铁碳合金平衡组织的显微分析

合集下载

实验3--铁碳合金平衡组织观察

实验3--铁碳合金平衡组织观察

实验3 铁碳合金平衡组织观察一、实验目的1.认识铁碳合金的平衡组织。

2.了解含碳量对铁碳合金平衡组织的影响规律。

.二、概述铁碳合金的显微组织是研究和分析铁碳材料性能的基础,所谓平衡状态的显微组织是指合金在极为缓慢的冷条件下(退火状态,即接近平衡状态)所得到的组织。

因此我们可以根据Fe -Fe3C相图来分析铁碳合金在平衡状态下的显微组织(图1-1所示)。

图1-1 Fe-Fe3C相图铁碳合金的平衡组织主要是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广泛的金属材料,它们的性能与其显微组织密切有关。

此外,对碳钢和白口铸铁显微组织的观察和分析,有助于加深对Fe-Fe3C相图的理解。

从Fe-Fe3C相图上可以看出,所有碳钢和白口铸铁的室温组织均由铁素体(F)和渗碳体(Fe3C)这两个基本相组成。

但是由于含碳量不同,因而呈现各种不同的组织形态。

用侵蚀剂显露的碳钢和白口铸铁,在金相显微镜下具有下面几种基本组织。

1.工业纯铁(C<0.02%),显微组织是单相铁素体,如图11.1。

2.碳钢随含碳量不同可分为:亚共析钢(含C<0.8%);共析钢(含C:0.8%),过共析钢(0.8%<含C<2.06%)。

共析钢的显微组织是片状铁素体和渗碳体的机械混合物,由于试片浸蚀后表面具有珍珠的光泽,故称为珠光体,其显微组织如图11.2图11.1 图11. 2材料:工业纯铁材料:T8(0.8%C)处理方法:退火热处理方法;退火腐蚀剂:4%HNO3,酒精溶液腐蚀剂:4%HNO3,酒精溶液显微组织:铁素体(白亮块是晶显微组织:珠光体,(白亮基体粒,黑线是晶粒边界) 是铁素体,细夹条是渗碳体)放大倍数:100×放大倍数;400×图中的白亮基体是铁素体,细夹条是渗碳体,黑线是铁素体和渗碳体的相界面。

如放大倍数低或片层过薄时,则看不到片层结构,而呈暗黑色块状物。

亚共析钢的显微组织是由铁素体与珠光体组成。

铁碳合金相图及平衡组织分析

铁碳合金相图及平衡组织分析

实验三铁碳合金相图及平衡组织分析一、实验目的1.认识和熟悉铁碳合金平衡状态下的显微组织特征;2.了解含碳量对铁碳合金平衡组织的影响,建立Fe-Fe3C状态图与平衡组织的关系3.了解平衡组织的转变规律并能应用杠杆定律4.掌握金相显微镜用铁碳合金样品的制备二、实验原理通常将碳含量小于2.11%的铁碳合金称为钢,碳含量大于2.11%的Fe-C合金称为铁,根据铁碳二元相图(图1),它们在室温下组成相都是铁素体和渗碳体,但是它们在纤维组织上却有很大的差异。

按组织分区的Fe-Fe3C相图(一)铁碳合金中的几种基本相和组织(1)铁素体(F)。

它是碳在α-Fe中的固溶体,为体心立方晶格。

具有磁性及良好的塑性,硬度较低。

用3%-4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形晶粒。

亚共析钢中,铁素体呈现块状分布;当碳含量接近共析成分时,铁素体则呈现断续的网状分布于珠光体(共析体)周围。

(2)渗碳体(Fe3C,又称Cementite),它是铁与碳形成的一种化合物,其碳含量为6.69%。

用3%-4%的硝酸酒精溶液寝蚀后,呈现亮白色;若用热苦味酸钠溶液寝蚀,则渗碳体呈现黑色而铁素体仍为白色,由此可以区别铁素体与渗碳体。

此外,按铁碳合金成分和形成条件不同,渗碳体呈现不同的的形态:一次渗碳体,从液相中析出,呈现条状;二次渗碳体(次生相),从奥氏体中析出,呈现网络状,沿奥氏体晶界分布,经球化退火,渗碳体呈现颗粒状;三次渗碳体,从铁素体中析出,常呈现颗粒状;共晶渗碳体与奥氏体同时生长,称为莱氏体;共析渗碳体与铁素体同时生长,称为珠光体。

(3)珠光体(P),它是铁素体和渗碳体的机械混合物,是共析转变的产物。

由杠杆定律可以求得铁素体和渗碳体的含量比为8:1。

因此,铁素体后,渗碳体薄。

硝酸酒精寝蚀后可观察到两种不同的组织形态。

1)片状珠光体,它是由铁素体与渗碳体交替排列形成的层状组织,腈硝酸酒精溶液寝蚀后,在不同放大倍数下,可以观察到具有不同特征的层片状组织。

铁碳合金平衡组织的显微分析及观察

铁碳合金平衡组织的显微分析及观察

实验一铁碳合金平衡组织地显微分析及观察一.实验目地1.认识不同成分地铁碳合金在平衡状态下地组织形态.2.加深理解铁碳合金地化学成分-组织-性能之间地关系.3.分析含碳量对铁碳合金显微组织地影响.二.实验原理在金相显微镜下观察到地金属内部结构称为显微组织,平衡状态地显微组织是指合金在极为缓慢地冷却条件下所得到地组织.铁碳合金地平衡组织主要指碳钢和白口铸铁.从铁碳合金状态图上可以看出,所有碳钢和白口铸铁地室温均由铁素体(F)和渗碳体(Fe3C)这两个基本相所组成.但由于碳地质量分数不同,铁素体和渗碳体地相对数量.析出条件以及分布情况均有所不同,因而呈现出各种不同地组织状态.在金相显微镜下铁碳合金地几种基本组织:1.铁素体(F)它是碳溶于α-Fe中地间隙固溶体.在金相显微镜观察为白色晶粒,亚共析钢中地铁素体呈块状分布,随着钢中含碳量地增加,铁素体数量减少,其形状也由多边形块状逐渐变成在珠光体边界呈断续网状分布.2.渗碳体(Fe3C)它是铁和碳形成地化合物,其碳地质量分数为6.69%,抗浸蚀能力较强,经3-5%硝酸酒精溶液浸市蚀后呈亮白色,若用苦味酸钠溶液浸蚀,则被染成暗黑色.由此可以区别铁素体和渗碳体.3.珠光体(P)它是铁素体和渗碳体地机械混合物,在一般退火处理下,是由铁素体和渗碳体相互混合交替排列形成地层片状组织,经4%硝酸酒精溶液浸蚀后,在高倍放大时能清楚地看到珠光体中平行相间地宽条铁素体和条状渗碳体;当放大倍数较低时,这时所观察到地珠光体中地渗碳体呈一条黑线.当组织较细而放大倍数较低时,珠光体地片层就不能分辨,而呈黑色.4.莱氏体(L'd)它是在室温时,由珠光体.共晶渗碳体及二次渗碳体所组成地机械混合物.经4%硝酸酒精溶液浸蚀后,莱氏体地组织特征氏,在白亮色地渗碳体基体上分布着许多黑色点(块)状或条状地珠光体.二次渗碳体和共晶渗碳体连在一起,没有边界线无法分辨开.三.实验内容观察给出试样地显微组织,画出所观察到组织地示意图.1四.实验设备及材料1.金相显微镜.2.金相试样:20钢.45钢.T8钢.T12钢.共晶白口铸铁.亚共晶白口铸铁.过共晶白口铸铁等七块试样.3.金相图谱.五.实验要求1.根据设备条件,1~2人为一组,每组备有显微镜一台.试样七块.金相图谱一本.2.按观察要求,选择物镜和目镜,并装在显微镜上.按照金相显微镜地操作程序,将其调节到所看见地组织最为清晰为止.六.金相显微镜地结构和使用金相显微镜通常由光学系统.照明系统和机械系统三大部分组成.现以XJB-1型台式金相显微镜为例说明.XJB-1型金相显微镜地光学系统如图1所示,灯泡发出地光线经聚光透镜组及反光镜聚集到孔径光栏,再经过聚光竟聚集到物竟地后焦面,最后通过物镜平行照射到试样地表面.从试样表面反射回来地光线经物镜组和辅助透镜,由半反射经转向,经过辅助透镜及棱镜形成一个倒立地放大实像,该像再经过目镜放大,就成为在目镜视场中能看到地放大映像.XJB-1型金相显微镜地外形如图2所示.现将分别介绍其各部件地功能及使用.照明系统:在底座内装有一低压灯泡作为光源,聚光镜.孔径光栏及反光镜等均安置在圆形底座上,视场光栏及另一聚光镜则安在支架上,她们组成显微镜地照明系统,使试样表面获得充分均匀地照明.显微镜调焦装置:在显微镜地两侧有粗调焦和微调焦手轮,粗调手轮地转动可使栽物台地弯臂作上下移动,微调手轮使显微镜沿滑轮缓慢移动,在右侧手轮上刻有分度格,每一格表示物镜座上下移动0.002mm.载物台:用于放置金相样品,观察面须向下.载物台和下面托盘之间有导架,用手推动,可使载物台栽水平面上作一定范围地十字定向移动,以改变试样地观察部位.2孔径光栏和视场光栏:孔径光栏装在照明反射镜座上面,调整孔径光栏能够控制入射光束地粗细,以保证物像达到清晰地程度.视场光栏设在物镜支架下面,其作用是控制视场范围,使目镜中视场明亮而无阴影.物镜转换器:转换器呈球面状,上面有三个螺孔,可安装不同放大倍数地物镜,转动转动器可使各物镜镜头进入光路,与不同地目镜搭配使用,以获得各种放大倍数.目镜筒:目镜筒呈45°倾斜安装在附有棱镜地半球座上,还可将目镜转向45°呈水平状态以配合照相装置进行金相摄影.图1 XJB-1型金相显微镜地光学系统图2 XJB-1型金相显微镜外形结构图3。

铁碳合金的显微组织及分析

铁碳合金的显微组织及分析

铁碳合金的显微组织及分析材科095 陈国滔 40930366引言:铁碳合金的平衡组织是指铁碳合金在极为缓慢的冷却条件下所得到的组织。

铁碳合金主要包括碳钢和白口铸铁,其室温组成相由铁素体和渗碳体这两个基本相所组成。

由于含碳量不同,铁素体和渗碳体的相对数量、析出条件及分布状况均有所不同,因而呈现各种不同的组织形态。

通过此次实验,分析含碳量对铁碳合金显微组织的影响,从而加深理解成分、组织和性能之间的相互关系。

一、铁碳合金在金相显微镜下具有的四种基本组织1、铁素体(F )铁素体是碳溶解于α-Fe 中的间隙固溶体。

工业纯铁用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的等轴晶粒;亚共析钢中铁素体呈块状分布;当含碳量接近共析成分时,铁素体则呈现断续的网状分布于珠光体周围。

2、渗碳体()渗碳体是铁与碳形成的金属间化合物,其含碳量为6.69%,质硬而脆,耐蚀性强,经4%硝酸酒精浸蚀后,渗碳体仍呈亮白色,而铁素体浸蚀后呈灰白色,由此可区别铁素体和渗碳体。

渗碳体可以呈现不同的形态:一次渗碳体直接由液体中结晶出,呈粗大的片状;二次渗碳体由奥氏体中析出,常呈网状分布于奥氏体的晶界;三次渗碳体由铁素体中析出,呈不连续片状分布于铁素体晶界处,数量极微,可忽略不计。

3、珠光体(P )珠光体是铁素体和渗碳体呈层片状交替排列的机械混合物。

经4%硝酸酒精浸蚀后,在不同放大倍数的显微镜下可以看到具有不同特征的珠光体组织。

当放大倍数较低时,珠光体中的渗碳体看到的只是一条黑线,甚至珠光体片层因不能分辨而呈黑色。

4、莱氏体(Ld')莱氏体在室温时是珠光体和渗碳体所组成的机械混合物。

其组织特征是在亮白色渗碳体基底上相间地分布着暗黑色斑点及细条状珠光体。

二、铸铁与石墨化1.石墨化的三阶段:● 第一阶段:液相中析出石墨(先共晶) ● 中间阶段:奥氏体中直接析出石墨 ● 第二阶段:共析转变中析出石墨3Fe C2.相图三、各种铁碳合金在室温下的显微组织四、不同成分的铁碳合金在室温下的显微组织见表五、实验数据六、实验数据分析1.工业纯铁在室温下具有单相铁素体的组织,显微组织中的褐色线条是铁素体的晶界,亮白色的基底是铁素体的不规则等轴晶粒,在某些晶界处可以看到不连续的片状三次渗碳体。

实验一铁碳合金平衡组织分析

实验一铁碳合金平衡组织分析

实验一铁碳合金平衡组织分析一、实验目的⒈通过观察和分析,熟悉铁碳合金在平衡状态下的显微组织,熟悉金相显微镜的使用;⒉了解铁碳合金中的相及组织组成物的本质、形态及分布特征;⒊分析并掌握平衡状态下铁碳合金的组织和性能之间的关系。

二、实验设备XD—2视频金相显微镜、4X型金相显微镜三、实验步骤与内容⒈实验内容碳钢和铸铁是工业上应用最广的金属材料,它们的性能与组织有密切的联系,因此熟悉掌握它们的组织,对于合理使用钢铁材料具有十分重要的实际指导意义。

⑴碳钢和白口铸铁的平衡组织平衡组织一般是指合金在极为缓慢冷却的条件下(如退火状态)所得到的组织。

铁碳合金在平衡状态下的显徽组织可以根据Fe—Fe3C相图来分析。

从相图可知,所有碳钢和白口铸铁在室温时的显微组织均由铁素体(F)和渗碳体(Fe3C)所组成。

但是,由于碳含量的不同,结晶条件的差别,铁素体和渗碳体的相对数量、形态,分布和混合情况均不一样,因而呈现各种不同特征的组织组成物。

碳钢和白口铸铁在室温下的平衡组织见表1。

表1 各种铁碳合金在室温下的平衡组织①工业纯铁——室温时的平衡组织为铁素体(F),F为白色块状(如图1所示);②亚共析钢——室温时的平衡组织为铁素体(F)+珠光体(P),F呈白色块状,P呈层片状,放大倍数不高时呈黑色块状(如图2所示)。

碳质量分数大于0.6%的亚共析钢,室温平衡组织中的F呈白色网状包围在P周围(如图3所示);③共析钢——室温时的平衡组织是珠光体(P),其组成相是F和Fe3C(如图4、5所示);④过共析钢——室温时的平衡组织为Fe3CⅡ+P。

在显微镜下,Fe3CⅡ呈网状分布在层片状P周围(如图6所示);⑤亚共晶白口铸铁——室温时的平衡组织为P+Fe3CⅡ+ Le'。

Fe3CⅡ网状分布在粗大块状的P的周围,Le'则由条状或粒状P和Fe3C基体组成(如图7所示);⑥共晶白口铸铁——室温时的平衡组织为Le',由黑色条状或粒状P和白色Fe3C基体组成(如图8所示);⑦过共晶白口铸铁——室温时的平衡组织为Fe3CⅠ+ Le',Fe3CⅠ呈长条状,Le'则由条状或粒状P 和Fe3C基体组成(如图9所示)。

实验报告一铁碳合金平衡组织观察

实验报告一铁碳合金平衡组织观察

实验报告一铁碳合金平衡组织观察实验报告一铁碳合金平衡组织观察
一,实验目的
1.研究和了解铁碳合金在平衡状态下的显微组织。

2.分析成分(含碳量)对铁碳合金显微组织的影响,从而加深理解成分,组织与性能之间的关系。

二,概述
1.画出简化的铁碳合金图。

2.简述不同成分的贴铁碳合金在室温下的显微组织,几种基本组织成物的定义及性能。

三,设备及材料
1.金相显微镜
2.铁碳合金的显微式样:纯铁,20,,4,T8,T12(退火态,4%硝酸酒精溶液侵蚀各一个),T12(退火态,枯萎硝酸溶液侵蚀1个)。

四,实验结果
试样名称: 试样名称: 组织 : 组织 : 侵蚀剂: 侵蚀剂: 放大倍数: *400 放大倍数: *400
注:圆的直径为30mm组织成分名称用箭头引出标明。

五,思考题
1,碳含量为wc1.0%的钢比碳含量wc0.5%的钢硬度高;
2.在室温下,碳含量wc0.8%的钢其强度比碳含量wc1.2%的高;
从组织上说明原因。

实验二碳钢的热处理
一(实验目的1.了解碳钢的基本热处理工艺方法2研究冷却条件与刚性能的关系3分析淬火与回火对钢性的影响
二(概述1钢的退火与正火2钢的淬火
三(实验设备及材料
四(实验内容及结果
1.淬火实验(表一)
2.回火实验(表二)
五(实验结果分析
1.分析不同成分的钢在正常淬火下对硬度的影响
2.分析45钢在相同加热温度下,不同冷却介质对钢硬度的影响
3.分析T10钢在不同加热温度下同一冷却介质对钢硬度的影响。

4.绘制出45钢回火温度与硬度的关系曲线图(坐标纸画)】
5.分析实验中存在的问题。

实验一平衡态铁碳合金成分、组织、性能之间关系的分析

实验一平衡态铁碳合金成分、组织、性能之间关系的分析

实验一平衡态铁碳合金成分、组织、性能之间关系的分析1.1典型铁碳合金的平衡组织观察与分析一、实验目的1.通过实验能识别铁碳合金在平衡状态下的显微组织。

2.掌握碳含量对铁碳合金平衡组织形貌及相组成比例的影响。

二、实验原理简介利用金相显微镜观察金属的内部组织和缺陷的方法称为显微分析(或金相分析)。

合金在极其缓慢的冷却条件(如退火状态)下所得到的组织称为平衡组织。

铁碳合金平衡组织的观察与分析,要依据Fe-Fe3C相图来进行。

1.室温下铁碳合金基本组织特征(1)铁素体(F)铁素体是碳溶于α-Fe中形成的间隙固溶体。

经3%~5%的硝酸酒精溶液浸蚀后,在显微镜下呈现白亮色多边形晶粒。

在亚共析钢中,铁素体呈块状分布,当合金的含碳量接近于共析成分时,铁素体则呈断续的网状分布于珠光体晶界上。

(2)渗碳体(Fe3C)渗碳体是铁与碳形成的一种化合物。

经3%~5%的硝酸酒精溶液浸蚀后,在显微镜下为白亮色;若用苦味酸钠溶液浸蚀,则渗碳体呈暗黑色,而铁素体仍为白亮色,由此可以区别铁素体和渗碳体。

由于铁碳合金的成分和形成条件不同,渗碳体可以呈现不同的形状,一次渗碳体是由液相中直接结晶出来,呈板条状游离分布;二次渗碳体是从奥氏体中析出的,呈网状分布在珠光体晶界上;三次渗碳体是从铁素体中析出,呈窄条状分布在铁素体晶界上。

(3)珠光体(P)珠光体是铁素体和渗碳体的两相复合物。

在平衡状态下,它是由铁素体和渗碳体相间排列的层片状组织。

经3%~5%的硝酸酒精溶液浸蚀后,铁素体和渗碳体皆为白亮色,而两相交界呈暗黑色线条。

在不同的放大倍数下观察时,组织特征有所区别。

如在高倍(600倍以上)下观察时,珠光体中平行相间的宽条铁素体和细条渗碳体都呈白亮色,而两相交界为暗黑色;在中倍(400倍左右)下观察时,白亮色的渗碳体被暗黑色交界所“吞食”,而呈现为细黑条,这时看到的珠光体是宽白条铁素体和暗黑细条渗碳体的相间复合物;在低倍(200倍以下)下观察时,无论是宽白条的铁素体还是暗黑细条的渗碳体都很难分辨,这时珠光体呈现暗黑色块状组织。

铁碳合金平衡组织显微分析

铁碳合金平衡组织显微分析

铁碳合金平衡组织显微分析金相试样的制备一、实验目的1.熟悉金相显微试样的制备过程2.了解掌握金相显微试样的制备方法二、概述在利用金相显微镜作金相显微分析时,必须首先制备金相试样,我们在显微镜中所观察到的显微组织,是靠光线从试样观察面上的反射来实现的。

若试样观察面上的反射光能进入物镜。

我们就可以从目镜中观察到反射的象,否则就观察不到。

图2-1 光线在不同表面上的反射情况由图2-1所示可见,未经制备的试样的表面相当于无数多个与镜筒不垂直的平滑表面,这是不能成象的。

因此,我们要先把试样观察面制备成光滑平面。

但是光滑平面在显微镜下只看到光亮一片,而不能看到显微组织结构特征,故还须用一定的浸蚀剂浸蚀试样观察面,使某些耐浸蚀弱的区域不同程度地受到浸蚀而呈现微观察的凸凹不平。

这些区域的反射光线被散射而呈暗色。

由于明暗相衬,在显微观察中就能表示试试样磨面组织结构的特征了。

金相试样的制备包括试样的切取、镶嵌、磨制抛光、锓蚀等五个步骤。

1. 取样试样应根据分析目的和要求在有代表的位置上截取。

一般地说,取横截面主要观察:1、试样边缘到中心部位显微组织的变化。

2、表层缺陷的检验、氧化、过滤、折叠等。

3、表面处理结果的研究,如表面淬火、硬化层、化学热处理层、镀层等。

4、晶粒度测定等。

通过纵截面可观察:1、非金属夹杂;2、测定晶粒变形程度;3、鉴定带状组织及通过热处理消除带状组织的效果等。

试样一般可用手工切割、机床切割、切片机切割等方法截取(试样大小为φ12×12mm圆柱体或12×12×12mm的立方体)。

不论采用哪种方法,在切取过程中均不宜使试样的温度过高,以免引起金属组织的变化,影响分析结果。

2. 镶嵌当试样的尺寸太小(如金属丝、薄片等)时,直接用手来磨制很困难,需要使用试样夹或利用样品镶嵌机,把试样镶嵌在低熔点合金或塑料(如胶木粉、聚乙烯及聚合树脂等)中,如图2-2所示。

图2-2 试样的镶嵌(见实验室挂图)3. 磨制试样的磨制一般分粗磨和细磨两道工序。

实验一 铁碳合金平衡组织的显微分析

实验一 铁碳合金平衡组织的显微分析

实验一、铁碳合金平衡组织的显微分析(金相试样的制备)一实验目的:1. 掌握一般金相显微样品的制备过程和基本方法。

2. 熟悉碳钢平衡组织的显微形貌特征及识别方法。

二实验原理:金相试样加工工艺和对各种金相试样的检测,对了解金属的质量、性质是非常重要的。

金相试样的表面加工的手段方法也是各有不同。

但就我们国内金属试样的加工水平来讲,还是停留在比较原始的阶段,就工艺而言,大多数还是手工操作。

工艺流程大致是这样:砂轮片研磨(找平),降幂颗粒的砂纸研磨(3-4次),抛光腐蚀后上镜检测。

金相试样制备步骤:1、取样:从具有代表性的部位处截取直径12~15mm,高12~15mm的圆柱体或边长为12~15mm的方形试样。

例如,检验表面脱碳层的厚度应取横向截面、观察纵裂纹就要取纵向截面。

截取时应保证试样表面的显微组织不发生变化。

用手锯、机床截取、线切割等,但必须注意的是在取样过程中要防止试样受热或变形而引起的组织变化,破坏了其组织的真实性。

为防止受热可在截取过程中用冷却液冷却试样。

金相试样的尺寸要便于手握持和易于磨制,常用的试样尺寸为:Φ12×10或12×12×10,如果不是观察表面组织,可以倒角便于磨制。

根据需要,例如观察表面渗碳层的厚度,为防止在磨制过程中发生倒角,应采用镶嵌法,把试样镶嵌在热塑性塑料或热固性塑料中。

2、镶嵌:比较小或形状不规则的试样,可以镶嵌在低熔点合金或塑料中,以便于磨制和抛光。

3、磨制:截取好或镶好的试样首先在砂轮机上进行粗磨,尽量磨平,同时试样的棱角要倒圆;然后用2#、11/2#、1#等粗砂布和w28、w20、w14、w10、w7、w5金相砂纸按顺序逐级进行磨制,这样砂布或砂纸上的磨粒与试样表面产生的磨痕随着磨粒的减小而变小,直至磨平。

磨制时,当试样表面只有与磨制方向一致的磨痕时,才能更换较细粒度的砂纸(见图2、图3),每次更换砂纸磨制时,试样磨制方向应转90°,这样才能看出上次较粗的磨痕是否磨去。

实验五++铁碳合金平衡组织的观察与分析

实验五++铁碳合金平衡组织的观察与分析

实验五铁碳合金平衡组织的观察与分析一、实验目的1.熟悉铁碳合金在平衡状态下的显微组织特征。

2.了解由平衡组织估算亚共析钢含碳量的方法。

二、实验说明研究铁碳合金的平衡组织是分析钢铁材料性能的基础。

所谓平衡组织,是指合金在极其缓慢冷却条件下得到的组织。

如图5-1所示。

图5-1 Fe—Fe3C平衡组织相图由Fe—Fe3C相图可以看出,铁碳合金的室温平衡组织均由铁素体、渗碳体[由分从液体中直接析出的一次渗碳体(Fe3CⅠ);从奥氏体中析出的二次渗碳体(Fe3CⅡ);从铁素体中析出的三次渗碳体(Fe3CⅢ)]两个基本相所组成,但对不同含碳量的铁碳合金,由于铁素体和渗碳体的相对数量、析出条件、形态与分布不同,从而使各类铁碳合金在显微镜表现出不同的组织形貌。

1.工业纯铁工业纯铁是指含碳量低于0.02%的铁碳合金,其显微组织由铁素体和三次渗碳体所组成。

经4%硝酸酒精溶液浸蚀后铁素体晶粒呈亮白色块状,晶粒和晶粒之间显出黑线状的晶界。

三次渗碳体呈不连续的小白片位于铁素体的晶界处。

2.共析钢共析钢是指含碳量0.77%的铁碳合金。

共析钢的显微组织全部由珠光体组成。

在平衡条件下,珠光体是铁素体和渗碳体的片状机械混合物,经4%硝酸酒精溶液浸蚀后,其铁素体和渗碳体均为亮白色;在较高放大倍数时(600×以上),能看到珠光体中片层相同的宽条铁素体细条渗碳体,且两者相邻的边界呈黑色弯曲的细条。

由于珠光体中铁素体与渗碳体的相对量相差较大,按照杠杆定律可计算出两者相对量的比约为8∶1,从而形成了铁素体片比渗碳体片宽的多的特征。

在中等放大倍数下(400×左右),因显微镜的分辨能力不够,珠光体中的渗碳体两侧边界合成一条黑线。

在放大倍数更低的情况下(200×左右),铁素体与渗碳体的片层都不能分辨,此时珠光体呈暗黑色模糊状。

3.亚共析钢亚共析钢是指含碳量为0.02~0.77%之间的铁碳合金。

亚共析钢的显微组织是由先共析铁素体(呈亮白色块状)与珠光体(呈暗黑色)组成。

铁碳合金平衡组织的显微分析

铁碳合金平衡组织的显微分析

铁碳合金平衡组织的显微分析铁碳合金是由铁和碳构成的合金,是工业中广泛应用的重要材料之一、铁碳合金的组织特点对其力学性能和热处理性能具有重要影响。

因此,对铁碳合金的显微组织进行分析是非常重要的。

铁碳合金的显微组织分析主要包括光学显微镜和扫描电子显微镜两种方法。

下面将结合这两种方法对铁碳合金的平衡组织进行分析。

铁碳合金的平衡组织主要包括珠光体、渗碳体和残余奥氏体。

光学显微镜是一种常见的显微分析方法,通过对样品进行打磨、腐蚀和显微观察,可以清晰的观察到铁碳合金的组织特征。

首先,通过光学显微镜观察,可以明显看到铁碳合金的珠光体组织。

珠光体是一种石墨化的组织,由球状的珠粒组成。

珠光体的颗粒大小和分布情况对铁碳合金的力学性能和热处理性能有着重要的影响。

接下来,通过光学显微镜还可以观察到渗碳体的存在。

渗碳体是一种碳在铁中的溶解度有限的组织,它以板状或带状的形式分布在铁基体中。

渗碳体的含量和分布情况对铁碳合金的硬度和耐磨性能有着重要的影响。

此外,在光学显微镜下还可以观察到残余奥氏体的存在。

残余奥氏体是在快冷过程中不能完全转变为珠光体的奥氏体。

其含量和分布情况对铁碳合金的韧性和硬度也有一定的影响。

然而,光学显微镜只能观察到宏观组织,对于一些细小的组织特征无法进行观察和分析。

这时候就需要扫描电子显微镜(SEM)来进一步分析。

扫描电子显微镜是一种表面观察的显微镜,通过扫描样品表面并感应到样品表面反射的电子来形成影像。

它具有高分辨率和高放大倍数的优点,可以观察到铁碳合金的细小组织特征,如碳化物颗粒的形状和分布情况。

通过扫描电子显微镜观察,可以发现铁碳合金中的碳化物颗粒往往呈片状或者棒状,并分布在铁基体中。

碳化物颗粒的形状和分布对铁碳合金的硬度和耐蚀性有着重要的影响。

除了显微镜分析外,还可以使用X射线衍射(XRD)和电子探针X射线显微镜(EPMA)对铁碳合金的组织进行分析。

XRD可以用于定性和定量分析组织相的成分和含量,而EPMA则可以用于元素的定量分析和元素的分布状况。

铁碳合金的平衡组织分析

铁碳合金的平衡组织分析

铁碳合金的平衡组织分析一、实验目的1.了解常用台式金相显微镜的主要构造与使用方法,初步掌握利用金相显微镜进行显微组织分析的基本方法。

2.观察和识别铁碳合金(碳钢和白口铸铁)在平衡状态下的显微组织特征。

3.分析含碳量对铁碳金平衡组织的影响,加深理解铁碳合金的成分、组织与性能之间的相互关系。

二、实验概述研究金属组织的光学显微镜称为金相显微镜,它是由许多光学元件按一定要求组合而成的精密光学仪器。

在本实验中通过讲解和实际操作使学生了解常用台式金相显微镜的基本原理、结构、使用和维护方法等。

利用金相显微镜观察金属的内部组织和缺陷的方法称为显微分析(或金相分析),在金相显微镜下所看到的组织称为显微组织,合金在极其缓慢的冷却条件(如退火状态)下所得到的组织称为平衡组织。

铁碳合金的平衡组织可以根据Fe-Fe3C相图来进行分析。

由Fe3C相图可知,所有的碳钢和白口铸铁在室温时的组织均由铁素体和渗碳体两相组成,但由于合金中的含碳量不同,铁素体和渗碳体的数量、形状、大小及分布状况也不相同,随着含碳量的增加,渗碳体量不断增加,铁素体量不断减少,而且渗碳体的形态和分布情况也发生变化,所以,不同成分的铁碳合金室温下具有不同的组织和性能。

钢的组织以铁素体为基体,渗碳体为强化相,而且主要以珠光体的形式出现,使钢的强度和硬度提高,故钢中珠光体量愈多,其强度、硬度愈高,而塑性、韧性相应降低。

但过共析钢中当渗碳体明显地以网状分布在晶界上,特别在白口铁中渗碳体成为基体或以板条状分布在莱氏体基体上,将使铁碳合金的塑性和韧性大大下降,以致合金的强度也随之降低。

这就是高碳钢和白口铁脆性高的主要原因。

钢的力学性能随含碳量变化的规律如右图所示。

当钢中碳含量小于0.9%时,随含碳量的增加,钢的强度、硬度直线上升,而塑性、韧性不断下降;当钢中碳含量大于0.9%时,因网状渗碳体的存在,不仅使钢的塑性、韧性进一步降低,而且强度也明显下降。

为了保证工业上使用的钢具有足够的强度,并具有一定的塑性和韧性,钢中碳的质量分数一般都不超过1.4%。

实验一 铁碳合金平衡组织显微分析(指导书及实验报告2)

实验一 铁碳合金平衡组织显微分析(指导书及实验报告2)

实验指导书实验一铁碳合金平衡组织显微分析一、实验目的1.了解碳钢和白口铸铁在平衡状态下的显微组织。

2.分析成分(含碳量)对碳钢和白口铸铁显微组织的影响,理解成分、组织与性能之间的相互关系。

二实验内容及步骤1.实验前复习教材中有关内容和预习实验指导书。

2.在显微镜下对各种试样进行观察和分析,确定其组织组成物。

3.画出所观察的显微组织示意图。

4.根据显微组织中珠光体所占面积的百分数近似地确定一种亚共析钢的平均含碳量。

三、实验设备及材料1.金相显微镜2.金相图谱3.各种铁碳合金显微试样Ⅰ-1 工业纯铁;Ⅰ-2 20 钢;Ⅱ-1 亚共晶白口铸铁;Ⅰ-3 T8 钢;Ⅱ-2 共晶白口铸铁;Ⅰ-4 T12 钢; Ⅱ-3 过共晶白口铸铁四、实验注意事项1.在观察显微组织时,可先用低倍全面进行观察,然后用高倍对部分区域进行详细观察。

2.要正确使金相显微镜,特别要注意:将显微镜的灯泡(6~8V)插头,插在变压器上,切勿直接插在200V的电源插座上,否则灯泡立即烧坏。

3.对试样,不得用手触摸试样表面或将试样重叠起来,以免损伤试样表面。

4.画显微组织图时,应抓住其形态特点,注意不要将磨痕或杂质画在图上。

五、实验报告要求1.实验目的。

2.画出所观察过的显微组织示意图(在直径为30mm的圆内画,并将组织组成物名称以箭头引出标明,在图的下面注明材料名称、含碳量、侵蚀剂、放大倍数,以及简单的描述。

)。

3.根据所观察的组织,近似地估算一种亚共析钢的含碳量。

实验报告实验一铁碳合金平衡组织显微分析学生姓名班级学号实验日期指导教师。

铁碳合金平衡组织观察_2

铁碳合金平衡组织观察_2

铁碳合金平衡组织观察一、实验目的1.观察和识别铁碳合金在平衡状态下的显微组织;2、了解含碳量对铁碳合金显微组织的影响, 从而加深理解成分、组织、性能之间的相互关系;3.熟悉金相显微镜的使用。

二、实验原理铁碳合金的显微组织是研究和分析钢铁材料性能的基础。

所谓平衡状态的显微组织是指合金在极为缓慢的冷却条件下(如退火状态即接近平衡状态)所得到的组织。

我们可以根据Fe-Fe3C相图来分析铁碳合金在平衡状态下的显微组织。

铁碳合金的平衡组织主要是指碳钢和白口铸铁的室温组织。

铁碳合金其组织组成物为铁素体(F)、渗碳体(Fe3C)、珠光体(P)及莱氏体(Ld), 它们的形貌因含碳量不同而改变。

按其含碳量与平衡组织的不同, 可分为工业纯铁, 碳钢及白口铸铁3类。

1.工业纯铁纯铁在室温下具有单相铁素体组织。

含碳量小于0.0218%的铁碳合金通常称为工业纯铁。

它是两相组织, 即由F和少量Fe3C组成。

从显微组织可见, F为亮白色的不规则等轴晶粒, 黑色线条是F的晶界。

2.碳钢碳钢含碳量在0.0218%~2.11%范围内的铁碳合金称为碳钢。

按其含碳量与平衡组织的不同, 可分为亚共析碳钢, 共析碳钢和过共析碳钢3种。

(1)亚共析钢: 含碳量在0.0218%~0.8%范围, 其组织有F和P所组成。

随着含碳量的增加, P的数量增多, F的数量减少, P为F片和Fe3C片相间组成, 显片层状。

经浸蚀(本实验所用浸蚀剂均为3%硝酸酒精溶液)后在显微镜下观察P呈黑色, F为白色。

(2)共析钢:含碳量为0.8%的碳钢称为共析钢, 它由单一的P组成。

在显微镜下观察组织全部为层状P, 它是F和Fe3C的共析组织。

(3)过共析钢:含碳量在0.8%~2.11%范围, 其组织由P和Fe3CⅡ组成。

钢中的含碳量越多, Fe3CⅡ的数量越多。

在显微镜下观察基体为层状P呈黑色, 晶界上的白色细网络状为Fe3CⅡ。

3.白口铸铁白口铸铁是含碳量为2.11%~6.69%范围内的铁碳合金, 按其含碳量及平衡组织的不同, 又可分为亚共晶白口铸铁, 共晶白口铸铁和过共晶白口铸铁3种。

铁碳合金

铁碳合金
表6—3 各类组织组成物的机械性能
性能 组成物 铁 素 体 渗 碳 体 片状珠光体 球状珠光体
硬 度 HB 60~N/m2) 120~230 30~35 860~900 650~750
断面收缩率 ψ(%) 60~75 - 10~15 18~25
(a) 20钢(200×)
(b) 45钢 (200×)
图6-7 亚共析钢显微组织
2)共析钢 含碳量为0.8%的碳钢,称为共析钢,由单一的珠光体组成,其显微组织如图6 含碳量为0.8%的碳钢,称为共析钢,由单一的珠光体组成,其显微组织如图6—5所示 3)过共析钢 含碳量超过0.8%的碳钢,称为过共析钢,它在室温下的组织由珠光体和二次渗碳体组 含碳量超过0.8%的碳钢,称为过共析钢,它在室温下的组织由珠光体和二次渗碳体组 成。钢中含碳量越多,二次渗碳体数量就越多。图6—8(a)为含碳量1.2%的过共析 成。钢中含碳量越多,二次渗碳体数量就越多。图6 )为含碳量1.2%的过共析 钢的显微组织。组织形态为层片相间的珠光体和二次渗碳体,经硝酸酒精溶液浸蚀后 珠光体呈暗黑色,而二次渗碳体则呈白色网状。若采用苦味酸钠溶液浸蚀,网络状二 次渗碳体就被染成黑色,而珠光体为白色,如图6 次渗碳体就被染成黑色,而珠光体为白色,如图6—8(b)所示。
图6-4 Fe-Fe3C相图
从Fe-Fe3C相图上可以看出,所有碳钢和白口铸铁的室温组织均由铁素体(F)和渗碳 Fe-Fe3C相图上可以看出,所有碳钢和白口铸铁的室温组织均由铁素体(F 体(Fe3C)这两个基本相组成。但是由于含碳量不同,铁素体和渗碳体的相对数量、 体(Fe3C)这两个基本相组成。但是由于含碳量不同,铁素体和渗碳体的相对数量、 析出条件以及分布情况均有所不同,因而呈现各种不同的组织形态(见表6 析出条件以及分布情况均有所不同,因而呈现各种不同的组织形态(见表6—2)。 表6—2 各种铁碳合金在室温下的显微组织 类 型 含碳量(%) <0.02 0.02~0.8 0.8 0.8~2.06 显 微 组 织 铁 素 体 铁素体 + 珠光体 珠 光 体 珠光体 + 二次渗碳体 浸 蚀 剂 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液; 苦味酸钠溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液

铁碳合金平衡组织观察实验报告

铁碳合金平衡组织观察实验报告

铁碳合金平衡组织观察实验报告铁碳合金是一种重要的工程材料,其性能受到其平衡组织的影响。

为了研究铁碳合金的平衡组织形成过程,我们进行了一系列观察实验。

实验方法:1. 准备铁碳合金试样:按照不同的碳含量配制出一系列铁碳合金试样。

2. 热处理:将试样加热至适当温度,保温一段时间后以适当速率冷却。

3. 显微组织观察:使用金相显微镜对试样进行断面观察,观察铁碳合金的平衡组织形态。

实验结果:1. 纯铁试样观察结果:在室温下,纯铁试样呈现典型的珠光体组织,在金相显微镜下呈现出淡黄色的颗粒状晶粒,并呈现出较好的韧性。

2. 含碳量为0.02%的铁碳合金试样观察结果:在室温下,含碳量为0.02%的铁碳合金试样呈现出典型的珠光体+渗碳体组织,在金相显微镜下可以看到淡黄色的珠光体相和黑色的渗碳体相,珠光体相呈现出颗粒状晶粒,而渗碳体相则呈现出条状或颗粒状分布,试样呈现出较好的韧性。

3. 含碳量为0.4%的铁碳合金试样观察结果:在室温下,含碳量为0.4%的铁碳合金试样呈现出典型的珠光体+渗碳体+母体组织,在金相显微镜下可以看到淡黄色的珠光体相、黑色的渗碳体相和灰色的母体相,珠光体相和渗碳体相呈现出颗粒状晶粒,而母体相则呈现出块状结构,试样呈现出较硬的性能。

实验结论:随着碳含量的增加,铁碳合金试样的平衡组织形态发生变化。

低碳铁碳合金试样呈现出珠光体+渗碳体组织,具有良好的韧性;高碳铁碳合金试样呈现出珠光体+渗碳体+母体组织,具有较硬的性能。

该实验结果对于理解铁碳合金的平衡组织形成机制以及材料性能的影响具有重要意义。

1. 在进行防水操作之前,需要确保工作场所的安全,并采取相应的安全措施,例如穿戴防护服和保护眼睛等。

2. 在进行防水操作之前,需要先对工作区域进行必要的清理和准备。

移除可能影响防水效果的杂物和污垢,并确保表面干燥且平整。

3. 选择适当的防水材料和工具,并根据产品说明书或专业人士的建议操作。

4. 在施工过程中,按照指定的施工方法进行操作,确保防水材料充分涂覆到需要防水的区域。

铁碳合金平衡组织的显微分析实验

铁碳合金平衡组织的显微分析实验

铁碳合⾦平衡组织的显微分析实验“铁碳合⾦平衡组织的显微分析实验”实验报告⼀、实验⽬的(1)熟悉室温下碳钢与⽩⼝铸铁平衡状态下的显微组织,明确成分-组织之间的关系。

(2)进⼀步熟悉⾦相显微镜的操作。

⼆、实验原理碳钢与⽩⼝铸铁在室温下,其平衡状态下的组织中的基本组成相均为铁素体与渗碳体。

但是由于碳含量及处理不同,它们的数量、分布及形态有很⼤不同,因此在⾦相显微镜下观察不同铁碳合⾦,其显微组织也就有很⼤差异。

碳含量⼩于0.02%的铁碳合⾦称为⼯业纯铁。

碳含量⼩于0.006%的⼯业纯铁显微组织为单相铁素体;碳含量⼤于0.006%的⼯业纯铁的显微组织为铁素体和极少量的三次渗碳体。

根据碳含量的不同,碳钢可分为亚共析钢、共析钢和过共析钢三类。

碳含量为0.77%的铁碳合⾦为共析钢。

其显微组织为⽚状渗碳体分布于铁素体基体上的机械混合物——珠光体;碳含量⼩于0.77%的铁碳合⾦称为亚共析钢。

其显微组织为铁素体和珠光图。

碳含量⼤于0.77%的铁碳合⾦称为过共析钢。

其显微组织为珠光体和⼆次渗碳体。

碳含量⼤于2.11%的铁碳合⾦为铸铁,不含⽯墨只含渗碳体相的铸铁称为⽩⼝铸铁。

碳含量为4.3%铁碳合⾦称为共晶⽩⼝铸铁。

室温下其组织为珠光体和渗碳体的机械混合物——莱⽒体。

碳含量⼩于4.3%铁碳合⾦称为亚共晶⽩⼝铸铁。

其显微组织为莱⽒体、珠光体和⼆次渗碳体。

碳含量⼤于4.3%铁碳合⾦称为过共晶⽩⼝铸铁。

其显微组织为莱⽒体和⼀次渗碳体。

三、实验装置及试件⾦相显微镜、碳钢和⽩⼝铸铁平衡组织⾦相试样⼀套、⾦相图谱、材料检索表。

四、实验步骤(1)领取⾦相试样⼀套和⾦相图谱⼀本(注意不可⽤⼿触摸材料⾯及显微镜镜头);(2)打开⾦相显微镜电源(若有变压器须先接变压器后接电源);(3)⽤⾦相显微镜调整光圈并调焦后逐个观察⾦相试样的显微组织(观察T8钢时需⽤400x⽬镜,其它⽤100x⽬镜),并仔细观察其特征。

(4)选取5个符合要求的适宜的不同材料画出其显微组织(所画的组织要有代表性;组织中组成物的⼤⼩与放⼤倍数⼀致,其数量与合⾦成为相符合;对每个图应按要求标注,记录其序号、材料、状态、浸蚀剂与⾦相组织,⽤指引线指明组织组成物的名称)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章铁碳合金平衡组织的显微分析Fe-Fe3C相图是研究碳钢和白口铸铁的重要工具,也是分析这些在平衡状态或接近平衡状态下显微组织的基础。

根据Fe-Fe3C相图,含碳量小于2.11%的合金称为碳钢,含碳量大于2.11%的合金称为白口铸铁。

在室温下铁碳合金的基本组成相为铁素体与渗碳体,不同含碳量的合金,在组织上差异是这两个基本的相对量、形态及分布不同。

在铁碳合金中渗碳体的相对量,存在形态以及分布状况,对合金的性能影响很大,在碳钢中渗碳体一般可以认为是一个强化相。

见图9-1。

图9-1 按组织分区的Fe-Fe3C相图一、工业纯铁在退火状况下的显微组织含碳量低于0.0218%的铁碳合金称为工业纯铁。

工业纯铁在含碳量小于0.008%时,其显微组织为单相铁素体。

如图9-2所示。

图9-2 工业纯铁的显微组织图200x 图9-3 含碳量0.4%的亚共析钢的显微组织200x图中有的晶粒呈暗色,这是由于不同晶粒受腐蚀的程度不同造成的。

在含碳量大于0.008%时,工业纯铁的组织为铁素体和极少量的三次渗碳体。

三次渗碳体由铁素体中析出,沿铁素体晶界呈片状分布。

二、碳钢在退火状态下的显微组织含碳量在0.0218~2.11%范围的铁碳合金称为碳钢。

碳钢按含碳量与平衡组织的不同可分为亚共析钢、共析钢和过共析钢三种。

1.亚共析钢含碳量在0.0218~0.77%之间的铁碳合金称为亚共析钢,所亚共析钢冷却到室温后显微组织均为先共析铁素体和珠光体组成。

随着含碳量的增加珠光体所占的比例也不断增加,当增加到0.77时(铁素体在珠光体周围呈网状分布),整个组织为珠光体。

用显微镜观察放大倍数低于400×时,先析出铁素体呈亮白色,珠光体呈暗黑色如图9-3所示。

由于铁素体和珠光体比重相近,若忽略铁素体中所含的微量碳,根据杠杆定理和亚共析钢显微组织中先共析铁素体与珠光体所占的相对面积,就可以估算出该钢的含碳量。

例如:当不珠光体和铁素体的面积各占一半时,钢的含碳量为0.77%0.50.4%⨯≅,由此可定此钢为40#碳素钢。

但须注意,如果亚共析钢从奥氏体相区以较快的速率冷却下来,而因共析转变时过冷度增大,共析体含碳量偏低,故其显微组织中珠光体的含量就要比缓冷时增加,此时若仍用上述方法来估算出的结果其含碳量将会偏高。

2.共析钢含碳量为0.77%的铁碳合金称为共析钢。

其组织为共析转变得到的珠光体,即片状铁素体和渗碳体的机械混合物。

由杠杆定理可以求得铁素体与渗碳体的重量比约为7.9:1,因此铁素体厚,渗碳体薄。

用硝酸酒精腐蚀后,由于珠光体中铁素体比渗碳体的电极电位低,在正常浸蚀下,铁素体为阳极被溶解,而渗碳体被溶解为凸出相(用DIC方法可以验证)。

而此于铁素体和渗碳体对光的反射能力相近,因此在明视场照明条件下二者都是明亮的。

只有相界呈暗灰色,当放大倍数较高时,上述情况才能看清楚如图9-4所示。

如放大倍数较低时,渗碳体片两侧相界已无法分辨,而呈黑色条状图9-5所示。

将放大倍数降到更低时,则渗碳体片都无法分辨,整个珠光体组织无法分辨而呈暗黑色一片。

图9-4 经高倍放大后的珠光体3000x 图9-5 经中倍放大后的珠光体500x3.过共析钢含碳量在0.77~2.11%之间的铁碳合金称为过共析钢,其组织为先共析渗碳体和珠光体。

先共析渗碳体由奥氏体中沿晶界析出,故呈网状分布在随后发生共析转变形成的珠光体周围。

其室温组织为网状二次渗碳体和珠光体。

随着含碳量增加,先共析渗碳体的量也增加,网状略有加宽。

图9-6为T12钢(含碳量约1.2%)退火后的显微组织,这种组织有时较难以接近共析成分的亚共析钢区别。

如果用煮沸的碱性若味酸钠溶液腐蚀,会使渗碳体呈暗黑色而铁素体仍保持白色如图9-7所示。

因此有管种腐蚀剂可以将接近共析成分的过共析钢与亚共析钢区分开。

三、白口铸铁的显微组织铸铁在铸造时,如果冷却速度快,或者含碳量较低时则生成白口铁,白口铁中碳均以Fe3O存在,并具有莱氏体组织,所以白口铸铁只含有渗碳体而不含石墨,断口呈白亮色而得名。

白口铸铁根据其含碳量的不同可分为亚共晶、共晶、过共晶三种。

由于白口铸铁硬而脆,在机器制造业中应用很少。

其中亚共晶白口铸铁有使用价值。

图9-6 T12钢的显微组织图9-7 T12钢的显微组织(4%硝酸酒精溶液腐蚀)500X (碱性若味酸钠溶液腐蚀)500X 1.共晶白口铸铁含碳量为4.3%的白口铸铁称为共晶白口铁。

其显微组织为共晶转变的产物,最后得到的平衡组织为树枝状珠光体分布在共晶的渗碳体的基体上,通常称为莱氏体。

这是为了纪念德国金相学家莱德堡(Ledebur)而命名的,莱氏体在刚形成时由细小的奥氏体与渗碳体两相混合物组成,继续冷却时,奥氏体将不断析出二次渗碳体,即先共析渗碳体,这部分渗碳体与原莱氏体中的渗碳体连在一起,无法分辨。

冷到727℃时,奥氏体的含碳量改变到0.77%,通过共析转变而形成珠光体。

因此室温下看到的莱氏体组织是由珠光体和渗碳体组成的,如图9-8所示。

图中黑色的细小颗粒或条状组织为珠光体,白亮的基体仍为渗碳体。

从图中可以看出,虽然共晶白口铸铁凝固后还要经历一系列的固态转变,但是它的显微组织仍具有典型的共晶体特征。

2.亚共晶白口铸铁含碳量在2.11~4.3%之间的白口铸铁称为亚共晶白口铸铁。

在刚凝固后其组织为先共晶奥氏体和莱氏体,在随后的冷却过程中,先共晶奥氏体要不断析出二次渗碳体,然后再转变为珠光体,莱氏体中的奥氏体也要析出二次渗碳体,再转变为珠光体。

在亚共晶白口铸铁的显微组织中,由先共晶奥氏体转变而成的珠光体仍保持其树枝状特征图9-9为共晶白口铸铁的显微组织。

图9-8 共晶白口铸铁显微组织200x 图9-9 亚共晶白口铸铁显微组织200x3.过共晶白口铸铁含碳量大于4.3%而又小于6.69%的白口铸铁称为过共晶白口铸铁,其显微组织为一次渗碳体和莱氏体,如图9-10所示,图中白色长条状(空间为片状)为一次渗碳体,其余为莱氏体。

四.灰口铸铁、球墨铸铁及可锻铸铁灰口铸铁、球墨铸铁及可锻铸铁中,部分或绝大部分碳以石墨形式存在。

1.灰口铸铁石墨呈片状,基体有铁素体(图9-11a)、铁素体—珠光体(图9-11b)及珠光体(图9-11c)三种。

在铁水中加入少量孕育剂,使石墨结晶成细小片状,均匀分布,基体为珠光体的灰口铸铁称为孕育铸铁。

图9-10 过共晶白口铸铁显微组织200x图9-11 灰口铸铁的显微组织图200x(a) 铁素体基体(b) 铁素体--珠光体基体(c) 珠光体基体2.球墨铸铁在铁水中加入球化剂与孕育剂,使石墨呈球状析出。

球墨铸铁通过不同的热处理后,基体有铁素体(图9-12a)、铁素体—珠光体(图9-12b)、珠光体(图9-12c)及下贝氏体(图9-12d)等四种。

3.可锻铸铁将白口铸铁进行高温长时间退火,使石墨呈团絮状析出。

基体有铁素体(图9-13a)及珠光体(图9-13b)两种,生产中以铁素体基体的可锻铸铁应用较广。

上述三种铸铁组织都是以钢为基体加上石墨所组成的。

因此,影响其机械性能的主要因素是:1.石墨的形态、大小、数量与分布由于石墨本身的硬度、强度与塑性都极低(几乎为零),所以它的存在就象是在钢的基体上分布着大量细小的空洞或裂纹。

当石墨呈片状时,应力集中、割裂基体、减少承载面积的现象相当严重,因而铸铁抗拉强度、塑性、韧性大为降低;反之,如石墨呈球状,则铸铁的抗拉强度、塑性、韧性均较好。

当石墨形态一定时,石墨愈粗大、数量愈多以及分布愈不均匀时,铸铁的机械性能就愈低。

图9-12 球墨铸铁的显微组织(a)铁素体基体(200x)(b)铁素体-珠光体基体(200x)(c)珠光体基体(200x)(d)下贝氏体基体(500x)图9-13可锻铸铁的显微组织(a)铁素体基体200x (b) 珠光体基体100x2.金属基体基体对铸铁的强度、塑性与韧性也有影响。

珠光体基体可提高铸铁强度,铁素体基体可提高铸铁的塑性与韧性。

但这种影响相对石墨对铸铁机械性能的影响是较小的。

只有当石墨呈球状时,改变基体组织,才能显著地改变铸铁的机械性能。

实验一、实验目的1、熟悉碳钢和白口铸铁在平衡状态下的显微组织。

2、观察与分析各种铸铁的显微组织特征,识别石墨形态与基体类型,从而了解铸铁机械性能与组织的关系。

3、观察的金相试样。

包括:铁素体灰口铸铁、铁素体—珠光体灰口铸铁、珠光体灰口铸铁、铁素体球墨铸铁、铁素体—珠光体球墨铸铁、下贝氏体球墨铸铁、铁素体可锻铸铁及珠光体可锻铸铁。

二、实验内容三、实验报告要求1.写出实验目的。

2.画出所观察样品的显微组织示意图,注明合金成分、状态、放大倍数及各组织组成物的名称,说明其特征,并分析其形成过程。

3. 在金相显微镜下观察上述铸铁的显微组织,注意分辨各种铸铁的基体类型及石墨的形态、大小、数量与分布,并绘制各种铸铁的显微组织示意图填入下表。

思考题1.在Fe-Fe3C系合金中有哪几个基本相?其结构、性能特点如何?2.铁素体与奥氏体有什么区别?3.珠光体的结构有什么特点?同一块含碳量0.77%的共析钢中的珠光体为什么所观察到的层片密集程度不同?4.试说明铁碳合金平衡组织中各类渗碳体的形成条件、存在形式及显微组织的特点。

5.若亚共析钢中先共析铁素体的含量为90%,求该钢的含碳量为多少?6.T12的钢在A1温度以下加热并长时间保温,为什么会出现石墨相?。

相关文档
最新文档