实验二(存储管理)

合集下载

存储管理实验报告

存储管理实验报告
int num, num2; //要调度的作业数和要回收的区域数
int m=0;//已分配作业数
int flag;//分配成功标志
int isup,isdow n; //回收区域存在上邻和下邻的标志
int is=0;
struct jcb {
char n ame[10];
char state;
int ntime; //所需时间
给作业占用;另一部分又成为一个较小的空闲区,留在空闲区表中。 为了尽量减少由于
分割造成的空闲区,尽可能分配低地址部分的空闲区,而尽量保存高地址部分有较大的
连续空闲区域,以利于大型作业的装入。 为此,在空闲区说明表中,把每个空闲区按其 地址顺序从低到高登记, 即每个后继的空闲区其起始地址总是比前者大。为了方便查找
为了说明那些分区是空闲的,可以用来装入新作业,必须有一张空闲说明表
长度——指出从起始地址开始的一个连续空闲的长度。
状态一一有两种状态,一种是 “未分配”状态,指出对应的由起址指出的某个长度的 区域是空闲区;另一种是 “空表目”状态, 表示表中对应的登记项目是空白(无效) 可用来登记新的空闲区(例如,作业完成后,它所占的区域就成了空闲区,应找一个
{
JCB *first;
if(ready==NULL) ready=p;
else{
first=ready;
while(first->li nk!=NULL)
first=first->li nk;
first->li nk=p;
p->li nk=NULL;
}
}
void sort3()/*建立对已分配作业队列的排列函数,直接插在队列之尾*/
实验三、存储管理

存储管理课程设计

存储管理课程设计

存储管理课程设计一、课程目标知识目标:1. 让学生掌握存储管理的基本概念、原理和技术;2. 使学生了解不同类型的存储设备及其特点;3. 引导学生了解操作系统中存储管理的作用和功能;4. 帮助学生掌握内存分配、回收和置换策略;5. 让学生了解虚拟存储器的基本原理及其在操作系统中的应用。

技能目标:1. 培养学生运用存储管理知识分析和解决实际问题的能力;2. 提高学生设计和实现简单存储管理策略的能力;3. 培养学生使用操作系统提供的存储管理功能进行编程的能力;4. 培养学生查阅相关资料,自主学习存储管理新技术的能力。

情感态度价值观目标:1. 培养学生对计算机操作系统和存储管理的兴趣,激发学习热情;2. 培养学生具备良好的团队协作精神,共同探讨和解决存储管理问题;3. 引导学生认识到存储管理在计算机系统中的重要性,树立正确的资源管理意识;4. 培养学生严谨、务实的科学态度,对待存储管理技术的研究和应用。

课程性质:本课程为计算机科学与技术专业核心课程,旨在让学生深入了解存储管理的基本原理和实际应用。

学生特点:学生已具备一定的计算机基础知识和编程能力,具有一定的抽象思维能力,但可能对存储管理的具体实现和操作尚不熟悉。

教学要求:结合学生特点,课程设计应注重理论与实践相结合,通过案例分析和实际操作,帮助学生深入理解存储管理知识,提高解决实际问题的能力。

同时,注重培养学生的自主学习能力和团队协作精神。

在教学过程中,将课程目标分解为具体的学习成果,以便进行有效的教学设计和评估。

二、教学内容1. 存储管理概述:介绍存储管理的基本概念、任务和目标,以及存储设备的分类和特点。

教材章节:第一章 存储管理概述2. 内存管理:讲解内存分配、回收和置换策略,包括固定分区、可变分区、分页、分段等内存管理技术。

教材章节:第二章 内存管理3. 虚拟存储器:介绍虚拟存储器的基本原理、实现技术和页替换算法,分析其在操作系统中的作用。

教材章节:第三章 虚拟存储器4. 存储保护与共享:阐述存储保护机制,以及存储共享在多道程序设计中的应用。

存储管理实验报告

存储管理实验报告

存储管理实验报告一、实验目的1.了解存储管理的概念及作用;2.掌握存储管理的基本操作和技术;3.熟悉常见的存储管理工具和方法;4.分析存储管理对系统性能的影响。

二、实验内容1.了解存储管理的基本概念:存储管理是指对计算机中的存储器进行有效管理和利用的一种技术手段。

主要包括内存管理和外存管理两个方面。

2.学习常见的存储管理工具和方法:(1)内存管理方案:连续内存管理、非连续内存管理和虚存管理;(2)外存管理方案:磁盘存储管理、文件系统管理和缓存管理等。

3.实际操作存储管理工具:(1)使用操作系统的内存管理工具,如Windows的任务管理器和Linux的top命令等,查看内存使用情况和进程占用的内存大小;(2)使用磁盘管理工具,如Windows的磁盘管理器和Linux的fdisk命令等,查看磁盘的分区情况和使用状况;(3)使用文件系统管理工具,如Windows的资源管理器和Linux的ls命令等,查看文件和目录的存储和管理状态。

4.分析存储管理对系统性能的影响:(1)使用性能监控工具,如Windows的性能监视器和Linux的sar 命令等,实时监测系统的内存、磁盘和文件系统等性能指标;(2)对比不同存储管理方案的优缺点,分析其对系统性能的影响;(3)根据实验结果提出优化存储管理的建议。

三、实验步骤1.阅读相关文献和资料,了解存储管理的基本概念和原理;2.使用操作系统的内存管理工具,查看当前系统内存的使用情况;3.使用操作系统的磁盘管理工具,查看当前系统磁盘的分区情况;4.使用操作系统的文件系统管理工具,查看当前系统文件和目录的存储和管理状态;5.使用性能监控工具,实时监测系统的内存、磁盘和文件系统等性能指标;6.根据实验结果,分析存储管理对系统性能的影响;7.结合实验结果,提出优化存储管理的建议。

四、实验结果1.使用内存管理工具查看系统内存使用情况,发现部分进程占用内存过高,导致系统运行缓慢;2.使用磁盘管理工具查看系统磁盘分区情况,发现磁盘分区不合理,造成磁盘空间利用率较低;3.使用文件系统管理工具查看文件和目录的存储和管理状态,发现有大量重复和冗余的文件,需要进行清理和整理;4.使用性能监控工具实时监测系统的性能指标,发现内存和磁盘的利用率较高,需要优化存储管理。

操作系统存储管理实验报告

操作系统存储管理实验报告
4 / 37
操作系统实验·报告
typedef struct pfc_struct pfc_type; (2)模块结构 (伙伴系统) # define Inital 1024 //初始时的总内存
NODE root=(memory_node *)malloc(1*sizeof(memory_node));//根节点 int chip=0; // 记录总的碎片大小
total = 256 use =127 remain_max = 0 flag = 0 pid =0
total = 256 use = 0 remain_max = 256 flag = 0 pid =-1
total = 1024 use = 0 remain_max = 512 flag = 1 pid =-1
total = 512 use = 0 remain_max = 512 flag = 0 pid =-1
total = 512 use = 267 remain_max = 0 flag = 0 pid = -1
6 / 37
操作系统实验·报告
三、实验理论分析
7 / 37
操作系统实验·报告
(伙伴算法) Buddy System 是一种经典的内存管理算法。在 Unix 和 Linux 操作系统中都有用到。其 作用是减少存储空间中的空洞、减少碎片、增加利用率。避免外碎片的方法有两种: a.利用分页单元把一组非连续的空闲页框映射到非连续的线性地址区间。 b.开发适当的技术来记录现存的空闲连续页框块的情况,以尽量避免为满足对小块的 请 求而把大块的空闲块进行分割。 基于下面三种原因,内核选择第二种避免方法: a.在某些情况下,连续的页框确实必要。 b.即使连续页框的分配不是很必要,它在保持内核页表不变方面所起的作用也是不容 忽视的。假如修改页表,则导致平均访存次数增加,从而频繁刷新 TLB。 c.通过 4M 的页可以访问大块连续的物理内存,相对于 4K 页的使用,TLB 未命中率降 低,加快平均访存速度。 Buddy 算法将所有空闲页框分组为 10 个块链表,每个块链表分别包含 1,2,4,8,16,32,64,128,256,512 个连续的页框,每个块的第一个页框的物理地址是该块 大小的整数倍。如,大小为 16 个页框的块,其起始地址是 16*2^12 的倍数。 例,假设要请求一个 128 个页框的块,算法先检查 128 个页框的链表是否有空闲块, 如果没有则查 256 个页框的链表,有则将 256 个页框的块分裂两份,一 份使用,一份 插入 128 个页框的链表。如果还没有,就查 512 个页框的链表,有的话就分裂为 128, 128,256,一个 128 使用,剩余两个插入对应链 表。如果在 512 还没查到,则返回 出错信号。 回收过程相反,内核试图把大小为 b 的空闲伙伴合并为一个大小为 2b 的单独块,满足 以下条件的两个块称为伙伴: a.两个块具有相同的大小,记做 b。 b.它们的物理地址是连续的。 c.第一个块的第一个页框的物理地址是 2*b*2^12 的倍数。 该算法迭代,如果成功合并所释放的块,会试图合并 2b 的块来形成更大的块。 为了模拟 Buddy System 算法,我采用了数的数据结构,并使用了结构体,来记录各项 数据与标记,虽然不是真正的操作系统使用的方法,但成功模拟了插入和回收的过程。 在回收时我采用物理上的合并——即删除实际的物理节点,释放空间。然而实际中可 能根据需要仅仅是删除了标记项,使之标记成没用过的,从而避免了合并,会提高下 一次的插入操作。 碎片百分比 = 碎片总大小/总内存大小 (置换算法)

计算机操作系统实验课实验报告

计算机操作系统实验课实验报告

计算机操作系统实验课实验报告实验报告实验课程:计算机操作系统学生姓名:XXX学号:XXXX专业班级:软件2022年年12月月25日目录实验一熟悉PWindowsXP中的进程与线程..1实验二进程调度............................................4实验三死锁避免—银行家算法的实现......13实验四存储管理..........................................19实验一熟悉PWindowsXP中的进程与线程一、实验名称熟悉WindowsXP中的进程与线程二、实验目的1、熟悉Windows中任务管理器的使用。

2、通过任务管理器识别操作系统中的进程与线程的相关信息。

3、掌握利用spy++、exe来察瞧Windows中各个任务的更详细信息。

三、实验结果分析1、启动操作系统自带的任务管理器:方法:直接按组合键Ctrl+Alt+Del,或者就是在点击任务条上的“开始”“运行”,并输入“taskmgr、exe”。

2、调整任务管理器的“查瞧”中的相关设置,显示关于进程的以下各项信息,并完成下表:表一:统计进程的各项主要信息序号进程名称进程ID 线程数量占用内存优先级占CPU时间虚拟内存1Bddownloader、exe7312329980k标准0:00:009200k2Taskmgr、exe722834124k高0:00:043372k3BaiDuSdTray、exe5144308588k标准0:00:1543652k 任务管理器无法结束进程,原因就是该系统就是系统进程。

4、在任务管理器中找到进程“explorer、exe”,将之结束掉,并将桌面上您打开的所有窗口最小化,瞧瞧您的计算机系统起来什么样的变化桌面上图标菜单都消失了、得到的结论explorer、exe就是管理桌面图标的文件(说出explorer、exe进程的作用)。

5、运行“spy++、exe”应用软件,点击按钮“”,切换到进程显示栏上,查瞧进程“explorer、exe”的各项信息,并填写下表:进程:explorer、exe中的各个线程序号进程ID线程ID基本优先级当前优先级CPU时间上下文开关1000016B88100:00:0649983362000016B8000003EC15150:00:0083000016B88100:00:00114000016B800000A0C8100:00:00135000016B8880:00:078171386000016B8000013D88100:00:0023266、注意某些线程前有“+”,如图所示:,说明二者之间的差异前有“+”其器线程下有窗口。

操作系统实验指导书

操作系统实验指导书

操作系统实验指导书一、实验说明1、实验目的实验是操作系统原理课程中不可缺少的重要教学环节,实验目的是使学生理论联系实际,使学生在实践探索中去发现问题、去解决问题,提高了学生获取知识和应用技术的能力,培养了学生分析和解决问题的能力。

《操作系统原理》要求理论与实践相结合,本门实验课程是对《操作系统原理》课堂教学的一个重要补充,与理论学习起着相辅相成的作用,是实施《操作系统原理》教学的一个重要组成部分。

通过本实验课的实践学习,可以增强本专业的学生对系统实现的认识。

对加深理解和掌握操作系统相关原理有重要帮助。

2、实验要求进一步了解和掌握操作系统原理,提高系统设计的能力。

对每一实验题目,应独立完成,并要求:·上机前,学生必须做好充分的实验准备工作,掌握与实验相关的背景知识,用任一种高级语言编写程序。

·上机时,认真调试,并观察、记录程序运行过程中出现的现象和问题。

·上机后,分析实验结果并写出实验报告。

3、实验报告要求每个实验(包括选做的)均应编写实验报告,学生实验后要写出严谨的、实事求是的、文字通顺的、字迹公整的实验报告。

实验报告应包括以下内容:(1)实验题目(2)实验目的(3)实验内容●程序中使用的数据结构及符号说明●流程图●源程序清单并附上注释(4)实验结果及分析●运行结果(必须是上面程序清单所对应输出的结果)●对运行情况所作的分析以及本次调试程序所取得的经验。

如果程序未能通过,应分析其原因。

二、实验内容实验一熟悉使用计算机系统一、实验名称:熟悉使用计算机系统二、实验目的与要求通过对Windows操作系统的使用,熟悉Windows操作系统中的基本概念,如单用户、多任务、进程和文件等,熟悉Windows中命令行方式下常用命令的使用方法;进一步熟悉TC语言与开发环境,为以后的实验打好基础。

三、实验内容1.开机后,熟悉Windows的界面(桌面、任务栏、开始按钮<点击后出现“开始”菜单>、我的电脑图标、回收站、我的文档)。

操作系统存储管理实验报告

操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的操作系统的存储管理是计算机系统中非常重要的组成部分,它直接影响着系统的性能和资源利用率。

本次实验的目的在于深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握存储分配、回收、地址转换等关键技术,并对不同存储管理策略的性能进行分析和比较。

二、实验环境本次实验在 Windows 10 操作系统下进行,使用 Visual Studio 2019 作为编程环境,编程语言为 C++。

三、实验内容(一)固定分区存储管理1、原理固定分区存储管理将内存空间划分为若干个固定大小的分区,每个分区只能装入一道作业。

分区的大小可以相等,也可以不等。

2、实现创建一个固定大小的内存空间数组,模拟内存分区。

为每个分区设置状态标志(已分配或空闲),并实现作业的分配和回收算法。

3、实验结果与分析通过输入不同大小的作业请求,观察内存的分配和回收情况。

分析固定分区存储管理的优缺点,如内存利用率低、存在内部碎片等。

(二)可变分区存储管理1、原理可变分区存储管理根据作业的实际需求动态地划分内存空间,分区的大小和数量是可变的。

2、实现使用链表或数组来管理内存空间,记录每个分区的起始地址、大小和状态。

实现首次适应、最佳适应和最坏适应等分配算法,以及分区的合并和回收算法。

3、实验结果与分析比较不同分配算法的性能,如分配时间、内存利用率等。

观察内存碎片的产生和处理情况,分析可变分区存储管理的优缺点。

(三)页式存储管理1、原理页式存储管理将内存空间和作业都划分为固定大小的页,通过页表将逻辑地址转换为物理地址。

2、实现设计页表结构,实现逻辑地址到物理地址的转换算法。

模拟页面的调入和调出过程,处理缺页中断。

3、实验结果与分析测量页式存储管理的页面置换算法(如先进先出、最近最少使用等)的命中率,分析其对系统性能的影响。

探讨页大小的选择对存储管理的影响。

(四)段式存储管理1、原理段式存储管理将作业按照逻辑结构划分为若干个段,每个段有自己的名字和长度。

操作系统实验-存储管理

操作系统实验-存储管理

操作系统实验-存储管理操作系统实验-存储管理1、引言1.1 概述在操作系统中,存储管理是一个关键的任务。

它负责将程序和数据加载到内存中,管理内存的分配和回收,并确保不同进程之间的内存互不干扰。

本实验旨在深入了解并实践存储管理的相关概念和算法。

1.2 目的本实验的目的是让学生通过实际操作,了解存储管理的基本原理和常用算法,包括分页、分段和虚拟内存等。

通过实验,学生将学会如何实现内存分配和回收,以及处理内存碎片等问题。

1.3 实验环境- 操作系统:Windows、Linux、MacOS等- 编程语言:C、C++等2、实验步骤2.1 实验准备- 安装相应的开发环境和工具- 创建一个空白的项目文件夹,用于存放实验代码和相关文件2.2 实验一、分页存储管理- 理解分页存储管理的概念和原理- 实现一个简单的分页存储管理系统- 设计测试用例,验证分页存储管理的正确性和有效性2.3 实验二、分段存储管理- 理解分段存储管理的概念和原理- 实现一个简单的分段存储管理系统- 设计测试用例,验证分段存储管理的正确性和有效性2.4 实验三、虚拟存储管理- 理解虚拟存储管理的概念和原理- 实现一个简单的虚拟存储管理系统- 设计测试用例,验证虚拟存储管理的正确性和有效性3、实验结果分析3.1 分页存储管理结果分析- 分析分页存储管理系统的性能优缺点- 比较不同页面大小对系统性能的影响3.2 分段存储管理结果分析- 分析分段存储管理系统的性能优缺点- 比较不同段大小对系统性能的影响3.3 虚拟存储管理结果分析- 分析虚拟存储管理系统的性能优缺点- 比较不同页面置换算法对系统性能的影响4、总结与展望4.1 实验总结- 总结本次实验的收获和体会- 分析实验中遇到的问题和解决方法4.2 实验展望- 探讨存储管理领域的未来发展方向- 提出对本实验的改进意见和建议附件:无法律名词及注释:- 存储管理:操作系统中负责管理内存的任务,包括内存分配、回收和管理等功能。

实验室储存和管理科研数据规定

实验室储存和管理科研数据规定

实验室储存和管理科研数据规定为了确保科研实验室的数据管理工作能够有序进行,提高数据的安全性和可用性,特制定以下实验室储存和管理科研数据规定。

一、数据储存要求1. 数据备份:每位科研人员在进行实验室科研工作时,应对重要的科研数据进行备份,确保数据不会因为设备损坏或其他原因而丢失。

2. 数据分类:科研数据应按项目或实验进行分类存储,方便后期查找和使用。

3. 数据传输:在数据传输过程中,应采取合适的加密手段,确保数据的安全传输。

二、数据标识和命名1. 数据标识:每份数据应标注清楚数据的来源、时间、创建者等基本信息,方便后续查找和使用。

2. 数据命名:科研数据的命名应简洁明了,同时保持唯一性,避免命名冲突导致数据混乱。

三、数据权限管理1. 数据权限划分:根据科研人员的职责和需要,对科研数据进行权限划分,确保数据的访问和修改仅限于授权人员。

2. 数据分享:科研人员在需要分享科研数据时,应确保数据的安全性,仅分享给需要了解或参与研究的人员,并签订合适的保密协议。

四、数据存储设备管理1. 定期检测:定期检测实验室中的数据存储设备,确保设备运行正常,数据存储安全。

2. 定期维护:定期对数据存储设备进行维护,清理垃圾文件、规范数据存储结构等。

3. 设备备份:重要数据存储设备应进行备份,确保数据在设备故障时不会丢失。

五、数据使用和审计1. 合理使用:科研人员在使用实验室储存的科研数据时,应遵守相关规定,不得将数据用于非法用途或超限使用。

2. 数据审计:对实验室储存和管理的科研数据进行定期审计,发现问题及时纠正,确保数据的完整性和安全性。

六、数据销毁1. 合规销毁:在科研项目结束或数据过期后,科研人员应按照相关规定对数据进行合规销毁,避免数据泄露和滥用。

七、违规处理对于违反实验室储存和管理科研数据规定的行为,将按照实验室规章制度进行相应处理,包括但不限于口头警告、书面通报批评、责令停止使用实验室储存设备等。

以上为实验室储存和管理科研数据规定的相关要求,希望所有科研人员严格遵守,共同维护实验室数据的安全和可靠性。

分区存储管理实验报告

分区存储管理实验报告

分区存储管理实验报告分区存储管理实验报告一、引言分区存储管理是计算机操作系统中的重要概念之一,它的目的是将计算机的内存划分为若干个不同的区域,以便更有效地管理和利用内存资源。

本实验旨在通过实际操作,深入理解分区存储管理的原理和实现方式。

二、实验目的1. 掌握分区存储管理的基本原理;2. 熟悉分区存储管理的实现方式;3. 了解分区存储管理的优缺点。

三、实验方法本实验采用了虚拟机技术,在虚拟机上搭建了一个简单的操作系统环境。

通过操作系统提供的命令和工具,对内存进行分区存储管理的相关操作和观察。

四、实验过程1. 创建分区在操作系统中,我们可以使用命令或工具来创建分区。

通过指定分区的大小和位置,将内存划分为不同的区域。

这些区域可以用来存储不同的程序和数据。

2. 分配内存一旦分区创建完成,我们可以使用操作系统提供的命令或API来分配内存。

分配内存时,需要指定所需内存的大小和分区的位置。

操作系统会检查分区的空闲情况,并将所需内存分配给请求的进程。

3. 回收内存当进程不再使用分配给它的内存时,操作系统可以回收这部分内存,并将其标记为空闲状态。

这样,其他进程可以再次申请并使用这部分内存。

4. 碎片整理在长时间运行的系统中,由于内存的分配和回收,可能会产生内存碎片。

内存碎片是指内存中存在的一些不连续且无法利用的小块空闲内存。

为了更有效地利用内存资源,操作系统可以定期进行碎片整理,将相邻的小块空闲内存合并成较大的连续空闲内存。

五、实验结果通过实验,我们成功地创建了多个分区,并成功地分配了内存给不同的进程。

我们观察到,在内存分配过程中,操作系统会根据分区的空闲情况选择最合适的分区进行分配。

同时,我们还发现了内存碎片的存在,并通过碎片整理操作将碎片合并成更大的连续空闲内存。

六、实验总结分区存储管理是一种有效的内存管理方式,它可以提高内存的利用率,减少内存碎片的产生。

然而,分区存储管理也存在一些缺点。

例如,分区的大小和数量需要提前规划,不够灵活。

《操作系统》课程教学大纲-30学时

《操作系统》课程教学大纲-30学时

《操作系统》课程教学大纲课程编号:030115Z0适用专业:计算机相关专业课程类型:必修课课程性质:专业基础课课程学时:30 课程学分:2一、课程定位操作系统(Operating System)课程是计算机相关专业一门专业基础课程,在课程设置上起着承上启下的作用,其特点是概念多、抽象和涉及面广。

主要任务是:使学生掌握计算机操作系统的基本原理及组成;计算机操作系统的基本概念和相关的新概念、名词及术语;了解计算机操作系统的发展特点、设计技巧和方法;对常用计算机操作系统会进行基本的操作使用。

本课程的学习要求学生具有一定的计算机组成和计算机程序设计基础,先导课程为计算机组成原理、C语言和数据结构,后续课程为网络基础,数据库,Linux技术等。

二、课程目标本课程的教学基本目标:是使学生理解操作系统基本原理,并在此基础上培养学生实际动手编程能力。

1.知识目标(1)理解操作系统的基本原理、组成、基本概念和主要功能;(2)基本掌握常用算法;(3)掌握常用操作系统的基本操作以及基本配置;(4)了解API函数的简单应用。

2.能力目标(1)熟练使用计算机操作系统;(2)能够解决一些简单的应用问题;(3)了解计算机操作系统设计技巧;3.素质目标(1)初步具备辩证思维的能力;(2)具有热爱科学,实事求是的学风和创新意识、创新精神;(3)加强职业道德意识。

三、课程设计1.设计理念以职业能力培养为导向,进行课程开发与设计。

按照人才培养目标要求来确定课程的内容、教学组织、教学方法和手段,注重培养学生分析问题、解决问题的能力、计算机思维能力、自学能力和从业能力。

(2.设计思路(1)以“够用、适用、实用"为目标设计课程教学内容。

(2)考虑后续课程需要,突出重点,强化专业应用。

(3)注重课堂教学互动,老师为主导,学生为主体,引导学生积极思维,培养学生的学习能力。

(4)注重培养学生分析问题、解决问题的能力和自学能力。

四、课程内容与学时分配五、教学设计。

《操作系统》实验二

《操作系统》实验二

《操作系统》实验二一、实验目的本实验旨在加深对操作系统基本概念和原理的理解,通过实际操作,提高对操作系统设计和实现的认知。

通过实验二,我们将重点掌握进程管理、线程调度、内存管理和文件系统的基本原理和实现方法。

二、实验内容1、进程管理a.实现进程创建、撤销、阻塞、唤醒等基本操作。

b.设计一个简单的进程调度算法,如轮转法或优先级调度法。

c.实现进程间的通信机制,如共享内存或消息队列。

2、线程调度a.实现线程的创建、撤销和调度。

b.实现一个简单的线程调度算法,如协同多任务(cooperative multitasking)。

3、内存管理a.设计一个简单的分页内存管理系统。

b.实现内存的分配和回收。

c.实现一个简单的内存保护机制。

4、文件系统a.设计一个简单的文件系统,包括文件的创建、读取、写入和删除。

b.实现文件的存储和检索。

c.实现文件的备份和恢复。

三、实验步骤1、进程管理a.首先,设计一个进程类,包含进程的基本属性(如进程ID、状态、优先级等)和操作方法(如创建、撤销、阻塞、唤醒等)。

b.然后,实现一个进程调度器,根据不同的调度算法对进程进行调度。

可以使用模拟的方法,不需要真实的硬件环境。

c.最后,实现进程间的通信机制,可以通过模拟共享内存或消息队列来实现。

2、线程调度a.首先,设计一个线程类,包含线程的基本属性(如线程ID、状态等)和操作方法(如创建、撤销等)。

b.然后,实现一个线程调度器,根据不同的调度算法对线程进行调度。

同样可以使用模拟的方法。

3、内存管理a.首先,设计一个内存页框类,包含页框的基本属性(如页框号、状态等)和操作方法(如分配、回收等)。

b.然后,实现一个内存管理器,根据不同的内存保护机制对内存进行保护。

可以使用模拟的方法。

4、文件系统a.首先,设计一个文件类,包含文件的基本属性(如文件名、大小等)和操作方法(如创建、读取、写入、删除等)。

b.然后,实现一个文件系统管理器,包括文件的存储和检索功能。

操作系统实验报告三存储器管理实验

操作系统实验报告三存储器管理实验

操作系统实验报告三存储器管理实验操作系统实验报告三:存储器管理实验一、实验目的本次存储器管理实验的主要目的是深入理解操作系统中存储器管理的基本原理和方法,通过实际操作和观察,掌握内存分配与回收的算法,以及页面置换算法的工作过程和性能特点,从而提高对操作系统资源管理的认识和实践能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。

三、实验内容1、内存分配与回收算法实现首次适应算法(First Fit)最佳适应算法(Best Fit)最坏适应算法(Worst Fit)2、页面置换算法模拟先进先出页面置换算法(FIFO)最近最久未使用页面置换算法(LRU)时钟页面置换算法(Clock)四、实验原理1、内存分配与回收算法首次适应算法:从内存的起始位置开始,依次查找空闲分区,将第一个能够满足需求的空闲分区分配给进程。

最佳适应算法:在所有空闲分区中,选择能够满足需求且大小最小的空闲分区进行分配。

最坏适应算法:选择空闲分区中最大的分区进行分配。

2、页面置换算法先进先出页面置换算法:选择最早进入内存的页面进行置换。

最近最久未使用页面置换算法:选择最近最长时间未被访问的页面进行置换。

时钟页面置换算法:给每个页面设置一个访问位,在页面置换时,从指针指向的页面开始扫描,选择第一个访问位为0 的页面进行置换。

五、实验步骤1、内存分配与回收算法实现定义内存分区结构体,包括分区起始地址、大小、是否已分配等信息。

实现首次适应算法、最佳适应算法和最坏适应算法的函数。

编写测试程序,创建多个进程,并使用不同的算法为其分配内存,观察内存分配情况和空闲分区的变化。

2、页面置换算法模拟定义页面结构体,包括页面号、访问位等信息。

实现先进先出页面置换算法、最近最久未使用页面置换算法和时钟页面置换算法的函数。

编写测试程序,模拟页面的调入和调出过程,计算不同算法下的缺页率,比较算法的性能。

生物实验室样本存储和管理规范

生物实验室样本存储和管理规范

生物实验室样本存储和管理规范在现代科研领域中,生物实验室扮演着至关重要的角色。

而为了确保实验结果的准确性和可重复性,对于生物实验室样本的存储和管理规范显得尤为重要。

本文将就生物实验室样本存储和管理规范进行详细讨论。

一、样本采集1. 确保样本采集过程中的卫生条件。

在采集生物样本时,务必做好消毒和无菌操作,以避免外源性污染对实验结果的影响。

2. 采集适量样本。

在进行生物样本采集时,需根据实验需要采集适量的样本,并保证样本的质量和完整性。

二、样本分类和标识1. 对不同类型的生物样本进行分类。

根据实验需要和样本性质,对生物样本进行分类归档,以方便后续的管理和检索。

2. 对每个样本进行详细标识。

在进行标本容器标识时,需明确标注样本的种类、采集时间、采集者等信息,以确保样本的唯一性和追溯性。

三、样本存储1. 选择适当的存储条件。

不同类型的生物样本在存储条件上有所不同,需根据样本的性质选择适当的温度、湿度和保存液等条件进行存储。

2. 建立完善的存储系统。

建立生物样本存储数据库,对样本进行编号、记录和管理,确保样本信息的完整性和准确性。

四、样本管理1. 制定样本管理制度。

建立生物实验室样本管理规范,并明确样本的使用范围、使用权限和管理流程,以确保样本的安全和保密性。

2. 定期检查和维护样本。

定期对生物样本进行检查和维护,确保样本的完整性和长期保存的稳定性。

五、样本处置1. 根据实验需要对样本进行处置。

对于已经使用完毕或者失效的生物样本,需根据实验室规定进行正确的处置,避免对环境和人体造成危害。

2. 建立样本处置记录。

对样本的处置过程进行记录和归档,确保处置的合理性和有效性。

通过以上对生物实验室样本存储和管理规范的详细讨论,可以看出规范的样本管理对于科研工作的顺利进行至关重要。

只有建立科学合理的样本管理制度并严格执行规范,才能确保实验结果的准确性和可信度,促进科研工作的顺利进行。

希望本文能够为生物实验室样本存储和管理提供有益的参考和借鉴。

存储器管理实验实验报告

存储器管理实验实验报告
硬盘7200转320G,光驱16X DVD
软件环境:Windows XP SP SP3, Visual C++ 6.0
三、实验内容及步骤
1、对已给出的实验内容,要求读懂程序、理解算法。
2、绘制程序流程图。
3、要求对程序算法进行改进,并把改进内容记录下来。
四、实验结果(本实验源程序清单及运行结果或实验结论、实验设计图)
五、实验总结(对本实验结果进行分析,学生软件开发能力和软件的调试技术。
4、培养学生开发大型程序的方法和相互合作的精神。
5、通过本实验的练习,理解内存的分配及回收。
6、培养学生的算法设计和算法分析能力。
7、培养学生对问题进行文字论述和文字表达的能力。
二、实验环境(本实验所使用的硬件设备和相关软件)
硬件环境:CPU Intel(R) G630 @2.70GHz,内存4GB,
实验报告
课程名称
操作系统
实验日期
实验项目名称
存储器管理实验
实验地点
实验类型
√验证型 □设计型
□综合型
学 时
2
一、实验目的及要求(本实验所涉及并要求掌握的知识点)
1、内存管理是计算机操作系统的一大功能,任何作业的运行都需要装入内存。加深对操作系统存储管理概念的理解,通过编程了解存储器的管理。
2、培养学生能够独立进行知识综合,独立开发较大程序的能力。

存储过程实验报告_总结(3篇)

存储过程实验报告_总结(3篇)

第1篇一、实验背景随着数据库技术的不断发展,存储过程在数据库管理中的应用越来越广泛。

存储过程是一组为了完成特定功能的SQL语句集合,它具有提高数据库性能、增强安全性、简化应用开发等优点。

为了更好地掌握存储过程的应用,我们进行了本次实验。

二、实验目的1. 理解存储过程的概念、特点和应用场景。

2. 掌握存储过程的创建、执行、修改和删除方法。

3. 学习使用存储过程实现常见的数据库操作,如数据插入、查询、更新和删除。

4. 熟悉存储过程中的流程控制语句、循环语句和游标操作。

三、实验环境1. 操作系统:Windows 102. 数据库:MySQL 5.73. 开发工具:MySQL Workbench四、实验内容1. 创建存储过程2. 执行存储过程3. 修改存储过程4. 删除存储过程5. 存储过程中的流程控制语句6. 存储过程中的循环语句7. 存储过程中的游标操作五、实验步骤1. 创建存储过程首先,我们创建一个简单的存储过程,用于查询特定部门的所有员工信息。

```sqlCREATE PROCEDURE GetEmployeeInfo(IN dept_id INT)BEGINSELECT FROM employees WHERE department_id = dept_id;END;```在此过程中,我们使用了`IN`参数,表示该参数在调用存储过程时传入。

2. 执行存储过程创建存储过程后,我们可以通过以下命令执行它:```sqlCALL GetEmployeeInfo(10);```这将查询部门ID为10的所有员工信息。

3. 修改存储过程如果需要修改存储过程,可以使用`ALTER PROCEDURE`语句。

例如,将查询条件修改为按姓名查询:```sqlALTER PROCEDURE GetEmployeeInfo(IN emp_name VARCHAR(50))BEGINSELECT FROM employees WHERE name = emp_name;END;```4. 删除存储过程删除存储过程可以使用`DROP PROCEDURE`语句。

存储器管理实验报告

存储器管理实验报告

一、实验目的1. 理解存储器管理的概念和作用。

2. 掌握虚拟存储器的实现原理。

3. 熟悉存储器分配策略和页面置换算法。

4. 提高动手实践能力,加深对存储器管理知识的理解。

二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发环境:GCC编译器三、实验内容1. 虚拟存储器实现原理(1)分页式存储管理:将内存划分为固定大小的页,进程的逻辑地址空间也划分为相应的页。

内存与外存之间通过页表进行映射,实现虚拟存储器。

(2)页表管理:包括页表建立、修改和删除等操作。

(3)页面置换算法:包括FIFO、LRU、LRU时钟等算法。

2. 存储器分配策略(1)固定分区分配:将内存划分为若干个固定大小的分区,每个分区只能分配给一个进程。

(2)可变分区分配:根据进程需求动态分配内存,分为首次适应、最佳适应和最坏适应等策略。

(3)分页存储管理:将内存划分为固定大小的页,进程的逻辑地址空间也划分为相应的页,通过页表进行映射。

3. 页面置换算法(1)FIFO算法:根据进程进入内存的顺序进行页面置换,最早进入内存的页面将被淘汰。

(2)LRU算法:淘汰最近最少使用的页面。

(3)LRU时钟算法:结合LRU算法和FIFO算法的优点,通过一个时钟指针实现页面置换。

四、实验步骤1. 编写程序实现虚拟存储器的基本功能,包括分页式存储管理、页表管理、页面置换算法等。

2. 编写测试程序,模拟进程在虚拟存储器中的运行过程,观察不同页面置换算法的效果。

3. 分析实验结果,比较不同页面置换算法的性能差异。

五、实验结果与分析1. 实验结果通过模拟实验,验证了虚拟存储器的基本功能,包括分页式存储管理、页表管理、页面置换算法等。

实验结果显示,不同页面置换算法对系统性能的影响较大。

2. 实验分析(1)FIFO算法:实现简单,但可能导致频繁的页面置换,影响系统性能。

(2)LRU算法:性能较好,但实现复杂,需要额外的硬件支持。

(3)LRU时钟算法:结合LRU算法和FIFO算法的优点,在性能和实现复杂度之间取得平衡。

存储管理实验报告

存储管理实验报告

一、实验目的1. 理解操作系统存储管理的概念和作用。

2. 掌握存储管理的基本算法和策略。

3. 通过实验,加深对存储管理原理的理解,提高实际操作能力。

二、实验环境1. 操作系统:Windows 102. 软件环境:虚拟机软件VMware Workstation 153. 实验平台:Linux系统三、实验内容1. 存储管理概述2. 页式存储管理3. 段式存储管理4. 分段分页存储管理5. 存储管理算法四、实验步骤1. 页式存储管理实验(1)设置虚拟内存:在Linux系统中,使用`cat /proc/meminfo`命令查看内存信息,然后使用`vmstat`命令查看虚拟内存的使用情况。

(2)编写实验程序:使用C语言编写一个简单的程序,模拟页式存储管理过程。

(3)运行实验程序:编译并运行实验程序,观察程序运行过程中页面的分配、置换和回收过程。

2. 段式存储管理实验(1)设置虚拟内存:同页式存储管理实验。

(2)编写实验程序:使用C语言编写一个简单的程序,模拟段式存储管理过程。

(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。

3. 分段分页存储管理实验(1)设置虚拟内存:同页式存储管理实验。

(2)编写实验程序:使用C语言编写一个简单的程序,模拟分段分页存储管理过程。

(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。

4. 存储管理算法实验(1)编写实验程序:使用C语言编写一个简单的程序,模拟不同的存储管理算法(如FIFO、LRU、LFU等)。

(2)运行实验程序:编译并运行实验程序,观察不同算法在页面分配、置换和回收过程中的表现。

五、实验结果与分析1. 页式存储管理实验实验结果表明,页式存储管理可以将大程序离散地存储在内存中,提高内存利用率。

但页式存储管理也存在页面碎片问题,导致内存碎片化。

2. 段式存储管理实验实验结果表明,段式存储管理可以将程序按照逻辑结构划分为多个段,提高了内存的利用率。

存储管理实验报告_6

存储管理实验报告_6

昆明理工大学信息工程与自动化学院学生实验报告(2012 —2013 学年第二学期)一、实验目的存储管理的主要功能之一是合理地分配空间。

请求页式管理是一种常用的虚拟存储管理技术。

通过本次实验, 要求学生通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解, 通过请求页式存储管理中页面置换算法模拟设计, 了解虚拟存储技术的特点, 掌握请求页式存储管理的页面置换算法。

二、实验原理及基本技术路线图(方框原理图)用C或C++语言模拟实现请求式分页管理。

要求实现: 页表的数据结构、分页式内存空间的分配及回收(建议采用位图法)、地址重定位、页面置换算法(从FIFO,LRU,NRU中任选一种)。

int subareaSize[num]={8,12,16,32,24,16,64,128,40,64};//分区大小Process *pro=NULL;//保持进程信息int ProcessNum=0;//进程数目int applyProcessNum=0;//每次申请进程数目int maxApplyNum=0;//最大可申请数目int *applyIndex=NULL;//申请进程队列int totalApplyNum=0;//申请总数int *assignPointer=NULL;//已分配内存的进程队列int assignFlag=0;//分配索引, 表示已申请队列已分配的进程数int exeIndex;//执行的进程号Node *subareaNode=new Node[3];//分区回收时, 进程所在分区及其前, 后分区信息LinkList createLinkList(int n );//建立空闲分区链Node firstFit(LinkList &head,Process pro);//首次适应算法Node nestFit(LinkList &head,Process pro,Node flag);//循环适应算法Node bestFit(LinkList &head,Process pro);//最佳适应算法Node worstFit(LinkList &head,Process pro);//最坏适应算法Node assign(LinkList &head,int orderIndex,int index,Node flagNode);//一次分区分配int assignMemory(LinkList &head);//内存分配void insertNode(LinkList &head,Node q,int index);//插入节点Node deleteNode(LinkList &head,int index);//删除节点int display(LinkList &head);//打印分区分配情况int lowAttemper(int *excursionPointer);//低级调度int findSubarea(LinkList &head,int index);//回收内存int creatProcess();//创建进程Process* randomCreatPro(int n);//随机产生进程下面是各种方法简述:(1) 最优替换算法, 即OPT算法。

操作系统教学实践(3篇)

操作系统教学实践(3篇)

第1篇一、引言操作系统是计算机科学与技术领域的重要基础课程,它涉及计算机系统的资源管理、进程管理、存储管理、文件系统等多个方面。

为了提高学生对操作系统的理解和掌握程度,本文将从教学实践的角度,探讨如何进行操作系统教学。

二、教学目标1. 使学生掌握操作系统的基本概念、原理和关键技术;2. 培养学生分析和解决实际问题的能力;3. 增强学生的团队协作和创新能力;4. 提高学生的编程能力和动手能力。

三、教学内容1. 操作系统概述:介绍操作系统的定义、发展历程、分类和特点;2. 进程管理:讲解进程的概念、进程状态、进程调度算法和进程同步与互斥;3. 存储管理:分析内存分配策略、页面置换算法和虚拟内存技术;4. 文件系统:探讨文件系统的概念、目录结构、文件操作和存储设备管理;5. 设备管理:介绍设备的分类、驱动程序、I/O控制方式和中断处理;6. 网络操作系统:讲解网络操作系统的基本概念、网络协议、网络设备管理和网络安全。

四、教学实践1. 案例教学:通过实际案例,引导学生分析操作系统的原理和应用。

例如,以Linux系统为例,讲解进程调度、内存管理和文件系统等知识点。

2. 实验教学:设计实验项目,让学生动手实践操作系统的相关知识。

实验项目包括:(1)进程调度实验:让学生编写进程调度算法,实现进程的创建、调度和同步。

(2)内存管理实验:让学生实现内存分配、页面置换和虚拟内存等技术。

(3)文件系统实验:让学生实现文件系统的目录结构、文件操作和存储设备管理。

(4)设备管理实验:让学生编写设备驱动程序,实现设备的控制和管理。

3. 项目教学:以实际项目为背景,让学生分组完成项目开发。

项目可以包括:(1)操作系统模拟器:让学生模拟操作系统的运行过程,加深对操作系统原理的理解。

(2)嵌入式操作系统开发:让学生了解嵌入式操作系统的特点,掌握嵌入式开发技能。

(3)分布式操作系统开发:让学生了解分布式系统的原理,掌握分布式操作系统的开发方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二存储器管理模拟
1.实验内容:模拟请求页式存储管理中硬件的地址转换和缺页中断,并用先进先出调度算法(FIFO)处理缺页中断;
2.要求:
①指令序列的设定可以执行拟定,格式如表3;
②在完成了FIFO换页策略后,可以选做LRU的换页策略,并进行比较;
③作业允许的页架数m在不同情况下的缺页中断率;
④程序运行时显示地址转变和页面调入调出过程。

3.步骤:
①设计页表及其数据结构:
页号
标志:是否在主存;
页架号:设定页表在主存的位置;
修改标志:设定页面在主存中是否修改过;
磁盘上位置:设定页面在辅存中的位置;
例如:装入新页置换旧页时,若旧页在执行中没有被修改过,则不必将该页重写磁盘。

因此,页表中增加是否修改过的标志,执行“存”指令和“写”指令时将对应的修改标志置成“1”表示修改过,否则为“0”表示未修改过。

表 1 页表格式
②设计一个地址转换程序半模拟硬件的地址转换和缺页中断。

当访问的页在主存时则形成绝对地址,但不去模拟指令的执行,可以输出转换后的绝对地址来表示一条指令已执行完成。

当访问的页不在主存中时,则输出“*页号”来表示硬件产生了一次缺页中断。

模拟地址转换流程见图1.1。

③设计FIFO页面调度程序;
FIFO页面调度算法总是先调出作业中最先进入主存中的哪一页。

因此可以用一个数组来表示(或构成)页号队列。

数据中每个元素是该作业已在主存中的页面号,假定分配给作业的页(架)数为m,且该作业开始的m页已装入主存,则数组可由m个元素构成。

P[0],P[1],P[2],…,P[m-1]
它们的初值为P[0]:=0,P[1]:=1,P[2]:=2,…,P[m-1]:=m-1
用一指针K指示当要调入新页时应调出的页在数组中的位置,K的初值为“0”,当产生缺页中断后,操作系统总是选择P[K]所指出的页面调出,然后执行。

④设计输入数据和输出格式;
如:假定主存中页架大小为1024个字节,现有一个共7页的作业,其副本已在磁盘上。

系统为该作业分配了4个页架,且该作业的第0页至第3页已装入内存,其作3页未主存,该作业的页表如下:
依次执行上述指令调试你所设计的程序(仅模拟指令的执行,不考虑序列中具体操作的执行)。

⑤ 编程上机,验证结果。

4.实验报告:
为进一步考察程序的执行,可自行确定若干组指令,运行程序,核对执行结果实验报告:
① 实验题目;
② 程序中所用的数据结构及说明; ③ 打印一份源程序并附上必要的说明;
④ 按照指令的执行序列,打印输出结果:绝对地址或调出、调入的页号。

P[K]:=要装入的新页页号 K :=(k+1)mod m
在实验中不必实际地启动磁盘执行调出一页和装入一页的工作,而用输出“OUT 调出的页号”和“IN 要装入的新页页号”来模拟一次调出和装入过程,模拟程序的流程图见附图1.1。

按流程控制过程如下:
提示:输入指令的页号和页内偏移和是否存指令⎩
⎨⎧ 0 1非存指令存指令
,若d 为-1则结束,否
则进入流程控制过程,得P 1和d ,查表在主存时绝对地址P 1×1024+d。

相关文档
最新文档