. 因为解不等式要求的是同解变形.2.高考试题中,对不等式性质的考查主要是:(1) 根据给定的条件,利用不等式的性质、判断不等式或与之有关的结论是否成立.(2) 利用不等式的性质与实数的性质、函数性质的结合,进行数值大小的比较.(3) 判断不等式中条件与结论之间的关系,是充分条件或必要条件或充分必要条件.3.要注意不等式性质成立的条件,例如:在应用“a>b ,ab>0b a 11<⇒”这一性质时. 有些同学要么是弱化了条件得a>b b a b 1<⇒. 要么是强化了条件而得ba b a 110<⇒>>. 【训练反馈】1.(2001年上海春招卷)若a 、b 是实数,则a>b>0是a 2>b 2的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既非充分条件也非必要条件2.若a>b ,c>d ,则下列不等关系中不一定成立的是( )A . a-d>b-cB . a+d>b+cC . a-c>b-cD . a-c<a-d3.已知a 、b 、c ∈R ,则下面推理中正确的是( )A . a>b ⇒am 2>bm 2B .b ac b c a >⇒> C . a 3>b 3,ab>0b a 11<⇒ D . a 2>b 2,ab>0ba 11<⇒ 4.(1999年上海卷)若a<b<0,则下列结论中正确的是( )A .不等式b a 11>和||1||1b a >均不能成立 B .不等式a b a 11>-和||1||1b a >均不能成立 C .不等式a b a 11>-和22)1()1(ab b a +>+均不能成立 D .不等式||1||1b a >和22)1()1(a b b a +>+均不能成立 5.当0<a<b<1时,下列不等式中正确的是( )A . b b a a )1()1(1->-B . (1+a)a >(1+b)bC . a b a a )1()1(->-D . b a b a )1()1(->-6.(2001年北京春招卷)若实数a 、b 满足a+b=2,则3a +3b 的最小值是( )A . 18B . 6C . 32D . 4327.a 、b 为不等的正数,k ∈N*,则(ab k +a k b)-(a k+1+b k+1)的符号为( )A . 恒正B . 恒负C . 与a 、b 大小有关D . 与k 是奇数或偶数有关8.不等式2>+xy y x 成立的充要条件是( ) A . x>y B . x ≠y C . x ≠y 或xy>0 D . x ≠y 且xy>09.(2000年北京春招卷)已知函数f(x)=ax 3+bx 2+cx+d 的图象如图,则( )A . )0,(-∞∈bB . )1,0(∈bC . )2,1(∈bD . ),2(+∞∈b10.已知1≤a+b ≤4,-1≤a-b ≤2,则4a-2b 的取值范围为________.11.已知三个不等式:①ab>0,②bd a c ,③bc>ad . 以其中两个作为条件,余下一个作为结论,则可以组成________个正确的命题,请用序号写出它们. 即_______. (把所有正确的命题都填上)12.已知f(x)=ax 2-c ,且-4≤f(1)≤-1,-1≤f(2)≤5,试求f(3)的最大值与最小值.。

高考数学知识点:不等式的基本性质

高考数学知识点:不等式的基本性质

高考数学知识点:不等式的基本性质依据广阔考生的需求,查字典数学网高考频道整理了2021高考数学知识点不等式的基本性质,欢迎大家关注!1.不等式的定义:a-bb, a-b=0a=b, a-b0a① 其实质是运用实数运算来定义两个实数的大小关系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟习的知识背景,来看法作差法比大小的实际基础是不等式的性质。

作差后,为判别差的符号,需求分解因式,以便运用实数运算的符号法那么。

2.不等式的性质:① 不等式的性质可分为不等式基本性质和不等式运算性质两局部。

不等式基本性质有:(1) abb(2) acac (传递性)(3) ab+c (cR)(4) c0时,abcc0时,abac运算性质有:(1) ada+cb+d。

(2) a0, c0acbd。

(3) a0anbn (nN, n1)。

(4) a0N, n1)。

应留意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。

普通地,证明不等式就是从条件动身实施一系列的推出变换。

解不等式就是实施一系列的等价变换。

因此,要正确了解和运用不等式性质。

② 关于不等式的性质的调查,主要有以下三类效果:(1)依据给定的不等式条件,应用不等式的性质,判别不等式能否成立。

(2)应用不等式的性质及实数的性质,函数性质,判别实数值的大小。

(3)应用不等式的性质,判别不等式变换中条件与结论间的充沛或必要关系。

关于2021高考数学知识点不等式的基本性质就引见完了,更多信息请关注查字典数学网高考频道!。

关于不等式的基本性质的高考数学知识点总结

关于不等式的基本性质的高考数学知识点总结

关于不等式的基本性质的高考数学知识点总结不等式是数学中非常重要的概念之一,它在数学的各个领域和实际问题中有着广泛的应用。

在高考数学中,不等式也是一个考查频率较高的知识点。

下面是对不等式的基本性质的总结:1.不等关系性质不等关系具有自反性、对称性、传递性。

即对任意实数a,b,有:自反性:a≥a,a≤a对称性:如果a≥b,则b≤a;如果a≤b,则b≥a传递性:如果a≥b,b≥c,则a≥c;如果a≤b,b≤c,则a≤c2.加减性质对于不等式a<b和任意实数c,有:a+c<b+ca-c<b-c3.乘除性质(1)正数乘除:对于不等式a<b,如果c是正数,则有:正数乘性:ac < bc正数除性:如果c是正数且c≠0,则有:a/c<b/c(2)负数乘除:对于不等式a<b,如果c是负数,则有:负数乘性:ac > bc负数除性:如果c是负数且c≠0,则有:a/c>b/c(3)双边不等式乘除:对于不等式a<b和任意非零实数c,有:a/c<b/c(当c>0时)a/c>b/c(当c<0时)4.基本不等式基本不等式是指在特定条件下,可以将不等式简化为更为简单形式的不等式。

(1)三角形不等式:对于三角形的三边长a,b,c,有:a+b>ca+c>bb+c>a(2) 平均值不等式:对于任意n个非负实数a1,a2,...,an,有:平均值不等式:(a1+a2+...+an)/n ≥ √(a1a2...an)5.同向不等式同向不等式的性质和解法与等式类似。

对于同向不等式,如果对不等号两边同时乘除以同一个正数,或者对不等号两边同时乘除以同一个负数,则不等号方向不变。

例如,对于不等式2x+1<3x-2,可以同时减去2x,得到1<-2x-2,再同时减去1,得到0<-2x-3,再同时乘以(-1/2),得到0>(2x+3)/2,最后反转不等号得到(2x+3)/2<0。

高三数学重要知识点:不等式的基本性质

高三数学重要知识点:不等式的基本性质

高三数学重要知识点:不等式的基本性质
高三数学重要知识点:不等式的基本性质
编者按:高考前的第一轮复习正在火热进行中,同学们要利用这些复习的时间强化学习,查字典数学网为大家整理了高三数学重要知识点:不等式的基本性质,在高三数学第一轮复习时,给您最及时的帮助!
1.不等式的定义:a-bb, a-b=0a=b, a-b0a
① 其实质是运用实数运算来定义两个实数的大小关系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

2.不等式的性质:
① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:
(1) abb
(2) acac (传递性)
(3) ab+c (cR)
(4) c0时,abc
c0时,abac
运算性质有:。

不等式的基本性质

不等式的基本性质

不等式的基本性质
不等式的基本性质
不等式的基本性质有对称性,传递性,加法单调性,即同向不等式可加性;乘
法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。

一、不等式的基本性质
1.如果x>y,那么y<X;如果Yy;(对称性)
2.如果x>y,y>z;那么x>z;(传递性)
3.如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减
去同一个整式,不等号方向不变;
4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0
的整式,不等号方向不变;
5.如果x>y,z<0,那么xz<YZ, p 即不等式两边同时乘以(或除以)同一个小于0
的整式,不等号方向改变;<>
6.如果x>y,m>n,那么x+m>y+n;
7.如果x>y>0,m>n>0,那么xm>yn;
8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<Y的N
次幂(N为负数)。

< p>
二、不等式的基本性质的另一种表达方式
1.对称性;
2.传递性;
3.加法单调性,即同向不等式可加性;
4.乘法单调性;
5.同向正值不等式可乘性;
6.正值不等式可乘方;
7.正值不等式可开方;
8.倒数法则。

如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。

高考数学知识点:不等式的基本性质

高考数学知识点:不等式的基本性质

高考数学知识点:不等式的基本性质根据宽大考生的需求,查字典数学网高考频道整理了2019高考数学知识点不等式的基本性质,欢迎大众存眷!1.不等式的定义:a-bb, a-b=0a=b, a-b0a① 本来质是运用实数运算来定义两个实数的巨细干系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以连合函数单调性的证明这个熟悉的知识背景,来明白作差法比巨细的理论基础是不等式的性质。

作差后,为鉴别差的标记,需要分化因式,以便使用实数运算的标记准则。

2.不等式的性质:① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:(1) abb(2) acac (传递性)(3) ab+c (cR)(4) c0时,abcc0时,abac运算性质有:(1) ada+cb+d。

(2) a0, c0acbd。

(3) a0anbn (nN, n1)。

(4) a0N, n1)。

应注意,上述性质中,条件与结论的逻辑干系有两种:和即推出干系和等价干系。

一般地,证明不等式便是从条件出发施行一系列的推出变换。

解不等式便是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

② 关于不等式的性质的查看,主要有以下三类标题:(1)根据给定的不等式条件,利用不等式的性质,鉴别不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,鉴别实数值的巨细。

(3)利用不等式的性质,鉴别不等式变换中条件与结论间的充分或必要干系。

关于2019高考数学知识点不等式的基本性质就先容完了,更多信息请存眷查字典数学网高考频道!。

不等式的基本性质知识点总结

不等式的基本性质知识点总结
4.1 不等式的应用场景 不等式在数学、物理、经济等多个领域都 有广泛的应用。例如在解决实际问题时, 常常需要利用不等式的性质来找出最优解
4.2 实例分析 以一道具体的不等式问题为例,详细分析其 解题过程和思路,展示如何运用不等式的性 质进行解题。通过实例分析,加深对不等式 基本性质的理解和掌握
不等式的常见题型与解题技巧
如何激发对不等式学习的兴趣
A
学习不等式 需要耐心和
毅力
B
当我们遇到困 难时,不要轻 易放弃,而是 要坚持下去, 相信自己能够
解决问题
C
通过不断练习 和反思,我们 可以逐渐提高 自己的解决问
题的能力
总结与展望未来
12.1 总结
01
本文总结了不等式的基本性质、解法与变形、常见题型 与解题技巧等方面的知识点,并探讨了如何进一步提高 不等式问题的解决能力以及学习不等式的重要性和意义。 同时,也提出了一些激发对不等式学习兴趣的方法
不等式在实际生 活中的应用
7.1 经济学中的应用:在经济学中,不等式常被用来描述和解决资 源分配、市场供需、成本与收益等问题。例如,通过比较不同投资 方案的收益与成本,利用不等式来选择最优的投资方案
7.2 物理学中的应用:在物理学中,不等式被广泛应用于力学、 热学、电磁学等领域。例如,牛顿第二定律中的力与加速度的 关系就可以用不等式来描述
10.4 提高综合素质
学习不等式不仅可以提高我 们的数学能力,还可以培养 我们的耐心、毅力和创新精 神
通过解决复杂的问题,我们 可以锻炼自己的意志品质, 提高自己的综合素质
如何激发对不等式学习的兴趣
了解不等式在实际生活中的应用,可以激发我们对不等式学 习的兴趣。当我们知道所学知识能够解决实际问题时,自然 会产生学习的动力 参加数学竞赛和活动,可以让我们更好地了解数学的魅力, 提高解决数学问题的能力。在竞赛和活动中,我们可以结交 志同道合的朋友,共同探讨数学问题,分享解决问题的乐趣 寻找合适的学习资源,如教材、网络课程、学习 app 等, 可以帮助我们更好地学习不等式。同时,也可以通过参加学 习小组或找老师请教等方式,获取更多的学习帮助和支持

不等式的基本性质

不等式的基本性质

在其他学科中的应用
物理
在物理中,不等式性质被广泛应用于解决力学、热 学和波动问题。
经济学
在经济学中,不等式性质被用来描述和解决市场供 需关系、投资回报率等问题。
计算机科学
在计算机科学中,不等式性质被用于算法设计和数 据结构优化,以提高程序的效率和正确性。
PART 05
不等式性质的注意事项
性质使用的条件和限制
文字表述
使用大于、小于、不等于等符号, 将不等式表示为数学语言。
数轴表示
在数轴上,将不等式的解集表示 在相应区间的位置。
PART 02
不等式的基本性质
不等式的传递性
01 定义
不等式的传递性是指如果a>b且b>c,那么a>c。
02 证明
通过反证法证明,假设a≤c,则a≤b≤c,这与已知条件 a>b矛盾,所以假设不成立,即a>c。
证明过程
通过反证法进行证明,假设a不大于c, 则可能出现a≤c的情况,但这与已知条 件a>b和b>c相矛盾。
结论
证明了传递性是成立的。
可加性的证明
简介
通过举例和数学推导,证明不 等式的可加性。
证明过程
详细展示不等式可加性的证明 步骤,包括假设、推理和结论。
应用举例
给出一些实际应用中不等式可 加性的例子,帮助理解其在实 际问题中的应用。
性质使用的灵活性
03 根据具体问题,灵活运用不等式性质,结合其他数学知识综合解决问题。
谢谢
汇报人:WPS
性质
在证明可乘方性时,需要利用不等式的 性质,即如果a>b,c>d,那么ac>bd。
证明过程
通过举例和反证法,证明不等式具有可 乘方性。例如,假设a>b>0,如果 a^2<=b^2,那么a<=sqrt(b^2)=b, 这与已知条件a>b矛盾。因此, a^2>b^2,证明了不等式具有可乘方 性。

不等式的基本性质

不等式的基本性质
不等式的基本性质
等式的基本性质一:
等式两边都加上(或减去)同一个数或同一个 整式 , 所得结果仍是等式。
如果 a = b , 那么 a + c = b + c (或 a – c = b – c ) 等式的基本性质二:
等式两边都乘以(或除以)同一个 数(除数 不能是零),所得结果仍是等式。
如果a = b , 那么 a c = b c(或 a/c =
2 <3 2 ×5 _ 3 ×5 2×0.3 _ 3× 0.3 10×2 10÷5 10>-10 _ -10×2 _ -10÷5
2×(-1)_ 3×(-1) 2÷(-3)_ 3÷(-3)
10×(-3)_-10×(-3)
10×(-7)_-10×(-7)
思考并交流,你发现了不等式的那些性质?
不等式的基本性质二:
不等式的基本性质一:
不等式的两边都加上(或减去)同一个整式, 不等号的方向不变。
如果a﹤b , 那么a + c﹤b + c (或 a – c﹤b – c)
Hale Waihona Puke 如果a﹥b , 那么a + c﹥b + c (或 a – c﹥b – c)
做一做: 如果在不等式的两边都乘以(或除
以)同一个数,结果会怎样?完成下列填空。
b/c,c ≠ 0 )
做一做: 如果在不等式的两边都加上(或减去)
同 一个整式,结果会怎样?完成下列填空。
2 < 5
2 -1 _ 5 -1 2+3 _ 5+3
7 > - 7
7 +2 _ - 7 +2
7-(-5)_-7-(-5) 7 -3 _ -7 -3 7 -b _ -7 -b
2+(-7)_ 5+(-7) 2 +a _ 5 +a

高考数学复习指导:不等式的基本性质

高考数学复习指导:不等式的基本性质

2019年高考数学复习指导:不等式的基本性质下面是编辑老师整理的2019年高考数学复习指导:不等式的基本性质,希望对您提高学习效率有所帮助.1.不等式的定义:a-bb, a-b=0a=b, a-b0a①其实质是运用实数运算来定义两个实数的大小关系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

2.不等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:(1) abb(2) acac (传递性)(3) ab+c (cR)(4) c0时,abcc0时,abac运算性质有:(1) ada+cb+d。

(2) a0, c0acbd。

(3) a0anbn (nN, n1)。

(4) a0N, n1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。

数学高考知识点:不等式的基本性质数学笑话

数学高考知识点:不等式的基本性质数学笑话

数学高考知识点:不等式的基本性质数学笑话数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。

以下是为大家整理的数学高考知识点,希望可以解决您所遇到的相关问题,加油,一直陪伴您。

不等式的基本性质1.不等式的定义:a-bb,a-b=0a=b,a-b0a①其实质是运用实数运算来定义两个实数的大小关系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

2.不等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:(1)abb(2)acac(传递性)(3)ab+c(cR)(4)c0时,abcc0时,abac运算性质有:(1)ada+cb+d。

(2)a0,c0acbd。

(3)a0anbn(nN,n1)。

(4)a0N,n1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

最后,希望小编整理的数学高考知识点对您有所帮助,祝同学们学习进步。

高中数学知识点:不等式的基本性质知识点

高中数学知识点:不等式的基本性质知识点

高中数学知识点:不等式的基本性质知识点
不等式的基本性质知识点 1.不等式的定义:a-bb, a-b=0a=b, a-b0a
① 其实质是运用实数运算来定义两个实数的大小关系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

如证明y=x3为单增函数,
设x1, x2(-,+), x1+x22]
再由(x1+)2+x220, x1-x20,可得f(x1)
2.不等式的性质:
① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:
(1) abb
(2) acac (传递性)
(3) ab+c (cR)
(4) c0时,abc
c0时,abac
运算性质有:
(1) ada+cb+d。

(2) a0, c0acbd。

(3) a0anbn(nN, n1)。

(4) a0N, n1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

② 关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)已知a>b,则-a+2________-b+2.
学生活动:根据不等式的基丰性质完成此题.
解:略(学生自己完成,学生评价)
问题:
小明在不等式-1<0的两边都乘-1.得1<0,错在哪里?
学生活动:
分小组讨论.并把结论与同伴交流.
师生共同分析:
错在不等式-1<0的两边都乘-1时,不等号的方向没有改变.正确的结果应是1>0.
(1)不等式的两边都乘(或除以)同一个正数,不等号的方向不变.
即:如果a>b.c>0,那么ac>bc.且 >
(2)不等式的两边都乘以(或除以)同一个负数.不等号的方向改变.
即:如果a>b.c<0,那么ac<bc,且 <
例题:
1.用“>”或”<”号填空.
(1)已知a>b.则3a________3b.
(2)巳知a>b,则-a________-b.
(2)12>9,而12×(-2)&l?-2是一个什么数?
学生活动:
①仿照不等式基本性质1说出不等式的其他两个性质.①自已写一个不等式分别在它的两边都乘(或除以)同一个正数或负数,看看是否有相同的结论?
教师归纳;(出示投影2).
不等式还有下面的基本性质:
教学重点
不等式的基本性质2、3、正确地不等式符号的变化。
教学难点
不等式的基本性质3中符号的变化。
教学过程
设计理念
提出问题
感知新知
归纳新知
应用新知
应用新知
探究拓展
问题:(出示投影1)
(1)如果梨的价格是每千克3元,苹果的价格是每千克4元.梨和苹果各买10千克.买哪种水果花钱较多?买0.5千克呢?
(2)在不等式12>9的两边同时乘(或除以)-2.不等号片向如何变化?
教学反思
4.2.2不等式的基本性质
教学目标
1、知识与技能:理解不等式的基本性质2、3和符号的变化,能够根据不等式的基本性质2、3对不等式变形。
2、过程与方法:理解不等式与等式性质的联系与区别,培养学生类比的学习方法。
3、情感态度与价值观:培养学生类比的数学思想,提高学生分析问题、解决问题的能力,认识到数学在生活中的重要性。
用“>”或“<”号填它:
教师提示:(1)3×10________4×10;3÷2________4÷2.
(2)12×(-2) ________9×(-2);12÷(-2) ________9÷(-2).
学生活动:
学生通过计算完成上述问题.并展开讨论.
教师活动:
引导学生分析:(1)3<4.而3×10<4×10,3÷2<4÷2这说明了什么?10和3是一个什么数?
例2.把下列不等式化为x>a或x<a的形式.
(1)2x+6>4(2)3x>5x+6
学生活动:根据不等式的基丰性质完成此题.
解:略(学生自己完成,学生评价)
课堂练习
P137:练习1、2。
课时小结与作业
课堂小结
1、不等式的基本性质2、3。
2、运用不等式的基本性质对不等式进行变形。
布置作业
课后反思,总结升华
相关文档
最新文档