国家公务员考试行测备考:两种工程问题解题方法

合集下载

公务员行测考试工程问题示例

公务员行测考试工程问题示例

公务员行测考试工程问题示例工程问题在公务员考试行测中考核频率较高,但是难度并不大,大多数考生都是能够做出来的。

下面作者给大家带来关于公务员行测考试工程问题示例,期望会对大家的工作与学习有所帮助。

公务员行测考试工程问题示例对于这种问题常见的情形有两种,一种是显现的都是正效率,另一种是既有正效率也有负效率。

但不管哪种情形,最重要的就是要找到最小循环周期及一个循环周期的效率和。

常见题型1.正效率交替合作例1.一条公路需要铺设,甲单独铺设要20天完成,乙单独铺设要10天完成。

如果甲先铺1天,然后乙接替甲铺1天,再由甲接替乙铺1天……两人如此交替工作。

那么,铺完这条公路共用多少天?A.14B.16C.15D.13【答案】A,解析:设工作总量为20,则甲的工作效率为1,乙的工作效率为2,一个循环周期甲乙共完成工作量1+2=3。

20÷(2+1)=6……2,则经过6×2=12天后还剩下的工作量为2;第13天甲做1份,剩下1份的需要乙连续工作半天才能完成。

即在12天的基础上,还需要甲工作1天,乙工作半天才可以完成。

选项给出的都是整数天,所以乙最后工作的半天按一天来去运算。

故共用14天。

挑选A选项。

例2.单独完成某项工作,甲需要16小时,乙需要12小时,如果依照甲、乙、甲、乙、……的顺序轮番工作,每次1小时,那么完成这项工作需要多长时间?A.13小时40分钟B.13小时45分钟C.13小时50分钟D.14小时【答案】B,解析:设工作总量为48,甲效率为3,乙效率为4,一个循环周期甲乙共完成工作量3+4=7。

48÷7=6……6,则经过6×2=12小时后剩余工作量6,甲再做1小时完成3,乙还需要做全部完成,故完成这项工作共需要13小时45分钟。

挑选B选项。

2.正负效率交替合作例3.一个水池有一进水管A 和一出水管B,单开A需要4小时把空池注满,单开B需要6小时把一池水放空,依照AB循环,每次各开1个小时,经过量长时间空水池第一次注满?A.19B.17C.18D.20【答案】A,解析:设工作总量为12。

行测数量关系技巧:比例法解工程问题

行测数量关系技巧:比例法解工程问题

行测数量关系技巧:比例法解工程问题行测数量关系技巧:比例法解工程问题公务员考试中,工程问题是近年来的热门考题,考察频率也比拟高。

广阔考生在解工程问题的时候,几乎都能想到方程法和特值法,但是对于比例法,很多考生并不容易想到。

在这里教大家利用比例法解决工程问题。

一、工程问题中的正反比例当工作总量W一定时,效率P和时间t成反比例;当效率P一定时,时间t与工作总量W成正比例;当时间t一定时,效率P与工作总量W成正比例。

工程问题当中的正反比例法是指:当工作总量一定时,工作效率与工作时间成反比,工作效率比可得到工作时间之比,再根据实际提早的天数或推延的天数采用比例法进展求解。

或者,工作时间之比可得到工作效率之比,在根据前后效率只差采用比例法进展求解。

例1:对某批零件进展加工,原方案要18小时完成,改良工作效率后只需12小时就能完成,后来每小时比原方案每小时多加工8个零件,问这批零件共有多少个?【解析】288。

先后时间之比=18:12=3:2,可得先后效率之比=2:3,那么由题意可得1份=8个零件,2份就是16零件,所以零件总数=16×18=288(个)。

例2:某工程由小张、小王两人合作刚好可在规定的时间内完成。

假如小张的工作效率进步20%,那么两人只需用规定时间的就可完成工程;假如小王的工作效率降低25%,那么两人就需延迟2.5小时完成工程。

问规定的时间是多少?A.20 hB.24 hC.26 hD.30 h【解析】答案:A。

“小张的工作效率进步20%”,可设特值为由5进步到6,“两人只需用规定时间的”,根据工作总量不变,效率与时间成反比,得出两人的效率之和由9进步到10,那么小王的效率为4。

“小王的工作效率降低25%”,就是由4降低到3,那么两人的效率之和由9降低到8,还是根据工作总量不变,效率与时间成反比,时间由8份变成9份,“延迟2.5小时”就是9-8=1份,由此推出规定时间8份是2.5×8=20(小时)。

公务员行测考试数量关系:工程问题题型解题技巧

公务员行测考试数量关系:工程问题题型解题技巧

工程问题也是数学运算的常考题型,在复习过程中,考生应重点掌握工程问题涉及的基本概念,并学会对计算公式的灵活运用。

国家公务员考试中,工程问题主要考查二人合作型、多人合作型和水管问题。

其中,二人或者多人合作的工程问题考查的比较多,教育专家研究认为,这类问题解题关键是找到二人或者多人的工作效率和。

下面,专家就针对工程问题题型进行全面讲解。

一、工程问题基本概念及关系式工程问题中涉及到工作量、工作时间和工作效率三个量。

工作量:指工作的多少,可以是全部工作量,在没有指明具体数量时,工作总量可视为已知量。

一般来说,可设总量为“1”;部分工作量用分数表示。

工作时间:指完成工作的所需时间,常见的单位一般为小时、天。

这里需要注意“单位时间”这个概念。

当工作时间的单位是小时,那么单位时间为1小时;当工作时间的单位是天,那么单位时间为1天。

工作效率:指工作的快慢,也就是单位时间里所完成的工作量。

工作效率的单位一般是“工作量/天”或“工作量/小时”。

工作量、工作时间、工作效率三个量之间存在如下基本关系式:工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率。

解决基本的工程问题时,要明确所求,找出题目中工作量、工作时间、工作效率三量中的已知量,再利用公式求出未知量。

二、工程问题常考题型(一)二人合作型例题:有甲、乙两项工程,张师傅单独完成甲工程需6天,单独完成乙工程需30天,李师傅单独完成甲工程需18天,单独完成乙工程需24天,若合作两项工程,最少需要的天数为:A.16天B.15天C.12天D.10天(二)多人合作型例题:甲、乙、丙三个工程队的效率比为6∶5∶4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。

两项工程同时开工,耗时16天同时结束。

问丙队在A工程中参与施工多少天?A.6B.7C.8D.9解析:本题答案选A。

2020国家公务员考试行测数量关系常考题型之工程问题

2020国家公务员考试行测数量关系常考题型之工程问题
以上就是中公教育专家对于常考的两类工程问题的全部讲解,希望广大考生备考过程中一定要加强练习,预祝各位考生早日成“公”!
同学们首先要了解清楚这三者之间的比例关系。如果工程总量一定,那么工作效率与时间成反比;如果时间一定,那么工作总量与工作效率成正比。这个比例关系也是我们做工程问题的一个核心。在大家过去的学习当中往往是将工程总量赋值为“1”,然后根据工作时间,求出每个人的工作效率。而现在,我们在解决给定时间型工程问题的关键就是要给工程总量赋值为各个给定工作时间的最小公倍数。
公务员考试行测当中,工程问题几乎都是常考题型。而这类问题实际上只要掌握方法并不难解决,常考的题型主要是给定时间型和给定效率型。下面中公教育专家就为大家进行详细的讲解。
工程问题首先是围绕一个基本公式来展开的:工作总量=工作效率×工作时间
所谓工程总量就是指全部的工作量,一般题目当中工程总量是给定的,是已知量;工作效率是指单位时间内一个人所能够完成的工作量;工作时间则不需要解释,大家都很容易理解。
例题精讲:
【例1】打印一份稿件,小张5小时可以打完这份稿件的1/3,小李3小时可以打印完这份稿件的1/4,如果两人合打多少小时可以完成?( )
A.6 B.20/3 C.7 D.22/3
中公解析:此题题目当中值两个时间的最小公倍数为工程总量即可,但是本题关键在于这里所说的时间必须是每个人完成所有工程总量的时间,而不是部分量。因此需要首先求出每个人完成所有工作量的时间,然后再求其最小公倍数。那么小张完成所有工程总量需要5除以1/3=15小时,而小李完成所有工作量所需时间需要3除以1/4=12小时。而15和12的最小公倍数是60,则工作总量就是 60,那么小张的效率是4,而小李的效率是5,小张和小李的总效率是9,因此,合作的时间应该是60/9=20/3,所以选择B选项。

2017国家公务员考试行测技巧:工程问题常用解题方法汇总

2017国家公务员考试行测技巧:工程问题常用解题方法汇总

2017国家公务员考试行测技巧:工程问题常用解题方法汇总工程类题型是公考类试卷当中考察的题型之一,也是我们上小学的时候最先接触过的应用题题型,是专门研究工作总量(I)、工作时间(T)及工作效率(P)三者之间的关系。

所以在备考的时候,我们只要知道它的题型类别,并且在考试的时候能够与常用解题方法匹配准确就可以迎刃而解啦。

工程问题题型大体分为普通工程、一起合作完工及交替轮流工作问题,中公教育专家总结常用解题方法如下:1、是应用比较直观的工作总量=工作效率×工作时间,或者工作效率=、工作时间=来解题。

例:有20人修筑一条公路,计划15天完成。

动工3天后抽出5人植树,留下的人继续修路。

如果每人工作效率不变,那么修完这段公路实际用多少天?A 17B 16C 19D 20【中公解析】:答案为B,求时间==,接下来假设每人每天工作一个单位,那么工作总量为20×1×15=300个单位。

动工3天,完成20×1×3=60个单位。

抽调5人后的工作效率为每天(20-5)×1=15个单位。

所以剩下的工作还需要的时间==16天。

2、是应用比例思想下的正反比关系工作总量相同,工作时间与工作效率成反比(I相同,);工作时间相同,工作总量与工作效率成正比(T相同,);工作效率相同,工作时间与工作总量成正比(P相同,);例:一项工程,工作效率提高,完成这项工程的时间将由原来的10小时缩短到几小时?A 4B 8C 12D 16【中公解析】:答案为B,效率提高四分之一说明,而两种效率需要完成的工作量是相同的,所以由I相同,可知,,T现=8h。

3、是用特值的方法即把未知的不变量赋予已知的数,来进行求解的方法特值小技巧,已知均为时间单位,可以特工作总量为这几个时间的公倍数;已知效率比关系,可以特效率为各自的比例分数。

例:一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成。

公务员考试行测一般行程问题、工程问题公式总结

公务员考试行测一般行程问题、工程问题公式总结

公务员考试行测一般行程问题、工程问题公式总结平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。

【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。

这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。

【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。

【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。

【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。

(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。

(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。

【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效,工作总量÷工效=工时。

(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间。

(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。

特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。

公务员行测考试工程问题解析

公务员行测考试工程问题解析

公务员行测考试工程问题解析在公职考试中,行测数量关系部分有时会触及一类题型田鸡跳井问题,各位考生在遇到此类型的题目时,对于题目的解题问题不大,但是在解题进程中依照固有的思维方式以及传统的解题方法去处理,下面作者给大家带来关于公务员行测考试工程问题解析。

公务员行测考试工程问题解析例1.现有一口高10米的井,有一只田鸡坐落于井底,田鸡每次跳的高度为5米,由于井壁比较光滑,田鸡每跳5米下滑3米,这只田鸡跳几次能跳出此井?A.3B.5C.6D.4【答案】D。

解析:分析此题中田鸡从井底向上做周期运动,一个周期上跳下滑1次,一个周期向上跳2米,跳出井口时,它是在上跳的进程中,运算时应预留5米,田鸡到达预留高度需要2.5(向上取整为3)3个周期。

那么此田鸡跳出井口需要4次,因此挑选D选项。

【总结】1.题型特点:周期性运动,一个周期内效率值有正有负。

2.解题方法:(1)找到周期(最小循环周期)内的周期值,周期峰值。

(2)运算总次数总次数=周期所用次数+周期峰值所用次数例2.一水池有甲和乙两根进水管,丙一根排水管。

空池时,单开甲水管,5小时可将水池注满;单开乙水管,6小时可将水池注满;满池水时单开乙管,4小时可排空水池。

如果按甲、乙、丙、甲、乙、丙……的顺序轮番各开1小时,要将水池注满需要多少小时?A.19B.19.6C.12.6D.18.6【答案】B。

解析:此题可设工作总量为60,则甲管的注水效率为12,乙管的注水效率为10,丙管的出水效率为15。

一个循环周期的时间为3,一个循环周期的效率和为12+10-15=7,一个周期的周期峰值是10+12=22,除一个周期峰值外,剩余的工作量需要,即向上取整6个完全的循环周期,题干中所求为完成这项工作,所需要的时间即为一个周期的工作时间乘以完全的周期数,剩余工作量为60-6×7=18,剩余的工作量甲先开小时注入12,余下6的工作量轮到乙水管注入,乙一小时的工作效率为10,注入6的工作量需要0.6,总共所需的时间合计为3×6+1+0.6=19.6h,故而挑选B选项。

公考复习资料行测技巧 联考通用:数学运算知识点汇总

公考复习资料行测技巧 联考通用:数学运算知识点汇总

进价(元)
利润(元)
售价(元)
花生油
100a
100a×24%=24a
100a+24a=124a
玉米油
80a
80a×30%=24a
80a+24a=104a
“花生油利润定为进价的 24%”,则花生油利润=100a×24%=24a,根据公式“售价=进价+利
润”可得,花生油售价=100a+24a=124a;“玉米油利润定为进价的 30%”,则玉米油利润
【解题步骤】
(1)本题是在直线道路上狗与乙、甲反复相遇,判定本题为直线相遇问题。题干已知了狗
的速度,则只要知道狗跑的时间,即可求出狗跑的路程。整个行程中狗是与甲、乙同时出发
同时结束的,所以狗跑的时间就等于甲、乙运动的时间,甲、乙运动的时间可以用相遇公式
求出;
(2)甲乙两人从出发到相距 100 米一共跑了 1200-100=1100 米,根据相遇公式“S和=V和×T”,
三、给具体单位型
1.题型特征:题干给出了效率或总量的具体单位。 2.解题思路: (1)设未知数:缺啥设啥,如果有总量的具体值,则设时间或者效率为未知数。 (2)根据工作过程找等量关系列方程。
四、同时开工同时结束
1.题型特征:题干中给出了多个工程,由多个队伍完成,且中途没有人休息,要求同时开工
同时结束。
三、插板法
1.题型特征 相同元素分堆,问有几种分法。 2.解题思路 (1)N 个相同元素有 N-1 个空位,分 M 堆,需要 M-1 个板子; (2)至少分一个共有 −−11种方法。
四、错位重排
1.题型特征 不放回原位置,不与原来一一对应。 例如:n 辆车分别停在 n 个车位上,现将车辆重新停放,要求每辆车不能停放在原来的车位 上,问有多少种排列情况。 2.解题思路 Dn 是元素个数对应的错位重排数,n 是元素个数。 D1=0,D2=1,D3=2,D4=9,D5=44,D6=265; 记住结论即可,重点考查 D4 和 D5; 可推理得:Dn=(Dn-1+Dn-2)×(n-1)。

2023国考四川公务员考试行测题解题技巧810

2023国考四川公务员考试行测题解题技巧810

2023国考四川公务员考试行测题解题技巧(8.10)国考公务员考试行测包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。

[行测题]一、工程问题(1)当题干中给出干同一工程的不同时间,可把该工程的工作总量设为所有时间的最小公倍数,进而得出各自的效率。

例L 一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需要15天。

甲、乙、丙三人共同完成该工程需多少天?()A. 8 天B. 9 天C. 10 天D. 12 天【答案】C解析:此题给了干同一工程的不同时间,可把工作总量设为30、18和15 的最小公倍数90。

则容易得到甲的效率为3,乙的效率为2,丙的效率为4,故他们的和效率为3+2+4=9O因此需要90÷9=10天。

例2.完成某项工程,甲需要18天,乙需要15天,丙需要12天,丁需要9 天。

先按甲、乙、丙、丁的顺序轮班工作,每次轮班的工作时间为一天,则完成该项工作当天是()在轮班。

A.甲B.乙C.丙D. T【答案】A解析:此题给了干同一工程的不同时间,可把工作总量设为18、15、12、9 的最小公倍数180。

则容易得到甲的效率为10,乙的效率为12,丙的效率为15, 丁的效率为20.故他们一个循环的工作量为10+12+15+20=57。

接下来计算180÷ 57=3-9,可知完整循环3次之后还剩下9的工作量,由甲来干,一天能干完。

故答案选择A。

(2)当题干中给出效率之比(有时会给出各队的效率关系,通过转化得出效率之比),可把各自的效率直接设为最简比中所占的份数。

例L甲、乙、丙三个工程队完成一项工作的效率之比为2:3:4。

某项工程,乙先做了1/3后,余下的交由甲与丙合作完成,3天后完成。

问完成此工程共用了多少天?()A. 6B. 7C. 8D.9【答案】C解析:此题给了效率之比,因此可把各自的效率直接设为最简比中所占的份数。

甲的效率设为2,乙的效率设为3,丙的效率设为4。

公务员行测:工程问题解题方法及例题详解

公务员行测:工程问题解题方法及例题详解

公务员⾏测:⼯程问题解题⽅法及例题详解 在⽇常⽣活中,做某⼀件事,制造某种产品,完成某项任务,完成某项⼯程等等,都要涉及到⼯作量、⼯作效率、⼯作时间这三个量,它们之间的基本数量关系是⼯作量=⼯作效率×时间 在数学中,探讨这三个数量之间关系的应⽤题,我们都叫做“⼯程问题” 举⼀个简单例⼦ ⼀件⼯作,甲做10天可完成,⼄做15天可完成.问两⼈合作⼏天可以完成? ⼀件⼯作看成1个整体,因此可以把⼯作量算作1.所谓⼯作效率,就是单位时间内完成的⼯作量,我们⽤的时间单位是“天”,1天就是⼀个单位,再根据基本数量关系式,得到所需时间=⼯作量÷⼯作效率 =6(天) 两⼈合作需要6天 这是⼯程问题中最基本的问题,这⼀讲介绍的许多例⼦都是从这⼀问题发展产⽣的 为了计算整数化(尽可能⽤整数进⾏计算),如第三讲例3和例8所⽤⽅法,把⼯作量多设份额.还是上题,10与15的最⼩公倍数是30.设全部⼯作量为30份.那么甲每天完成3份,⼄每天完成2份.两⼈合作所需天数是30÷(3+ 2)= 6(天) 数计算,就⽅便些∶2.或者说“⼯作量固定,⼯作效率与时间成反⽐例”.甲、⼄⼯作效率的⽐是15∶10=3∶2.当知道了两者⼯作效率之⽐,从⽐例⾓度考虑问题,也 需时间是 因此,在下⾯例题的讲述中,不完全采⽤通常教科书中“把⼯作量设为整体1”的做法,⽽偏重于“整数化”或“从⽐例⾓度出发”,也许会使我们的解题思路更灵活⼀些 ⼀、两个⼈的⼯程问题 标题上说的“两个⼈”,也可以是两个组、两个队等等的两个集体 例1 ⼀件⼯作,甲做9天可以完成,⼄做6天可以完成.现在甲先做了3天,余下的⼯作由⼄继续完成.⼄需要做⼏天可以完成全部⼯作? 答:⼄需要做4天可完成全部⼯作 解⼆:9与6的最⼩公倍数是18.设全部⼯作量是18份。

甲每天完成2份,⼄每天完成3份.⼄完成余下⼯作所需时间是(18- 2 × 3)÷ 3= 4(天) 解三:甲与⼄的⼯作效率之⽐是6∶ 9= 2∶ 3 甲做了3天,相当于⼄做了2天.⼄完成余下⼯作所需时间是6-2=4(天)例2 ⼀件⼯作,甲、⼄两⼈合作30天可以完成,共同做了6天后,甲离开了,由⼄继续做了40天才完成.如果这件⼯作由甲或⼄单独完成各需要多少天? 解:共做了6天后, 原来,甲做 24天,⼄做 24天, 现在,甲做0天,⼄做40=(24+16)天 这说明原来甲24天做的⼯作,可由⼄做16天来代替.因此甲的⼯作效率 如果⼄独做,所需时间是 如果甲独做,所需时间是 答:甲或⼄独做所需时间分别是75天和50天 例3 某⼯程先由甲独做63天,再由⼄单独做28天即可完成;如果由甲、⼄两⼈合作,需48天完成.现在甲先单独做42天,然后再由⼄来单独完成,那么⼄还需要做多少天? 解:先对⽐如下: 甲做63天,⼄做28天; 甲做48天,⼄做48天 就知道甲少做63-48=15(天),⼄要多做48-28=20(天),由此得出甲的 甲先单独做42天,⽐63天少做了63-42=21(天),相当于⼄要做 因此,⼄还要做28+28= 56 (天) 答:⼄还需要做 56天 例4 ⼀件⼯程,甲队单独做10天完成,⼄队单独做30天完成.现在两队合作,其间甲队休息了2天,⼄队休息了8天(不存在两队同⼀天休息)问开始到完⼯共⽤了多少天时间? 解⼀:甲队单独做8天,⼄队单独做2天,共完成⼯作量 余下的⼯作量是两队共同合作的,需要的天数是 2+8+ 1= 11(天) 答:从开始到完⼯共⽤了11天 解⼆:设全部⼯作量为30份.甲每天完成3份,⼄每天完成1份.在甲队单独做8天,⼄队单独做2天之后,还需两队合作(30- 3 × 8- 1× 2)÷(3+1)= 1(天) 解三:甲队做1天相当于⼄队做3天 在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)⼯作量.相当于⼄队要做2×3=6(天)⼄队单独做2天后,还余下(⼄队)6-2=4(天)⼯作量。

202X年国考行测答题技巧:怎样用特值法速解工程问题.doc

202X年国考行测答题技巧:怎样用特值法速解工程问题.doc

202X年国考行测答题技巧:怎样用特值法速解工程问题为您整理《202X年国考行测答题技巧:怎样用特值法速解工程问题》,希望广大考生们都能及时报考202X年国家公务员考试,并好好复习,通过考试!202X年国考行测答题技巧:怎样用特值法速解工程问题202X国考备考正在如荼如火的进行,熟练掌握每一种题型的解题技巧,是考生拿到高分的必要条件。

工程问题是国家公务员行测数量关系考试中的常考题型,工程问题难度系数不大,只要掌握相关的理论知识及解题方法,拿到相关的分数并不难。

告诉大家怎样用特值法来速解工程问题。

一、基本知识1.工程问题基本公式:工作总量=工作效率×工作时间字母表示:W=Pt2.什么是特值法:通过设题中某些未知量为特殊值,从而简化运算,快速得出结果的一种方法。

3.工程问题中合作问题关键点是求效率,无论是普通合作问题还是交替合作问题,首先应把分效率求出来,再求和效率或周期效率。

二、特值法在工程问题中的应用特值法的应用环境其一是这样描述的:题干中存在乘除关系,而且对应量未知。

那么此时可以设不变量为特值。

而工程问题中,W=Pt,存在乘除关系,如果题干中告诉的条件有未知的对应量,我们就可以设对应量为特值来解题。

【例题1】一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天。

甲、乙、丙三人合作共同完成该工程需多少天?A.8B.9C.10D.12【答案】C。

解析:题目中只告诉工作的时间,对应的工作总量以及工作效率都未知。

遇到已知时间求时间的题目时,设工作总量为特值。

设W=90,则P甲=3,P甲、乙=5,P乙、丙=6,所以P乙=2,P丙=4,则P 合=P甲+P乙+P丙=9;t=90÷9=10(天)。

所以答案选C。

【例题2】甲、乙、丙三个工程队完成一项工作的效率比为2:3:4。

某项工程,乙先做1/3后,余下交由甲与丙合作完成,3天后完成工作。

问完成此工程共用了多少天?A.6B.7C.8D.9【答案】A。

公务员考试行测工程问题例题及答案解析

公务员考试行测工程问题例题及答案解析

公务员考试行测工程问题例题及答案解析数量关系中的工程问题一直是行测考试中重点的考场题型,接下来,本人为你分享公务员考试行测工程问题例题及答案解析,希望对你有帮助。

公务员考试行测工程问题例题及答案解析公务员考试行测工程问题我们在常规运算的时候一般使用的方法根据题目的类型来确定,比如特值法、比例法以及方程法,那么在一些考试中,其实很多考试都忽视了部分题型的巧算方法,下面专家就带我们来看一道这样的题目。

公务员考试行测工程问题【例题】王师傅打算加工一批零件,如果每天加工20个的话,就会比原计划提前一天完成任务,按照这个效率工作,在工作四天之后,由于技术更新,每天可以多加工5个零件,结果比原计划提前三天完成了任务,问:这批零件共有多少个?A、300B、280C、260D、270公务员考试行测工程问题【例题答案解析】此问题所求的是工作总量,根据我们已知的条件,这个题目不适用特值的办法,所以我们可以考虑使用方程法解题,想要使用方程必然存在等式,我们发现条件中说,如果每天加工20个会比原计划提前一天完成,如果开工四天后提高效率,提前三天完成工作,我们发现这两种办法的总量是一样的,所以我们可以利用这个等量关系来进行列示,需要我们找到的未知量为原计划工作的天数。

所以设原计划这批零件打算a天来完成,所以第一种方式表示出的工作总量为20(a—1)个,第二种方式因为提前了三天,同时按照原来的效率已经工作了4天,所以可以表示工作总量为[80+25(a—7)]个,故可列出等式20(a—1)=80+25(a—7)解这个方程可以求出a=15天,之后从两种方法中任意选一种方法来表示工作总量,以第一种为例20×(15—1)=280个,所以答案为B。

上面讲的是常规办法遇到这类题目时的思路,那么可以发现这种方法在解题的时候虽然相对来说比较容易想,但是列式子和运算相对也比较耗时,那么为了更好,更快的完成这类题目,我们可以利用题目中给我们数据的特点来解决。

行测数量关系——工程问题交替工作问题

行测数量关系——工程问题交替工作问题

行测数量关系——工程问题交替工作问题【答题妙招】解决若干人轮流交替完成一份工作的题目,思路如下:(1)明确工作总量、每个人的效率;(2)找到作业周期,明确周期内的工作量、工作时间;(3)计算所有工作需要多少个周期,剩下多少个工作量(不足一周期的);(4)明确剩下的工作量需要如何分配。

【例1】一条隧道,甲单独挖要20天完成,乙单独挖要10天完成。

如果甲先挖1天,然后乙接替甲挖1天,再有甲接替乙挖1天……,两人如此交替工作,那么,挖完这条隧道共用多少天()A.13B.14C.15D.16【答案】B。

交替工作问题,只知道时间,(由设最小公倍数法)则设工作总量为20,则甲乙的工作效率分别为1、2,则由题意周期为2天,周期工作量为甲乙之和1+2=3,则20/3=6余2,即完成6个周期之后还余2个工作量(3),则第13天甲做1个工作量还剩1个工作量,则第十四天乙才能将工程做完。

【例2】单独完成某项工作,甲需要16小时,乙需要12小时,如果按照甲乙甲乙的顺序轮流工作,每次一小时,那么完成这项工作需要多长时间()A.13小时40分钟B.13小时45分钟C.13小时50分钟D.14小时【答案】B。

交替工作问题,只知道时间,则设工作总量为48,则甲乙的工作效率分别为3和4,2小时为一个周期,一个周期可以完成7个工作量,则需要48÷7=6……6,即需要做6个周期,还剩下6个工作量,6个周期是12小时,则第13小时是甲来做,甲能做3个,还剩下3个工作量,第14小时乙来做,3÷4=45分钟,答案选B。

【例3】一个水池有一进水管A和一出水管B,单开A需要4小时把空池注满,单开B需要6小时把一池水放空,按照AB循环,每次各开1个小时,经过多长时间空水池第一次注满()A.18B.20C.19D.17【答案】C。

交替工作问题,设工作总量为12,则P A=3,P B=-2,以AB各开1小时为一个周期,一个周期内完成的工作量为3-2=1,所用时间为2个小时,经过若干个整数个周期,在最后一个周期肯定是在注水,那么此时可能已经注满不需要进行之后的周期了,而这里的临界值为3,经过n个周期最后一个周期不需要再循环则有12-1×n≤3,有n≥9,n最小取为9,最后一个循环需完成工作量为12-9=3,则只需要A管工作1个小时即可,则共用时间为2×9+1=19个小时。

2019年国考中的“熟面孔”——工程问题-刘全海

2019年国考中的“熟面孔”——工程问题-刘全海

2019年国考中的“熟面孔”——工程问题河南华图刘全海2019年国考的号角已经吹响,亲爱的同学们你们已经开始准备了吗?烈日炎炎,你或在图书馆埋头苦练,你或独自在家孤军奋战。

但无论你身在何处,图图都是你身后坚实的后盾,为你出谋划策,为你分忧解难。

助你在行测的考场上多拿几分,使自己更加从容的走上面试考场。

今天图图就给大家说说国考中的“熟面孔”——工程问题。

大家也都了解,国考中地市级数量关系是10道题,副省级是15道题。

通过统计2015年—2018年国考行测中的数量关系考试题目,图图发现,不管是地市级还是副省级,“工程问题”基本每年都会出来秀一把。

2017年国考副省级出现了2道工程问题,可见工程问题是国考笔试的“老熟人”,我们需要积极准备,顺利拿下这位“老熟人”,尽一切可能提高行测的分数。

这么多年,跟学员谈话,了解到大部分学员认为数量关系比较难,一般是放到最后做。

然而放到最后时间往往不够,所以很多题目都是猜的。

但大家也知道数量每道题的分值很高的,靠猜是得不到高分的。

数量题目真的很难吗?其实拿15道数量题来说,有三四道是送分题,有一两道题是比较难的,其他的都是中等难度的题。

所以咱们要把送分题拿到手,中等难度的题尽量多拿分。

那工程问题的难度是怎样的呢?那接下来咱们就来揭开这4年国考中工程问题的神秘面纱吧!【2018年国考-66】工程队接到一项工程,投入80台挖掘机。

如连续施工30天,每天工作10小时,正好按期完成。

但施工过程中遭遇大暴雨,有10天时间无法施工。

工期还剩8天时,工程队增派70台挖掘机并加班施工。

问工程队若想按期完成,平均每天需多工作多少个小时?()A.1.5B.2C.2.5D.3【解析】工程问题主要有两种方法。

一是赋值法,总量=效率×时间,如果只给定一个量,就可以运用我们前面所学的赋值法;二是方程法,利用核心公式列出等量关系式求解即可。

赋值每台挖掘机每小时的工作效率为1,这样方便计算。

公务员考试行测必学技巧之速解工程问题

公务员考试行测必学技巧之速解工程问题

公务员考试行测必学技巧之速解工程问题公务员考试数量关系主要测查报考者理解、把握事物间量化关系和解决数量关系问题的能力,主要涉及数据关系的分析、推理、判断、运算等。

觉的题型有:数字推理、数学运算等。

了解公务员成绩计算方法,可以让你做到心中有数,高效备考。

公务员行测题库帮助您刷题刷出高分来!>>>我想看看国考课程。

工程问题的公式非常简单,工作总量=工作效率×工作时间。

解决工程问题的时候最常用到的方法就是设特值,而这种方法我们在小学的时候就已经接触过了。

还记得小学的时候数学老师讲过一道题:修一段路,甲修得两天,乙修得三天,甲乙一起修得几天?当时我们老师说设总工作量为1,甲的效率为1/2,乙的效率为1/3,所以甲乙一起修路的效率和为5/6,所以一起修的时间为1.2天。

当时我们设的工作总量为1份,其实用到的就是特值。

因为工作总量的大小不影响合作完成的天数。

所以可以随便设一任意值。

接下来我们来看一下如何应用特值法解决工程问题。

例1:甲、乙、丙三个工程队的效率比为6:5:4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B 工程。

两项工程同时开工,耗时16天同时结束,问丙队在A工程中参与施工多少天?A.6B.7C.8D.9中公解析:设甲乙丙三个工程队的效率分别为6、5、4,则A、B两项工程的总工作量为(6+5+4)×16=240,则A、B的工作量分别为120,甲队在16天里总共干了96份的工作量,剩下的24份工作量由丙队代替完工,共干了6天。

例2:甲、乙两个工程队共同完成A和B两个项目。

已知甲从单独完成A项目需13天,单独完成B项目需7天;乙队单独完成A项目需11天,单独完成B项目需9天。

如果两队合作用最短的时间完成两个项目,则最后一天两队需要共同工作多长时间就可以完成任务?A.1/12天B.1/9天C.1/7天D.1/6天中公解析:甲做B工程比较快,乙做A工程比较快,为尽快完工,甲先做B工程,乙先做A工程。

国考行测数量关系题型攻略

国考行测数量关系题型攻略

国考行测数量关系题型攻略在国家公务员考试行测科目中,数量关系一直是让众多考生头疼的模块。

但其实,只要掌握了正确的方法和技巧,数量关系并非不可攻克。

下面就为大家详细介绍一下国考行测数量关系的常见题型及攻略。

一、工程问题工程问题是数量关系中的常见题型,通常涉及工作量、工作效率和工作时间三者之间的关系。

解题关键在于找准各个量之间的关系,并根据题目所给条件灵活运用公式。

如果题目中给出了工作时间,我们通常设工作总量为时间的最小公倍数,从而求出工作效率。

例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,两人合作需要多少天完成?我们设工作总量为 30(10 和 15 的最小公倍数),则甲的工作效率为 3,乙的工作效率为 2,两人合作的工作效率为 5,那么合作完成所需时间为 30÷5 = 6 天。

二、行程问题行程问题包括相遇问题、追及问题、流水行船问题等。

相遇问题:路程=速度和×相遇时间;追及问题:路程差=速度差×追及时间;流水行船问题:顺水速度=船速+水速,逆水速度=船速水速。

例如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 千米/小时,乙的速度为 3 千米/小时,经过 2 小时相遇,A、B 两地相距多少千米?根据相遇问题公式,两地距离=(5 + 3)×2 = 16 千米。

再如:甲、乙两人同向而行,甲在乙前面 10 千米处,甲的速度为 4 千米/小时,乙的速度为 6 千米/小时,乙多久能追上甲?根据追及问题公式,追及时间= 10÷(6 4)= 5 小时。

三、利润问题利润问题涉及成本、售价、利润、利润率等概念。

利润=售价成本,利润率=利润÷成本×100%,售价=成本×(1 +利润率)。

例如:某商品进价为 100 元,按 20%的利润率定价,售价是多少?售价= 100×(1 + 20%)= 120 元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国家公务员考试行测备考:两种工程问题解题方法
工程是一个时髦且抽象的词,伴随商业的发展,凡是需要费时完成的工作都用“工程”一言以蔽之。

数学运算里通常把工程的总工作量设为1。

作为工作量与完成时间的比值,工作效率通常是一个单位分数。

在此中公教育专家对该问题进行规律性总结和讲解。

工程问题的核心公式是:工作量=工作效率×时间
一、单人工程问题
工程问题首先是一个研究工作量、工作效率、工作时间三量关系的问题。

单人工程问题不存在合作这种情况,熟悉核心公式与三量间的比例关系尤为重要。

(一)基本工程问题
(二)比例关系
例题1用到了“时间一定,工作量与工作效率成正比”这一比例关系。

工程问题经常需要用到下面这些根据核心公式得出的结论。

【例题2】三名工人师傅张强、李辉和王充分别加工200个零件,他们同时开工。

当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。

当张强加工200个零件的任务全部完成时,王充还有()个零件没有加工。

A.9 B.15 C.10 D.25
中公解析:张强完成160个时,王充完成了200-48=152个,二者效率比为
160∶152=20∶19。

时间一定时,工作量之比等于效率之比,故当张强加工200个时,王充加工了190个零件,还有10个没加工。

应选择C。

二、多人工程问题
多人工程问题指的是在工程实施过程中含有多人合作这种情况。

合作有两种,几个人同时工作,几个人在不同时段工作,或二者混合。

行程问题已经指出,复杂的行程问题均是围绕核心公式S=vt变形的。

如路程这个量因问题背景不同会有相遇路程、追及路程、过桥路程、错车路程等等。

在工程问题中,所有的工作量都抽象为1,不存在像行程问题中那么复杂的变化。

若有n个人参与工程,则核心公式可写成如下的形式
熟悉数学的同学可以把工程问题理解成工作效率与工作时间的线性组合。

如果求时间就要分析效率,如果求效率就要分析时间。

(一)轮流工作
轮流工作除了要计算每轮工作的效率(即几个人的效率和),还要注意最后一轮工作中每个人的实际工作量。

【例题3】一条隧道,甲单独挖要20天完成,乙单独挖要10天完成。

如果甲先挖1天,然后乙接替甲挖1天,再由甲接替乙挖1天……两人如此交替工作。

那么,挖完这条隧道共用多少天?
A.14 B.16 C.15 D.13
中公解析:设隧道工作量为20,则甲、乙的效率(每天完成的工作量)分别为1、2,两人各干1天完成1+2=3。

20=3×6+1+1,即甲、乙先各干6天,然后甲干1天,剩下的工程量为1,由乙半天完成,因此总的工作时间为6×2+1+1=14天,选A。

由上题可知在多人工程问题中,可设工作量为每个人单独完成所用时间的公倍数,以减少对分式的计算。

(二)混合工作
如果把整个工程的完成划分为若干时段,有的时段只有一个人工作,有的时段几个人一起工作,这种情况称为混合工作。

由于每个人的效率不发生变化,这类问题重点是求效率。

【例题4】一篇文章,现有甲、乙、丙三人,如果由甲乙两人合作翻译,需要10小时完成;如果由乙丙两人合作翻译,需要12小时完成;现在先由甲丙两人合作翻译4小时,剩下的再由乙单独翻译,需要12小时才能完成。

则这篇文章如果全部由乙单独翻译,需要()小时能够完成。

A.15 B.18 C.20 D.25
(三)合作效率改变
在单人工程问题中,若工作效率改变,可直接应用比例关系。

在多人工程问题中,要理清合作效率。

【例题5】某工厂的一个生产小组,当每个工人在自己的工作岗位上工作时,9小时可以完成一项生产任务。

如果交换工人甲和乙的工作岗位,其他人的工作岗位不变时,可提前1小时完成任务;如果交换工人丙和丁的工作岗位,其他人的工作岗位不变时,也可提前1小时完成任务。

如果同时交换甲和乙、丙和丁的工作岗位,其他人的工作岗位不变,可以提前多少小时完成这项任务?
A.1.6
B.1.8
C.2.0
D.2.4。

相关文档
最新文档