高考数学复习离散型随机变量的分布列
高考数学一轮总复习课件:离散型随机变量的分布列、均值与方差
超几何分布
在含有M件次品的N件产品中,任取n件,其中恰有X件次
CMkCN-Mn-k
品,则P(X=k)=________C_N_n __,k=0,1,2,…,m,其中m
=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列:
X
0
P
CM0CN-Mn-0 CNn
为超几何分布列.
1
…
m
CM1CN-Mn-1 CNn
…
CMmCN-Mn-m CNn
如果随机变量X的分布列具有上表的形式,那么称随机变量
X服从超几何分布,记作X~H(N,M,n).
1.判断下列说法是否正确(打“√”或“×”). (1)抛掷均匀硬币一次,出现正面的次数是随机变量. (2)在离散型随机变量的分布列中,随机变量取各个值的概 率之和可以小于1. (3)离散型随机变量的各个可能值表示的事件是彼此互斥 的.
思考题2 (1)(2021·吉林省汪清县高三月考)已知随机变 量ξ的分布列如下表,则x=____12____.
ξ01 2
P x2 x
1 4
【解析】
由随机变量概率分布列的性质可知:x2+x+
1 4
=1,且0≤x≤1,解得x=12.
(2)(2021·青铜峡市高三期末)设随机变量ξ的概率分布列如下
表,则P(|ξ-3|=1)=( A )
3.设ξ是一个离散型随机变量,则下列不一定能成为ξ的概
率分布列的一组数是( C )
A.0,0,0,1,0
B.0.1,0.2,0.3,0.4
C.p,1-p(p为实数)
D.1×1 2,2×1 3,…,(n-11)·n,1n(n∈N*,n≥2)
解析
显然A、B满足分布列的两个性质;对于D,有
离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
高考数学总复习考点知识专题讲解11 离散型随机变量及其分布列
高考数学总复习考点知识专题讲解 专题11离散型随机变量及其分布列知识点一 随机变量的概念、表示及特征1.概念:一般地,对于随机试验样本空间Ω中的每个样本点ω都有唯一的实数X (ω)与之对应,我们称X 为随机变量.2.表示:用大写英文字母表示随机变量,如X ,Y ,Z ;用小写英文字母表示随机变量的取值,如x ,y ,z .3.特征:随机试验中,每个样本点都有唯一的一个实数与之对应,随机变量有如下特征:(1)取值依赖于样本点. (2)所有可能取值是明确的. 知识点二 离散型随机变量可能取值为有限个或可以一一列举的随机变量,我们称之为离散型随机变量. 判断离散型随机变量的方法 (1)明确随机试验的所有可能结果; (2)将随机试验的结果数量化;(3)确定试验结果所对应的实数是否可以一一列出,如能一一列出,则该随机变量是离散型随机变量,否则不是.【例1】((2023•丰台区期末)下面给出的四个随机变量中是离散型随机变量的为() ①高速公路上某收费站在半小时内经过的车辆数1X ;②一个沿直线2y x 进行随机运动的质点离坐标原点的距离X;③某同学射击3次,命中的次数3X;④某电子元件的寿2命X;4A.①②B.③④C.①③D.②④【例2】(2023•从化区期中)袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球的号码之和为随机变量X,则X所有可能取值的个数是()A.25B.10C.9D.5知识点三离散型随机变量的分布列及其性质1.定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x n,我们称X取每一个值x i的概率P(X=x i)=p i,i=1,2,3,…,n为X的概率分布列,简称分布列.2.分布列的性质(1)p i≥0,i=1,2,…,n.(2)p1+p2+…+p n=1.分布列的性质及其应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.【例3】(2023•辽宁期末)随机变量X的分布列如下表所示,则(2)(…)P XA .0.1B .0.2C .0.3D .0.4【例4】(2022•朝阳区开学)设随机变量X 的分布列为()(1P X k k k λ===,2,3,4),则λ的值为() A .10B .110C .10-D .110-【例5】(2023•珠海期末)已知某离散型随机变量ξ的分布列为:则(q =)A .13和1-B .13C .12D .1-【例6】(2022•多选•天津模拟)设随机变量ξ的分布列为()(15kP ak k ξ===,2,3,4,5),则()A .115a =B .141()255P ξ<<= C .112()10215P ξ<<=D .23()510P ξ=…【例7】(2023•湖北模拟)设随机变量ξ的分布列如表:则下列正确的是()A .当{}n a 为等差数列时,5615a a += B .数列{}n a 的通项公式可以为109(1)n a n n =+C .当数列{}n a 满足1(1,2,9)2n na n ==时,10912a =D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,10)时,1110(1)n a n n =+知识点四 两点分布如果P (A )=p ,则P (A )=1-p ,那么X 的分布列为我们称X 服从两点分布或0-1【例8】(多选)若离散型随机变量X 的分布列如下表所示,则下列说法错误的是()A .常数c 的值为23或13B .常数c 的值为23C .1(0)3P X ==D .2(0)3P X ==【例9】(2023•阜南县期末)从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【例10】(2023•崂山区期末)某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是2 3,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X的分布列.(3)求这位挑战者闯关成功的概率.同步训练1.(2022•多选•临朐县开学)下列X是离散型随机变量的是()A.某座大桥一天经过的某品牌轿车的辆数XB .一天内的温度为XC .某网页一天内被点击的次数XD .射击运动员对目标进行射击,击中目标得1分,未击中目标得0分,用X 表示该运动员在一次射击中的得分2.(2023•上蔡县校级月考)设随机变量ξ的概率分布列如下表:则(|2|1)(P ξ-==) A .712B .12C .512D .163.(2023•周至县期末)设随机变量X 的分布列为()(1,2,3,4,5,6)2kcP X k k ===,其中c 为常数,则(2)P X …的值为() A .34B .1621C .6364D .64634.(2023•多选•宝安区期中)已知随机变量ξ的分布如下:则实数a 的值为()A .12-B .12C .14D .14-5.(2023•和平区校级期末)设随机变量与的分布列如下:则下列正确的是()A .当{}n a 为等差数列时,5615a a +=B .当数列{}n a 满足1(12n na n ==,2,⋯,9)时,10912a = C .数列{}n a 的通项公式可以为109(1)n a n n =+D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,⋯,10)时,1110(1)n a n n =+6.(2023•郫都区模拟)甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.。
高中离散型随机变量的分布列、期望与方差
第51讲离散型随机变量的分布列、期望与方差【学习目标】1.了解离散型随机变量的期望、方差、标准差的概念,会求某些简单的离散型随机变量的概率分布.2.会根据离散型随机变量的分布列求期望、方差或标准差,并能解决一些实际问题.3.理解超几何分布、二项分布的试验模型,会将某些特殊离散型随机变量的分布列、期望与方差转化化归为二项分布求解.【知识要点】1.离散型随机变量的分布列(1)随机变量如果随机试验的每一个试验结果都可以用一个确定的数字表示,数字随着试验结果的变化而变化的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等来表示.(2)离散型随机变量对于随机变量可能取到的值,可以按一定顺序一一列出,这样的变量就叫离散型随机变量.(3)分布列设离散型随机变量X可能取的值为x1,x2,…,x i,…,x n,而每一个值的概率为P(X=x i)=p i (i=1,2,…,n).则称表为随机变量X的概率分布列.(4)分布列的两个性质①0≤p i≤1,i=1,2,…,n. ②p1+p2+…+p n=1.2.两点分布如果随机变量X 的分布列为(其中0<p<1),q=1-p,则称离散型随机变量X服从参数为p的两点分布列.3.超几何分布列在含有M件次品数的N件产品中,任取n件,其中含有X件次品数,则事件{X=k}发生的概率为P(X=k)=C M k C N-M n-kC N n,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称此分布列:P148.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.P13为超几何分布列.、4.离散型随机变量的均值与方差若离散型随机变量ξ的分布列为:(1)均值:称Eξ=x1p1+x2p2+…+x n p n为随机变量ξ的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差:称Dξ=∑ni=1(x i-Eξ)2p i为随机变量ξ的方差,它刻画了随机变量ξ与其均值Eξ的平均偏离程度,其算术平方根Dξ为随机变量ξ的标准差.5.均值与方差的性质(1)E(aξ+b)=aEξ+b.(2)D(aξ+b)=a2Dξ.6.基本性质若ξ服从两点分布,则Eξ=p,Dξ=p(1-p)若X服从二项分布,即ξ~B(n,p),则Eξ=np,Dξ=np(1-p).典型例题考点一、超几何分布及其应用例题1.某校校庆,各届校友纷至沓来,某班共来了n位校友(n>10且n∈N*),其中女校友6位,组委会对这n位校友制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率等于12,求n的值;(2)当n=12时,设选出的2位校友中女校友人数为ξ,求ξ的分布列和Eξ.考点二、二项分布及其应用例题2. (2013福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?7.某公司规定:员工的销售津贴按季度发放,如果员工没有完成季度销售任务,则在其相应季度的销售津贴中扣除500元,但每个员工全年最多扣除1000元销售津贴.设某员工完成季度销售任务的概率为0.8,且每个季度是否完成销售任务是相互独立的,计算(结果精确到0.01):(1)一年内该员工连续两个季度扣销售津贴的概率;(2)一年内该员工恰好两个季度扣销售津贴的概率;(3)一年内该员工平均扣多少销售津贴.6.受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计数据如下:将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.P4 考点三、离散型随机变量的分布列、数学期望与方差例题3. (2013浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a∶b∶c.P54.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ=____(结果用最简分数表示).5.设p为非负实数,随机变量X的概率分布列为:则EX的最大值为____;DX的最大值为____.P10考点集训1.已知X~B(n,p),E(X)=8,D(X)=1.6,则n和p值分别为( )A.100和0.08 B.20和0.4C.10和0.2 D.10和0.82.设随机变量ξ的分布列为P(ξ=k)=ck(k+1),k=1,2,3,c为常数,则P(0.5<ξ<2.5)=____.3.随机变量ξ的分布列如下:则:(1)x=____;(2)P(ξ>3)=____;(3)P(1≤ξ<4)=____.考点四、期望与方差的实际应用例题4.(2013重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与期望E(X).【基础检测】1.设ξ是服从二项分布B(n,p)的随机变量,又E(ξ)=15,D(ξ)=454,则n与p的值为( )A.60,34B.60,14C.50,34 D.50,142.已知袋中装有6个白球、2个黑球,从中任取3个球,则取到白球个数ξ的期望E(ξ)=( )A.2 B.5928 C.6128 D.943.已知随机变量X的分布列为:则E(6X+8)等于____.4.已知随机变量ξ的分布列如下:其中a,b,c成等差数列,若E(ξ)=13,则D(ξ)的值是____.方法总结1.关于离散型随机变量分布列的计算方法如下:(1)写出ξ的所有可能取值.(2)用随机事件概率的计算方法,求出ξ取各个值的概率.(3)利用(1)(2)的结果写出ξ的分布列.2.常见的特殊离散型随机变量的分布列.(1)两点分布.它的分布列为(p0q1),其中0<p<1,且p+q=1;(2)二项分布.它的分布列为(0p01p12p2……k p k……n p n),其中p k=C n k p k q n-k,k=0,1,2,…,n,且0<p<1,p+q=1,p k=C n k p k q n-k可记为b(k;n,p).3.对离散型随机变量的期望应注意:(1)期望是算术平均值概念的推广,是概念意义下的平均.(2)Eξ是一个实数,由ξ的分布列唯一确定,即作为随机变量ξ是可变的,可取不同值,而Eξ是不变的,它描述ξ取值的平均状态.(3)Eξ=x1p1+x2p2+…+x n p n+…直接给出了Eξ的求法,即随机变量取值与相应概率值分别相乘后相加4.对离散型随机变量的方差应注意:(1)Dξ表示随机变量ξ对Eξ的平均偏离程度,Dξ越大表明平均偏离程度越大,说明ξ的取值越分散;反之Dξ越小,ξ的取值越集中,在Eξ附近,统计中常用Dξ来描述ξ的分散程度.(2)Dξ与Eξ一样也是一个实数,由ξ的分布列唯一确定.。
高中理科数学-离散型随机变量和分布列
理科数学复习专题 统计与概率 离散型随机变量及其分布列知识点一1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。
2、离散型随机变量的分布列及其性质:(1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表称为离散型随机变量离散型随机变量X ,简称X 的分布列。
(2)分布列的性质:①0,1,2,,i p in ?g g g ;②11ni i p ==å(3)常见离散型随机变量的分布列:①两点分布:若随机变量X 的分布列为,则称X 服从两点分布,并称(1)p P x ==为成功概率②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X件次品,则()(0,1,2,,k n k M N MnNC C P X k k m C --===g g g g 其中m i n {,m M n =,且*,,,,)n N M N n MN N #?,称分布列为超几何分布列。
如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( )A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:则该公司一年后估计可获收益的期望是________.题型二 由古典概型求离散型随机变量的分布列(超几何分布)【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列.【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.知识点二1.条件概率及其性质对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用符号P(A|B)来表示,其公式为P(A|B)=P(AB)P(B)(P(B)>0).在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B).2.相互独立事件(1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件.(2)若A与B相互独立,则P(AB)=P(A)P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.题型三 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )= ________.(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.练:某地空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.题型四 由独立事件同时发生的概率求离散型随机变量的分布列(二项分布)例1 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,“求X ≥2”的事件概率.例2在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名学生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.练习:一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的概率分布. (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?【误区解密】抽取问题如何区分超几何分布和二项分布?例:某学校10个学生的考试成绩如下:(≥98分为优秀) (1)10人中选3人,求至多1人优秀的概率(2)用10人的数据估计全级,从全级的学生中任选3人,用X 表示优秀人数的个数,求X 的分布列练:18、某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[)10,20,[)20,30,[)30,40,[)40,50,[)50,60的市民进行问卷调查,由此得到样本频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄在[)30,40的人数; (Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5从,求[)50,60年龄段抽取的人数;(Ⅲ)从(Ⅱ)中方式得到的5人中再抽到2人作为本次活动的获奖者,记X 为年龄在[)50,60年龄段的人数,求X 的分布列及数学期望.2、一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25](25,35],(35,45],由此得到样本的重量频率分布直方图,如图.(Ⅰ)求a 的值; (Ⅱ)根据样本数据,试估计盒子中小球重量的平均值; (Ⅲ)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和数学期望及方差.。
2.1.2 离散型随机变量的分布列
2.1.2 离散型随机变量的分布列1.离散型随机变量的分布列(1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:(2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ②11=∑=ni ip2.两个特殊分布列 (1)两点分布列如果随机变量X 的分布列是P (X =1)为成功概率. (2)超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =k )=nNkn MN k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布列如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.(3)公式P (X =k )=C k M C n -k N -MC n N的推导由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有nN C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有kn M N k M C C --个基本事件,由古典概型的概率公式可知P (X =k )=C k M C n -kN -MC n N.[知识点拨]1.离散型随机变量分布列表格形式的结构特征分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点(1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.3.两点分布的适用范围(1)研究只有两个结果的随机试验的概率分布规律. (2)研究某一随机事件是否发生的概率分布规律.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.4.对超几何分布的三点说明 (1)超几何分布的模型是不放回抽样. (2)超几何分布中的参数是M ,N ,n.(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.题型一、离散型随机变量的分布列例1、一袋中装有6个同样大小的小球,编号分别为1、2、3、4、5、6,现从中随机取出3个球,以X 表示取出球的最大号码,求X 的分布列.[解析] 随机变量X 的可能取值为3、4、5、6.从袋中随机地取出3个球,包含的基本事件总数为C 36,事件“X =3”包含的基本事件总数为C 33;事件“X =4”包含的基本事件总数为C 23;事件“X =5”包含的基本事件总数为C 24;事件“X =6”包含的基本事件总数为C 25.从而有P (X =3)=C 33C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=310,P (X =6)=C 25C 36=12.所以随机变量X 的分布列如下表:例[解析] 将一颗骰子连掷两次共出现6×6=36种等可能的基本事件,其最大点数ξ可能取的值为1、2、3、4、5、6.P (ξ=1)=136,ξ=2包含三个基本事件(1,2)、(2,1)、(2,2),(x ,y )表示第一枚骰子点数为x ,第二枚骰子点数为y .∴P (ξ=2)=336=112.同理可求P (ξ=3)=536,P (ξ=4)=736,P (ξ=5)=14,P (ξ=6)=1136,∴ξ的分布列为例3、设随机变量ξ的分布列为P (ξ=k )=a (13)k .(k =1,2,…,n ),求实数a 的值.[解析] 依题意,有P (ξ=1)=13a ,P (ξ=2)=(13)2a ,…,P (ξ=n )=(13)n a ,由P (ξ=1)+P (ξ=2)+…+P (ξ=n )=1知,a (13+132+…+13n )=1.则a ·13(1-13n )1-13=1.∴a =2×3n 3n -1.例4、(1)设随机变量X 的分布列P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.(2)设随机变量X 的概率分布列为,则P (|X -3|=1)=________.[答案] (1)37 (2)512题型三、两点分布例5、袋内有10个白球,5个红球,从中摸出2个球,记X =⎩⎨⎧0,两球全红;1,两球非全红.求X 的分布列.[解析] 由题设可知X 服从两点分布P (X =0)=C 25C 215=221,P (X =1)=1-P (X =0)=1921.∴X 的分布列为例6η,才能使η满足两点分布,并求其分布列.[解析] 随机变量η可以定义为:η=⎩⎨⎧1 掷出点数小于4,0 掷出点数不小于4.显然η只取0,1两个值.且P (η=1)=P (掷出点数小于4)=36=12,故η的分布列为题型四、超几何分布列例7、盒中有16个白球和4个黑球,从中任意取出3个,设ξ表示其中黑球的个数,求出ξ的分布列.(精确到0.001)[解析] ξ可能取的值为0、1、2、3,P (ξ=0)=C 04C 316C 320≈0.491,P (ξ=1)=C 14C 216C 320≈0.421,P (ξ=2)=C 24C 116C 320≈0.084,P (ξ=3)=C 34C 016C 320≈0.004.∴ξ的分布列为箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.求X 的分布列.[解析] 由题意得X 取3、4、5、6,且P (X =3)=C 35C 39=542;P (X =4)=C 14·C 25C 39=1021;P (X =5)=C 24·C 15C 39=514;P (X =6)=C 34C 39=121. 所以X 的分布列为题型五、综合应用例9、已知A 盒中有2个红球和2个黑球;B 盒中有2个红球和3个黑球,现从A 盒与B 盒中同时各取出一个球再放入对方盒中.(1)求A 盒中有2个红球的概率;(2)求A 盒中红球数ξ的分布列.[解析] (1)A 盒与B 盒中各取出一个球来再放入对方盒中后,A 盒中还有2个红球有下面两种情况:①互换的是红球,将该事件记为A 1,则P (A 1)=C 12·C 12C 14·C 15=15. ②互换的是黑球,将该事件记为A 2,则P (A 2)=C 12·C 13C 14·C 15=310.故A 盒中有2个红球的概率为P =P (A 1)+P (A 2)=15+310=12.(2)A 盒中红球数ξ的所有可能取值为1,2,3.而P (ξ=1)=C 12·C 13C 14·C 15=310;P (ξ=2)=12; P (ξ=3)=C 12·C 12C 14·C 15=15,因而ξ的分布列为抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率; (2)甲、乙两单位之间的演出单位个数X 的分布列.[解析] (1)设A 表示“甲、乙的演出序号至少有一个为奇数”,则A -表示“甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式,得P (A )=1-P (A -)=1-C 23C 26=1-15=45.(2)X 的所有可能值为0、1、2、3、4,且P (X =0)=5C 26=13;P (X =1)=4C 26=415;P (X =2)=3C 26=15;P (X =3)=2C 26=215;P (X =4)=1C 26=115.从而知X 的分布列为:用完后装回盒中,此时盒中旧球个数ξ是一个随机变量,求ξ的分布列.[正解] ξ的所有可能取值为3,4,5,6.P (ξ=3)=C 33C 312=1220;P (ξ=4)=C 19C 23C 312=27220;P (ξ=5)=C 29C 13C 312=2755;P (ξ=6)=C 39C 312=2155.所以ξ的分布列为例12在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和; (2)若胜场次数为X ,求X 的分布列.[解析] (1)若胜一场,则其余为平,共有C 14=4种情况;若胜两场,则其余两场为一负一平或两平,共有C 24C 12+C 24=18种情况;若胜三场,则其余一场为负或平,共有C 34×2=8种情况;若胜四场,则只有一种情况.综上,共有31种情况.(2)X 的可能取值为1,2,3,4,P (X =1)=431,P (X =2)=1831,P (X =3)=831,P (X =4)=131,所以X 的分布列为课后作业1.已知随机变量X 的分布列为:P (X =k )=12k ,k =1、2、…,则P (2<X ≤4)=( )A .316B .14C .116D .516[答案] A[解析] P (2<X ≤4)=P (X =3)+P (X =4) =123+124=316. 2.已知随机变量ξ的概率分布如下:则P (ξ=10)=( A .239 B .2310 C .139D .1310[答案] C[解析] P (ξ=10)=m =1-⎝⎛⎭⎫23+232+…+239=1-23⎣⎡⎦⎤1-⎝⎛⎭⎫1391-13=139.3.已知随机变量ξ的分布列为P (ξ=i )=i2a(i =1,2,3),则P (ξ=2)=( )A .19B .16C .13D .14[答案] C[解析] 由离散型随机变量分布列的性质知12a +22a +32a =1,∴62a =1,即a =3,∴P (ξ=2)=1a =13.4.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P (ξ=1)=1645,且该产品的次品率不超过40%,则这10件产品的次品率为( )A .10%B .20%C .30%D .40%[答案] B[解析] 设10件产品中有x 件次品,则P (ξ=1)=C 1x ·C 110-xC 210=x (10-x )45=1645,∴x =2或8. ∵次品率不超过40%,∴x =2, ∴次品率为210=20%.5.设随机变量ξ的概率分布为P (ξ=k )=ck +1,k =0、1、2、3,则c =________.[答案]1225[解析] c +c 2+c 3+c 4=1,∴c =1225.6.已知离散型随机变量X 的分布列P (X =k )=k15,k =1、2、3、4、5,令Y =2X -2,则P (Y >0)=________.[答案]1415[解析] 由已知Y 取值为0、2、4、6、8,且P (Y =0)=115,P (Y =2)=215,P (Y =4)=315=15,P (Y =6)=415,P (Y =8)=515.则P (Y >0)=P (Y =2)+P (Y =4)+P (Y =6)+P (Y =8)=1415. 7.某学院为了调查本校学生2015年9月“健康上网”(健康上网是指每天上网不超过两个小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得的数据分成以下六组:[0,5],(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.导学号 03960365(1)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数;(2)现从这40名学生中任取2名,设Y 为取出的2名学生中健康上网天数超过20天的人数,求Y 的分布列.[解析] (1)由图可知,健康上网天数未超过20天的频率为(0.01+0.02+0.03+0.09)×5=0.15×5=0.75,所以健康上网天数超过20天的学生人数是40×(1-0.75)=40×0.25=10. (2)随机变量Y 的所有可能取值为0、1、2.P (Y =0)=C 230C 240=2952;P (Y =1)=C 110C 130C 240=513;P (Y =2)=C 210C 240=352.所以Y 的分布列为:8.将一骰子抛掷两次,所得向上的点数分别为m 和n ,则函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是( )A .12B .56C .34D .23[答案] B[解析] 由题可知,函数y =23mx 3-nx +1在[1,+∞)上单调递增,所以y ′=2mx 2-n ≥0在[1,+∞)上恒成立,所以2m ≥n ,则不满足条件的(m ,n )有(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)共6种情况,所以满足条件的共有30种情况,则函数y =23mx 3-nx +1在[1,+∞)上单调递增的概率为P =3036=56,故选B .9.从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,则在选出的3名同学中,至少有一名女同学的概率是______.[答案] 56[解析] 从10名同学中选出3名同学有C 310种不同选法,在3名同学中没有女同学的选法有C 36种,∴所求概率为P =1-C 36C 310=56.10.某校2015~2016学年高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中男生的人数.(1)请列出X 的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率. [解析] (1)依题意得,随机变量X 服从超几何分布, ∵随机变量X 表示其中男生的人数,∴X 可能取的值为0,1,2,3,4.∴P (X =k )=C k 6·C 4-k4C 410,k =0,1,2,3,4.∴X 的分布列为:(2)即P (X ≥3)=P (X =3)+P (x =4)=821+114=1942.11.盒子中装着标有数字1、2、3、4、5的卡片各2张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用ξ表示取出的3张卡片上的最大数字,求: (1)取出的3张卡片上的数字互不相同的概率; (2)随机变量ξ的概率分布.[解析] (1)记“一次取出的3张卡片上的数字互不相同的事件”为A ,则P (A )=C 35C 12C 12C 12C 310=23. (2)由题意ξ可能的取值为2、3、4、5,P (ξ=2)=C 22C 12+C 12C 22C 310=130, P (ξ=3)=C 24C 12+C 14C 22C 310=215,P (ξ=4)=C 26C 12+C 16C 22C 310=310, P (ξ=5)=C 28C 12+C 18C 22C 310=815.所以随机变量ξ的分布列为:。
离散型随机变量及其分布列知识点
离散型随机变量及其分布列知识点离散型随机变量及其分布列知识点离散型随机变量是指在有限个或无限个取值中,只能取其中一个数值的随机变量。
离散型随机变量可以用分布列来描述其概率分布特征。
离散型随机变量的概率分布列概率分布列是描述离散型随机变量的概率分布的表格,通常用符号P 表示。
其一般形式如下:P(X=x1)=p1P(X=x2)=p2P(X=x3)=p3…P(X=xn)=pn其中,Xi表示随机变量X的取值,pi表示随机变量X取值为Xi的概率。
离散型随机变量的特点1. 离散型随机变量只取有限或无限个取值中的一个,变化不连续。
2. 取值之间具有间隔或间距。
3. 每个取值对应一个概率,概率分布可用概率分布列来体现。
4. 概率之和为1。
离散型随机变量的常见分布1. 0-1分布0-1分布是指当进行一次伯努利试验时,事件发生的概率为p,不发生的概率为1-p的离散型随机变量的分布。
其分布列为:P(X=0)=1-pP(X=1)=p2. 二项分布二项分布是进行n次伯努利试验中,事件发生的概率为p,不发生的概率为1-p时,恰好出现k次事件发生的离散型随机变量的分布。
其分布列为:P(X=k)=C(n,k)p^k(1-p)^(n-k)其中,C(n,k)为从n中选出k个的组合数。
3. 泊松分布泊松分布是指在某个时间段内,某一事件发生的次数符合泊松定理的离散型随机变量的分布。
其分布列为:P(X=k)=λ^ke^(-λ)/k!其中,λ为这段时间内事件的平均发生次数。
总结离散型随机变量及其分布列是概率论中的重要基础概念之一,具有广泛的应用。
掌握离散型随机变量及其分布列的知识点对于深入理解概率论及其实际应用有重要意义。
2023年高考数学(理科)一轮复习——离散型随机变量及其分布列
感悟提升
分布列性质的两个作用 (1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性. (2)随机变量X所取的值分别对应的事件是两两互斥的,利用这一点可以求随机 变量在某个范围内的概率.
索引
考点二 离散型随机变量的分布列
例1 (12分)某市某超市为了回馈新老顾客,决定在2022年元旦来临之际举行 “庆元旦,迎新年”的抽奖派送礼品活动.为设计一套趣味性抽奖送礼品的活 动方案,该超市面向该市某高中学生征集活动方案,该中学某班数学兴趣小 组提供的方案获得了征用.方案如下:将一个4×4×4的正方体各面均涂上红色, 再把它分割成64个相同的小正方体.经过搅拌后,从中任取两个小正方体,记 它们的着色面数之和为ξ,记抽奖一次中奖的礼品价值为η.
索引
6.(2021·郑州检测)设随机变量X的概率分布列为
X1 2 34
P
1 3
m
1 4
1 6
5 则P(|X-3|=1)=___1_2____.
解析 由13+m+14+16=1,解得 m=14, P(|X-3|=1)=P(X=2)+P(X=4)=14+16=152.
索引
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
索引
P(ξ=1)=CC13·C29 16=1386=12, P(ξ=2)=CC23·C29 06=336=112.
所以ξ的分布列为
ξ 012
P
5 12
1 2
1 12
索引
感悟提升
1.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超 几何分布的特征是: (1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查 某类个体数X的概率分布. 2.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古 典概型.
2020年高考数学专题复习离散型随机变量及其分布列
离散型随机变量及其分布列1.随机变量的有关概念(1)随机变量:随着试验结果的变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量的分布列及其性质(1)概念:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n );②∑ni =1p i =1. 3.常见的离散型随机变量分布列 (1)两点分布若随机变量X 服从两点分布,则其分布列为其中p =P (X =1)称为成功概率. (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,即:其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.判断正误(正确的打“√”,错误的打“×”)(1)随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数.( ) (2)抛掷均匀硬币一次,出现正面的次数是随机变量.( ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )(4)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.( )(5)从4名男演员和3名女演员中选出4人,其中女演员的人数X 服从超几何分布.( ) (6)由下表给出的随机变量X 的分布列服从两点分布.( )答案:(1)√ (2)√ (3)√ (4)√ (5)√ (6)×(教材习题改编)设随机变量X 的分布列如下表所示,则p 4的值是( )A.1 B .12 C .14D .18解析:选D.由分布列的性质,得12+14+18+p 4=1,所以p 4=18.设随机变量X 的分布列为P (X =k )=k 15,k =1,2,3,4,5,则P ⎝ ⎛⎭⎪⎫12<X <52=________.解析:P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=115+215=15. 答案:15在含有3件次品的10件产品中任取4件,则取到次品数X 的分布列为________. 解析:由题意知,X 服从超几何分布,其中N =10,M =3,n =4,所以分布列为P (X =k )=C k3·C 4-k7C 410,k =0,1,2,3.答案:P(X =k )=C k 3·C 4-k7C 410,k =0,1,2,3离散型随机变量的分布列的性质设离散型随机变量X 的分布列为求:(1)2X +1的分布列; (2)|X -1|的分布列.【解】 由分布列的性质知:0.2+0.1+0.1+0.3+m =1, 解得m =0.3. (1)2X +1的分布列为(2)|X -1|的分布列为在本例条件下,求P (1<X ≤4). 解:由本例知,m =0.3,P (1<X ≤4)=P (X =2)+(X =3)+P (X =4)=0.1+0.3+0.3=0.7.离散型随机变量分布列的性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负值;(2)若X 为随机变量,则2X +1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.1.设随机变量X 等可能地取1,2,3,…,n ,若P (X <4)=0.3,则n 的值为( ) A .3 B .4 C .10D .不确定解析:选C.“X <4”的含义为X =1,2,3,所以P (X <4)=3n=0.3,所以n =10.2.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 解析:因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d≤13. 答案:23 ⎣⎢⎡⎦⎥⎤-13,13离散型随机变量的分布列(高频考点)离散型随机变量的分布列是高考命题的热点,多以解答题的形式出现,试题难度不大,多为容易题或中档题.主要命题角度有:(1)用频率代替概率的离散型随机变量的分布列; (2)古典概型的离散型随机变量的分布列;(3)与独立事件(或独立重复试验)有关的分布列的求法.(下一讲内容)角度一 用频率代替概率的离散型随机变量的分布列某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列. 【解】 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34.所以X 的分布列为角度二 古典概型的离散型随机变量的分布列(2019·浙江省名校协作体高三联考)一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).(1)求取出的3个小球中,含有编号为4的小球的概率;(2)在取出的3个小球中,小球编号的最大值设为X ,求随机变量X 的分布列. 【解】 (1)“设取出的3个小球中,含有编号为4的小球”为事件A , P (A )=C 12C 24+C 22C 14C 36=45,所以取出的3个小球中,含有编号为4的小球的概率为45. (2)X 的可能取值为3,4,5.P (X =3)=1C 36=120;P (X =4)=C 12C 23+C 22C 13C 36=920; P (X =5)=C 35C 36=12,所以随机变量X 的分布列为离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义. (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率. (3)画表格:按规范要求形式写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确.[提醒] 求随机变量某一范围内取值的概率,要注意它在这个范围内的概率等于这个范围内各概率值的和.某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列. 解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n =12(n -6)n (n -1),则12(n -6)n (n -1)≥12,化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为超几何分布一个袋中有大小相同的黑球和白球共10个.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列. 【解】 (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-x C 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布,其中N =10,M =5,n =3, P (X =k )=C k 5C 3-k5C 310,k =0,1,2,3.于是可得其分布列为在本例条件下,若从袋中任意摸出4个球,记得到白球的个数为X ,求随机变量X 的分布列.解:X 服从超几何分布,其中N =10,M =5,n =4, P (X =k )=C k 5C 4-k5C 410,k =0,1,2,3,4,于是可得其分布列为超几何分布的特点(1)对于服从某些特殊分布的随机变量,其分布列可直接应用公式给出.(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列. 解:(1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4. P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以,随机变量X 的分布列为对于随机变量X 的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X 的取值范围以及取这些值的概率.求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.易错防范(1)确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的. (2)对于分布列易忽视其性质p 1+p 2+…+p n =1及p i ≥0(i =1,2,…,n ),其作用可用于检验所求离散型随机变量的分布列是否正确.[基础达标]1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0B .12C .13D .23解析:选C.设X 的分布列为即“X =0”表示试验失败,“X =1”表示试验成功.由p +2p =1,得p =13,故应选C.2.(2019·绍兴调研)在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:选C.X 服从超几何分布,P (X =k )=C k 7C 10-k8C 1015,故k =4,故选C.3.设随机变量Y 的分布列为则“32≤Y ≤72”的概率为( )A .14B .12C .34D .23解析:选C.依题意知,14+m +14=1,则m =12.故P ⎝ ⎛⎭⎪⎫32≤Y ≤72=P (Y =2)+P (Y =3)=12+14=34.4.设随机变量X 的概率分布列如下表所示:若F (x )=P (X ≤x ),则当x 的取值范围是[1,2)时,F (x )等于( ) A .13 B .16 C .12D .56解析:选D.由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56.5.已知离散型随机变量X 的分布列为则P (X ∈Z )=( ) A .0.9 B .0.8 C .0.7D .0.6解析:选A.由分布列性质得0.5+1-2q +13q =1,解得q =0.3,所以P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)=________. 解析:抛掷2颗骰子有36个基本事件,其中X =2对应(1,1);X =3对应(1,2),(2,1);X =4对应(1,3),(2,2),(3,1).所以P (X ≤4)=P (X =2)+P (X =3)+P (X =4)=136+236+336=16.答案:167.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.解析:设ξ取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=1,所以a =13,由⎩⎪⎨⎪⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:⎣⎢⎡⎦⎥⎤-13,138.若离散型随机变量X 的分布列为则常数c =________,P (X =1)=________. 解析:依分布列的性质知,⎩⎪⎨⎪⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,解得c =13,故P (X =1)=3-8×13=13.答案:13 139.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X 的分布列为________.解析:X 的所有可能值为0,1,2. P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.所以X 的分布列为答案:10.(2019·温州市高考模拟)袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是________,设摸取的这三个球中所含的黑球数为X ,则P (X =k )取最大值时,k 的值为________.解析:袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是:n =C 26C 13=45.设摸取的这三个球中所含的黑球数为X ,则X 的可能取值为0,1,2,3, P (X =0)=C 33C 39=184,P (X =1)=C 16C 23C 39=1884,C 984P (X =3)=C 36C 39=2084,所以P (X =k )取最大值时,k 的值为2. 答案:45 211.抛掷一枚质地均匀的硬币3次. (1)写出正面向上次数X 的分布列; (2)求至少出现两次正面向上的概率. 解:(1)X 的可能取值为0,1,2,3. P (X =0)=C 0323=18;P (X =1)=C 1323=38;P (X =2)=C 2323=38;P (X =3)=C 3323=18.所以X 的分布列为(2)至少出现两次正面向上的概率为P (X ≥2)=P (X =2)+P (X =3)=38+18=12. 12.(2019·台州高三质检)在一次购物活动中,假设每10张券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从这10张券中任取2张.(1)求该顾客中奖的概率;(2)求该顾客获得的奖品总价值X (元)的分布列. 解:(1)该顾客中奖的概率P =1-C 04C 26C 210=1-1545=23.(2)X 的所有可能取值为0,10,20,50,60,且 P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,C 1015故X 的分布列为[能力提升]1.(2019·浙江高中学科基础测试)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5;4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X 为取出的3个球中编号的最小值,求X 的分布列.解:(1)设“取出的3个球编号都不相同”为事件A ,“取出的3个球中恰有两个球编号相同”为事件B ,则P (B )=C 14C 17C 39=2884=13,所以P (A )=1-P (B )=23.(2)X 的取值为1,2,3,4,P (X =1)=C 12C 27+C 22C 17C 39=4984,P (X =2)=C 12C 25+C 22C 15C 39=2584, P (X =3)=C 12C 23+C 22C 13C 39=984,P (X =4)=1C 39=184. 所以X 的分布列为2.(2019·惠州市第三次调研考试)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3. P (X =k )=C k4·C 3-k6C 310(k =0,1,2,3). 所以随机变量X 的分布列为3.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图),这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28(种),当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27. (2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为4.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用X 表示终止时所需要的取球次数.(1)求袋中原有白球的个数; (2)求随机变量X 的分布列; (3)求甲取到白球的概率. 解:(1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6,所以n (n -1)=6,解得n =3或n =-2(舍去). 即袋中原有3个白球.(2)由题意知X 的可能取值为1,2,3,4,5.P (X =1)=37; P (X =2)=4×37×6=27; P (X =3)=4×3×37×6×5=635;P (X =4)=4×3×2×37×6×5×4=335;P (X =5)=4×3×2×1×37×6×5×4×3=135.所以取球次数X 的分布列为(3)因为甲先取,所以甲只可能在第1次、第3次和第5次取球. 设“甲取到白球”的事件为A , 则P (A )=P (X =1或X =3或X =5).因为事件“X =1”“X =3”“X =5”两两互斥,所以P (A )=P (X =1)+P (X =3)+P (X =5)=37+635+135=2235.。
高中数学离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差 结 束
抓高考命题的“形”与“神” 离散型随机变量均值与方差的计算
1.均值与方差的一般计算步骤 (1)理解X的意义,写出X的所有可能取的值; (2)求X取各个值的概率,写出分布列; (3)根据分布列,由均值的定义求出均值E(X),进一步由公
n
式D(X)= xi-EX2pi=E(X2)-(E(X))2求出D(X).
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[易错提醒] 利用分布列中各概率之和为1可求参数的值,此 时要注意检验,以保证每个概率值均为非负数.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
求离散型随机变量的分布列 [例2] 某商店试销某种商品20天,获得如下数据:
i=1
了随机变量X与其均值E(X)的_平__均__偏__离__程__度__,其算术平方根 DX为随机变量X的标准差. 2.均值与方差的性质 (1)E(aX+b)=_a_E__(X__)+__b__, (2)D(aX+b)=_a_2_D_(_X_)_ (a,b为常数).
突破点一
突破点二
课时达标检测
考点贯通
(2)设X为选出的2人参加义工活动次数之差的绝对值,求 随机变量X的分布列.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[解] (1)由已知,有P(A)=C31CC41+120 C23=13.
所以事件A发生的概率为13.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)=C23+CC21320+C24=145,
突破点一
离散型随机变量的分布列、均值与方差-高考数学复习
高考一轮总复习 • 数学
返回导航
4
4
[解析] 根据均值 E(X)= xipi,方差 D(X)= [xi-E(X)]2·pi,标准
i=1
i=1
差最大即方差最大,由各选项对应的方差如下表 选项 均值 E(X) 方差 D(X)
A
2.5
0.65
B
2.5
1.85
C
2.5
1.05
D
2.5
1.45
由此可知选项 B 对应样本的标准差最大,故选 B.
3.均值与方差的性质 (1)E(aX+b)=_a_E_(_X_)_+__b___. (2)D(aX+b)=_a_2_D_(_X_)___. (3)D(X)=E(X2)-(E(X))2.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
归纳拓展 1.若X是随机变量,则Y=aX+b(a,b是常数)也是随机变量. 2.随机变量X所取的值分别对应的事件是两两互斥的. 3.随机变量的均值是常数,样本的平均数是随机变量,它不确 定. 4.随机变量的方差和标准差都反映了随机变量取值偏离均值的平 均程度,方差或标准差越小,则偏离变量的平均程度越小.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
知识点二 离散型随机变量的分布列及性质
1.一般地,若离散型随机变量X可能取的不同值为x1,x2,…, xi,…,xn,称X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi为X的 分布列,可用表格表示为:
X
x1
x2
若离散型随机变量 X 的分布列为 P(X=xi)=pi,i=1,2,…,n. n
1.均值:称 E(X)=__x_1_p_1+__x_2_p_2_+__…__+__x_ip_i+__…__+__x_n_p_n_=__i∑=_1_x_ip_i__为随
离散型随机变量的分布列
P(Y=60)=CC11C21031=435=115.
(10 分)
因此随机变量 Y 的分布列为
Y
010 205060P12
1
2
1
(12分)
3
5
15
15 15
【题后反思】 解决超几何分布问题的两个关键点 (1)超几何分布是概率分布的一种形式,一定要注意公式 中字母的范围及其意义,解决问题时可以直接利用公式求 解,但不能机械地记忆. (2)超几何分布中,只要知道M,N,n就可以利用公式求 出X取不同k的概率P(X=k),从而求出X的分布列.
张中奖或 2 张都中奖.故所求概率 P=C14C16C+210C24C06=3405=23. (6 分)
②X 的所有可能取值为 0,10,20,50,60,且
P(Y=0)=CC04C21062=1455=13,P(Y=10)=CC13C21061=1485=25,
P(Y=20)=CC23C21060=435=115,P(Y=50)=CC11C21061=465=125,
(2)超几何分布列
一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其中
恰有 k 件次品,则事件{X=k}发生的概率为 P(X=k)=
CkMCCnNnN--kM,k=0,1,2,…,m,其中 m=min{M,n},且 n≤N, M≤N,n,M,N∈N*,则称分布列
X
0
1
…
m
P
C0MCnN--0M ___C__nN___
离散型随机变量的分布列
1.离散型随机变量的分布列 (1)定义:若离散型随机变量X可能取的不同值为x1, x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的 概率P(X=xi)=pi,以表格的形式表示如下:
高考数学一轮复习离散型随机变量的分布列、均值与方差
2
6
9
6
1
6
)
a
(2)随机变量X的概率分布列规律为P(X=n)=
n n+1
1
5
其中a为常数,则P( <X< )的值为(
)
2
2
2
3
4
5
A.
B.
C.
D.
3
4
5
6
(n=1,2,3,4),
答案:D
解析:根据题意,由于P(X=n)=
a
n n+1
,那么可知,(n=1,2,3,4)时,则可
a
a
a
a
得概率和为1,即 + + + =1.
(4)若X1,X2相互独立,则E(X1X2)=E(X1)·E(X2).
夯实双基
1.思考辨析(正确的打“√”,错误的打“×”)
(1)测量全校所有同学的身高,在170 cm~175 cm之间的人数是离散
型随机变量.( √ )
(2)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √ )
(3)离散型随机变量分布列中,随机变量取各个值的概率之和可以小
4.(易错)袋中有3个白球,5个黑球,从中任取2个,可以作为随机
变量的是(
)
A.至少取到1个白球 B.至多取到1个白球
C.取到白球的个数
D.取到的球的个数
答案:C
解析:选项A,B是随机事件; 选项D是定值2;选项C可能的取值为0,1,2,
可以用随机变量表示.
5.(易错)已知离散型随机变量X的分布列为:
4
2
3
5
(1)求居民甲能进入下一轮的概率;
(2)用ξ表示居民甲初赛结束时答题的个数,求ξ的分布列.
离散型随机变量的分布列
离散型随机变量的分布列1.离散型随机变量的分布列(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格的形式表示如下:X x1x2…x i…x nP p1p2…p i…p n的概率分布列,简称为的分布列.(2)离散型随机变量的分布列的性质:①p i≥0,i=1,2,…,n;(1)离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.和函数的表示法一样,离散型随机变量的分布列也可以用表格、等式P(X=x i)=p i,i=1,2,…,n 和图象表示.(2)随机变量的分布列不仅能清楚地反映随机变量的所有可能取值,而且能清楚地看到取每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.两个特殊分布(1)两点分布X 0 1P 1-p p若随机变量X p=P(X=1)为成功概率.(2)超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,即X 01…mP C0M C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.(1)超几何分布的模型是不放回抽样.(2)超几何分布中的参数是M,N,n.(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成判断正误(正确的打“√”,错误的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( )(2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( )(3)在离散型随机变量分布列中,所有概率之和为1.( )(4)超几何分布的模型是放回抽样.( )答案:(1)×(2)×(3)√(4)×下列表中能成为随机变量ξ的分布列的是( )A.ξ-10 1P 0.30.40.4B.ξ12 3P 0.40.7-0.1C.ξ-10 1P 0.30.40.3D.ξ12 3P 0.30.10.4答案:C若随机变量X服从两点分布,且P(X=0)=0.8,P(X=1)=0.2.令Y=3X-2,则P(Y=-2)=________. 答案:0.8探究点1 离散型随机变量的分布列某班有学生45人,其中O 型血的有15人,A 型血的有10人,B 型血的有12人,AB 型血的有8人.将O ,A ,B ,AB 四种血型分别编号为1,2,3,4,现从中抽1人,其血型编号为随机变量X ,求X 的分布列. 【解】 X 的可能取值为1,2,3,4. P (X =1)=C 115C 145=13,P (X =2)=C 110C 145=29,P (X =3)=C 112C 145=415,P (X =4)=C 18C 145=845.故X 的分布列为X 1 2 3 4 P1329415845求离散型随机变量分布列的一般步骤(1)确定X 的所有可能取值x i (i =1,2,…)以及每个取值所表示的意义. (2)利用概率的相关知识,求出每个取值相应的概率P (X =x i )=p i (i =1,2,…). (3)写出分布列.(4)根据分布列的性质对结果进行检验.抛掷甲,乙两个质地均匀且四个面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上的数字分别为x ,y .设ξ为随机变量,若x y为整数,则ξ=0;若x y 为小于1的分数,则ξ=-1;若xy为大于1的分数,则ξ=1. (1)求概率P (ξ=0); (2)求ξ的分布列.解:(1)依题意,数对(x ,y )共有16种情况,其中使xy为整数的有以下8种:(1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2), 所以P (ξ=0)=816=12.(2)随机变量ξ的所有取值为-1,0,1. 由(1)知P (ξ=0)=12;ξ=-1有以下6种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故P (ξ=-1)=616=38;ξ=1有以下2种情况:(3,2),(4,3),故P (ξ=1)=216=18,所以随机变量ξ的分布列为ξ -1 0 1 P381218探究点2 设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35);(3)求P (110<X <710). 【解】 (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1,解得a =115. (2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),所以P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45. (3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量分布列的性质的应用(1)利用离散型随机变量的分布列的性质可以求与概率有关的参数的取值或范围,还可以检验所求分布列是否正确.(2)由于离散型随机变量的各个可能值表示的事件是彼此互斥的,所以离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.(2018·河北邢台一中月考)随机变量X 的分布列为P (X =k )=c k (k +1),k=1,2,3,4,c 为常数,则P ⎝ ⎛⎭⎪⎫23<X <52的值为( )A.45 B.56 C.23D.34解析:选B.由题意c 1×2+c 2×3+c 3×4+c4×5=1,即45c =1,c =54, 所以P ⎝ ⎛⎭⎪⎫23<X <52=P (X =1)+P (X =2) =54×⎝ ⎛⎭⎪⎫11×2+12×3=56.故选B. 探究点3 两点分布与超几何分布一个袋中装有6个形状大小完全相同的小球,其中红球有3个,编号为1,2,3;黑球有2个,编号为1,2;白球有1个,编号为1.现从袋中一次随机抽取3个球. (1)求取出的3个球的颜色都不相同的概率.(2)记取得1号球的个数为随机变量X ,求随机变量X 的分布列.【解】 (1)从袋中一次随机抽取3个球,基本事件总数n =C 36=20,取出的3个球的颜色都不相同包含的基本事件的个数为C 13C 12C 11=6,所以取出的3个球的颜色都不相同的概率P =620=310. (2)由题意知X =0,1,2,3.P (X =0)=C 33C 36=120,P (X =1)=C 13C 23C 36=920,P (X =2)=C 23C 13C 36=920,P (X =3)=C 33C 36=120,所以X 的分布列为1.[变问法]在本例条件下,记取到白球的个数为随机变量η,求随机变量η的分布列. 解:由题意知η=0,1,服从两点分布,又P (η=1)=C 25C 36=12,所以随机变量η的分布列为2.[变条件]3次球,每次抽取1个球”其他条件不变,结果又如何?解:(1)取出3个球颜色都不相同的概率P =C 13×C 12×C 11×A 3363=16. (2)由题意知X =0,1,2,3. P (X =0)=3363=18,P (X =1)=C 13×3×3×363=38. P (X =2)=C 23C 13×3×363=38, P (X =3)=3363=18.所以X 的分布列为求超几何分布问题的注意事项(1)在产品抽样检验中,如果采用的是不放回抽样,则抽到的次品数服从超几何分布. (2)在超几何分布公式中,P (X =k )=C k M C n -kN -MC n N ,k =0,1,2,…,m ,其中,m =min{M ,n },且0≤n ≤N ,0≤k ≤n ,0≤k ≤M ,0≤n -k ≤N -M .(3)如果随机变量X 服从超几何分布,只要代入公式即可求得相应概率,关键是明确随机变量X 的所有取值.(4)当超几何分布用表格表示较繁杂时,可用解析式法表示.某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求文学院至少有一名学生入选代表队的概率;(2)某场比赛前,从代表队的6名学生再随机抽取4名参赛,记X 表示参赛的男生人数,求X 的分布列.解:(1)由题意,参加集训的男、女学生各有6人,参赛学生全从理学院中抽出(等价于文学院中没有学生入选代表队)的概率为:C 33C 34C 36C 36=1100,因此文学院至少有一名学生入选代表队的概率为:1-1100=99100.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X 表示参赛的男生人数, 则X 的可能取值为:1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 13C 33C 46=15.所以X 的分布列为X 1 2 3 P1535151.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( ) A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p .依题意知,p=2(1-p),解得p=23 .故P(ξ=0)=1-p=13 .2.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为( )A.1220 B.2755C.27220D.2125解析:选C.X=4表示取出的3个球为2个旧球1个新球,故P(X=4)=C23C19C312=27220.3.随机变量η的分布列如下则x=________,P解析:由分布列的性质得0.2+x+0.35+0.1+0.15+0.2=1,解得x=0.故P(η≤3)=P(η=1)+P(η=2)+P(η=3)=0.2+0.35=0.55.答案:0 0.554.某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P(ξ<2).解:由题意可知,ξ的可能取值为0,1,2,3.则P(ξ=0)=C04C33C37=135,P(ξ=1)=C14C23C37=1235,P(ξ=2)=C24C13C37=1835,P(ξ=3)=C34C03C37=435.所以随机变量ξ的分布列为P(ξ<2)=P(ξ=0)+P(ξ=1)=35+35=35.知识结构 深化拓展1.离散型随机变量分布列的性质是检验一个分布列正确与否的重要依据(即看分布列中的概率是否均为非负实数且所有的概率之和是否等于1),还可以利用性质②求出分布列中的某些参数,也就是利用概率和为1这一条件求出参数. 2.超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -kN -MC n N 求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义.[A 基础达标]1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( ) A .5 B .9 C .10 D .25 解析:选B.号码之和可能为2,3,4,5,6,7,8,9,10,共9种.2.随机变量X 所有可能取值的集合是{-2,0,3,5},且P (X =-2)=14,P (X =3)=12,P (X=5)=112,则P (X =0)的值为( )A .0 B.14 C.16 D.18解析:选C.因为P (X =-2)+P (X =0)+P (X =3)+P (X =5)=1,即14+P (X =0)+12+112=1,所以P (X =0)=212=16,故选C. 3.设随机变量X 的概率分布列为X 1 2 3 4 P13m1416则P (|X -3|=1)=A.712B.512C.14D.16解析:选B.根据概率分布列的性质得出:13+m +14+16=1,所以m =14,随机变量X 的概率分布列为所以P (|X -3|=1)=P (X =4)+P (X =2)=12.故选B. 4.若随机变量η的分布列如下:则当P (η<x )=0.8A .x ≤1 B .1≤x ≤2 C .1<x ≤2 D .1≤x <2 解析:选C.由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1)=0.1+0.2+0.2+0.3=0.8, 所以P (η<2)=0.8,故1<x ≤2.5.(2018·湖北武汉二中期中)袋子中装有大小相同的8个小球,其中白球5个,分别编号1,2,3,4,5;红球3个,分别编号1,2,3,现从袋子中任取3个小球,它们的最大编号为随机变量X ,则P (X =3)等于( )A.528B.17C.1556D.27解析:选D.X =3第一种情况表示1个3,P 1=C 12·C 24C 38=314,第二种情况表示2个3,P 2=C 22·C 14C 38=114,所以P (X =3)=P 1+P 2=314+114=27.故选D. 6.随机变量Y 的分布列如下:则(1)x =________(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.557.某篮球运动员在一次投篮训练中的得分X 的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .则这名运动员得3分的概率是________. 解析:由题意得,2b =a +c ,c =ab ,a +b +c =1,且a ≥0,b ≥0,c ≥0, 联立得a =12,b =13,c =16,故得3分的概率是16.答案:168.一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.从袋中任意摸出3个球,记得到白球的个数为X ,则P (X =2)=________.解析:设10个球中有白球m 个,则C 210-m C 210=1-79,解得:m =5.P (X =2)=C 25C 15C 310=512.答案:5129.设离散型随机变量X 的分布列为:试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m=1,所以m=0.3.列表为:(1)2X+1的分布列为:(2)|X-1|10.从集合{1,2,3,4,5}中,等可能地取出一个非空子集.(1)记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;(2)记所取出的非空子集的元素个数为X,求X的分布列.解:(1)记“所取出的非空子集满足性质r”为事件A.基本事件总数n=C15+C25+C35+C45+C55=31.事件A包含的基本事件是{1,4,5},{2,3,5},{1,2,3,4},事件A包含的基本事件数m=3.所以P(A)=mn=331.(2)依题意,X的所有可能值为1,2,3,4,5.又P(X=1)=C1531=531,P(X=2)=C2531=1031,P(X=3)=C3531=1031,P(X=4)=C4531=531,P (X =5)=C 5531=131.故X 的分布列为X 1 2 3 4 5 P5311031103153113111.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,13B.⎣⎢⎡⎦⎥⎤-13,13 C .[-3,3] D .[0,1] 解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1, 故a =13,由⎩⎪⎨⎪⎧13-d ≥013+d ≥0,解得-13≤d ≤13.12.袋中装有5只红球和4只黑球,从袋中任取4只球,取到1只红球得3分,取到1只黑球得1分,设得分为随机变量ξ,则ξ≥8的概率P (ξ≥8)=________. 解析:由题意知P (ξ≥8)=1-P (ξ=6)-P (ξ=4)=1-C 15C 34C 49-C 44C 49=56.答案:5613.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本,称出它们的质量(单位:g),质量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过505 g 的产品数量;(2)在上述抽取的40件产品中任取2件,设Y 为质量超过505 g 的产品数量,求Y 的分布列.解:(1)根据频率分布直方图可知,质量超过505 g 的产品数量为40×(0.05×5+0.01×5)=40×0.3=12(件).(2)随机变量Y 的可能取值为0,1,2,且Y 服从参数为N =40,M =12,n =2的超几何分布,故P (Y =0)=C 012C 228C 240=63130,P (Y =1)=C 112C 128C 240=2865,P (Y =2)=C 212C 028C 240=11130.所以随机变量Y 的分布列为14.(选做题)袋中装着外形完全相同且标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求: (1)取出的3个小球上的数字互不相同的概率; (2)随机变量X 的分布列;(3)计算介于20分到40分之间的概率.解:(1)“一次取出的3个小球上的数字互不相同”的事件记为A , 则P (A )=C 35C 12C 12C 12C 310=23.(2)由题意,知X 的所有可能取值为2,3,4,5, P (X =2)=C 22C 12+C 12C 22C 310=130, P (X =3)=C 22C 14+C 12C 24C 310=215, P (X =4)=C 22C 16+C 12C 26C 310=310, P (X =5)=C 22C 18+C 12C 28C 310=815. 所以随机变量X 的分布列为2 15+310=1330.则P(C)=P(X=3)+P(X=4)=。
新高考数学复习考点知识讲解5---离散型随机变量及其分布列
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
称为离散型随机变量X的概率分布列,简称为X的分布列,有时为了表达简单,也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
3、性质
①pi≥0(i=1,2,…,n);② pi=1.
4、若随机变量X的分布列为
X
0
1
P
1-p
p
则称该分布列为两点分布列或0-1分布.若随机变量X的分布列为两点分布列,则称X服从两点分布,称p=P(X=1)为成功概率
答案】设(i,j)表示掷两次骰子后出现的点数,i表示第一次的点数,j表示第二次的点数.
(1)Y的可能取值为1,2,3,4,5,6.
当Y=1时,(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1).故P(Y=1)= ,同理P(Y=2)= = ,P(Y=3)= ,P(Y=4)= ,P(Y=5)= = ,P(Y=6)= .所以Y的概率分布列为
A.20B.24C.4D.18
【答案】B
【解析】由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有 =24(种).
题型三离散型随机变量的分布列
例3 将一颗骰子掷2次,求下列随机事件的分布列.
(1)两次掷出的最小点数Y;
(2)第一次掷出的点数减去第二次掷出的点数之差ξ.
P(X=1)= = ,
P(X=2)= = .
所以X的分布列为
X
0
1
2
P
4、设离散型随机变量X服从两点分布,若 ,则
高考数学复习知识点讲解教案第64讲 离散型随机变量的分布列、数字特征
所以ቊ
解得 = 1 = 0.6.
= 1 + = 0 = 1,
(2)
设随机变量的分布列为 = =
+1
= 1,2,3,4,5 ,则
3
3
7
10
< < =____.
2
2
[解析] ∵ 随机变量的分布列为 = =
)
2
,故选C.
3
2
,进而
3
(2)
若随机变量的分布列如下表所示,则当 < = 0.3时,实数的取
值范围是(
A.[−3,2]
B
)
−3
−2
0
1
2
0.2
0.1
0.2
0.1
0.4
B.(−2,0]
C.(0,1]
D.(1,2]
[思路点拨](2)根据分布列中的数据计算出 ≤ −2 , ≤ 0 的值,然
4
.故选ABD.
3
例3
某校为激发学生对天文、航天、数字科技三类相关知识的兴趣,举行了一
次知识竞赛(竞赛试题中天文、航天、数字科技三类相关知识题量占比分别为
40%,40%,20%).某同学回答天文、航天、数字科技这三类问题中每个题的正
2 1 1
确率分别为 , , .
3 2 3
(1)
若该同学在题库中任选一题作答,求他回答正确的概率;
则 = 0 −
+1 2
3
1
3
0++1
3
× + −
=
+1 2
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
※第十二章概率与统计●网络体系总览●考点目标定位1.了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列.2.了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差.3.会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本.4.会用样本频率分布估计总体分布.5.了解正态分布的意义及主要性质.6.了解线性回归的方法和简单应用.7.实习作业以抽样方法为内容,培养学生解决实际问题的能力.●复习方略指南在复习中,要注意理解变量的多样性,深化函数的思想方法在实际问题中的应用,充分注意一些概念的实际意义,理解概率中处理问题的基本思想方法,掌握所学概率知识的实际应用.1.把握基本题型应用本章知识要解决的题型主要分两大类:一类是应用随机变量的概念,特别是离散型随机变量分布列以及期望与方差的基础知识,讨论随机变量的取值范围,取相应值的概率及期望、方差的求解计算;另一类主要是如何抽取样本及如何用样本去估计总体.作为本章知识的一个综合应用,教材以实习作业作为一节给出,应给予足够的重视.2.强化双基训练主要是培养扎实的基础知识,迅捷准确的运算能力,严谨的判断推理能力.3.强化方法选择特别在教学中要掌握思维过程,引导学生发现解决问题的方法,达到举一反三的目的,还要进行题后反思,使学生在大脑记忆中构建良好的数学认知结构,形成条理化、有序化、网络化的有机体系.4.培养应用意识要挖掘知识之间的内在联系,从形式结构、数字特征、图形图表的位置特点等方面进行联想和试验,找到知识的“结点”.再有就是将实际问题转化为纯数学问题进行训练,以培养利用所学知识解决实际问题的能力.12.1 离散型随机变量的分布列●知识梳理1.随机变量的概念如果随机试验的结果可以用一个变量表示,那么这样的变量叫做随机变量,它常用希腊字母ξ、η等表示.(1)离散型随机变量.如果对于随机变量可能取的值,可以按一定次序一一列出,那么这样的随机变量叫做离散型随机变量.(2)若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.2.离散型随机变量的分布列(1)概率分布(分布列).设离散型随机变量ξ可能取的值为x1,x2,…,x i,…,ξ取每一个值x i(i=1,2,…)的概率P(ξ=x i)=p i,则称表ξx1x2…x i…P p1p2…p i…为随机变量ξ的概率分布,简称ξ的分布列.(2)二项分布.如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(ξ=k)=C kp k q n-k.n其中k=0,1,…,n,q=1-p,于是得到随机变量ξ的概率分布如下:ξ0 1 …k…nP C0p0q n C1n p1q n-1…C k n p k q n-k…C n n p n q0n我们称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n、p为参数,并记C k n p k q n-k=b(k;n,p).特别提示二项分布是一种常用的离散型随机变量的分布.●点击双基1.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是A.一颗是3点,一颗是1点B.两颗都是2点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点解析:对A、B中表示的随机试验的结果,随机变量均取值4,而D是ξ=4代表的所有试验结果.掌握随机变量的取值与它刻画的随机试验的结果的对应关系是理解随机变量概念的关键.答案:D2.下列表中能成为随机变量ξ的分布列的是ξ-1 0 1P0.3 0.4 0.4解析:A 、D 不满足分布列的基本性质②,B 不满足分布列的基本性质①. 答案:C3.已知随机变量ξ的分布列为P (ξ=k )=k 21,k =1,2,…,则P (2<ξ≤4)等于A.163B.41C.161D.51 解析:P (2<ξ≤4)=P (ξ=3)+P (ξ=4)=321+421=163.答案:A4.某批数量较大的商品的次品率为10%,从中任意地连续取出5件,其中次品数ξ的分布列为________.解析:本题中商品数量较大,故从中任意抽取5件(不放回)可以看作是独立重复试验n =5,因而次品数ξ服从二项分布,即ξ~B (5,0.1). ξ的分布列如下:5.设随机变量ξ~B (2,p ),η~B (4,p ),若P (ξ≥1)=95,则P (η≥1)=______. 解析:P (ξ≥1)=1-P (ξ<1)=1-C 02p 0·(1-p )2=95, ∴p =31,P (η≥1)=1-P (η=0)=1-C 04(31)0(32)4=1-8116=8165. 答案:8165●典例剖析【例1】 在10件产品中有2件次品,连续抽3次,每次抽1件,求: (1)不放回抽样时,抽到次品数ξ的分布列; (2)放回抽样时,抽到次品数η的分布列.剖析:随机变量ξ可以取0,1,2,η也可以取0,1,2,3,放回抽样和不放回抽样对随机变量的取值和相应的概率都产生了变化,要具体问题具体分析.解:(1)P (ξ=0)=31038C C =157,P (ξ=1)=3102812C C C =157,P (ξ=2)=3102218C C C =151, 所以ξ的分布列为ξ12P157 157 151 (2)P (η=k )=C k8·0.83-k ·0.2k (k =0,1,2,3),所以η的分布列为η0 1 2 3 PC 080.83C 180.82·0.2C 280.8·0.22C 380.23评述:放回抽样时,抽到的次品数为独立重复试验事件,即η~B (3,0.8). 特别提示求离散型随机变量分布列要注意两个问题:一是求出随机变量所有可能的值;二是求出取每一个值时的概率.【例2】 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的三只球中的最小号码,写出随机变量ξ的分布列.剖析:因为在编号为1,2,3,4,5的球中,同时取3只,所以小号码可能是1或2或3,即ξ可以取1,2,3.解:随机变量ξ的可能取值为1,2,3.当ξ=1时,即取出的三只球中最小号码为1,则其他两只球只能在编号为2,3,4,5的四只球中任取两只,故有P (ξ=1)=3524C C =106=53; 当ξ=2时,即取出的三只球中最小号码为2,则其他两只球只能在编号为3,4,5的三只球中任取两只,故有P (ξ=2)=3523C C =103; 当ξ=3时,即取出的三只球中最小号码为3,则其他两只球只能在编号为4,5的两只球中任取两只,故有P (ξ=3)=3522C C =101. 因此,的分布列如下表所示:ξ123P53 103 101 相互独立事件同时发生的概率、n 次独立重复试验有k 次发生的概率等.本题中基本事件总数,即n =C 35,取每一个球的概率都属古典概率(等可能性事件的概率).【例3】 (2004年春季安徽)已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及E ξ.剖析:每次取1件产品,∴至少需2次,即ξ最小为2,有2件次品,当前2次取得的都是次品时,ξ=4,所以ξ可以取2,3,4.解:P (ξ=2)=108×97=4528; P (ξ=3)=108×92×87+102×98×87=4514; P (ξ=4)=1-4528-4514=151. ∴ξ的分布列如下: ξ234P4528 4514 151 E ξ=2×P (ξ=2)+3×P (ξ=3)+4×P (ξ=4)=922. 评述:本题考查离散型随机变量的分布列和数学期望的概念,考查运用概率知识解决实际问题的能力.思考讨论1.ξ=4时有哪些情况?2.本题若改为取出后放回,如何求解?●闯关训练 夯实基础1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是A.5B.9C.10D.25 解析:号码之和可能为2,3,4,5,6,7,8,9,10,共9种. 答案:B2.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于A.C 1012(83)10·(85)2B.C 911(83)9(85)2·83C.C 911(85)9·(83)2 D.C 911(83)9·(85)2解析:P (ξ=12)表示第12次为红球,前11次中有9次为红球,从而P (ξ=12)=C 911·(83)9(85)2×83.答案:B3.现有一大批种子,其中优质良种占30%,从中任取5粒,记ξ为5粒中的优质良种粒数,则ξ的分布列是________.解析:ξ~B (5,0.3),ξ的分布列是P (ξ=k )=C k50.3k 0.75-k ,k =0,1, (5)答案:P (ξ=k )=C k 50.3k 0.75-k ,k =0,1,…,54.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________.解析:取出的4只球中红球个数可能为4,3,2,1个,黑球相应个数为0,1,2,3个.其分值为ξ=4,6,8,10分.P (ξ≤6)=P (ξ=4)+P (ξ=6)=470344C C C +471334C C C =3513. 答案:3513 5.从4名男生和2名女生中任选3人参加演讲比赛.设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列; (2)求ξ的数学期望;(3)求“所选3人中女生人数ξ≤1”的概率. 解:(1)ξ的可能取值为0,1,2.P (ξ=k )=36342C C C kk -⋅,k =0,1,2.∴ξ的分布列为E ξ=0×51+1×53+2×51=1. (3)“所选3人中女生人数ξ≤1”的概率为 P (ξ≤1)=P (ξ=0)+P (ξ=1)=54. 培养能力6.A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是A 1、A 2、A 3,B 队队员是B别为ξ、η.(1)求ξ、η的概率分布; (2)求E ξ、E η. 分析:本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.解:(1)ξ、η的可能取值分别为3,2,1,0.P (ξ=3)=32×52×52=758,P (ξ=2)=32×52×53+31×52×52+32×53×52=7528, P (ξ=1)=32×53×53+31×52×53+31×53×52=52, P (ξ=0)=31×53×53=253;根据题意知ξ+η=3,所以 P (η=0)=P (ξ=3)=758, P (η=1)=P (ξ=2)=7528, P (η=2)=P (ξ=1)=52, P (η=3)=P (ξ=0)=253. (2)E ξ=3×758+2×7528+1×52+0×253=1522;因为ξ+η=3,所以E η=3-E ξ=1523. 7.金工车间有10台同类型的机床,每台机床配备的电动机功率为10 kW ,已知每台机床工作时,平均每小时实际开动12 min ,且开动与否是相互独立的.现因当地电力供应紧张,供电部门只提供50 kW 的电力,这10台机床能够正常工作的概率为多大?在一个工作班的8 h 内,不能正常工作的时间大约是多少?分析:由实际问题确定随机变量的取值,由独立重复试验求概率值.解:设10台机床中实际开动的机床数为随机变量ξ,由于机床类型相同,且机床的开动与否相互独立,因此ξ~B (10,p ).其中p 是每台机床开动的概率,由题意p =6012=51.从而P (ξ=k )=C k10(51)k (54)10-k,k =0,1,2,…,10. 50 kW 电力同时供给5台机床开动,因而10台机床同时开动的台数不超过5台时都可以正常工作.这一事件的概率为P (ξ≤5),P (ξ≤5)=C 010(54)10+C 110·51·(54)9+C 210(51)2·(54)8+C 310(51)3(54)7+C 410(51)4·(54)6+C 510(51)5·(54)5≈0.994. 因此,在电力供应为50 kW 的条件下,机床不能正常工作的概率仅约为0.006,从而在一个工作班的8 h 内,不能正常工作的时间只有大约8×60×0.006=2.88(min ),这说明,10台机床的工作基本上不受电力供应紧张的影响.评述:分布列的实际应用,应结合题意给出答案.8.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的3只球中的最大号,写出随机变量ξ的分布列.解:根据题意可知随机变量ξ的取值为3,4,5.当ξ=3时,即取出的三只球中最大号码为3,则其他两球的编号只能是1,2,故有P (ξ=3)=3522C C =101. 当ξ=4时,即取出的三只球中最大号码为4,则其他两球只能在编号为1,2,3的3球中取2个,故P (ξ=4)=3523C C =103. P (ξ=5)=3524C C =106. 可得ξ的分布列为9.如果ξ~B (20,31),则使P (ξ=k )取最大值的k 的值是________.解析:)()1(k P k P =+=ξξ=k k k k k k ---++20201201120)32()31(C )32()31(C =120+-k k ×21≥1,得k ≤6.所以当k ≤6时,P (ξ=k +1)≥P (ξ=k ), 当k >0时,P (ξ=k +1)<P (ξ=k ), 其中k =6时,P (ξ=k +1)=P (ξ=k ), 从而k =6或7时,P (ξ=k )取得最大值. 答案:6或7 ●思悟小结1.离散型随机变量的概率分布的两个本质特征:p i ≥0(i =1,2,…,n )与∑=ni 1p i =1是确定分布列中参数值的依据.2.求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率.3.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.4.处理有关离散型随机变量的应用问题,关键在于根据实际问题确定恰当的随机变量. ●教师下载中心 教学点睛离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率和. 求离散型随机变量的分布列必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.求一些离散型随机变量的分布列,在某种程度上就是正确地求出相应的事件个数,即相应的排列组合数,所以学好排列组合是学好分布列的基础与前提.拓展题例【例题】 盒中装有一打(12个)乒乓球,其中9个新的,3个旧的(用过的球即为旧的),从盒中任取3个使用,用完后装回盒中,此时盒中旧球个数ξ是一个随机变量,求ξ的分布列.剖析:从盒中任取3个,这3个可能全是旧的,2个旧的1个新的,1个旧的2个新的或全是新的,所以用完放回盒中,盒中旧球个数可能是3个,4个,5个,6个,即ξ可以取3,4,5,6.解:ξ的所有可能取值为3,4,5,6.P (ξ=3)=31233C C =2201; P (ξ=4)=3122319C C C =22027; P (ξ=5)=3121329C C C =5527; P (ξ=6)=31239C C =5521. 所以ξ的分布列为ξ3456P2201 2207 5527 5521 评述:本题的关键是正确地求出ξ取某个值时对应的事件个数. 思考讨论若本题改为:若每次取1个,用完放回再取1个,用完再放回,再取1个用完放回,则怎样求此时ξ的分布列呢?。