第九章核苷酸代谢

合集下载

生物化学-核苷酸代谢

生物化学-核苷酸代谢
药物名称 羟基脲和羟 基胍 正常代谢物 脱氧核苷 治疗的疾病 主要作用的酶 作用的代谢途径 脱氧核苷酸合成 ①慢性粒细胞 核苷酸还原酶 白血病 ②恶性淋巴瘤 ③其它骨髓增 生性疾病 ①急性淋巴细 DNA聚合酶 胞性白血病 ②病毒感染性 疾病 如单纯疱疹病 毒、牛痘病毒、 带状疱疹病毒 ①乳腺癌 天冬氨酸氨基甲酰 ②胰腺癌 转移酶(ACT) ③软组织肉瘤
①二氢叶酸还原酶 ②核苷酸甘氨酰胺 (GAR)转甲酰酶 ③5-甲酰氨基咪唑4-甲酰胺核苷酸 (AICAR0转甲酰 酶
嘌呤核苷酸合成和 嘧啶核苷酸合成
氨蝶呤和甲 氨蝶呤
叶酸
①急性白血病 ②头颈部肿瘤 ③妊娠滋养细 胞瘤 ④成骨肉瘤 ⑤淋巴癌 ⑥肝癌 ⑦乳腺癌 ⑧卵巢癌
嘌呤核苷酸合成
部分核苷酸代谢类似物的临床应用
原 因
调节失常
遗传缺陷
临床特点
嘌呤产生和排谢过多
遗传类型
x-染色体连锁隐性 遗传
1.嘌呤核苷酸代谢障碍
Lesch-Nyhan HGPRT 综合征
嘌呤产生排泄多,脑性瘫痪、 x-染色体连锁隐性 自毁容貌症 遗传
免疫缺陷症, ①腺苷脱氨酶
②嘌呤核苷磷酸化酶 肾结石 黄嘌呤尿 APRT 黄嘌呤氧化酶
遗传缺陷
氮杂丝氨酸 5-氨基咪唑-4甲酰胺核苷酸 腺嘌呤 次黄嘌呤 鸟嘌呤 甲酰甘氨咪 核苷酸
部分核苷酸代谢类似物的临床应用
药物名称 正常代谢物 治疗的疾病 ①白血病 ②自身免疫性病 ③妊娠滋养细胞肿 瘤 主要作用的酶 ①IMP脱氢酶 ②腺苷酸代琥珀 酸合成酶 黄嘌呤氧化酶 作用的代谢途径 嘌呤核苷酸合成 6-巯基嘌呤 嘌呤核苷酸
第二节 核酸的降解与核苷酸代谢
食物核蛋白
一、 核 酸 与 核 苷 酸 降 解

生物化学及分子生物学(人卫第九版)-09核苷酸代谢

生物化学及分子生物学(人卫第九版)-09核苷酸代谢
第九章
核苷酸代谢 Metabolism of Nucleotides
作者 : 王大勇 王曦迪
单位 : 哈尔滨医科大学
目录
第一节 核苷酸代谢概述 第二节 嘌呤核苷酸的合成与分解代谢 第三节 嘧啶核苷酸的合成与分解代谢
重点难点
掌握 1.核苷酸的生物学功能 2.嘌呤核苷酸从头合成的概念、部位、主要阶段及元素来源 3.嘌呤核苷酸分解代谢产物 4.补救合成意义 5.嘧啶核苷酸从头合成的概念、部位及元素来源
UMP
CTP
生物化学与分子生物学(第9版)
dTMP或TMP的生成
UDP 脱氧核苷酸还原酶 CTP CDP dCDP
dUDP dCMP
dUMP
TMP合酶
N5, N10-甲烯FH4 FH2 FH2还原酶
FH4 NADP+ NADPH+H+
dUMP
dTMP
脱氧胸苷一磷酸
生物化学与分子生物学(第9版)
生物化学与分子生物学(第9版)
嘌呤碱合成的元素来源
CO2
甘氨酸
天冬氨酸
甲酰基 (一碳单位)
甲酰基 (一碳单位)
谷氨酰胺 (酰胺基)
生物化学与分子生物学(第9版)
嘌呤核苷酸合成过程
R-5´-P
ATP AMP PP-1-R-5´-P
(5´-磷酸核糖) PRPP合成酶 (磷酸核糖焦磷酸)
谷氨酰胺
核酸(RNA及DNA)
胰核酸酶
核苷酸
核苷
胰、肠核苷酸酶
磷酸
碱基
核苷酶
戊糖
生物化学与分子生物学(第9版)
三、核苷酸的代谢包括合成和分解代谢
核苷酸的合成代谢 核苷酸的分解代谢
第二节

生物化学之核苷酸代谢

生物化学之核苷酸代谢

生尿酸,同时补救途径不通会引起嘌呤核苷
酸从头合成速度增加,更加大量累积尿酸, 从而导致肾结石和痛风
3、脱氧核苷酸的生成
O P -P O N 核糖核苷酸还原酶 OH
硫 化 原 白 氧 还 蛋
CH2
O P -P CH2 O
N
OH NDP
SH
硫 化 原 白 氧 还 蛋
OH S S
H dNDP
SH 硫氧化还原蛋白还原酶 NADP NADP H
次黄嘌呤核苷酸 IMP
ATP和GTP的生成
HOOCCH CHCOOH 2 O C C N O OH OH C N N CH GTP Asp H N P O CH2 HC NH C C N O OH OH OH 腺苷酸代琥珀酸 OH C N N CH 延胡索酸 HC P O CH2 N O C N CH
Glu
P O CH2 OH
OH
OH
XMP
GMP
(Xanthosine monophosphate)
嘌呤核苷酸从头合成的调节
原则之一:满足需求,防止供过于求。
(-) (+) R-5-P
PRPP合 成 酶
(-) (+) PRPP (-) PAR (-) IMP XMP (-) GMP GDP GTP
次黄嘌呤
6-巯 基 嘌 呤 6MP (6-mercaptopurine)
SH
OH H N HC P O CH2 OH C C N O OH C N N CH H N HC P O CH2 OH
C C N O OH C N N CH
次 黄 嘌 呤 核 苷 酸 (IMP)
6-巯 基 嘌 呤 核 苷 酸
嘌呤核苷酸的抗代谢物-2

生物化学第九章-核苷酸代谢

生物化学第九章-核苷酸代谢

第九章核苷酸代谢一、核苷酸类物质的生理功用:核苷酸类物质在人体内的生理功用主要有:①作为合成核酸的原料:如用ATP,GTP,CTP,UTP合成RNA,用dA TP,dGTP,dCTP,dTTP合成DNA。

②作为能量的贮存和供应形式:除ATP之外,还有GTP,UTP,CTP等。

③参与代谢或生理活动的调节:如环核苷酸cAMP和cGMP作为激素的第二信使。

④参与构成酶的辅酶或辅基:如在NAD+,NADP+,FAD,FMN,CoA中均含有核苷酸的成分。

⑤作为代谢中间物的载体:如用UDP携带糖基,用CDP携带胆碱,胆胺或甘油二酯,用腺苷携带蛋氨酸(SAM)等。

二、嘌呤核苷酸的合成代谢:1.从头合成途径:利用一些简单的前体物,如5-磷酸核糖,氨基酸,一碳单位及CO2等,逐步合成嘌呤核苷酸的过程称为从头合成途径。

这一途径主要见于肝脏,其次为小肠和胸腺。

嘌呤环中各原子分别来自下列前体物质:Asp → N1;N10-CHO FH4 → C2 ;Gln → N3和N9 ;CO2 → C6 ;N5,N10=CH-FH4 → C8 ;Gly → C4 、C5 和N7。

合成过程可分为三个阶段:⑴次黄嘌呤核苷酸的合成:在磷酸核糖焦磷酸合成酶的催化下,消耗ATP,由5'-磷酸核糖合成PRPP(1'-焦磷酸-5'-磷酸核糖)。

然后再经过大约10步反应,合成第一个嘌呤核苷酸——次黄苷酸(IMP)。

⑵腺苷酸及鸟苷酸的合成:IMP在腺苷酸代琥珀酸合成酶的催化下,由天冬氨酸提供氨基合成腺苷酸代琥珀酸(AMP-S),然后裂解产生AMP;IMP也可在IMP脱氢酶的催化下,以NAD+为受氢体,脱氢氧化为黄苷酸(XMP),后者再在鸟苷酸合成酶催化下,由谷氨酰胺提供氨基合成鸟苷酸(GMP)。

⑶三磷酸嘌呤核苷的合成:AMP/GMP被进一步磷酸化,最后生成A TP/GTP,作为合成RNA的原料。

ADP/GDP则可在核糖核苷酸还原酶的催化下,脱氧生成dADP/dGDP,然后再磷酸化为dATP/dGTP,作为合成DNA的原料。

第九章 核苷酸代谢

第九章 核苷酸代谢

图9-7
嘧啶的元素来源
(2)嘧啶核苷酸从头合成的特点 嘧啶核苷酸从头合成途径不同于嘌呤核苷酸 的合成。其特点是: ①合成所需要的酶系大多在胞液内,但个别酶 如二氢乳清酸脱氢酶则位于线粒体内。 ②合成从CO2和谷氨酰胺开始,经6步反应先合 成出尿嘧啶核苷酸(UMP)。 ③由UMP出发再合成其它的嘧啶核苷酸。
2) 嘧啶核苷酸的负性调节同样由合成产物的反 馈抑制进行调节。主要集中在对4个关键酶的反 馈抑制上。
第一个关键酶是氨基甲酰磷酸合成酶Ⅱ (CPSⅡ),由UMP反馈抑制。 第二个关键酶是天冬氨酸转氨基甲酰酶 (CAT),由UMP和CTP反馈抑制。
第三个关键酶是磷酸核糖焦磷酸激酶 (OPRT),由ADP和GDP反馈抑制。 第四个关键酶是CTP合成酶(CTPS),由CTP反 馈抑制。CTP对天冬氨酸转氨酶的反馈调节为变 构调节。该酶有6个催化亚基和6个调节亚基。当 CTP浓度升高时,CTP就与调节亚基结合,使调节 亚基和催化亚基逐步变构,从而使酶由活性状态 逐步转变为无活性状态,实现反馈抑制调节。
图9-3
嘌呤核苷酸的从头合成
图9-4
由IMP合成AMP和GMP
(5) 嘌呤核苷酸从头合成的调节 细胞和机体能够对嘌呤核苷酸的从头合成 进行调节,以保持细胞和机体内相对稳定的嘌呤 核苷酸供应。嘌呤核 苷酸从头合成的调节包 括正性调节和负性调节两种方式。 正性调节是指促进嘌呤核苷酸合成的调节。 而负性调节是指抑制嘌呤核苷酸合成的调节。
1)正性调节表现为前后两端调节 前端正性调节主要是对两个关键酶的促进作用。这 两个关键酶是PRPPK和GPAT,底物ATP、5’-磷酸核糖和 PRPP分别促进其活性,增加IMP的合成。 后端正性调节主要是由ATP促进GMP合成酶和GTP促 进腺苷酸代琥珀酸合成酶这两个关键酶的活性,增加 GTP和ATP的合成。

专科(生物化学)第9章 核苷酸代谢

专科(生物化学)第9章 核苷酸代谢

酸提供氨基合成腺苷酸代琥珀酸(AMP-S),然后
裂解产生AMP;
• IMP也可在IMP脱氢酶的催化下,以NAD+为受氢体,
脱氢氧化为黄嘌呤核苷酸(XMP),后者再在鸟苷 酸合成酶催化下,由谷氨酰胺提供氨基合成鸟苷酸 (GMP)。
2、AMP和GMP的生成
HOOCCH2CHCOOH
NH2 NH C N C N C 延胡索酸 N HN C CH CH HC C N N HC C 腺苷酸代琥珀 N N R-5'-P
1.嘌呤类似物:
6-巯基嘌呤(6MP)、6-巯基鸟嘌呤、 8-氮杂鸟嘌呤
其中, 6MP临床应用较多.其化学结构与次黄嘌
呤相似,并可在体内转变成6MP核苷酸.因而可抑 制IMP转变为AMP及GMP;可通过竞争性抑制影 响次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)而 阻止了补救合成途径;还可反馈抑制PRPP酰基转
MTX
AICAR FAICAR
6MP
IMP
AMP
PPi
A
PRPP
6MP
GMP
PPi
I G
PRPP
氮杂丝氨酸
嘌呤核苷酸抗代谢物的作用
6MP
二、
嘧啶核苷酸的合成
合成途径:
从头合成
补救合成

嘧啶核苷酸的结构
(一)嘧啶核苷酸的从头合成
•定义
嘧啶核苷酸的从头合成是指利用磷
酸核糖、氨基酸、二氧化碳等简单物
2.体内某些组织器官,如脑、骨髓等只能进行补
救合成。
(基因缺陷导致HGPRT完全缺乏的患儿,表现为自
毁容貌征或称: Lesch-Nyhan综合征 )
1、病因:
自毁容貌症(Lesch-Nyhan综合症)

第九章核苷酸代谢

第九章核苷酸代谢

五、核酸酶对核酸的核酸的解聚 作用
核酸 核酸酶 DNA酶 RNA酶
第九章核苷酸代谢
核 酸
第九章核苷酸代谢
核酸酶
核酸酶催化水解连接核苷酸之间的磷酸二酯键, 其最终产物是各种核苷酸 1.外切酶能连续水解多核苷酸链末端磷酯键, 它们是非特异性的磷酸二酯酶 ①蛇毒磷酸二酯酶 从DNA或RNA的3´-羟基末 端开始,逐个地水解下5´-核苷酸 ②牛脾磷酸二酯酶 从DNA或RNA的5´-磷酸末 端逐个地水解下3´-核苷酸 2.内切酶能特异地切断多核苷酸链内部的磷 酸二酯键,特异性很强。
作为核酸合成的原料 体内能量的利用形式 参与代谢和生理调节 构成辅酶 活化中间代谢物
第九章核苷酸代谢
作为核酸合成的原料
dATP 、 dGTP 、 dCTP 、 dTTP可作为 DNA的合成原料; ATP、GTP、CTP、UTP 可作为RNA的合 成原料
第九章核苷酸代谢
参与代谢和生理调节
如cAMP是第二信使,也作为效应剂参与 调节。 AMP、ADP、ATP均可作为效应剂。
戊糖 (磷酸戊糖)
ribose
sugar
deoxyribose
三、核酸消化产物的吸收
核酸的消化产物——核苷酸及核苷都能 被吸收进入体内。 动物体并不一定需要依靠食物供给核苷 酸,这是因为体内可由其它物质合成核 苷酸。
第九章核苷酸代谢
四、核苷酸代谢概况
分解代谢
分解代谢主要分为嘌呤核苷酸分解代谢和嘧 啶核苷酸代谢
第九章核苷酸代谢
RNA酶
①RNA酶T1 (霉菌)作用于RNA分子内部的5´磷酯键,要求其3´-磷酯键与鸟苷酸相连,产物 是以G-3´-P为3´-末端的核苷酸片段及残留部 分。 ②RNA酶I(牛胰)作用于RNA分子内部的5´-磷 酯键,要求其3´-磷酯键与嘧啶核苷酸相连,获 得以嘧啶核苷3´-P为3´-末端的核苷酸片段及 残留部分。 ③RNA酶T2作用RNA分子内部的5´磷酯键, 产物以腺苷-3´-P为3´-末端的核苷酸片段及残 留部分。

生物化学_核苷酸代谢

生物化学_核苷酸代谢

生物化学_核苷酸代谢核苷酸是生物体内重要的代谢产物和信号分子,参与了细胞的许多生理活动。

核苷酸代谢是指从核苷酸的合成到降解的过程。

核苷酸合成主要发生在细胞的核糖体内,而降解则发生在细胞质中。

核苷酸代谢是一个复杂的过程,涉及许多酶的参与和调节。

核苷酸的合成一般分为两个部分:碱基合成和糖磷酸合成。

碱基合成是指通过一系列酶催化反应将无机盐和二氧化碳转化为核苷酸中的碱基。

碱基合成的过程中需要ATP提供能量,并且还需要其他物质作为辅助因子。

例如,嘌呤核苷酸的合成需要甲硫氨酸、腺苷酸、尿苷酸和腺苷酸等物质参与。

嘌呤核苷酸的合成主要发生在细胞核中,具体包括腺苷酸合成、纯化核苷酸合成和底物识别。

嘌呤核苷酸的合成是一个反应级联,涉及多个酶的参与和调控。

嘌呤核苷酸的合成过程是一个调控复杂的过程,它受到多种酶的调控以及许多物质的调节。

糖磷酸合成是指通过一系列酶催化反应将碱基与糖磷酸结合形成核苷酸。

例如,嘧啶核苷酸的合成主要发生在细胞质中,主要包括嘧啶核苷酸合成和底物识别。

嘧啶核苷酸合成是一个反应级联,也涉及多个酶的参与和调控。

嘧啶核苷酸的合成过程也受到多种酶的调控以及许多物质的调节。

核苷酸的降解主要发生在细胞质中。

核苷酸的降解是一个逆反应,通过一系列酶催化反应将核苷酸转化为底物,最终分解为无机盐和二氧化碳。

例如,嘌呤核苷酸的降解主要发生在肝脏和肾脏中,主要包括核苷酸降解和底物识别。

嘌呤核苷酸的降解是一个反应级联,涉及多个酶的参与和调控。

嘌呤核苷酸的降解过程也受到多种酶的调控以及许多物质的调节。

核苷酸代谢是一个复杂的过程,涉及多个酶的参与和调控。

核苷酸的合成和降解过程需要消耗能量,并且还需要其他物质作为辅助因子。

核苷酸代谢酶的异常表达或活性异常都可能导致核苷酸代谢紊乱,进而影响细胞的生理活动。

核苷酸代谢异常与许多疾病有关,如肿瘤、免疫系统疾病和遗传代谢病等。

因此,研究核苷酸代谢的调控机制和相关疾病的发生机制对于疾病的预防和治疗具有重要意义。

第九章核苷酸的代谢NucleotideMetabolism

第九章核苷酸的代谢NucleotideMetabolism
第九章 核苷酸的代谢
Nucleotide Metabolism
本章将主要讨论的问题
核苷酸有哪些重要生理功能? 食物中核酸如何消化、吸收? 体内核苷酸如何代谢(合成与分解)? 核苷酸代谢障碍对机体有什么影响? 核苷酸代谢类似物有何临床作用?
食物核蛋白 蛋白质 核酸(RNA or DNA)
(磷酸二酯酶) 胰核酸酶 RNA酶 DNA酶
GTP
嘌呤核苷酸的补救合成途径
• 定义 利用体内游离嘌呤或核苷,经 过简单的反应,合成嘌呤核苷 酸的过程,称为补救合成(或 重新利用)途径。
参与补救合成的酶
腺嘌呤磷酸核糖转移酶(Adenine phosphoribosyl transferase,APRT) 次黄嘌呤-鸟嘌呤磷酸核糖转移酶 (Hypoxanthine-guanine phosphoribosyl transferase,HGPRT)
(三) 腺苷酸和鸟苷酸的相互转变
AMP
NH3
GMP
AMPS
IMP
XMP
(四) 脱氧(核糖)核苷酸的合成
O HO O P OH O
P O
OH
O H H
碱基
H H OH
NADPH+H+ NADP+ +H2O
NDP
OH
O HO P O OH
O P OH O
O H H OH
碱基 H H H
在核苷二磷酸水平 被还原而成
HC
C

O H H HO H H
R-5 -P
'
P P
10步反应
_
OH OH
(一)、从头合成途径的反应过程
(1) IMP的合成(11步反应,过程只需了解)

chapter 9核苷酸代谢

chapter 9核苷酸代谢

核苷酸的从头合成概况 5-磷酸核糖
Gln
Gly 一碳单位
Gln CO2 Asp
一碳单位
PRPP
IMP
GMP
AMP
GTP
ATP
CO2 + Gln 氨基甲酰磷酸
Asp 乳清酸
UMP dTMP
UTP CTP
第一节
嘌呤核苷酸代谢
Metabolism of Purine Nucleotides
一、嘌呤核苷酸的合成代谢
分布 氮源 变构激活剂 变构抑制剂
CPSⅠ 线粒体 (肝)
NH3 AGA

CPSⅡ 胞液 (所有细胞)
Gln 无 UMP
功能
尿素合成
嘧啶合成
O
O
NH 2 C
天冬氨酸 氨甲酰转移酶
HO C NH 2
CH2
二氢乳清酸酶
HN
C
CH2
O OP
O
氨甲酰磷酸 HO C
CH2
C CH
O N COOH
Pi
H
氨甲酰天冬氨酸
UTP
CTP
(二) 嘧啶核苷酸的补救合成
嘧啶 + PRPP 嘧啶磷酸核糖转移酶 磷酸嘧啶核苷 + PPi
尿嘧啶核苷 + ATP 尿苷激酶 UMP +ADP
胸腺嘧啶核苷 + ATP
胸苷激酶
TMP +ADP
(三)嘧啶核苷酸的抗代谢物
• 嘧啶类似物
5-氟尿嘧啶(5-FU) 是胸腺嘧啶的类似物。
O
O
F HN
N
HC
C
N
N H
A别llo嘌pu呤rin醇ol
鸟嘌呤

第九章+核苷酸代谢

第九章+核苷酸代谢

嘧啶核苷酸 合成的调节
五、脱氧核苷酸的合成(动物、植物、大肠杆菌)
氧化型核苷酸还原酶 谷氧还蛋白
核苷二磷酸还原酶
B1 B2
(dA还D原P型、核d苷G酸D还P、原酶
dCDP、dUDP)
硫氧还蛋白
激酶
dATP dGTP dCTP dUTP
2020/2/23
大肠杆菌核苷酸还原酶结构 底物结 合部位
调节部位
IMP合成从5-P-核糖开始的,在ATP参与下 先形成PRPP 嘌呤的各个原子是在PRPP的C1上逐渐加上去 的。由Asp、Gln、 Gly、甲酸、CO2 提供N和 C ,合成时先形成右环,再形成左环。
四氢叶酸(FH4)是一碳单位的载体
2020/2/23
2020/2/23
3、20嘌20/2/呤23 核苷酸的合成
嘧啶碱的分解途径。
3. 了解核苷酸的从头合成途径及补救合成途径;
了解嘌呤环与嘧啶环上各原子来源。
4. 了解脱氧核苷酸的合成途径。
5. 了解核苷酸合成中的拮抗物对核苷酸合成的
2020/2/23
抑制机理。
核酸的分解过程:
核酸
核酸酶(磷酸二酯酶)
核苷酸
核苷酸酶(磷酸单酯酶)
核苷
核苷磷酸化酶
磷酸
嘌呤或嘧啶
活性 部位
2020/2/23
核苷 酸还原 酶反应 机理2020/2/23
转甲基酶
2020/2/23
胸苷酸合成酶
二氢叶酸
亚甲基四氢叶酸
二氢叶酸还原酶
六、脱氧胸 四氢叶酸 苷酸的合成
脱氧氟尿嘧啶核苷酸
胸腺嘧啶 合成的抗 代谢物的 作用机理
2020/2/23
氨基喋呤、 氨甲喋呤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 作为核酸合成的原料: dATP 、 dGTP 、 dCTP 、 dTTP ——DNA的合成原料; ATP、GTP、CTP、UTP ——RNA的合成原料。
• 体内能量的利用形式:ATP、GTP(蛋白质合 成)、UTP(糖原合成)、CTP(磷脂合成)
2020/11/24
• 参与代谢和生理调节:如cAMP是第二信 使,也作为效应剂参与调节。AMP、ADP 、ATP均可作为效应剂。
• 构成辅酶:腺苷酸可参与组成NAD+、 FAD、辅酶A等。
• 活化中间代谢物:如UDPG、CDP-胆碱 等、SAM、PAPS等。
2020/11/24
CONH 2
NH 2
N
N
+ N
H
H
O
O
N
N
CH2 O P O P O CH2 O
OH HO
OH OH
H
H
H OH
H
H
OH OH
NAD+
AMP
2020/11/24
P O CH 2 OH
P O CH 2
ATP AM P Mg2+
OH
H H
HOHPRPP合成酶
HH
H
OP OP
OHOH
OHOH
5-磷酸核糖
磷酸核糖焦磷酸 (PRPP)
谷氨酰胺
PPi
酰胺转移酶
2020/11/24
P O CH 2 O
谷氨酸
NH 2
H H
HH
OH OH
1-氨 基 -5'-磷 酸 核 苷 ( 5-磷 酸 核 糖 胺 , PRA)
2020/11/24
2、AMP和GMP的生成
IMP是AMP和GMP的前体。 NH 2
HN
N
O HN
C 6氨 基 化
( Asp) GTP
N
N
N
R -5'-P AMP
N
N
C2氧化(NAD ) 氨基化(Gln) O
R - 5 '- P ATP
IMP
HN
N
2020/11/24
H2N N
N
R -5'-P
GMP
PRA 氮杂丝氨酸
6-MP
PRPP PPi
次黄嘌呤
=
IMP
(H)
MTX
氮杂丝氨酸
甘氨酰胺 核苷酸 (GAR)
甲酰甘氨酰 胺核苷酸 (FGAR)
甲酰甘氨 脒核苷酸 (FGAM)
5-甲酰胺基咪唑4-甲酰胺核苷酸
(FAICAR)
MTX
5-氨基异咪唑4-甲酰胺核苷酸
(AICAR)
6-MP AMP
6-MP PPi
1、IMP的合成过程
① ②


③ GAR合成酶 ④转甲酰基酶 ⑤ FGAM合成酶 ⑥AIR合成酶
2020/11/24
⑤ ⑥
7
11
2020/11/24
8 9
10
IMP生成总反应过程
IMP的合成要点:
• 在磷酸核糖分子上逐步合成嘌呤环; • PRPP是重要的中间代谢物,它不仅参与
嘌呤核苷酸的从头合成,而且参与嘧啶 核苷酸的从头合成及两类核苷酸的补救 合成。是5-磷酸核糖的活性供体; • PRPP合成酶和酰胺转移酶为关键酶。
核苷酸代谢概况
• 合成代谢
– 从头合成途径 (de novo synthesis pathway)
– 补救合成途径 (salvage synthesis pathway)
• 分解代谢
2020/11/24
• 从头合成途径(de novo synthesis pathway) :利用磷酸核糖、氨基酸、一碳 单位和CO2 等简单物质为原料,经过一系 列酶促反应,合成核苷酸的途径。 – 这是主要合成途径。 – 主要在肝脏进行。
(水解或磷酸解)
核苷磷酸化酶
(nucleoside phosphorylase)
碱基
2020/11/24
戊糖(或戊糖-1’-磷酸)
• 核酸的分解代谢产物核苷酸、核苷、 碱基、戊糖和磷酸既可以参加合成代 谢,也可以进 代谢活跃。
2020/11/24
核苷酸的生理功能
2020/11/24
•合成过程
APRT
腺嘌呤 + PRPP
AMP + PPi
HGPRT
次黄嘌呤 + PRPP
IMP + PPi
鸟嘌呤 + PRPP HGPRT GMP + PPi
2020/11/24
腺嘌呤核苷经腺苷激酶催化生成AMP
•参与合成的酶 腺苷激酶(adenosine kinase) 腺嘌呤核苷 腺苷激酶 AMP
水解3’,5’-磷酸二酯键 (磷酸二酯酶)
核糖核酸酶(RNase) 脱氧核糖核酸酶 (DNase)
单核苷酸
2020/11/24
单核苷酸
H2O
胰、肠核苷酸酶(nucleotidase)
(磷酸单酯酶)
磷酸
H2O H3PO4
核苷
核苷水解酶
(nucleoside hydrolase)
核苷酶(nucleosidase)
_
腺苷酸代
AMP
IMP
GTP
琥珀酸 +
XMP _ATP
+GMP
ADP GDP
ATP GTP
目录
(二)嘌呤核苷酸的补救合成途径 •定义
利用体内游离的嘌呤或嘌呤核苷,经过 简单的反应,合成嘌呤核苷酸的过程,称为 补救合成(或重新利用)途径。
2020/11/24
•参与补救合成的酶
腺嘌呤磷酸核糖转移酶 (adenine phosphoribosyl transferase, APRT) 次黄嘌呤-鸟嘌呤磷酸核糖转移酶(hypoxanthineguanine phosphoribosyl transferase, HGPRT) 腺苷激酶(adenosine kinase)
氨甲蝶呤
Methotrexate, MTX
2020/11/24
• 主要有氨蝶呤和氨甲蝶呤(MTX)等。 • 能竞争性抑制二氢叶酸还原酶,使叶酸不
能还原成FH2和FH4。由此嘌呤合成原料 一碳单位得不到供应,从而抑制嘌呤核苷 酸的合成。
2020/11/24
= =
= =
6-MP
=
谷氨酰胺 (Gln)
2020/11/24
PP-1-R-5-P(PRPP) AMP ① ATP R-5-P
(磷酸核糖焦磷酸) PRPP合成酶 (5-磷酸核糖)
(PRPPK)
谷氨酰胺
酰胺转移酶 ②
(GPAT)
谷氨酸
H2N-1-R-5´-P(PRA)
(5´-磷酸核糖胺)
③~11
2020/11/24
IMP
•谷氨酰胺 ——酰胺基N •N10——甲酰四氢叶酸 •天冬氨酸——α-氨基N •甘氨酸 •二氧化碳
SH
N
N
H2N
N
N H
6-巯基鸟嘌呤 6-thioguanine,6-TG
• 6-MP可在体内经磷酸核糖化生成6MP核苷酸, 并以这种形式抑制IMP转变为AMP及GMP的反 应;
• 直接通过竞争性抑制,影响次黄嘌呤-鸟嘌呤磷 酸核糖转移酶(HGPRT),使PRPP分子中的磷酸 核糖不能向鸟嘌呤及次黄嘌呤转移,阻止了补 救合成途径。
(四) 脱氧核糖核苷酸的生成 4种NDP(A、G、C及U)经还原反应生成4种
相应的dNDP
在核苷二磷酸水平上进行 (N代表A、G、U、C等碱基)
2020/11/24
脱氧核苷酸的生成
核糖核苷酸还原酶,Mg2+
NDP
dNDP
二磷酸核糖核苷
二磷酸脱氧核苷
还原型硫氧化 还原蛋白-(SH)2
氧化型硫氧 化还原蛋白
2020/11/24
从头合成的调节
意义: ➢既满足需要,又不至于浪费; ➢维持ATP与GTP的平衡。
2020/11/24
目录
调节方式:反馈调节和交叉调节
__
_
+
+
R-5-P PRPP合成酶
酰胺转移酶
PRPP
_PRA
ATP
_
腺苷酸代 琥珀酸
AMP ADP ATP
IMP
XMP GMP GDP GTP
2020/11/24
• 补救合成途径(salvage synthesis pathway) :利用游离的碱基或核苷, 经过简单的反应过程,合成核苷酸的 途径。 – 这是次要合成途径。 – 脑、骨髓等只能进行此途径。
2020/11/24
第一节 嘌呤核苷酸的代谢
Metabolism of Purine Nucleotides
ATP ADP
2020/11/24
•补救合成的生理意义 补救合成节省从头合成时的能量和一些氨
基酸的消耗。 体内某些组织器官,如脑、骨髓等只能进
行补救合成。 HGPRT基因缺失导致自毁容貌综合症。
2020/11/24
HGPRT缺陷引起Lesch – Nyhan 综合征 次黄嘌呤-鸟嘌呤磷酸核糖转移酶
(HGPRT)基因缺陷引起嘌呤核苷酸补救合 成途径障碍,脑合成嘌呤核苷酸能力低下, 造成中枢神经系统发育不良。
此综合征以高尿酸血症(hyperuricemia) 及神经系统症状为特征,又称自毁容貌症。
2020/11/24
(三)嘌呤核苷酸的相互转变
AMP
腺苷酸代 琥珀酸
NH3
IMP
GMP XMP
2020/11/24
2020/11/24
氨基酸类似物
O
相关文档
最新文档