2019-2020学年高中数学 专题一 任意角的三角函数学案 新人教A版必修4.doc
2019-2020年高中数学 1.1.1 任意角教案 新人教A版必修4
2019-2020年高中数学 1.1.1 任意角教案新人教A版必修41.本章知识结构如下:2.本章学习的内容主要是:三角函数的定义、图象、性质及应用.三角函数是高中教材中的一种重要函数,与其他的函数相比,具有许多重要的特征:它以角为自变量,是周期函数.三角函数是解决其他问题的重要工具,是高中阶段学习的最后一个基本初等函数,是深化函数性质的极好素材.本章的认知基础主要是几何中圆的性质、相似形的有关知识,特别强调了单位圆的直观作用,借助单位圆直观地认识任意角、任意角的三角函数.3.本章教学的重点是三角函数的定义,同角三角函数的基本关系式,正弦函数的图象及基本性质.难点是弧度制和图象变换的准确理解和掌握.关键是学好三角函数定义.从实际教学情况来看,教学中应重视学生的画图.“五点画图”虽然简单,但却易学难掌握.在本章教学中,教师应根据学生的生活经验和已有的数学知识,通过列举熟知的实例,创设丰富的情境,使学生体会三角函数模型的意义.教学时,可结合本章引言的章头图,让学生围绕这些问题展开讨论,通过思考,让学生知道三角函数可以刻画这些周期变化规律,从而激发学生的求知欲.4.三角函数的内容一直是高考的重要内容,特别是三角函数的图象和性质,及结合三角形的基础知识为背景的三角函数知识,频频在各省高考试题中出现,难度虽有降低,却是经久不衰的高考考查内容.1.1 任意角和弧度制1.1.1 任意角整体设计教学分析教材首先通过实际问题的展示,引发学生的认知冲突,然后通过具体例子,将初中学过的角的概念推广到任意角,在此基础上引出终边相同的角的集合的概念.这样可以使学生在已有经验(生活经验、数学学习经验)的基础上,更好地认识任意角、象限角、终边相同的角等概念.让学生体会到把角推广到任意角的必要性,引出角的概念的推广问题.本节充分结合角和平面直角坐标系的关系,建立了象限角的概念.使得任意角的讨论有一个统一的载体.教学中要特别注意这种利用几何的直观性来研究问题的方法,引导学生善于利用数形结合的思想方法来认识问题、解决问题.让学生初步学会在平面直角坐标系中讨论任意角.能熟练写出与已知角终边相同的角的集合,是本节的一个重要任务.学生的活动过程决定着课堂教学的成败,教学中应反复挖掘“探究”栏目及“探究”示图的过程功能,在这个过程上要不惜多花些时间,让学生进行操作与思考,自然地、更好地归纳出终边相同的角的一般形式.也就自然地理解了集合S={β|β=α+k·360°,k∈Z}的含义.如能借助信息技术,则可以动态表现角的终边旋转的过程,更有利于学生观察角的变化与终边位置的关系,让学生在动态的过程中体会,既要知道旋转量,又要知道旋转方向,才能准确刻画角的形成过程的道理,更好地了解任意角的深刻涵义.三维目标1.通过实例的展示,使学生理解角的概念推广的必要性,理解并掌握正角、负角、零角、象限角、终边相同角的概念及表示,树立运动变化的观点,并由此深刻理解推广之后的角的概念.2.通过自主探究、合作学习,认识集合S中k、α的准确含义,明确终边相同的角不一定相等,终边相同的角有无限多个,它们相差360°的整数倍.这对学生的终身发展,形成科学的世界观、价值观具有重要意义.3.通过类比正、负数的规定,让学生认识正角、负角并体会类比、数形结合等思想方法的运用,为今后的学习与发展打下良好的基础.重点难点教学重点:将0°—360°范围的角推广到任意角,终边相同的角的集合.教学难点:用集合来表示终边相同的角.课时安排1课时教学过程导入新课图1思路 1.(情境导入)如图1,在许多学校的门口都有摆设的一些游戏机,只要指针旋转到阴影部分即可获得高额奖品.由此发问:指针怎样旋转,旋转多少度才能赢?还有我们所熟悉的体操运动员旋转的角度,自行车车轮旋转的角度,螺丝扳手的旋转角度,这些角度都怎样解释?在学生急切想知道的渴望中引入角的概念的推广.进而引入角的概念的推广的问题.思路2.(复习导入)回忆初中我们是如何定义一个角的?所学的角的范围是什么?用这些角怎样解释现实生活的一些现象,比如你原地转体一周的角度,应怎样修正角的定义才能解释这些现象?由此让学生展开讨论,进而引入角的概念的推广问题.推进新课新知探究提出问题①你的手表慢了5分钟,你将怎样把它调整准确?假如你的手表快了1.25小时,你应当怎样将它调整准确?当时间调整准确后,分针转过了多少度角?②体操运动中有转体两周,在这个动作中,运动员转体多少度?③请两名男生(或女生、或多名男女学生)起立,做由“面向黑板转体背向黑板”的动作.在这个过程中,他们各转体了多少度?活动:让学生到讲台利用准备好的教具——钟表,实地演示拨表的过程.让学生站立原地做转体动作.教师强调学生观察旋转方向和旋转量,并思考怎样表示旋转方向.对回答正确的学生及时给予鼓励、表扬,对回答不准确的学生提示引导考虑问题的思路.角可以看作是平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形,设一条射线的端点是O,它从起始位置OA按逆时针方向旋转到终止位置OB,则形成了一个角α,点O 是角的顶点,射线OA、OB分别是角α的始边和终边.我们规定:一条射线绕着它的端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.钟表的时针和分针在旋转过程中所形成的角总是负角,为了简便起见,在不引起混淆的前提下,“角α”或“∠α”可以简记作“α”.如果一条射线没有作任何旋转,我们称它形成了一个零角,零角的始边和终边重合,如果α是零角,那么α=0°.讨论结果:①顺时针方向旋转了30°;逆时针方向旋转了450°.②顺时针方向旋转了720°或逆时针方向旋转了720°.③-180°或+180°或-540°或+540°或900°或1 080°……提出问题①能否以同一条射线为始边作出下列角:210°,-45°,-150°.②如何在坐标系中作出这些角,象限角是什么意思? 0°角又是什么意思?活动:先让学生看书、思考、并讨论这些问题,教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生,教师提示、引导考虑问题的思路.学生作这样的角,使用一条射线作为始边,没有固定的参照,所以会作出很多形式不同的角.教师可以适时地提醒学生:如果将角放到平面直角坐标系中,问题会怎样呢?并让学生思考讨论在直角坐标系内讨论角的好处:使角的讨论得到简化,还能有效地表现出角的终边“周而复始”的现象.今后我们在坐标系中研究和讨论角,为了讨论问题的方便,我们使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.那么角的终边在第几象限,我们就说这个角是第几象限角.要特别强调角与直角坐标系的关系——角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.讨论结果:①能.②使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.角的终边在第几象限,我们就说这个角是第几象限角.这样:210°角是第三象限角;-45°角是第四象限角;-150°角是第三象限角.特别地,终边落在坐标轴上的角不属于任何一个象限,比如0°角.可以借此进一步设问:锐角是第几象限角?钝角是第几象限角?直角是第几象限角?反之如何?将角按照上述方法放在直角坐标系中,给定一个角,就有唯一一条终边与之对应,反之,对于直角坐标系中的任意一条射线OB,以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系?提出问题①在直角坐标系中标出210°,-150°的角的终边,你有什么发现?它们有怎样的数量关系?328°,-32°,-392°角的终边及数量关系是怎样的?终边相同的角有什么关系?②所有与α终边相同的角,连同角α在内,怎样用一个式子表示出来?活动:让学生从具体问题入手,探索终边相同的角的关系,再用所准备的教具或是多媒体给学生演示:演示象限角、终边相同的角,并及时地引导:终边相同的一系列角与0°到360°间的某一角有什么关系,从而为终边相同的角的表示作好准备.为了使学生明确终边相同的角的表示方法,还可以用教具作一个32°角,放在直角坐标系内,使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,形成-32°角后提问学生这是第几象限角?是多少度角?学生对后者的回答是多种多样的.至此,教师因势利导,予以启发,学生对问题探究的结果已经水到渠成,本节难点得以突破.同时学生也在这一学习过程中,体会到了探索的乐趣,激发起了极大的学习热情,这是比学习知识本身更重要的.讨论结果:①210°与-150°角的终边相同;328°,-32°,-392°角的终边相同.终边相同的角相差360°的整数倍.设S={β|β=-32°+k·360°,k∈Z},则328°,-392°角都是S的元素,-32°角也是S的元素(此时k=0).因此,所有与-32°角的终边相同的角,连同-32°在内,都是集合S的元素;反过来,集合S的任何一个元素显然与-32°角终边相同.②所有与α终边相同的角,连同角α在内,可以构成一个集合S={β|β=k·360°+α,k∈Z}.即任一与角α终边相同的角,都可以表示成α与整数个周角的和.适时引导学生认识:①k∈Z;②α是任意角;③终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.应用示例例1 在0°—360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角. 解:-950°12′=129°48′-3×360°,所以在0°—360°的范围内,与-950°12′角终边相同的角是129°48′,它是第二象限的角.点评:教师可引导学生先估计-950°12′大致是360°的几倍,然后再具体求解.例2 写出终边在y轴上的角的集合.活动:终边落在y轴上,应分y轴的正方向与y轴的负方向两个.学生很容易分别写出所有与90°,270°的终边相同的角构成集合,这时应启发引导学生进一步思考:能否化简这两个式子,用一个式子表示出来.让学生观察、讨论、思考,并逐渐形成共识,教师再规范地板书出来.并强调数学的简捷性.在数学表达式子不唯一的情况下,注意采用简约的形式.图2解:在0°—360°范围内,终边在y轴上的角有两个,即90°和270°角,如图2.因此,所有与90°的终边相同的角构成集合S1={β|β=90°+k·360°,k∈Z}.而所有与270°角的终边相同的角构成集合S2={β|β=270°+k·360°,k∈Z}.于是,终边在y轴上的角的集合S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+180°+2k·180°,k∈Z}={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.点评:本例是让学生理解终边在坐标轴上的角的表示.教学中,应引导学生体会用集合表示终边相同的角时,表示方法不唯一,要注意采用简约的形式.变式训练①写出终边在x轴上的角的集合.②写出终边在坐标轴上的角的集合.答案:①S={β|β=(2n+1)·180°,n∈Z}.②S={β|β=n·90°,n∈Z}.例3 写出终边在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.图3解:如图3,在直角坐标系中画出直线y=x,可以发现它与x轴夹角是45°,在0°—360°范围内,终边在直线y=x上的角有两个:45°和225°,因此,终边在直线y=x上的角的集合S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}.S中适合-360°≤β<720°的元素是:45°-2×180°=-315°,45°-1×180°=-135°,45°+0×180°=45°,45°+1×180°=225°,45°+2×180°=405°,45°+3×180°=585°.点评:本例是让学生表示终边在已知直线的角,并找出某一范围的所有的角,即按一定顺序取k的值,应训练学生掌握这一方法.例4 写出在下列象限的角的集合:①第一象限; ②第二象限;③第三象限; ④第四象限.活动:本题关键是写出第一象限的角的集合,其他象限的角的集合依此类推即可,如果学生阅读例题后没有解题思路,或者把①中的范围写成0°—90°,可引导学生分析360°—450°范围的角是不是第一象限的角呢?进而引导学生写出所有终边相同的角.解:①终边在第一象限的角的集合:{β|n·360°<β<n·360°+90°,n∈Z}.②终边在第二象限的角的集合:{β|n·360°+90°<β<n·360°+180°,n∈Z}.③终边在第三象限的角的集合:{β|n·360°+180°<β<n·360°+270°,n∈Z}.④终边在第四象限的角的集合:{β|n·360°+270°<β<n·360°+360°,n∈Z}.点评:教师给出以上解答后可进一步提问:以上的解答形式是唯一的吗?充分让学生思考、讨论后形成共识,并进一步深刻理解终边相同角的意义.知能训练课本本节练习.解答:1.锐角是第一象限角,第一象限角不一定是锐角;直角不属于任何一个象限,不属于任何一个象限的角不一定是直角;钝角是第二象限角,但是第二象限角不一定是钝角.点评:要深刻认识锐角、直角、钝角和象限角的区别与联系,并理解记忆.为弄清概念的本质属性,还可以再进一步启发设问:锐角一定小于90°吗?小于90°的角一定是锐角吗?钝角一定大于90°吗?大于90°的角一定是钝角吗?答案当然是:不一定.让学生展开讨论,在争论中,将对问题的认识进一步升华,并牢牢的记忆这些基础知识.2.三、三、五.点评:本题的目的是将终边相同的角的符号表示应用到其他周期性问题上.题目联系实际,把教科书中除数360换成每个星期的天数7,利用了“同余”来确定7k天后、7k天前也是星期三,这样的练习难度不大,可以口答.3.(1)第一象限角.(2)第四象限角.(3)第二象限角.(4)第三象限角.点评:能作出给定的角,并判断是第几象限的角.4.(1)305°42′,第四象限角.(2)35°8′,第一象限角.(3)249°30′,第三象限角.点评:能在给定的范围内找出与指定角终边相同的角,并判断是第几象限的角.5.(1){β|β=1 303°8′+k·360°,k∈Z},-496°42′,-136°42′,223°18′.(2){β|β=-225°+k·360°,k∈Z},-585°,-225°,135°.点评:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定的范围内找出与指定的角的终边相同的角.课堂小结以提问的方式与学生一起回顾本节所学内容并简要总结:让学生自己回忆:本节课都学习了哪些新知识?你是怎样获得这些新知识的?你从本节课上都学到了哪些数学方法?让学生自己得到以下结论:本节课推广了角的概念,学习了正角、负角、零角的定义,象限角的概念以及终边相同的角的表示方法,零角是射线没有作任何旋转.一个角是第几象限的角,关键是看这个角的终边落在第几象限,终边相同的角的表示有两方面的内容:(1)与角α终边相同的角,这些角的集合为S={β|β=k·360°+α,k∈Z};(2)在0°—360°内找与已知角终边相同的角α,其方法是用所给的角除以360°,所得的商为k,余数为α(α必须是正数),α即为所找的角.数形结合思想、运动变化观点都是学习本课内容的重要思想方法.作业①课本习题1.1 A组1、3、5.②预习下一节:弧度制.设计感想1.本节课设计的容量较大,学生的活动量也较大,若用信息技术辅助教学效果会很好.教师可充分利用多媒体做好课件,在课堂上演示给学生;有条件的学校,可以让学生利用计算机或计算器进行探究,让学生在动态中掌握知识、提炼方法.2.本节设计的指导思想是加强直观.利用几何直观有利于对抽象概念的理解.在学生得出象限角的概念后,可以充分让学生讨论在直角坐标系中研究角的好处.前瞻性地引导学生体会:在直角坐标系中角的“周而复始”的变化规律,为研究三角函数的周期性奠定基础.3.几点说明:(1)列举不在0°—360°的角时,应注意所有的角在同一个平面内,且终边在旋转的过程中,角的顶点不动.(2)在研究终边相同的两个角的关系时,k 的正确取值是关键,应让学生独立思考领悟.(3)在写出终边相同的角的集合时,可根据具体问题,对相应的集合内容进行复习.2019-2020年高中数学 1.1.1 任意角教案(1) 苏教版必修4一、课题:任意角(1)二、教学目标:1.理解任意角的概念;2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。
高中数学《任意角的三角函数》学案1 新人教A版必修4
课 题:任意角的三角函数(一)教学目的:理解并掌握任意角三角函数的定义.三角函数是以实数为自变量的函数.掌握正弦、余弦、正切函数的定义域.教学重点:任意角三角函数的定义.教学难点:正弦、余弦、正切函数的定义域. 教学过程: 一、复习引入:1.在初中我们学习了锐角三角函数,它是以锐角为自变量,边的比 值为函数值的三角函数,在这个基础上,今天我们来研究任意角 的三角函数. 二、讲解新课:对于锐角三角函数,我们是在直角三角形中定义的,今天,对于 任意角的三角函数,我们利用平面直角坐标系来进行研究. 1. 设α是一个任意角,在α的终边上任取(异于原点的)一点(x,y )则P 与原点的距离02222>+=+=y x yx r2.比值r y叫做α的正弦 记作: 比值r x叫做α的余弦 记作:比值xy叫做α的正切 记作: 以上三种函数,统称为三角函数. 3.突出探究的几个问题:①角是“任意角”,当β=2k π+α(k ∈Z)时,β与α的同名三角函数值应该是 相等的,即凡是终边相同的角的三角函数值 ②实际上,如果终边在坐标轴上,上述定义 适用 ③三角函数是以“比值”为函数值的函数④0>r 而x,y 的正负是随象限的变化而不同,故三角函数的符号应由象限确定.⑤定义域:αααtan cos sin ===y y y4.注意:1.sin α是个整体符号,不能认为是“sin ”与“α”的积.其余五 个符号也是这样. 2.比值只与角的大小有关.caαBry)(x,αP三、讲解范例:例1 已知角α的终边经过点P (2,-3)(如图),求α的六个三角函数值.例2求下列各角的三个三角函数值.(1)0 (2)π (3)23π (4) 2π例3填表: α0︒ 30︒ 45︒ 60︒ 90︒ 120︒ 135︒ 150︒ 180︒ 270︒ 360︒ 弧度 αsin αcos αtg例4 ⑴ 已知角α的终边经过P(4,-3),求2sin α+cos α的值⑵已知角α的终边经过P(4a,-3a),(a ≠0)求2sin α+cos α的值例5 求函数xxxx y tan tan cos cos +=的值域 解:班级 姓名 成绩 1.若点P (-3,y)是角α终边上一点,且32sin -=α,则y的值是 .2.角α的终边上一个点P 的坐标为(5a ,-12a )(a ≠0),求sin α+2cos α的值.3.已知角θ的终边上一点P 的坐标是(x ,–2)(x ≠0),且3cos x=θ,求sin θ和tan θ的值.。
2020学年高中数学第一章三角函数1.2.1.1任意角的三角函数(一)学案(含解析)新人教A版必修
2019-2020学年高中数学第一章三角函数1.2.1.1 任意角的三角函数(一)学案(含解析)新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020学年高中数学第一章三角函数1.2.1.1 任意角的三角函数(一)学案(含解析)新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020学年高中数学第一章三角函数1.2.1.1 任意角的三角函数(一)学案(含解析)新人教A版必修4的全部内容。
1。
2。
1 任意角的三角函数考试标准课标要点学考要求高考要求三角函数定义b b三角函数值符号bb诱导公式(一)b b三角函数线a a知识导图学法指导1。
以锐角三角函数的定义来推广记忆任意角的三角函数的定义.2.根据任意角的三角函数定义中横、纵坐标的取值范围确定函数的定义域.3.熟练掌握定义是解决概念类问题的关键,明确有向线段OM、MP、AT为角α的余弦线、正弦线、正切线.4.体会“数与形"的结合,将三角函数值转化为有向线段.第1课时任意角的三角函数(一)1。
任意角的三角函数的定义前提如图,设α是一个任意角,它的终边与单位圆交于点P(x,y)定义正弦y叫做α的正弦,记作sin α,即sin α=y余弦x叫做α的余弦,记作cos α,即cos α=x正切错误!叫做α的正切,记作tan α,即tan α=错误!(x≠0)三角函数正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数.错误!(1)三角函数是一个函数,符合函数的定义,是由角的集合(弧度数)到一个比值的集合的函数.(2)三角函数值实质是一个比值,因此分母不能为零,所以正切函数的定义域就是使分母不为零的角的集合.2.正弦、余弦、正切函数在弧度制下的定义域三角函数定义域sin αRcos αRtan α{α∈R|α≠kπ+错误!,k∈Z}3.错误!对三角函数值符号的理解三角函数值的符号是根据三角函数定义和各象限内坐标符号导出的.从原点到角的终边上任意一点的距离r总是正值.根据三角函数定义知:(1)正弦值符号取决于纵坐标y的符号;(2)余弦值的符号取决于横坐标x的符号;(3)正切值的符号是由x,y符号共同决定的,即x,y同号为正,异号为负.4.诱导公式一(1)语言表示:终边相同的角的同名三角函数的值相等.(2)式子表示错误!其中k∈Z。
2019-2020学年新人教A版必修一 任意角的三角函数 学案
2019-2020学年新人教A 版必修一 任意角的三角函数 学案1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫作1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .知识拓展1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦. 2.任意角的三角函数的定义(推广)设P (x ,y )是角α终边上异于顶点的任一点,其到原点O 的距离为r ,则sin α=y r ,cos α=xr ,tan α=yx(x ≠0).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ ) (3)不相等的角终边一定不相同.( × ) (4)若α为第一象限角,则sin α+cos α>1.( √ ) 题组二 教材改编2.角-225°= 弧度,这个角在第 象限. 答案 -5π4二3.角α的终边经过点Q ⎝⎛⎭⎫-22,22,则sin α= ,cos α= . 答案22 -224.一条弦的长等于半径,这条弦所对的圆心角大小为 弧度. 答案 π3题组三 易错自纠5.(2018·秦皇岛模拟)下列与9π4的终边相同的角的表达式中正确的是 ( ) A .2k π+45°(k ∈Z ) B .k ·360°+9π4(k ∈Z ) C .k ·360°-315°(k ∈Z ) D .k π+5π4(k ∈Z )答案 C解析 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.6.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1 (n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C. 7.(2018·攀枝花质检)已知角α的终边经过点(-4,3),则cos α= . 答案 -45解析 cos α=-4(-4)2+32=-45.8.(2018·济宁模拟)函数y =2cos x -1的定义域为 . 答案 ⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ) 解析 ∵2cos x -1≥0, ∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ).题型一 角及其表示1.设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k2·180°+45°,k ∈Z ,N = ⎩⎨⎧⎭⎬⎫x ⎪⎪x =k4·180°+45°,k ∈Z ,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅解析 由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k 4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B. 2.若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角答案 C解析 ∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z . 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.∴α2是第一或第三象限角. 3.(2017·福州模拟)与-2 015°终边相同的最小正角是 . 答案 145°解析 与-2 015°角终边相同的角的集合为 {α|α=-2 015°+k ·360°,k ∈Z }, 当k =6时,α=-2 015°+2 160°=145°.思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. (2)确定kα,αk(k ∈N +)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk 的终边所在位置.题型二 弧度制典例 (1)(2017·珠海模拟)已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1 C.12 D .3答案 A解析 设扇形的半径为R ,则弧长l =4-2R , ∴扇形面积S =12lR =R (2-R )=-R 2+2R =-(R -1)2+1,当R =1时,S 最大,此时l =2,扇形圆心角为2弧度.(2)若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是 . 答案2解析 设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2. 思维升华 应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练 (1)(2017·太原模拟)已知2弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长是 . 答案2sin 1解析 设圆的半径为R ,则R ·sin 1=1, ∴R =1sin 1,∴这个圆心角所对弧长为R ×2=2sin 1. (2)已知圆O 与直线l 相切于点A ,点P ,Q 同时从A 点出发,P 沿着直线l 向右,Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积S 1,S 2的大小关系是 .答案 S 1=S 2解析 设运动速度为m ,运动时间为t ,圆O 的半径为r , 则AQ =AP =tm ,根据切线的性质知OA ⊥AP , ∴S 1=12tm ·r -S 扇形AOB ,S 2=12tm ·r -S 扇形AOB ,∴S 1=S 2恒成立.题型三 三角函数的概念及应用命题点1 三角函数定义的应用典例 (1)已知点P 在角4π3的终边上,且|OP |=4,则点P 的坐标为( )A .(-2,-23) B.⎝⎛⎭⎫-12,-32C .(-23,-2) D.⎝⎛⎭⎫-32,-12 答案 A解析 点P 的坐标为⎝⎛⎭⎫|OP |·cos 4π3,|OP |·sin 4π3,即(-2,-23),故选A. (2)设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 答案 B解析 由θ是第三象限角知,θ2为第二或第四象限角,∵⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2<0, 综上知,θ2为第二象限角.命题点2 三角函数线的应用典例 函数y =lg(2sin x -1)+1-2cos x 的定义域为 . 答案 ⎣⎡⎭⎫2k π+π3,2k π+5π6(k ∈Z ) 解析要使原函数有意义,必须有⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12,如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为⎣⎡⎭⎫2k π+π3,2k π+5π6 (k ∈Z ).思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围. 跟踪训练 (1)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0.则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3) D .[-2,3]答案 A解析 ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0, ∴-2<a ≤3. (2)(2017·石家庄模拟)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α答案 C解析 如图,作出角α的正弦线MP ,余弦线OM ,正切线AT , 观察可知sin α<cos α<tan α.数形结合思想在三角函数中的应用典例 (1)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于C (2,1)时,OP →的坐标为 .(2)(2017·合肥调研)函数y =lg(3-4sin 2x )的定义域为 .思想方法指导 在坐标系中研究角就是一种数形结合思想,利用三角函数线可直观得到有关三角函数的不等式的解集. 解析 (1)如图所示,过圆心C 作x 轴的垂线,垂足为A ,过P 作x 轴的垂线与过C 作y 轴的垂线交于点B .因为圆心移动的距离为2,所以劣弧PA =2,即圆心角∠PCA =2, 则∠PCB =2-π2,所以PB =sin ⎝⎛⎭⎫2-π2=-cos 2, CB =cos ⎝⎛⎭⎫2-π2=sin 2,设点P (x P ,y P ), 所以x P =2-CB =2-sin 2,yP =1+PB =1-cos 2, 所以OP →=(2-sin 2,1-cos 2). (2)因为3-4sin 2x >0, 所以sin 2x <34,所以-32<sin x <32. 利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示),所以x ∈⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z ). 答案 (1)(2-sin 2,1-cos 2) (2)⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z )1.角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 C解析 由-870°=-1 080°+210°,知-870°角和210°角的终边相同,在第三象限. 2.(2017·石家庄模拟)已知点P ⎝⎛⎭⎫32,-12在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.5π6B.2π3C.11π6D.5π3 答案 C解析 由已知得tan θ=-33,θ在第四象限且θ∈[0,2π),∴θ=11π6. 3.(2017·福州模拟)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于( )A .-3B .3 C.163 D .±3答案 B 解析 sin θ=m 16+m2=35,且m >0,解得m =3. 4.(2018·成都模拟)点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为 ( ) A.⎝⎛⎭⎫-12,32 B.⎝⎛⎭⎫-32,-12C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,12 答案 A解析 由三角函数定义可知Q 点的坐标(x ,y )满足 x =cos2π3=-12,y =sin 2π3=32. 5.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6 D .8 答案 C解析 设扇形的半径为R ,则12×4×R 2=2,∴R =1,弧长l =4,∴扇形的周长为l +2R =6.6.已知α是第二象限的角,其终边上一点为P (x ,5),且cos α=24x ,则tan α等于( ) A.155 B.153 C .-155 D .-153答案 D 解析 ∵xx 2+5=24x 且α在第二象限, ∴x =-3,∴tan α=5-3=-153.7.(2017·怀化模拟)sin 2·cos 3·tan 4的值( ) A .小于0 B .大于0 C .等于0 D .不存在 答案 A解析 ∵sin 2>0,cos 3<0,tan 4>0, ∴sin 2·cos 3·tan 4<0. 8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( ) A .1 B .2 C .3 D .4答案 A解析 举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知只有③正确.9.(2017·鄂州模拟)已知tan θ<0,且角θ终边上一点为(-1,y ),且cos θ=-12,则y = .答案3解析 由已知得θ在第二象限,∴y >0, ∴cos θ=-1y 2+1=-12,∴y = 3.10.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于 .答案 π3解析 设扇形半径为r ,弧长为l ,则⎩⎨⎧l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2.11.函数y = sin x -32的定义域为 . 答案 ⎣⎡⎦⎤2k π+π3,2k π+23π,k ∈Z 解析 利用三角函数线(如图),由sin x ≥32,可知 2k π+π3≤x ≤2k π+23π,k ∈Z .12.满足cos α≤-12的角α的集合为 .答案 ⎩⎨⎧⎭⎬⎫α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z 解析 作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z .13.已知sin α>sin β,那么下列命题成立的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β 答案 D解析 如图,当α在第四象限时,作出α,β的正弦线M 1P 1,M 2P 2和正切线AT 1,AT 2,观察知当sin α>sin β时,tan α>tan β.14.已知点P (sin α+cos α,tan α)在第四象限,则在[0,2π]内α的取值范围是 . 答案 ⎝⎛⎭⎫π2,34π∪⎝⎛⎭⎫74π,2π解析 由⎩⎪⎨⎪⎧sin α+cos α>0,tan α<0,得-1<tan α<0或tan α<-1.又0≤α≤2π,∴π2<α<34π或74π<α<2π.15.(2017·烟台模拟)若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n = . 答案 2解析 由已知tan α=3,∴n =3m , 又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,∴n =-3.故m -n =2.16.如图,在平面直角坐标系xOy 中,角α的始边与x 轴的非负半轴重合且与单位圆相交于A 点,它的终边与单位圆相交于B 点,始边不动,终边在运动.(1)若点B 的横坐标为-45,求tan α的值;(2)若△AOB 为等边三角形,写出与角α终边相同的角β的集合. (3)若α∈⎝⎛⎦⎤0,2π3,请写出弓形AB 的面积S 与α的函数关系式. 解 (1)根据题意可得B ⎝⎛⎭⎫-45,±35,∴tan α=±34. (2)若△AOB 为等边三角形, 则B ⎝⎛⎭⎫12,32或B ⎝⎛⎭⎫12,-32,当B ⎝⎛⎭⎫12,32时,tan ∠AOB =3,∠AOB =π3;当B ⎝⎛⎭⎫12,-32时,tan ∠AOB =-3,∠AOB =-π3.∴与角α终边相同的角β的集合是⎩⎨⎧⎭⎬⎫β⎪⎪β=π3+2k π或β=-π3+2k π,k ∈Z .(3)若α∈⎝⎛⎦⎤0,2π3,则S 扇形=12αr 2=12α,而S △AOB =12×1×1×sin α=12sin α,故弓形AB 的面积S =12α-12sin α,α∈⎝⎛⎦⎤0,2π3.。
2019-2020年高中数学《任意角的三角函数》教案11新人教A版必修4
2019-2020年高中数学《任意角的三角函数》教案11新人教A版必修4教学要求:掌握任意角的三角函数的定义;已知角α终边上一点,会求角α的各三角函数值. 教学重点:熟练求值.教学难点:理解定义.教学过程:一、复习准备:1. 用弧度制写出终边在下列位置的角的集合:坐标轴上;第二、四象限2. 锐角的三角函数如何定义?3. 讨论:以上定义适应任意角的三角函数吗?如何定义?二、讲授新课:1. 教学任意角的三角函数的定义:①讨论:锐角α的终边交单位圆于点P (x,y)的坐标与α三角函数有何关系?→推广:任意角②定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x, y),则sinα=y,cosα=x,tanα=.②讨论:与点P的位置是否有关?α与2kπ+α的三角函数值有何关系?当α的终边落在x轴、y轴上时,哪些三角函数值无意义?任何实数是不是有三角函数值?三个三角函数的定义域情况是怎样的?2. 教学例题:①出示例1:求下列各角的正弦、余弦、正切值3π、-2π、、-讨论求法→试求(学生板演)→订正→小结:画终边与单位圆,求交点,求值.②思考:已知角终边上任一点P (x, y),如何求它的三角函数值呢?结论:先求;再按公式、、.③出示例2:已知角α的终边过点P(-2,-4),求α的正弦、余弦和正切值.(学生试求→订正→小结解法:先求r,再按定义求. )④讨论:正弦、余弦、正切值在各个象限的符号情况?⑤讨论:终边相同的角同一三角函数的值有何关系?结论:,,,其中.作用:把任意角的三角函数值问题转化为0~2π间角的三角函数值问题.⑥练习:求下列各角的正弦、余弦和正切值:、-.3. 小结:单位圆定义任意角的三角函数;由终边上任一点求任意角的三角函数;各象限的符号情况;诱导公式(一).三、巩固练习:1. 已知角α的终边在直线y=2x上,求α的正弦、余弦和正切值.2. 口答下列各特殊角的正弦、余弦、正切值:0°、90°、180°、270°、360°.3. 已知点,在角α的终边上,求、、的值4. 作业:书P17 1、2、3题.2019-2020年高中数学《任意角的三角函数》教案1新人教A版必修4一、教学目标:1、知识与技能(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系. 二、教学重、难点重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.三、学法与教学用具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了.教学用具:投影机、三角板、圆规、计算器四、教学设想第一课时任意角的三角函数(一)提问:锐角O的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾.数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗如图,设锐角的顶点与原点重合,始边与轴的正半轴重合,那么它的终边在第一象限.在的终边上任取一点,它与原Array点的距离.过作轴的垂线,垂足为,则线段的长度为,线段的长度为.则;; .思考:对于确定的角,这三个比值是否会随点在的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段的长的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:; ; .思考:上述锐角的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.【探究新知】1.探究:结合上述锐角的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设是一个任意角,它的终边与单位圆交于点,那么:(1)叫做的正弦(sine),记做,即;(2)叫做的余弦(cossine),记做,即;(3)叫做的正切(tangent),记做,即.注意:当α是锐角时,此定义与初中定义相同(指出对边,邻边,斜边所在);当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?前面我们已经知道,三角函数的值与点在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,那么,,.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.4.例题讲评例1.求的正弦、余弦和正切值.例2.已知角的终边过点,求角的正弦、余弦和正切值.教材给出这两个例题,主要是帮助理解任意角的三角函数定义.我也可以尝试其他方法: 如例2:设则.于是 ,,.5.巩固练习第1,2,3题6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再7.例题讲评例3.求证:当且仅当不等式组成立时,角为第三象限角.8.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系?显然: 终边相同的角的同一三角函数值相等.即有公式一:(其中)9.例题讲评例4.确定下列三角函数值的符号,然后用计算器验证:(1); (2); (3); (4)例5.求下列三角函数值:(1); (2); (3)利用公式一,可以把求任意角的三角函数值, 转化为求到(或到)角的三角函数值. 另外可以直接利用计算器求三角函数值,但要注意角度制的问题.10.巩固练习第4,5,6,7题11.学习小结(1)本章的三角函数定义与初中时的定义有何异同?(2)你能准确判断三角函数值在各象限内的符号吗?(3)请写出各三角函数的定义域;(4)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?五、评价设计1.作业:习题1.2 A组第1,2题.2.比较角概念推广以后,三角函数定义的变化.思考公式一的本质是什么?要做到熟练应用.另外,关于三角函数值在各象限的符号要熟练掌握,知道推导方法.第二课时任意角的三角函数(二)【复习回顾】1、三角函数的定义;2、三角函数在各象限角的符号;3、三角函数在轴上角的值;4、诱导公式(一):终边相同的角的同一三角函数的值相等;5、三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆.【探究新知】1.引入:角是一个图形概念,也是一个数量概念(弧度数).作为角的函数——三角函数是一个数量概念(比值),但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2.[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米).点,过点作轴交轴于点,则请你观察:根据三角函数的定义:;随着在第一象限内转动,、是否也跟着变化?3.思考:(1)为了去掉上述等式中的绝对值符号,能否给线段、规定一个适当的方向,使它们的取值与点的坐标一致?(2)你能借助单位圆,找到一条如、一样的线段来表示角的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角的终边不在坐标轴时,以为始点、为终点,规定:当线段与轴同向时,的方向为正向,且有正值;当线段与轴反向时,的方向为负向,且有正值;其中为点的横坐标.这样,无论那种情况都有同理,当角的终边不在轴上时,以为始点、为终点,规定:当线段与轴同向时,的方向为正向,且有正值;当线段与轴反向时,的方向为负向,且有正值;其中为点的横坐标.这样,无论那种情况都有4.像这种被看作带有方向的线段,叫做有向线段(direct line segment).5.如何用有向线段来表示角的正切呢?如上图,过点作单位圆的切线,这条切线必然平行于轴,设它与的终边交于点,请根据正切函数的定义与相似三角形的知识,借助有向线段,我们有我们把这三条与单位圆有关的有向线段,分别叫做角的正弦线、余弦线、正切线,统称为三角函数线.6.探究:(1)当角的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?(2)当的终边与轴或轴重合时,又是怎样的情形呢?7.例题讲解例1.已知,试比较的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质.8.练习第1,2,3,4题9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用.【评价设计】1.作业:比较下列各三角函数值的大小(不能使用计算器)(1)、(2)、(3)、2.练习三角函数线的作图.。
2019-2020学年高中数学 1.1.1任意角学案 理 新人教A版必修4.doc
2019-2020学年高中数学 1.1.1任意角学案 理 新人教A 版必修4一、复习: 角的概念:(1)在初中我们把有公共顶点的 组成的 叫做角,这个公共顶点叫做角的 ,这两条射线叫做角的 。
(2)角可以看成是一条射线绕着它的 从一个位置旋转到另一个位置所成的 。
二、自主学习:自学53P P ,回答: 1.正角、负角、零角:一条射线绕着它的端点旋转有两个相反方向:方向和 方向,习惯上规定:按照 方向旋转而成的角为正角;按照 方向旋转而成的角为负角,当射线没有 时为零角。
注意:(1)在画图时,常用带箭头的弧来表示旋转的 和旋转的 ,旋转生成的角,又常叫做 角。
(2)引入正角、负角的概念后,角的减法运算可以转化为角的加法运算,即α—β可以化为 ,这就是说,各角和的旋转量等于各角旋转量的。
2.终边相同的角:设α表示任意角,所有与α终边相同的角以及α本身组成一个集合,这个集合可记为S = 。
终边相同的角有 个,相等的角终边一定 ,但终边相同的角不一定 。
3.象限角:在直角坐标系中讨论角,是使角的顶点与 重合,角的始边与 重合,角的终边在第几象限,就把这个角叫做 ,如果终边在坐标轴上,就认为这个角 属于任何象限。
三、典型例题:1.自学4P 、5P 例1、例2、例4完成练习A2.自学5P 例3完成下面填空:终边落在x 轴正半轴上角的集合表示为 终边落在x 轴负半轴上角的集合表示为终边落在x 轴上角的集合表示为终边落在y 轴正半轴上角的集合表示为 终边落在y 轴负半轴上角的集合表示为 终边落在坐标轴上角的集合表示为第一象限角的集合表示为 第二象限角的集合表示为第三象限角的集合表示为第四象限角的集合表示为3.补充例题:例5.已知α是第一象限的角,判断2α、α2分别是第几象限角?练习:7P 练习B2、3、5 4.小结: 5.作业:1.在“①160°②480°③-960°④-1600°”这四个角中属于第二象限角的是( )A.①B.①②C.①②③D.①②③④2.下列命题中正确的是( )A.终边相同的角都相等B.第一象限的角比第二象限的角小C.第一象限角都是锐角D.锐角都是第一象限角3.射线OA 绕端点O 逆时针旋转120°到达OB 位置,由OB 位置顺时针旋转270°到达OC 位置,则∠AOC =( )A.150°B.-150°C.390°D.-390°4.如果α的终边上有一个点P (0,-3),那么α是( )A.第三象限角B.第四象限角C.第三或四象限角D.不属于任何象限角5.与405°角终边相同的角( )A. k ·360°-45° k ∈zB. k ·360°-405° k ∈zC. k ·360°+45° k ∈zD. k ·180°+45° k ∈z 6.(2005年全国卷Ⅲ)已知α是第三象限角,则2α所在象限是( )A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限7.把-1050°表示成k ·360°+θ(k ∈z )的形式,使θ最小的θ值是8.(2005年上海抽查)已知角α终边与120°终边关于y则α的集合S =.9.已知β终边在图中阴影所表示的范围内(不包括边界), 那么β∈°。
2019-2020学年数学新人教A版必修4学案:1.2.1 任意角的三角函数(第1课时)
课题:1.2.1任意角的三角函数(第一课时)一、三维目标:知识与技能: 掌握任意角的三角函数的定义;已知角α终边上一点,会求角α的各三角函数值。
过程与方法: 通过回忆锐角三角函数概念,体会引入象限角概念后,用角的终边上点的坐标比表示锐角三角形函数的意义,体会用单位圆上的点的坐标表示三角函数的简单,方便,反映本质。
情感态度与价值观: 通过任意角的三角函数的学习,培养科学的态度,体会数学美感。
二、学习重、难点:重点 :任意角的三角函数的定义。
难点 : 理解定义,用单位圆上的点的坐标刻画三角函数。
三、学法指导: 阅读教材P11-12页.回忆初中学过的锐角三角函数概念,结合象限角概念,在直角坐标系中用角的终边上点的坐标比表示任意角三角形函数.。
四、知识链接: 锐角的三角函数定义(教材P11页)。
五、学习过程:任意角的三角函数的定义:问题1.角推广后,锐角的三角函数的定义不再适用,我们必须对三角函数重新定义。
你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?问题2.对于确定的角,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢?为什么?单位圆:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆称为单位圆。
上述P 点就是α的终边与单位圆的交点, 锐角α的三角函数用单位圆上点的坐标如何表示。
问题3. 任意角的三角函数定义:问题4.任意角的三角函数定义与点P 的位置是否有关?当α的终边落在x 轴、y 轴上时,哪些三角函数值无意义?问题5.三角函数为什么是实数与实数的对应?B 例1.求下列各角的正弦、余弦、正切值:3π、 32π、35π问题6.已知角终边上任一点P (x , y ),如何求它的三角函数值呢?A 例2.已知角α的终边过点P(-2,-4),求α的正弦、余弦和正切值。
问题7:请根据任意角的三角函数定义,将正弦、余弦和正切函数在弧度制下的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:六、达标训练:A1.口答下列各特殊角的正弦、余弦、正切值:0°、90°、180°、270°、360°。
2019_2020学年高中数学第1章三角函数1.1.1任意角导学案新人教A版必修4
1.1.1 任意角[教材研读]预习课本P2~5,思考以下问题1.角是如何定义的?角的概念推广后,分类的标准是什么?可分为哪几类?2.象限角的含义是什么?判断角所在的象限时,要注意哪些问题?3.终边相同的角一定相等吗?如何表示终边相同的角?[要点梳理]1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示如图,OA是角α的始边,OB是角α的终边,O是角α的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类(按旋转方向分)把角放在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[自我诊断]判断(正确的打“√”,错误的打“×”)1.-30°是第四象限角.( )2.钝角是第二象限的角.( )3.终边相同的角一定相等.[答案] 1.√ 2.√ 3.×题型一任意角的概念思考:如果一个角的始边与终边重合,那么这个角一定是零角吗?提示:不一定,若角的终边未作旋转,则这个角是零角.若角的终边作了旋转,则这个角就不是零角.下列命题正确的是( )A.终边与始边重合的角是零角B.终边和始边都相同的两个角一定相等C.在90°≤β<180°范围内的角β不一定是钝角D.小于90°的角是锐角[思路导引] 对角的概念的理解关键是弄清角的终边与始边及旋转方向和大小.[解析]终边与始边重合的角还可能是360°,720°,…,故A错;终边和始边都相同的两个角可能相差360°的整数倍,如30°与-330°,故B错;由于在90°≤β<180°范围内的角β包含90°角,所以不一定是钝角,C正确;小于90°的角可以是0°,也可以是负角,故D错误.[答案] C理解与角的概念有关问题的关键关键在于正确理解象限角与锐角、直角、钝角、平角、周角等的概念,弄清角的始边与终边及旋转方向与大小.另外需要掌握判断结论正确与否的技巧:判断结论正确需要证明,而判断结论不正确只需举一个反例即可.【温馨提示】角的概念的推广重在“旋转”,理解“旋转”二字应明确以下三个方面:(1)旋转的方向;(2)旋转角的大小;(3)射线未作任何旋转时的位置.[跟踪训练]如图,射线OA绕端点O旋转90°到射线OB的位置,接着再旋转-30°到OC的位置,则∠AOC的度数为 ________.[解析]∵∠AOC=∠AOB+∠BOC=90°+(-30°)=60°,∴∠AOC的度数为60°.[答案]60°题型二终边相同的角与象限角思考1:终边相同的角一定是相等的角吗?它们之间有什么关系?如何把这一类角表示出来?提示:不一定.相等的角的终边一定相同,但终边相同的角不一定相等,它们相差360°的整数倍.可以用集合{β|β=α+k·360°,k∈Z}表示.思考2:若α为第一象限角,则α的顶点、始边、终边各有什么特点?提示:若α为第一象限角,则α的顶点为坐标原点、始边与x轴的非负半轴重合,终边处在第一象限.已知角α=2018°.(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.[思路导引] 解题关键是理解与角α终边相同的角的表示形式.[解](1)由2018°除以360°,得商为5,余数为218°.∴取k=5,β=218°,α=5×360°+218°.又β=218°是第三象限角,∴α为第三象限角.(2)与2018°终边相同的角为k ·360°+2018°(k ∈Z ).令-360°≤k ·360°+2018°<720°(k ∈Z ), 解得-6109180≤k <-3109180(k ∈Z ).所以k =-6,-5,-4.将k 的值代入k ·360°+2018°中,得角θ的值为-142°,218°,578°.(1)把任意角化为α+k ·360°(k ∈Z 且0°≤α<360°)的形式,关键是确定k .可以用观察法(α的绝对值较小)也可用竖式除法.(2)要求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k 的值.[跟踪训练]在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角. (1)-150°;(2)650°;(3)-950°15′.[解] (1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.题型三 角αn(n ∈N *)所在象限的确定思考:我们知道120°为第二象限角,60°为第一象限角,由此推断若α为第二象限角,则α2为第一象限角,是否正确?提示:不一定.要确定α2的终边落到第几象限.若α是第二象限角,则α2是第几象限的角?[思路导引] 已知角α是第几象限角,判断αn所在象限,主要方法是解不等式并对k 进行分类讨论,考查角的终边位置.[解] ∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°(k ∈Z ),∴45°+k ·180°<α2<90°+k ·180°(k ∈Z ).解法一:①当k =2n (n ∈Z )时,45°+n ·360°<α2<90°+n ·360°(n ∈Z ),即α2是第一象限角;②当k =2n +1(n ∈Z )时,225°+n ·360°<α2<270°+n ·360°(n ∈Z ),即α2是第三象限角.故α2是第一或第三象限角.解法二:∵45°+k ·180°表示终边为一、三象限角平分线的角,90°+k ·180°(k ∈Z )表示终边为y 轴的角,∴45°+k ·180°<α2<90°+k ·180°(k ∈Z )表示如图中阴影部分图形.即α2是第一或第三象限角.αn所在象限的判断方法 已知角α所在象限,要确定角αn所在象限,有两种方法:(1)用不等式表示出角αn的范围,然后对n 的取值分情况讨论:被n 整除;被n 除余1;被n 除余2,…,被n 除余n -1.从而得出结论.(2)作出各个象限的从原点出发的n 等分射线,它们与坐标轴把周角分成4n 个区域.从x 轴非负半轴起,按逆时针方向把这4n 个区域依次循环标上1,2,3,4.α的终边在第几象限,则标号为几的区域,就是αn 的终边所落在的区域.如此,αn所在的象限就可以由标号区域所在的象限直观地看出.[跟踪训练]已知α是第一象限角,则角α3的终边可能落在________.(填写所有正确的序号)①第一象限 ②第二象限 ③第三象限 ④第四象限 [解析] ∵α是第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z ,∴k 3·360°<α3<k3·360°+30°. 当k =3m ,m ∈Z 时,m ·360°<α3<m ·360°+30°,∴角α3的终边落在第一象限.当k =3m +1,m ∈Z 时,m ·360°+120°<α3<m ·360°+150°,∴角α3的终边落在第二象限.当k =3m +2,m ∈Z 时,m ·360°+240°<α3<m ·360°+270°,∴角α3的终边落在第三象限,故选①②③.[答案] ①②③课堂归纳小结1.本节课的重点是象限角及终边相同的角,难点是αn所在象限的判断.2.本节课重点掌握的规律方法 (1)任意角的概念,见典例1. (2)终边相同的角与象限角,见典例2.(3)αn(∈N *)所在象限的判定方法,见典例3.3.本节课的易错点有以下几点(1)对于角的理解,要明确该角是按顺时针方向还是逆时针方向旋转形成的,按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角.(2)把任意角化为α+k ·360°(k ∈Z ,且0°≤α<360°)的形式,关键是确定k ,可以用观察法(α的绝对值较小),也可以用除法.(3)已知角的终边范围,求角的集合时,先写出边界对应的一个角,再写出0°~360°内符合条件的角的范围,最后都加上k ·360°,得到所求.1.下列说法正确的是( )A .三角形的内角一定是第一、二象限角B .钝角不一定是第二象限角C .终边与始边重合的角是零角D .钟表的时针旋转而成的角是负角[解析] A 错,若一内角为90°,则不属于任何象限;B 错,钝角一定是第二象限角;C 错,若角的终边作了旋转,则不是零角;D 对.[答案] D2.-361°的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] 因为-361°=-1°-360°,则-361°与-1°的角终边相同,-1°为第四象限角,则-361°为第四象限角.[答案] D3.已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限[解析] 由于k ·360°+180°<α<k ·360°+270°,k ∈Z ,得k 2·360°+90°<α2<k2·360°+135°. 当k 为偶数时,α2为第二象限角;当k 为奇数时,α2为第四象限角.[答案] D4.将-885°化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是________.[解析]因为-885°÷360°=-3…195°,且0°≤α<360°,所以k=-3,α=195°,故-885°=195°+(-3)·360°.[答案]195°+(-3)·360°5.若角α与β的终边在一条直线上,则α与β的关系是________.[解析]因为α与β的终边在一条直线上,所以α与β相差180°的整数倍.[答案]α=β+k·180°,k∈Z。
2019-2020高中数学第一章三角函数1-2-1任意角的三角函数学案新人教A版必修4
2.(1)已知点P(tanα,cosα)在第四象限,则角α终边在( )
A.第一象限B.第二象限
C.第三象限D.第四象限
(2)下列各式:
①sin(-100°);②cos(-220°);
③tan(-10);④cos π.
其中符号为负的有( )
A.1个B.2个
C.3个D.4个
【解析】(1)因为点P在第四象限,所以有 由此可判断角α终边在第三象限.
(1)已知角α的终边在直线上时,常用的解题方法有以下两种:
①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.
②在α的终边上任选一点P(x,y),P到原点的距离为r(r>0).则sinα= ,cosα= .已知α的终边求α的三角函数时,用这几个公式更方便.
(2)当角α的终边上点的坐标以参数形式给出时,一定注意对字母正、负的辨别,若正、负未定,则需分类讨论.
[再练一题]
1.设函数f(θ)= sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.若点P的坐标为 ,求f(θ)的值. 【导学号:00680006】
【解】由点P的坐标为 和三角函数定义得sinθ= ,cosθ= ,
所以f(θ)= sinθ+cosθ= × + =2.
3.sin 1·cos 2·tan 3的值是( )【导学号:00680007】
(1)若sinα= ,cosα=- ,则在角α终边上的点有( )
A.(-4,3)B.(3,-4)
C.(4,-3)D.(-3,4)
(2)若α=- ,则sinα=________,cosα=________,tanα=________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备注
第1页共4页
【自主探究】
例1已知角α的终边经过点P(2,-3),求角α的正弦、余弦、正切值.
变式(1)已知角α的终边经过点P(﹣2a,3a)(a≠0),求角α的正弦、余弦、正切值.
变式(2)已知角α的终边与直线5x+12y=0重合,求α的正弦、余弦、正切值.
变式(3)已知角420°的终边上有一点P(4,a),求a的值.
例2确定下列三 角函数值的符号:
(1)cos (2)sin(-465°)(3)tan
例3求函数的值域
备注
第Hale Waihona Puke 页共4页【课堂检测】1已知角 的终边过点P(-12,5) ,求 的三个三角函数值.
2确定下列三角函数值的符号:
(1)cos2500(2)tan(- 6720)(3)si n( )
3 (1)若cosα<0且tanα<0,试确定α为第几象限角.
备注
第4页共4页
(2)已知 ,判断 是第几象限角
4若角α是第二象限角,且 ,则 是第_____象限角.
备注
第3页共4 页
【巩固练习】
1已知已知角α的终边经过点P(-3,-4),求角α的正弦、余弦、正切值.
2已知 ,且 为第四象限角,则 _______.
3函数f(x)= 的值域是__________
4已知角α的终边经 过点P(a,5)(a 0), ,求角α的正弦、余弦、正切值.
2019-2020学年高中数学专题一任意角的三角函数学案新人教A版必修4
【学习目标】
1、掌握任意角的正弦、余弦、正切的定义。
2、掌握正弦、余弦、正切函数的定义域和这三种函数值在各象限的符号。
【问题情境】
1、任意角的正弦、余弦、正切的定义是什么?
2、任意角的正弦、余弦、正切的定义域分别是什么?它们在各 个象限的符号如何?