七年级数学方案设计问题(北师版)(含答案)
方案问题七年级数学应用题
1.小明去超市购买了一些商品,他给了收银员100元,收银员找给他12元。
请问小明总共支付了多少钱?答案:小明总共支付了88元。
因为小明给了收银员100元,收银员找给他12元,所以小明实际支付的钱数是100元 - 12元 = 88元。
2.小华和小明一起打篮球,小华投篮得分2分,小明投篮得分3分。
请问他们两个人总共得了多少分?答案:小华和小明总共得了5分。
因为小华得分是2分,小明得分是3分,所以他们两个人总共得分的和是2+3=5分。
3.小红有4本故事书,小丽有3本故事书,她们决定把所有的书都放在一个书架上。
请问书架上总共有多少本书?答案:书架上总共有7本书。
因为小红有4本书,小丽有3本书,所以书架上总共有的书的数量是4+3=7本。
4.小刚和小强都喜欢吃糖果,小刚吃了4颗糖果,小强吃了6颗糖果。
请问他们两个总共吃了多少颗糖果?答案:小刚和小强总共吃了10颗糖果。
因为小刚吃了4颗糖果,小强吃了6颗糖果,所以他们两个总共吃的糖果数量是4+6=10颗。
5.小莉买了2支铅笔,每支2元;又买了3本练习本,每本3元。
请问小莉总共花了多少钱?答案:小莉总共花了11元。
因为小莉买了2支铅笔和3本练习本,而每支铅笔2元,每本练习本3元,所以她总共花费是2×2+3×3=11元。
6.小张去市场买菜,他买了3斤猪肉,每斤10元;又买了2斤牛肉,每斤15元。
请问小张总共花了多少钱?答案:小张总共花了75元。
因为小张买了3斤猪肉和2斤牛肉,猪肉每斤10元,牛肉每斤15元,所以他的总花费是3×10+2×15=75元。
7.学校要举办一场运动会,需要学生购买统一的运动服。
运动服的价格是每套50元。
如果一个班级需要购买30套运动服,请问这个班级需要支付多少钱?答案:这个班级需要支付1500元。
因为每套运动服的价格是50元,班级需要购买30套运动服,所以总价是50×30=1500元。
8.一个农场有10头牛和5只羊,每头牛每天需要吃3千克的饲料,每只羊每天需要吃2千克的饲料。
北师大版初中数学教材的问题和解决方案
北师大版初中数学教材的问题和解决方案北师大版初中数学教材的问题和解决方案背景为了深化教育改革,全面推进素质教育,构建一个充满生机的有中国特色社会主义教育体系,为实施科教兴国战略奠定坚实的人才和知识基础。
教育部决定,大力推进基础教育课程改革,调整和改革基础教育的课程体系、结构、内容,构建符合素质教育要求的新的基础教育课程体系。
北师大版数学教材就是在课程改革理论指导下编写的教材。
它注重创设情境和探究发现,注重联系实际应用和创新,注重学生兴趣和实际操作,注重学习方式和教学方式的改革。
教材贯穿了“数学源于生活、服务于生活”、“学有用的数学”的思想,从而使学生潜移默化中感受到数学的价值。
认真研究、领会,悉心钻研新教材,及时转变角色,真正融入到新课程中去,发现与旧的版本及其他出版社的教材相比,有其自己可取的地方,当然教材也存在着缺点和不足,需要不断地修饰和完善。
新教材的特色北京师范大学出版社出版的《义务教育新课程标准实验教科书·初中数学》(以下简称《教材》),和其他初中数学教材作图(根据作图工具——安排在两个阶段学习,尤其是三角形和四边形(平行四边形、矩形、菱形、正方形、梯形)的学习,前阶段着重从感性方面认识它们的特征(性质),后阶段侧重从理性的角度去重新认识,深谙应用。
新教材中有些内容呈螺旋状安排,它有利于不同年龄层次的学生的接受能力如统计内容分散安排在各阶段课本中,从感性到理性,从具体到抽象,角平分线、线段垂直平分线的作图(根据作图工具——安排在两个阶段学习,尤其是三角形和四边形(平行四边形、矩形、菱形、正方形、梯形)的学习,前阶段着重从感性方面认识它们的特征(性质),后阶段侧重从理性的角度去重新认识,深谙应用。
二、问题情景创设生动几乎对所有新知的学习,强调从学生已有的生活经验或认知水平出发,创设有趣的或有价值的实际问题情景,从而激发学生的学习兴趣和求知欲。
增加了反映时代要求的内容内容的更新,删除了旧教材不少老、旧的内容,增加了许多有数学价值的题材,贴近了生活实际,体现了学科的发展。
北师大七年级数学教案
北师大七年级数学教案北师大七年级数学教案(6篇)作为一名老师,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。
教案应该怎么写呢?以下是小编精心整理的北师大七年级数学教案,希望对大家有所帮助。
北师大七年级数学教案1学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。
3、电脑演示:如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。
由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。
四、做一做(实践)1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。
2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。
五、试一试(探索)课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。
教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体1、以正四面体为例,说出它的顶点数、棱数和面数。
2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。
将结果记入书上的P128的表格。
引导学生发现结论。
3、(延伸):若随意做一个多面体,看看是否还是那个结果。
学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。
六、小结,布置课后作业:1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。
让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。
北师大七年级数学教案2【知识讲解】一、本讲主要学习内容1、代数式的意义2、列代数式的注意点3、代数式值的意义其中列代数式是重点,也是难点。
《第四章3多边形和圆的初步认识》作业设计方案-初中数学北师大版24七年级上册
《多边形和圆的初步认识》作业设计方案(第一课时)一、作业目标本作业设计的目标是帮助学生巩固和加深对多边形和圆的基本概念的理解,通过实际操作和练习,培养学生的空间想象能力和几何图形分析能力,为后续的几何学习打下坚实的基础。
二、作业内容1. 基础概念复习:要求学生回顾多边形和圆的基本定义、分类及性质,如多边形的内角和外角、圆的半径和直径等,并完成相关概念的填空练习。
2. 多边形识别与绘制:设计一系列多边形(如三角形、四边形、五边形等)的图形识别题,要求学生根据图形特征进行分类,并亲手绘制指定类型的多边形。
3. 圆的基本性质应用:布置一些与圆有关的实际应用题,如计算圆的周长和面积,判断点与圆的位置关系等,加深学生对圆的基本性质的理解。
4. 空间想象能力训练:提供一些多边形与圆组合的图形,要求学生分析图形的结构特点,并尝试进行简单的图形变换和组合。
5. 实践操作作业:要求学生利用生活中的物品(如绳子、尺子、圆规等)制作一个多边形或一个圆,并测量其相关数据,加深对几何图形的感性认识。
三、作业要求1. 作业需在规定时间内独立完成,不得抄袭他人答案。
2. 概念复习部分需准确填写相关概念,理解透彻。
3. 图形识别与绘制部分需准确无误地完成图形的绘制和分类。
4. 圆的基本性质应用部分需运用所学知识进行计算和分析。
5. 空间想象能力训练部分需积极思考,尝试多种可能性。
6. 实践操作作业需真实记录测量数据,并附上作业成果的照片或草图。
四、作业评价1. 评价标准:作业的准确度、完成度、思考深度和实践操作的真实性。
2. 评价方式:教师批改与同学互评相结合,注重过程评价与结果评价的平衡。
3. 反馈方式:对每位学生的作业进行详细点评,指出优点和不足,提出改进建议。
五、作业反馈1. 对于学生在作业中表现出的优点和进步,及时给予肯定和表扬,激发学生的学些积极性。
2. 对于学生在作业中出现的错误和不足,及时指出并辅导其改正,帮助学生查漏补缺。
北师大版七年级上册数学教案5篇
北师大版七年级上册数学教案5篇北师大版七年级上册数学教案1教学目标1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征知识重点相反数的概念教学过程(师生活动)设计理念设置情境引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类4,-2,-5,+2允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)思考结论:教科书第13页的思考再换2个类似的数试一试。
归纳结论:教科书第13页的归纳。
以开放的形式创设情境,以学生进行讨论,并培养分类的能力培养学生的观察与归纳能力,渗透数形思想北师大版七年级上册数学教案2教学目标1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类知识重点正确理解有理数的概念北师大版七年级上册数学教案3教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2,能区分两种不同意义的量,会用符号表示正数和负数;3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点正确区分两种不同意义的量。
知识重点两种相反意义的量教学过程(师生活动)设计理念设置情境引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是_,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
《第三章1代数式》作业设计方案-初中数学北师大版24七年级上册
《代数式》作业设计方案(第一课时)一、作业目标本节课的作业设计旨在使学生:1. 理解代数式的概念及基本组成;2. 掌握代数式中的变量与常量的关系;3. 学会通过代数式表示实际问题中的数量关系;4. 巩固基本运算在代数式中的应用。
二、作业内容1. 概念练习:请简述代数式的定义及组成部分,并列举日常生活中的代数式实例。
2. 识别变量常量:从给定的文字叙述中识别出变量和常量,并正确书写为代数式。
3. 代数式应用:结合生活实际,用代数式表示以下问题:- 超市购物中,购买物品的单价和数量与总价的关系;- 速度、时间和距离之间的关系;- 描述班级中总人数与男女生人数的关系。
4. 基本运算练习:编写含有加、减、乘、除的代数式,并计算结果。
5. 拓展探究:设计一个与代数式相关的实际问题,并使用代数式表示其数量关系,再求解。
三、作业要求1. 所有答案需书写清晰、规范,使用数学语言准确表达;2. 概念题需深入理解并用自己的话表述,不能简单复制教材内容;3. 运算题需列出详细步骤,体现解题思路;4. 拓展探究题需有明确的实际问题背景,并能够合理运用所学知识解决;5. 作业需在规定时间内独立完成,不得抄袭他人答案。
四、作业评价1. 教师根据学生答案的准确性、完整性及解题思路进行评价;2. 对于概念题,评价学生对代数式概念的理解程度;3. 对于运算题,评价学生的基本运算能力和解题步骤的规范性;4. 对于应用题和探究题,评价学生的实际应用能力和创新思维能力;5. 将学生的作业成绩记录在册,作为平时成绩的一部分。
五、作业反馈1. 教师批改作业后,将共性问题及优秀作业进行课堂讲评;2. 对于错误较多的题目,提供详细解析和正确答案;3. 鼓励学生之间交流作业,互相学习、互相提高;4. 针对学生的薄弱环节,提供额外的辅导和练习;5. 将本次作业作为下一课时的教学参考,调整教学计划以更好地满足学生需求。
作业设计方案(第二课时)一、作业目标本作业设计旨在巩固学生在初中数学课程《代数式》第一课时所学的知识,加强学生对代数式的理解,并能熟练运用代数式进行计算和推理。
七年级数学一元一次方程应用题(方案设计问题)(北师版)(专题)(含答案)
一元一次方程应用题(方案设计问题)(北师版)(专题)一、单选题(共6道,每道10分)1.一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其他人可享受7折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断( )A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能答案:C解题思路:设全票价格为x,则:甲旅行社:x+0.7x+0.7x=2.4x乙旅行社:所以甲、乙收费相同故选C.试题难度:三颗星知识点:一元一次方程的应用2.某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款70元和288元,如果小敏把这两次购物改为一次性购物,则应付款( )元.A.312或334B.322或334C.312或344D.322或344答案:C解题思路:三种优惠方案对应的实际金额为:①0-100(不含100元)②90-315(不含315元)③280以上分别求出两次付款优惠前的金额:第一次付款70元,在优惠方案①范围内,因此优惠之前的金额也是70元;第二次付款288元,即在优惠方案②范围内,又在方案③范围内,因此需要讨论:如果是方案②,则优惠之前的金额是288÷0.9=320元;如果是方案③,则优惠之前的金额是288÷0.8=360元;因此,如果把两次购物改成一次性购物,则优惠前的金额为70+320=390元或70+360=430元,按方案③打折后的金额为312元或344元.故选C.试题难度:三颗星知识点:一元一次方程的应用3.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒)问:当购买乒乓球多少盒时,两种优惠办法付款一样?( )A.20B.25C.30D.35答案:A解题思路:设当购买乒乓球x盒时,两种优惠办法付款一样则甲店的付款金额:5×30+5(x-5)乙店的付款金额:5×30×0.9+5x·0.9若两种优惠办法付款一样,则:5×30+5(x-5)=5×30×0.9+5x·0.9解得,x=20故选A.试题难度:三颗星知识点:一元一次方程的应用4.乐清市某服装店在国庆期间对顾客实行优惠,规定如下:若顾客在该超市一次性购物实际付款432元,问此顾客一次性购物标价总和为多少元?( )A.480B.540C.600D.480或540答案:D解题思路:实际付款432元肯定高于200元,但不确定是按九折优惠还是八折优惠,因此需要讨论:如果是按八折,则标价总和为432÷0.8=540元;如果是按九折,则标价总和432÷0.9=480元;因此此顾客一次性购物标价总和为480或540元.故选D.试题难度:三颗星知识点:一元一次方程的应用5.某书城开展学生优惠购书活动,凡一次性购书不超过元的一律九折优惠,超过元的,其中元按九折算,超过元的部分按八折算.某学生第一次去购书付款元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了元,则该学生第二次购书实际付款( )元.A.204B.230C.190D.不确定答案:A解题思路:第一次去购书付款元,显然实际金额没有超过200元,因此实际金额为72÷0.9=80元,节省了8元;因此第二次节省了26元;因为26>200-200×0.9=20,所以第二次购书的实际金额一定超过200元;设第二次金额购书的应付金额为x(x>200)元,则有200×0.9+(x-200)·0.8=x-26解得,x=230;所以实付金额为:230-26=204元故选A.试题难度:三颗星知识点:一元一次方程的应用6.某服装厂生产一种西装和领带,西装每套定价500元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示).(2)问两种方案付款价格是否可能一样,若一样,请求出x的值为多少.( )A.36x+9200;40x+9000;不可能.B.36x+9200;40x+9000;可能,x=50.C.40x+9200;36x+9000;不可能.D.40x+9200;36x+9000;可能,x=50.答案:C解题思路:优惠方案①:20套西装送20条领带,剩余(x-20)条领带单独购买,则需付款20×500+40(x-20)=40x+9200优惠方案②:20×500×0.9+40x·0.9=36x+9000若两种方案付款价格一样,则40x+9200=36x+9000,解得,x=-50,又因为x>20,所不符合题意,因此两种方案付款价格不可能一样.故选C试题难度:三颗星知识点:一元一次方程的应用。
优化设计(北师大)七年级下册数学答案
优化设计(北师大)七年级下册数学答案单元一:有理数第一课:有理数表示及判断1.有理数是可以表示为两个整数的比值的数,例如:$\\frac{1}{2}$、$\\frac{3}{4}$。
2.正数、负数和零统称为有理数。
3.一个数如果可以表示为两个整数的比值,那么这个数就是有理数。
4.判断一个数是不是有理数的方法是:将这个数用分数的形式表示,如果可以表示为两个整数的比值,那么这个数是有理数。
第二课:有理数的比较1.两个有理数大小的比较可以通过将两个有理数转化为相同的分数形式来实现。
2.如果两个有理数的分子相同,那么我们只需要比较它们的分母的大小,分母越小,数越大。
3.如果两个有理数的分母相同,那么我们只需要比较它们的分子的大小,分子越大,数越大。
4.如果两个有理数的分子和分母都不相同,可以通过交叉相乘的方法进行比较。
第三课:相反数与绝对值1.对于任何一个有理数a,-a就是a的相反数。
2.一个数的绝对值表示这个数到零的距离,绝对值记作|a|。
3.如果a是正数或零,那么|a| = a。
4.如果a是负数,那么|a| = -a。
第四课:有理数的加减法1.有理数的加法: a + b = a的相反数 + b,或者 a + b =a + b的相反数。
2.有理数的减法: a - b = a + (-b)。
第五课:有理数的乘法1.有理数的乘法: a × b = (-a) × (-b) = (-a) × b = a × (-b)。
2.正数与负数相乘得到负数。
3.任何一个数与0相乘得到0。
第六课:有理数的除法1.有理数的除法: a ÷ b = a × $\\frac{1}{b}$。
2.除法的逆运算是乘法。
第七课:有理数的混合运算1.对于有理数的混合运算,先进行乘法和除法,后进行加法和减法,按照从左到右的顺序进行运算。
单元二:代数式的认识第八课:代数式的认识1.代数式是由数字、字母和运算符合并而成的式子。
北师大版七年级上册数学教案(精选5篇)
北师大版七年级上册数学教案(精选5篇)北师大版七班级上册数学教案精选篇1教学目标1、学问:熟悉简洁的空间几何棱柱、圆柱、圆锥、球等,把握其中的相同之处和不同之处2、力量:通过比较,学会观看物体间的特征,体会几何体间的联系和区分,并能依据几何体的特征,对其进行简洁分类。
3、情感:有意识地引导同学乐观参加到数学活动过程中,培育与他人合作沟通的力量。
教学重点:熟悉一些基本的几何体,并能描述这些几何体的特征教学难点:描述几何体的特征,对几何体进行分类。
教学过程:一、设疑自探1.创设情景,导入新课在学校的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?2.同学设疑让同学自己先思索再提问3.老师整理并出示自探题目①生活常见的几何体有那些?②这些几何体有什么特征③圆柱体与棱柱体有什么的相同之处和不同之处④圆柱体与圆锥体有什么的相同之处和不同之处⑤棱柱的分类⑥几何体的分类4.同学自探(并有简明的自学方法指导)举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?说说它们的区分二、解疑合探1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的熟悉不彻底进行再探2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类2.活动原则:学困生回答,中等生补充、优等生评价,老师引领点拨提升总结。
三、质疑再探:说说你还有什么怀疑或问题(由同学或老师来解答所提出的问题)四、运用拓展:1.引导同学自编习题。
请结合本节所学的学问举例说明生活简洁基本的几何体,并说说其特征2.老师出示运用拓展题。
(要依据教材内容尽可能要试题类型全面且有代表性)3.课堂小结4.作业布置五、教后反思北师大版七班级上册数学教案精选篇2一、教学目标:通过观看生活中的大量物体,熟悉基本的几何体。
经过比较不同的物体学会观看物体间的不同特征,体会几何体间的联系与区分。
二、教学过程:1、引入:(1)幻灯投影P2的彩图,利用现实生活的背景让同学说出熟识的几何体(如球体、长方体、正方体等) (2)展出圆柱、圆锥、正方体、棱柱、球的模型,让同学分别说出这几种几何体的名称。
《第五章2一元一次方程的解法》作业设计方案-初中数学北师大版24七年级上册
《一元一次方程的解法》作业设计方案(第一课时)一、作业目标通过本课时作业的设计与实施,使学生能够:1. 掌握一元一次方程的基本概念和形式;2. 学会运用等式性质对方程进行变形,以达到解出未知数的目的;3. 培养学生分析问题和解决问题的能力,提升其数学逻辑思维和实际应用能力。
二、作业内容作业内容围绕一元一次方程的解法展开,包括以下几个部分:1. 概念梳理:要求学生回顾一元一次方程的定义和形式,如ax+b=0等,并总结出其基本性质。
2. 变形练习:通过不同类型的例题,指导学生如何利用等式性质将一元一次方程化为最简形式,例如通过加法或减法、乘法或除法来使方程的未知数项只出现一次。
3. 解法运用:提供一定量的习题,让学生在实践中掌握解一元一次方程的步骤和方法。
习题难度逐渐递增,从简单到复杂,涵盖不同情景的应用题。
4. 拓展延伸:介绍一元一次方程在实际生活中的应用,如购物找零、速度与时间的关系等,并布置相关实际问题让学生尝试用一元一次方程解决。
三、作业要求1. 学生需独立完成作业,不得抄袭他人答案;2. 概念梳理部分需清晰明了地总结出要点;3. 变形练习和习题部分需详细写出每一步的解题过程;4. 拓展延伸部分需结合实际生活情境,尝试用一元一次方程解决实际问题;5. 作业需在规定时间内完成并按时提交。
四、作业评价1. 教师将根据学生的作业完成情况,对每位学生的知识掌握程度和解题能力进行评估;2. 评价标准包括概念梳理的准确性、解题过程的规范性、答案的正确性以及实际应用的能力;3. 对于优秀作业,将在课堂上进行展示和表扬,激励学生继续努力;4. 对于存在问题较多的学生,教师将进行个别辅导和指导。
五、作业反馈1. 教师将根据学生的作业情况,给出详细的评语和建议,帮助学生改进学习方法;2. 对于共性问题,将在课堂上进行集中讲解和指导;3. 鼓励学生之间互相交流学习心得和解题经验,促进同学之间的互相帮助和学习;4. 作业反馈将作为学生学期总评的重要参考依据。
《第二章5有理数的混合运算》作业设计方案-初中数学北师大版24七年级上册
《有理数的混合运算》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《有理数的混合运算》的练习,使学生能够熟练掌握有理数的加、减、乘、除及乘方运算,并能正确进行混合运算,提高其数学运算能力和思维逻辑能力。
二、作业内容本作业内容主要围绕有理数的混合运算展开,具体包括:1. 基础练习:包括有理数的加、减、乘、除运算,以及简单的混合运算题目,旨在让学生熟练掌握基本运算规则。
2. 混合运算进阶练习:题目中包含更多的数据变换和复杂的运算步骤,如分数与小数的互化、带有括号的运算等,旨在提升学生的混合运算能力。
3. 实际应用题:通过设置与生活实际相关的应用场景,如商品打折计算、时间与速度的计算等,让学生在解决实际问题的过程中运用所学知识。
三、作业要求1. 独立完成:学生需独立完成作业,不得抄袭他人答案或使用其他不正当手段。
2. 细心计算:在混合运算过程中,学生需注意运算顺序和计算细节,确保答案的准确性。
3. 反思总结:学生应对自己的解题过程进行反思总结,找出错误原因并加以改正。
4. 合理规划时间:学生需合理安排时间,确保在规定时间内完成作业。
四、作业评价1. 正确性评价:根据学生的答案,评价其计算的正确性。
2. 解题思路评价:评价学生的解题思路是否清晰、逻辑是否合理。
3. 进步情况评价:关注学生在本次作业与以往作业中的进步情况,给予相应的鼓励和指导。
五、作业反馈1. 错误订正:针对学生在作业中出现的错误,进行详细的订正指导,帮助学生找出错误原因并改正。
2. 课堂讲解:在下一课时的课堂上,针对学生在作业中普遍出现的问题进行讲解,帮助学生加深理解。
3. 表扬鼓励:对在作业中表现优秀的学生进行表扬和鼓励,激发学生的学习积极性。
4. 个别辅导:对学习困难的学生进行个别辅导,帮助他们解决学习中的问题。
六、后续跟进措施1. 定期复习:定期复习《有理数的混合运算》的课程内容,巩固学生的知识基础。
2. 拓展练习:提供更多的拓展练习题目,帮助学生进一步提高数学运算能力和思维逻辑能力。
《第五章2一元一次方程的解法》作业设计方案-初中数学北师大版24七年级上册
《一元一次方程的解法》作业设计方案(第一课时)一、作业目标通过本次作业,学生应掌握一元一次方程的基本概念,理解并能够正确运用一元一次方程的解法,为后续的数学学习和问题解决打下坚实基础。
二、作业内容(一)知识回顾与预习1. 回顾之前学过的代数式、等式和不等式的基本概念。
2. 预习一元一次方程的定义,明确其形式和特点。
(二)一元一次方程的解法实践1. 练习题:提供若干个一元一次方程的例题,要求学生运用所学知识,自行求解。
- 例如:3x + 5 = 17,求x的值。
- 要求学生掌握移项、合并同类项、化简等基本操作。
2. 实际应用:设置实际情境问题,要求学生将一元一次方程应用于实际问题中,如购物找零、速度与时间等。
- 例如:小明买文具花费了20元,找回8元,求文具原价是多少?- 通过实际问题,加深学生对一元一次方程的理解和应用。
(三)巩固练习与拓展提高1. 巩固练习:布置适量的一元一次方程练习题,要求学生独立完成,加强解法的熟练度。
- 可包括方程的移项、系数化为1等基本操作练习。
2. 拓展提高:提供一些稍具难度的题目,鼓励学生思考并尝试多种解法。
- 例如:对于形如ax + b = c的一元一次方程,当a为负数时,如何快速求解?- 鼓励学生通过小组讨论或请教老师的方式,寻找更多解法。
三、作业要求1. 学生需在规定时间内独立完成作业,不得抄袭或他人代做。
2. 对于每个问题,学生需写出详细的解题步骤和答案。
3. 在完成应用题时,需根据实际情境,建立正确的一元一次方程模型。
4. 对于拓展提高部分的题目,学生需尝试多种解法并记录下来。
5. 学生可借助课本、笔记、互联网等资源辅助完成作业。
四、作业评价1. 教师根据学生完成情况给予相应的评分,对正确的解题步骤和答案给予肯定。
2. 对学生出现的错误进行及时纠正,并指导其改正。
3. 对于有创意和独特解法的学生给予表扬和鼓励。
五、作业反馈1. 教师通过批改作业,了解学生的学习情况,为后续教学提供参考。
2020年-北师大版七年级数学下册 教案 1.5 平方差公式(2)--含答案
2020年-北师大版七年级数学下册教案 1.5 平方差公式(2)–含答案知识点概述在上一节课中,我们学习了平方差公式的概念和应用。
本节课将继续学习平方差公式的扩展和运用,帮助同学们更深入地理解和掌握这个重要的数学公式。
学习目标•理解平方差公式的推导和运用原理;•学会使用平方差公式求解具体问题;•培养分析和解决实际问题的能力。
教学过程一、复习与导入(5分钟)首先,我们进行上节课学习内容的复习。
请同学们回顾一下平方差公式的定义和基本运用方法。
二、知识讲解(15分钟)1.题目引入:先给出一个具体问题,引发同学们的思考。
题目:小明的年龄是小红年龄的平方减1,小红今年5岁,那么请问小明今年多少岁?这个问题可以使用平方差公式来解决。
我们先设小明今年的年龄为X岁,根据题目已知条件,我们可以写出方程:X^2 - 1 = 5。
利用平方差公式求解这个方程,就可以得到小明今年的年龄。
2.引导同学们使用平方差公式解题。
讲解平方差公式的推导过程,即(X+1)(X-1) = X^2 - 1。
然后,将这个公式代入方程求解,并得出答案。
解答过程:(X+1)(X-1) = X^2 - 1 = 5X^2 - 1 = 5X^2 = 6X = ±√6因为题目要求年龄必须为正整数,所以小明今年的年龄为√6岁。
3.总结平方差公式的用法和注意事项。
平方差公式的用法:将一个数的平方减去另一个数的平方,可以使用平方差公式进行简化。
注意事项:在使用平方差公式时,要注意方程的形式和要求解的条件。
三、练习(20分钟)1.练习1:计算下列各题。
1)7^2 - 3^2 = ?2)15^2 - 7^2 = ?3)10^2 - 4^2 = ?4)20^2 - 15^2 = ?5)6^2 - 5^2 = ?(答案:1) 40 2) 176 3) 84 4) 275 5) 11)2.练习2:应用平方差公式解决实际问题。
1)小明今年的年龄是小红年龄的平方减4,小红今年10岁,那么请问小明今年多少岁?2)矩形的长是宽的平方减9,如果矩形的宽为8米,请问矩形的面积是多少平方米?四、总结与拓展(10分钟)1.总结本节课的学习内容。
北师版七年级数学教案范文(17篇)
北师版七年级数学教案范文(17篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、党团范文、工作计划、演讲稿、活动总结、行政公文、文秘知识、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, Party and Youth League model essays, work plans, speeches, activity summaries, administrative documents, secretarial knowledge, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!北师版七年级数学教案范文(17篇)教学工作计划包括教学目标、教学内容、教学方法和评价等方面的规划,是教师教学活动的有力支持。
问题解决策略:归纳2024-2025学年北师大版七年级数学上册
课堂总结
1.为了解决问题,我们是从什么情形入手的? 2.从简单情形中找出某种规律后,是否就说明
找到了一般性规律?还需要注意什么? 3.要想归纳出一般性结论,我们一般要经过哪
些步骤?
(2) 有可能正好剪得101段吗? (1) 剪12刀,绳子变成 3×12+1=37 (段)
(2) 不可能。
对应训练
【教材P103~104 第3题】
1.由1,3,5,7,9,11,13,15,17,19,…组成的 三角形数阵如下图所示。
(1) 第10行的10个数的和是多少?
(2) 你还能找到其他规律吗?试一试!
你发现了什 么规律? 长方形内点的个数增加1,三角形的个数增加2。
1个三角形分成3个三角形
(3)
新增的一个
点在某个三
长方形内已 经有n个点
角形内部 新增的一
三角形的 个数都是 增加2个
个点在某
条线段上 2个三角形分成4个三角形
当长方形内有35个点时,分得的三角形的个数是 4+2×(35-1)=72 。
解:(1) 103 =1000 (2)第n行的第1个数:n2-n+1
第n行的第n个数:n2+n-1
【教材P103 第4题】
2.某类简单化合物中前6种化合物的分子结构模型如下 图所示,其中灰球代表碳原子,白球代表氢原子。按 照这一规律,第60种化合物的分子结构模型中有多少 个氢原子?
4+2×(60-1)=122(个)
【回顾反思】
(1) 如果长方形内有100个点呢?一般地,如果长 方形内有n个点呢?
长方形内点的个数 分割成的小2×(100-1)=202
n
4+2×(n-1)=2n+2
《第三章2整式的加减》作业设计方案-初中数学北师大版24七年级上册
《整式的加减》作业设计方案(第一课时)一、作业目标1. 巩固学生对整式概念的理解,掌握整式的加减运算规则。
2. 提高学生的计算能力和逻辑思维能力。
3. 培养学生自主学习的习惯和合作学习的能力。
二、作业内容1. 复习与预习:要求学生预习整式的概念及其基本运算规则,同时复习前一次课程的重点内容。
2. 课堂作业:- 练习整式的加减运算,包括单项式与单项式之间的运算,以及多项式与多项式之间的运算。
- 理解并运用整式加减的分配律和结合律,进行简单的整式化简。
- 通过具体问题,让学生运用整式加减解决实际问题,如面积、体积等计算问题。
3. 拓展练习:设计一定数量的进阶题目,涵盖不同难度的整式加减问题,以供学有余力的学生挑战自我。
4. 作业题目应包括以下类型:- 基础题:旨在检测学生对整式加减规则的掌握情况。
- 综合题:将整式加减与其他数学知识相结合,考查学生的综合运用能力。
- 拓展题:设置一些有挑战性的题目,以激发学生的创新思维和解题能力。
三、作业要求1. 学生在完成作业时,应按照整式的加减运算规则,正确、清晰地表达解题过程。
2. 学生在解答过程中应注重步骤的完整性和逻辑的连贯性。
3. 学生在进行计算时,应注意书写的规范性和准确性。
4. 对于遇到的问题,学生应主动查阅资料或向老师请教,并记录在作业本上。
四、作业评价1. 教师根据学生的作业完成情况,对学生的掌握程度进行评价。
2. 对学生的解题思路、计算过程和结果进行详细评讲,指出学生的优点和不足。
3. 对学生的作业态度和学习习惯进行评价,鼓励学生积极学习、主动思考。
五、作业反馈1. 教师将评价结果及时反馈给学生,以便学生了解自己的学习情况。
2. 对于存在问题的学生,教师应给予针对性的指导和帮助。
3. 通过课堂讲解、小组讨论等方式,对共性问题进行解答和纠正。
4. 鼓励学生之间互相交流学习心得和解题方法,形成良好的学习氛围。
作业设计方案(第二课时)一、作业目标本作业设计旨在巩固学生在初中数学课程《整式的加减》中已学知识,加强整式加减运算的熟练度,提高学生的逻辑思维能力和解决实际问题的能力。
北师大版七年级下册数学全册优秀教案全案(共41份)
【本文档由书林工作坊整理发布,谢谢你的下载和关注!】1.1同底数幂的乘法1.理解并掌握同底数幂的乘法法则;(重点)2.运用同底数幂的乘法法则进行相关运算.(难点)一、情境导入问题:2015年9月24日,美国国家航空航天局(下简称:NASA)对外宣称将有重大发现宣布,可能发现除地球外适合人类居住的星球,一时间引起了人们的广泛关注.早在2014年,NASA就发现一颗行星,这颗行星是第一颗在太阳系外恒星旁发现的适居带内、半径与地球相若的系外行星,这颗行星环绕红矮星开普勒186,距离地球492光年.1光年是光经过一年所行的距离,光的速度大约是3×105km/s.问:这颗行星距离地球多远(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.问题:“10×105×107×102”等于多少呢?二、合作探究探究点:同底数幂的乘法【类型一】底数为单项式的同底数幂的乘法计算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)m n+1·m n·m2·m.解析:(1)根据同底数幂的乘法法则进行计算即可;(2)先算乘方,再根据同底数幂的乘法法则进行计算即可;(3)根据同底数幂的乘法法则进行计算即可.解:(1)原式=23+4+1=28;(2)原式=-a3·a2·(-a3)=a3·a2·a3=a8;(3)原式=m n+1+n+2+1=a2n+4.方法总结:同底数幂的乘法法则只有在底数相同时才能使用;单个字母或数可以看成指数为1的幂,进行运算时,不能忽略了幂指数1.【类型二】 底数为多项式的同底数幂的乘法计算:(1)(2a +b )2n +1·(2a +b )3·(2a +b )n -4; (2)(x -y )2·(y -x )5.解析:将底数看成一个整体进行计算. 解:(1)原式=(2a +b )(2n +1)+3+(n -4)=(2a +b )3n ; (2)原式=-(x -y )2·(x -y )5=-(x -y )7.方法总结:底数互为相反数的幂相乘时,先把底数统一,再进行计算.(a -b )n =⎩⎪⎨⎪⎧(b -a )n(n 为偶数),-(b -a )n(n 为奇数).【类型三】 运用同底数幂的乘法求代数式的值若82a +3·8b -2=810,求2a +b 的值.解析:根据同底数幂的乘法法则,底数不变指数相加,可得a 、b 的关系,根据a 、b 的关系求解.解:∵82a +3·8b -2=82a+3+b -2=810,∴2a +3+b -2=10,解得2a +b =9.方法总结:将等式两边化为同底数幂的形式,底数相同,那么指数也相同. 【类型四】 同底数幂的乘法法则的逆用已知a =3,a =21,求a 的值. 解析:把a m +n 变成a m ·a n ,代入求值即可. 解:∵a m =3,a n =21,∴a m +n =a m ·a n =3×21=63. 方法总结:逆用同底数幂的乘法法则把a m +n 变成a m ·a n . 三、板书设计1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.即a m ·a n =a m +n (m ,n 都是正整数). 2.同底数幂的乘法法则的运用在同底数幂乘法公式的探究过程中,学生表现出观察角度的差异:有的学生只是侧重观察某个单独的式子,把它孤立地看,而不知道将几个式子联系起来;有的学生则既观察入微,又统揽全局,表现出了较强的观察力.教师要善于抓住这个契机,适当对学生进行指导,培养他们“既见树木,又见森林”的优良观察品质.对于公式使用的条件既要把握好“度”,又要把握好“方向”【本文档由书林工作坊整理发布,谢谢你的下载和关注!】1.2幂的乘方与积的乘方第1课时幂的乘方1.理解幂的乘方的运算性质,进一步体会和巩固幂的意义;(重点)2.掌握幂的乘方法则的推导过程并能灵活应用.(难点)一、情境导入1.填空:(1)同底数幂相乘,________不变,指数________;(2)a2×a3=________;10m×10n=________;(3)(-3)7×(-3)6=________;(4)a·a2·a3=________;(5)(23)2=23·23=________;(x4)5=x4·x4·x4·x4·x4=________.2.计算(22)3;(24)3;(102)3.问题:(1)上述几道题目有什么共同特点?(2)观察计算结果,你能发现什么规律?(3)你能推导一下(a m)n的结果吗?请试一试.二、合作探究探究点一:幂的乘方计算:(1)(a3)4; (2)(x m-1)2;(3)[(24)3]3; (4)[(m-n)3]4.解析:直接运用(a m)n=a mn计算即可.解:(1)(a3)4=a3×4=a12;(2)(x m-1)2=x2(m-1)=x2m-2;(3)[(24)3]3=24×3×3=236;(4)[(m-n)3]4=(m-n)12.方法总结:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆,在幂的乘方中,底数可以是单项式,也可以是多项式.探究点二:幂的乘方的逆用【类型一】逆用幂的乘方比较数的大小请看下面的解题过程:比较2100与375的大小.解:∵2100=(24)25,375=(33)25,又∵24=16,33=27,16<27,∴2100<375. 请你根据上面的解题过程,比较3100与560的大小,并总结本题的解题方法. 解析:首先理解题意,然后可得3100=(35)20,560=(53)20,再比较35与53的大小,即可求得答案.解:∵3100=(35)20,560=(53)20,又∵35=243,53=125,243>125,即35>53,∴3100>560.方法总结:此题考查了幂的乘方的性质的应用.注意理解题意,根据题意得到3100=(35)20,560=(53)20是解此题的关键.【类型二】 逆用幂的乘方求代数式的值已知2x +5y -3=0,求4x ·32y 的值.解析:由2x +5y -3=0得2x +5y =3,再把4x ·32y 统一为底数为2的乘方的形式,最后根据同底数幂的乘法法则即可得到结果.解:∵2x +5y -3=0,∴2x +5y =3,∴4x ·32y =22x ·25y =22x+5y=23=8.方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键. 【类型三】 逆用幂的乘方结合方程思想求值已知221=8y +1,9y =3x -9,则代数式13x +12y 的值为________.解析:由221=8y +1,9y =3x -9得221=23(y +1),32y =3x -9,则21=3(y +1),2y =x -9,解得x =21,y =6,故代数式13x +12y =7+3=10.故答案为10.方法总结:根据幂的乘方的逆运算进行转化得到x 和y 的方程组,求出x 、y ,再计算代数式.三、板书设计1.幂的乘方法则:幂的乘方,底数不变,指数相乘. 即(a m )n =a mn (m ,n 都是正整数). 2.幂的乘方的运用幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则【本文档由书林工作坊整理发布,谢谢你的下载和关注!】第2课时 积的乘方1.掌握积的乘方的运算法则;(重点)2.掌握积的乘方的推导过程,并能灵活运用.(难点)一、情境导入1.教师提问:同底数幂的乘法公式和幂的乘方公式是什么? 学生积极举手回答:同底数幂的乘法公式:同底数幂相乘,底数不变,指数相加. 幂的乘方公式:幂的乘方,底数不变,指数相乘.2.肯定学生的发言,引入新课:今天学习幂的运算的第三种形式——积的乘方. 二、合作探究探究点一:积的乘方【类型一】 直接运用积的乘方法则进行计算计算:(1)(-5ab )3; (2)-(3x 2y )2; (3)(-43ab 2c 3)3; (4)(-x m y 3m )2.解析:直接运用积的乘方法则计算即可. 解:(1)(-5ab )3=(-5)3a 3b 3=-125a 3b 3; (2)-(3x 2y )2=-32x 4y 2=-9x 4y 2; (3)(-43ab 2c 3)3=(-43)3a 3b 6c 9=-6427a 3b 6c 9;(4)(-x m y 3m )2=(-1)2x 2m y 6m =x 2m y 6m .方法总结:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.【类型二】 含积的乘方的混合运算 计算:(1)(-2a 2)3·a 3+(-4a )2·a 7-(5a 3)3; (2)(-a 3b 6)2+(-a 2b 4)3.解析:(1)先进行积的乘方,然后根据同底数幂的乘法法则求解;(2)先进行积的乘方和幂的乘方,然后合并.解:(1)原式=-8a 6·a 3+16a 2·a 7-125a 9=-8a 9+16a 9-125a 9=-117a 9; (2)原式=a 6b 12-a 6b 12=0.方法总结:先算积的乘方,再算乘法,然后算加减,最后合并同类项.【类型三】 积的乘方的实际应用太阳可以近似地看作是球体,如果用V 、R 分别代表球的体积和半径,那么V =43πR 3,太阳的半径约为6×105千米,它的体积大约是多少立方千米(π取3)?解析:将R =6×105千米代入V =43πR 3,即可求得答案.解:∵R =6×105千米,∴V =43πR 3≈43×3×(6×105)3≈8.64×1017(立方千米).答:它的体积大约是8.64×1017立方千米.方法总结:读懂题目信息,理解球的体积公式并熟记积的乘方的性质是解题的关键. 探究点二:积的乘方的逆用【类型一】 逆用积的乘方进行简便运算计算:(23)2014×(32)2015.解析:将(32)2015转化为(32)2014×32,再逆用积的乘方公式进行计算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法总结:对公式a n ·b n =(ab )n 要灵活运用,对于不符合公式的形式,要通过恒等变形转化为公式的形式,运用此公式可进行简便运算.【类型二】 逆用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法总结:利用积的乘方,转化成同底数的同指数幂是解答此类问题的关键. 三、板书设计1.积的乘方法则:积的乘方等于各因式乘方的积. 即(ab )n =a n b n (n 是正整数). 2.积的乘方的运用在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:a n ·b n =(ab )n ,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n 为奇数时,(-a )n =-a n (n 为正整数);当n 为偶数时,(-a )n =a n (n 为正整数)【本文档由书林工作坊整理发布,谢谢你的下载和关注!】1.3 同底数幂的除法第1课时 同底数幂的除法1.理解并掌握同底数幂的除法运算并能运用其解决实际问题;(重点)2.理解并掌握零次幂和负指数幂的运算性质.(难点)一、情境导入一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?二、合作探究探究点一:同底数幂的除法【类型一】 直接运用同底数幂的除法进行运算计算:(1)(-xy )13÷(-xy )8; (2)(x -2y )3÷(2y -x )2;(3)(a 2+1)7÷(a 2+1)4÷(a 2+1)2.解析:利用同底数幂的除法法则即可进行计算,其中(1)应把(-xy )看作一个整体;(2)把(x -2y )看作一个整体,2y -x =-(x -2y );(3)把(a 2+1)看作一个整体.解:(1)(-xy )13÷(-xy )8=(-xy )13-8=(-xy )5=-x 5y 5; (2)(x -2y )3÷(2y -x )2=(x -2y )3÷(x -2y )2=x -2y ;(3)(a 2+1)7÷(a 2+1)4÷(a 2+1)2=(a 2+1)7-4-2=(a 2+1)1=a 2+1.方法总结:计算同底数幂的除法时,先判断底数是否相同或可变形为相同,再根据法则计算.【类型二】 逆用同底数幂的除法进行计算已知a m =4,a n =2,a =3,求a m -n -1的值.解析:先逆用同底数幂的除法,对a m -n -1进行变形,再代入数值进行计算. 解:∵a m =4,a n =2,a =3,∴a m-n -1=a m ÷a n ÷a =4÷2÷3=23.方法总结:解此题的关键是逆用同底数幂的除法得出a m -n -1=a m ÷a n ÷a .声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍?(2)喷气式飞机声音的强度是汽车声音的强度的多少倍?解析:(1)用汽车声音的强度除以人声音的强度,再利用“同底数幂相除,底数不变,指数相减”计算;(2)将喷气式飞机声音的分贝数转化为声音的强度,再除以汽车声音的强度即可得到答案.解:(1)因为1010÷105=1010-5=105,所以汽车声音的强度是人声音的强度的105倍; (2)因为人的声音是50分贝,其声音的强度是105,汽车的声音是100分贝,其声音的强度为1010,所以喷气式飞机的声音是150分贝,其声音的强度为1015,所以1015÷1010=1015-10=105,所以喷气式飞机声音的强度是汽车声音的强度的105倍.方法总结:本题主要考查同底数幂除法的实际应用,熟练掌握其运算性质是解题的关键. 探究点二:零指数幂和负整数指数幂 【类型一】 零指数幂若(x -6)0=1成立,则x 的取值范围是( ) A .x ≥6 B .x ≤6 C .x ≠6 D .x =6解析:∵(x -6)0=1成立,∴x -6≠0,解得x ≠6.故选C.方法总结:本题考查的是0指数幂成立的条件,非0的数的0次幂等于1,注意0指数幂的底数不能为0.【类型二】 比较数的大小若a =(-23)-2,b =(-1)-1,c =(-32)0,则a 、b 、c 的大小关系是( )A .a >b =cB .a >c >bC .c >a >bD .b >c >a解析:∵a =(-23)-2=(-32)2=94,b =(-1)-1=-1,c =(-32)0=1,∴a >c >b .故选B.方法总结:本题的关键是熟悉运算法则,利用计算结果比较大小.当底数是分数,指数为负整数时,只要把底数的分子、分母颠倒,负指数就可变为正指数.【类型三】 零指数幂与负整数指数幂中底数的取值范围若(x -3)0-2(3x -6)-2有意义,则x 的取值范围是( ) A .x >3 B .x ≠3且x ≠2 C .x ≠3或x ≠2 D .x <2解析:根据题意,若(x -3)0有意义,则x -3≠0,即x ≠3.(3x -6)-2有意义,则3x -6≠0,即x ≠2,所以x ≠3且x ≠2.故选B.方法总结:任意非0的数的0次幂为1,底数不能为0,负整数指数幂的底数不能为0. 【类型四】 含整数指数幂、零指数幂与绝对值的混合运算计算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分别根据有理数的乘方、零指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法总结:熟练掌握有理数的乘方、零指数幂、负整数指数幂及绝对值的性质是解答此题的关键.三、板书设计1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减. 2.零次幂:任何一个不等于零的数的零次幂都等于1.即a 0=1(a ≠0). 3.负整数次幂:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数p 次幂的倒数.即a -p =1a p(a ≠0,p 是正整数).从计算具体问题中的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.教学时要多举几个例子,让学生从中总结出规律,体验自主探究的乐趣和数学学习的魅力,为以后的学习奠定基础【本文档由书林工作坊整理发布,谢谢你的下载和关注!】第2课时 用科学记数法表示较小的数1.理解并掌握科学记数法表示小于1的数的方法;(重点)2.能将用科学记数法表示的数还原为原数.一、情境导入同底数幂的除法公式为a m ÷a n =a m -n ,有一个附加条件:m >n ,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m =n 或m <n 时,情况怎样呢?二、合作探究探究点:用科学记数法表示较小的数【类型一】用科学记数法表示绝对值小于1的数2014年6月18日中商网报道,一种重量为0.000106千克,机身由碳纤维制成,且只有昆虫大小的机器人是全球最小的机器人,0.000106用科学记数法可表示为() A.1.06×10-4B.1.06×10-5C.10.6×10-5D.106×10-6解析:0.000106=1.06×10-4.故选A.方法总结:绝对值小于1的数也可以用科学记数法表示,一般形式为a×10-n,其中1≤a<10,n为正整数.与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数前面的0的个数所决定.【类型二】将用科学记数法表示的数还原为原数用小数表示下列各数:(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708;(4)2.17×10-1=0.217.方法总结:将科学记数法表示的数a×10-n还原成通常表示的数,就是把a的小数点向左移动n位所得到的数.三、板书设计用科学记数法表示绝对值小于1的数:一般地,一个小于1的正数可以表示为a×10n,其中1≤a<10,n是负整数.从本节课的教学过程来看,结合了多种教学方法,既有教师主导课堂的例题讲解,又有学生主导课堂的自主探究.课堂上学习气氛活跃,学生的学习积极性被充分调动,在拓展学生学习空间的同时,又有效地保证了课堂学习质量【本文档由书林工作坊整理发布,谢谢你的下载和关注!】1.4 整式的乘法 第1课时 单项式与单项式相乘1.复习幂的运算性质,探究并掌握单项式乘以单项式的运算法则;(重点)2.能够熟练运用单项式乘以单项式的运算法则进行计算并解决实际问题.(难点)一、情境导入根据乘法的运算律计算:(1)2x ·3y ;(2)5a 2b ·(-2ab 2).解:(1)2x ·3y =(2×3)·(x ·y )=6xy ;(2)5a 2b ·(-2ab 2)=5×(-2)·(a 2·a )·(b ·b 2)=-10a 3b 3.观察上述运算,你能归纳出单项式乘法的运算法则吗?二、合作探究探究点:单项式与单项式相乘【类型一】 直接利用单项式乘以单项式法则进行计算计算:(1)(-23a 2b )·56ac 2; (2)(-12x 2y )3·3xy 2·(2xy 2)2; (3)-6m 2n ·(x -y )3·13mn 2(y -x )2. 解析:运用幂的运算法则和单项式乘以单项式的法则计算即可.解:(1)(-23a 2b )·56ac 2=-23×56a 3bc 2=-59a 3bc 2; (2)(-12x 2y )3·3xy 2·(2xy 2)2=-18x 6y 3×3xy 2×4x 2y 4=-32x 9y 9; (3)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13m 3n 3(x -y )5=-2m 3n 3(x -y )5. 方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.【类型二】 单项式乘以单项式与同类项的综合已知-2x 31y 2与7x 53y 54的积与x 4y 是同类项,求m 2+n 的值.解析:根据-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y 是同类项可得出关于m ,n 的方程组,进而求出m ,n 的值,即可得出答案.解:∵-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y 是同类项,∴⎩⎪⎨⎪⎧3m +1+5m -3=4,2n +5n -4=1,解得⎩⎨⎧m =34,n =57,∴m 2+n =143112. 方法总结:掌握单项式乘以单项式的运算法则,再结合同类项,列出二元一次方程组是解题关键.【类型三】 单项式乘以单项式的实际应用有一块长为x m ,宽为y m 的长方形空地,现在要在这块地中规划一块长35x m ,宽34y m 的长方形空地用于绿化,求绿化的面积和剩下的面积.解析:先求出长方形的面积,再求出绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xy m 2,绿化的面积是35x ×34y =920xy (m 2),则剩下的面积是xy -920xy =1120xy (m 2). 方法总结:掌握长方形的面积公式和单项式乘单项式法则是解题的关键.三、板书设计1.单项式乘以单项式的运算法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里面含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以单项式的应用本课时的重点是让学生理解单项式的乘法法则并能熟练应用.要求学生在乘法的运算律以及幂的运算律的基础上进行探究.教师在课堂上应该处于引导位置,鼓励学生“试一试”,学生通过动手操作,能够更为直接的理解和应用该知识点【本文档由书林工作坊整理发布,谢谢你的下载和关注!】第2课时 单项式与多项式相乘1.能根据乘法分配律和单项式与单项式相乘的法则探究单项式与多项式相乘的法则; 2.掌握单项式与多项式相乘的法则并会运用.(重点,难点)一、情境导入计算:(-12)×(12-13-14).我们可以根据有理数乘法的分配律进行计算,那么怎样计算2x ·(3x 2-2x +1)呢?二、合作探究探究点:单项式乘以多项式【类型一】 直接利用单项式乘以多项式法则进行计算计算:(1)(23ab 2-2ab )·12ab ; (2)-2x ·(12x 2y +3y -1). 解析:利用单项式乘以多项式法则计算即可.解:(1)(23ab 2-2ab )·12ab =23ab 2·12ab -2ab ·12ab =13a 2b 3-a 2b 2; (2)-2x ·(12x 2y +3y -1)=-2x ·12x 2y +(-2x )·3y +(-2x )·(-1)=-x 3y +(-6xy )+2x =-x 3y -6xy +2x .方法总结:单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【类型二】 单项式与多项式乘法的实际应用一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米. (1)求防洪堤坝的横断面面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解析:(1)根据梯形的面积公式,然后利用单项式乘以多项式的运算法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解:(1)防洪堤坝的横断面面积S =12[a +(a +2b )]×12a =14a (2a +2b )=12a 2+12ab (平方米).故防洪堤坝的横断面面积为(12a 2+12ab )平方米; (2)堤坝的体积V =Sl =(12a 2+12ab )×100=50a 2+50ab (立方米).故这段防洪堤坝的体积是(50a 2+50ab )立方米.方法总结:本题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘以多项式的运算法则是解题的关键.【类型三】利用单项式乘以多项式化简求值先化简,再求值:5a(2a2-5a+3)-2a2(5a+5)+7a2,其中a=2.解析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解:5a(2a2-5a+3)-2a2(5a+5)+7a2=10a3-25a2+15a-10a3-10a2+7a2=-28a2+15a,当a=2时,原式=-82.方法总结:本题考查了整式的化简求值.在计算时要注意先化简然后再代值计算.整式的加减运算实际上就是去括号与合并同类项.三、板书设计1.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.2.单项式与多项式乘法的应用本节课在已学过的单项式乘以单项式的基础上,学习单项式乘以多项式.教学中注意发挥学生的主体作用,让学生积极参与课堂活动,并通过不断纠错而提高解题水平【本文档由书林工作坊整理发布,谢谢你的下载和关注!】第3课时多项式与多项式相乘1.理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算;(重点)2.掌握多项式与多项式的乘法法则的应用.(难点)一、情境导入某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米.用两种方法表示这块林区现在的面积.学生积极思考,教师引导学生分析,学生发现:这块林区现在长为(m+n)米,宽为(a+b)米,因而面积为(m+n)(a+b)平方米.另外,如图,这块地由四小块组成,它们的面积分别为ma平方米,mb平方米、na平方米,nb平方米,故这块地的面积为(ma+mb+na+nb)平方米.由此可得(m+n)(a+b)=ma+mb+na+nb.今天我们就学习多项式乘以多项式.二、合作探究探究点一:多项式与多项式相乘【类型一】直接利用多项式乘多项式法则进行计算计算:(1)(3x+2)(x+2);(2)(4y-1)(5-y).解析:利用多项式乘以多项式法则计算,即可得到结果.解:(1)原式=3x2+6x+2x+4=3x2+8x+4;(2)原式=20y-4y2-5+y=-4y2+21y-5.方法总结:多项式乘以多项式,按一定的顺序进行,必须做到不重不漏;多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.【类型二】多项式乘以多项式的混合运算计算:(3a+1)(2a-3)-(6a-5)(a-4).解析:根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.解:(3a+1)(2a-3)-(6a-5)(a-4)=6a2-9a+2a-3-6a2+24a+5a-20=22a-23.方法总结:在计算时要注意混合运算的顺序和法则以及运算结果的符号.探究点二:多项式与多项式相乘的化简求值及应用【类型一】多项式乘以多项式的化简求值先化简,再求值:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b),其中a=-1,b=1.解析:先将式子利用整式乘法展开,合并同类项化简,再代入计算.解:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b)=a3-8b3-(a2-5ab)(a+3b)=a3-8b3-a3-3a2b+5a2b+15ab2=-8b3+2a2b+15ab2.当a=-1,b=1时,原式=-8+2-15=-21.方法总结:化简求值是整式运算中常见的题型,一定要注意先化简,再求值,不能先代值,再计算.【类型二】多项式乘以多项式与方程的综合解方程:(x-3)(x-2)=(x+9)(x+1)+4.解析:方程两边利用多项式乘以多项式法则计算,移项、合并同类项,将x 系数化为1,即可求出解.解:去括号后得x 2-5x +6=x 2+10x +9+4,移项、合并同类项得-15x =7,解得x =-715. 方法总结:解答本题就是利用多项式的乘法,将原方程转化为已学过的方程解答.【类型三】 多项式乘以多项式的实际应用千年古镇杨家滩的某小区的内坝是一块长为(3a +b )米,宽为(2a +b )米的长方形地块,物业部门计划将内坝进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的正方形),则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.解析:根据长方形的面积公式,可得内坝、景点的面积,根据面积的差,可得答案. 解:由题意,得(3a +b )(2a +b )-(a +b )2=6a 2+5ab +b 2-a 2-2ab -b 2=5a 2+3ab (平方米).当a =3,b =2时,5a 2+3ab =5×32+3×3×2=63(平方米),故绿化的面积是63平方米.方法总结:掌握长方形的面积公式和多项式乘多项式法则是解题的关键.【类型四】 根据多项式乘以多项式求待定系数的值已知ax 2+bx +1(a ≠0)与3x -2的积不含x 2项,也不含x 项,求系数a 、b 的值. 解析:首先利用多项式乘法法则计算出(ax 2+bx +1)(3x -2),再根据积不含x 2项,也不含x 项,可得含x 2项和含x 项的系数等于零,即可求出a 与b 的值.解:(ax 2+bx +1)(3x -2)=3ax 3-2ax 2+3bx 2-2bx +3x -2.∵积不含x 2项,也不含x 项,∴-2a +3b =0,-2b +3=0,解得b =32,a =94,∴系数a 、b 的值分别是94,32. 方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.三、板书设计1.多项式与多项式的乘法法则:多项式和多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.2.多项式与多项式乘法的应用本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法则,教学中一定要精讲精练,让学生从练习中再次体会法则的内容,为以后的学习奠定基础【本文档由书林工作坊整理发布,谢谢你的下载和关注!】1.5平方差公式1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点)2.掌握平方差公式的应用.(重点)一、情境导入1.教师引导学生回忆多项式与多项式相乘的法则.学生积极举手回答.多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.二、合作探究探究点:平方差公式【类型一】直接运用平方差公式进行计算利用平方差公式计算:(1)(3x-5)(3x+5);(2)(-2a-b)(b-2a);(3)(-7m+8n)(-8n-7m);(4)(x-2)(x+2)(x2+4).解析:直接利用平方差公式进行计算即可.解:(1)(3x-5)(3x+5)=(3x)2-52=9x2-25;(2)(-2a-b)(b-2a)=(-2a)2-b2=4a2-b2;(3)(-7m+8n)(-8n-7m)=(-7m)2-(8n)2=49m2-64n2;(4)(x-2)(x+2)(x2+4)=(x2-4)(x2+4)=x4-16.方法总结:应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a 和b 可以是具体的数,也可以是单项式或多项式. 【类型二】 利用平方差公式进行简便运算利用平方差公式计算:(1)2013×1923; (2)13.2×12.8. 解析:(1)把2013×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.解:(1)2013×1923=(20+13)×(20-13)=202-(13)2=400-19=39989; (2)13.2×12.8=(13+0.2)×(13-0.2)=132-0.22=169-0.04=168.96.方法总结:熟记平方差公式的结构是解题的关键.【类型三】 化简求值先化简,再求值:(2x -y )(y +2x )-(2y +x )(2y -x ),其中x =1,y =2.解析:利用平方差公式展开并合并同类项,然后把x 、y 的值代入进行计算即可得解. 解:(2x -y )(y +2x )-(2y +x )(2y -x )=4x 2-y 2-(4y 2-x 2)=4x 2-y 2-4y 2+x 2=5x 2-5y 2.当x =1,y =2时,原式=5×12-5×22=-15.方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算.【类型四】 平方差公式的几何背景如图①,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.解析:∵图①中阴影部分的面积是a 2-b 2,图②中梯形的面积是12(2a +2b )(a -b )=(a +b )(a -b ),∴a 2-b 2=(a +b )(a -b ),即可验证的乘法公式为(a +b )(a -b )=a 2-b 2.方法总结:通过几何图形面积之间的数量关系可对平方差公式做出几何解释.【类型五】 平方差公式的实际应用王大伯家把一块边长为a 米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续原价租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?解析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.。
专题11 二元一次方程实际应用的三种考法(解析版)(北师大版)
专题11二元一次方程实际应用的三种考法类型一、方案问题例.某手机经销商计划同时购进甲乙两种型号手机,若购进2部甲型号手机和5部乙型号手机,共需要资金6000元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价各为多少元;(2)该店预计用不少于1.78万元且不多于1.92万元的资金购进这两种型号手机共20部,请问有多少种进货方案?(3)若甲型号手机的售价为1500元,乙型号手机的售价为1450元,为了促销,公司决定每售出一台乙型号手机.返还顾客现金a 元,甲型号手机售价不变,要使(2)中购进的手机全部售完,每种方案获利相同,求a 的值.【答案】(1)甲型号手机每部进价为1000元,乙型号手机每部进价为800元.(2)8种(3)a 的值为150.【分析】(1)设未知数列二元一次方程组解方程即可;(2)设未知数列不等式,解不等式,考虑实际问题中取整得到解的可能情况;(3)用(2)中未知数和a 列出利润计算式,根据m 的值不影响利润结果得到含m 的项系数为0,求出a 即可.【详解】(1)设甲型号手机每部进价为x 元,乙型号手机每部进价为y 元.依题意,得256000324600x y x y +=⎧⎨+=⎩.解得1000800x y =⎧⎨=⎩.答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元.(2)设购进甲型号手机m 部,则购进乙型号手机()20m -部.依题意,得178001000800(20)19200m m ≤+-≤,解得916m ≤≤.又m 为整数,m 可以为9,10,11,12,13,14,15,16.∴有8种进货方案.(3)设20部手机全部销售完后获得的总利润相等,则()()()()150010001450800201501300020m a m a m a-+---=-+-.(2)中每种方案获利相同,∴利润计算式中不能有含m 的项,1500a ∴-=.150a ∴=.答:a 的值为150.【点睛】本题考查二元一次方程组的实际应用,一元一次不等式的实际应用,及定值问题.注意定值问题中一个式子的值与m 无关,则含有m 的项中,m 的系数为0.【变式训练1】某商店出售普通练习本和精装练习本,150本普通练习本和100本精装练习本销售总额为1450元;200本普通练习本和50本精装练习本销售总额为1100元.(1)求普通练习本和精装练习本的销售单价分别是多少?(2)该商店计划再次购进500本练习本,普通练习本的数量不低于精装练习本数量的3倍,已知普通练习本的进价为2元/个,精装练习本的进价为7元/个,设购买普通练习本x 个,获得的利润为W 元;①求W 关于x 的函数关系式②该商店应如何进货才能使销售总利润最大?并求出最大利润.【答案】(1)普通练习本:3元;精装练习本:10元(2)21500w x =-+①;②普通练习本进375本,精装练习本进125本,利润最大,最大为750元【分析】(1)设普通练习本的销售单价为m 元,精装练习本的销售单价为n 元,根据等量关系式:150本普通练习本销售总额100+精装练习本销售额1450=元;200本普通练习本销售额50+精装练习本销售额1100=元,列出方程,解方程即可;(2)①购买普通练习本x 个,则购买精装练习本()500x -个,根据总利润=普通练习本获得的利润+精装练习本获得的利润,列出关系式即可;②先求出x 的取值范围,根据一次函数的增减性,即可得出答案.【详解】(1)解:设普通练习本的销售单价为m 元,精装练习本的销售单价为n 元,根据题意得:1501001450200501100m n m n +=⎧⎨+=⎩,【答案】12.6/3125/635【分析】设姐姐,弟弟的步行速度为根据姐姐步行路程加上爸爸一个人骑车路程等于弟弟坐车路程,路程等于6.6km列方程,可求出x12k ∴<,312k ∴≤<,当3k =时,811239x y +-=,解得13x y =⎧⎨=⎩,满足2y x ≥+和17x ≤≤,39y ≤≤,符合题意,当4k =时,811252x y +-=,此方程无符合题意的x ,y 的正整数解,当5k =时,811265x y +-=,此方程无符合题意的x ,y 的正整数解,当6k =时,811278x y +-=,此方程无符合题意的x ,y 的正整数解,当7k =时,811291x y +-=,解得:27x y =⎧⎨=⎩,满足2y x ≥+和17x ≤≤,39y ≤≤,符合题意,当8k =时,8112104x y +-=,解得:56x y =⎧⎨=⎩,不满足2y x ≥+,不符合题意,当9k =时,8112117x y +-=,此方程无符合题意的x ,y 的正整数解,当10k =时,8112130x y +-=,解得:114x y =⎧⎨=⎩,不满足17x ≤≤,不符合题意,当11k =时,8112143x y +-=,解得143x y =⎧⎨=⎩,不满足17x ≤≤,不符合题意,13x y =⎧∴⎨=⎩或27x y =⎧⎨=⎩,130m ∴=或273m =,()F m ∴的值为4或12,()F m ∴的最大值是12,故答案位:8,12.【点睛】本题考查整式的加减,涉及新定义,解题的关键是读懂题意,求出使8112x y +-是13的倍数的正整数x ,y 的值.4.“红缬退风花著子,绿针浮水稻抽秧”这是宋朝诗人姚孝锡所作.诗中咏诵的“水稻”是我国种植的重要经济作物.某村在政府的扶持下建起了水稻种植基地,准备种植甲,乙两种水稻,若种植20亩甲种水稻和30亩乙种水稻,共需投入22万元;若种植30亩甲种水稻和20亩乙种水稻,共需投入23万元.(1)种植甲,乙两种水稻,每亩各需投入多少万元?(2)由题意可知:0.40.220a b +=,∴1002(1045)b a a =-≤≤;(3)当1030a ≤<时,此时4080b <≤,∴200.812(1002)0.8960w a a a =+⨯-=+,∵0.80>,∴w 随a 的增大而增大,∴当10a =时,w 有最小值,此时0.810960968w =⨯+=;当3035a ≤≤时,此时3040b ≤≤,∴0.9200.812(1002) 1.2960w a a a =⨯+⨯-=-+,∵ 1.20-<,∴w 随a 的增大而减小,∴当35a =时,w 有最小值,此时918w =;当3545a <≤时,此时1030b <≤,∴0.92012(1002)61200w a a a =⨯+-=-+,∵60-<,∴w 随a 的增大而减小,当45a =时,w 有最小值,此时6451200930w =-⨯+=.答:选购A 型号机器人35台时,总费用w 最少,此时需要918万元.【点睛】此题主要考查了二元一次方程组和一次函数的应用,正确找出题中的等量关系并熟练掌握一次函数的性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生做题前请先回答以下问题
问题1:方案设计问题思考步骤:
①理解题意,找关键词,确定_____________或者_____________.
②信息,列表,确定_____________.
③表达或计算_____________,比较、选择适合方案.
方案设计问题(北师版)
一、单选题(共6道,每道16分)
1.某市为鼓励市民节约用水,对自来水用户按如下标准收费:若每月用户用水不超过15立方米时,按每立方米a元收费;超过15立方米时,不超过的部分每立方米扔按a元收费,超过的部分每立方米按2a元收费.如果某居民在一个月内用水35立方米,那么他该月应缴纳的水费是( )
A.35a元
B.55a元
C.52.5a元
D.70a元
答案:B
解题思路:
试题难度:三颗星知识点:一元一次方程的应用——方案类应用题
2.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米时,按每立方米0.8元收费;超过60立方米时,不超过部分仍按每立方米0.8元收费,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么这位用户4月份应交煤气费( )
A.66元
B.60元
C.78元
D.75元
答案:A
解题思路:
试题难度:三颗星知识点:一元一次方程的应用——方案类应用题
3.某单位要购置一批某型号的电脑,该型号的电脑市场价为每台5800元.现有甲、乙两电脑商进行竞标,甲电脑商提出的优惠条件是购买10台以上,则从第11台开始每台按七折计价;乙电脑商提出的优惠条件是每台均按八五折计价.假设这两家电脑商在品牌、质量、售后服务等方面都相同.设购买电脑x台(x>10),用含x的代数式分别表示在甲、乙两电脑商处购买时付的钱数,下列正确的是( )
A.
B.
C.
D.
答案:D
解题思路:
试题难度:三颗星知识点:一元一次方程的应用——方案类应用题
4.(上接第3题)若要使得在甲、乙两电脑商购买电脑花钱一样多,则应该买电脑( )
A.18台
B.19台
C.20台
D.21台
答案:C
解题思路:
试题难度:三颗星知识点:一元一次方程的应用——方案类应用题
5.某种海产品,若直接销售,每吨可获利1 200元;若粗加工后销售,每吨可获利5 000元;若精加工后销售,每吨可获利7 500元.某公司现有这种海产品100吨,该公司的生产能力是:如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在10天内(含10天)将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:
方案一:全部进行粗加工;
方案二:尽可能多地进行精加工,没来得及进行精加工的直接销售;
方案三:将一部分进行精加工,其余的进行粗加工,并恰好10天完成.
若采用方案三,则需要精加工( )
A.3天
B.4天
C.5天
D.6天
答案:C
解题思路:
试题难度:三颗星知识点:一元一次方程的应用——方案类应用题
6.(上接第5题)上题的三种方案中,获利最多的方案和对应的利润分别为( )
A.方案三,562 500元
B.方案二,435 000元
C.方案三,600 000元
D.方案一,500 000元
答案:A
解题思路:
试题难度:三颗星知识点:一元一次方程的应用——方案类应用题。