中考数学几何专题复习
中考数学专题复习38几何最值之胡不归问题(全国通用解析版)
问题分析从前有个少年外出求学.某天不幸得知老父亲病危的消息.便立即赶路回家.根据“两点之间线段最短”.虽然从他此刻位置A 到家B 之间是一片砂石地.但他义无反顾踏上归途.当赶到家时.老人刚咽了气.小伙子追悔莫及失声痛哭.邻居告诉小伙子说.老人弥留之际不断念叨着“胡不归?胡不归?看到这里很多人都会有一个疑问.少年究竟能不能提前到家呢?假设可以提早到家.那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题. 模型展示:如图.一动点P 在直线MN 外的运动速度为V 1.在直线MN 上运动的速度为V 2.且V 1<V 2.A 、B 为定点.点C 在直线MN 上.确定点C 的位置使21AC BCV V +的值最小.121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭.记12V k V =. 即求BC +kAC 的最小值.构造射线AD 使得sin∠DAN =k .CH /AC =k .CH =kAC .V 1V 2V 1驿道砂石地ABCV 2V 1MNCBA几何最值之胡不归问题方法技巧将问题转化为求BC +CH 最小值.过B 点作BH ∠AD 交MN 于点C .交AD 于H 点.此时BC +CH 取到最小值.即BC +kAC 最小.最值解法:在求形如“P A +kPB ”的式子的最值问题中.关键是构造与kPB 相等的线段.将“P A +kPB ”型问题转化为“P A +PC ”型.【例1】如图.平行四边形ABCD 中.∠DAB =60°.AB =6.BC =2.P 为边CD 上的一动点.则32PB PD的最小值等于________.【解析】已知∠A =60°.且sin60°=32.故延长AD .作PH ∠AD 延长线于H 点. ABCDPMHP DCBAABCDPH M 题型精讲即可得3PH =.∠3PB =PB +PH . 当B 、P 、H 三点共线时.可得PB +PH 取到最小值.即BH 的长.解直角∠ABH 即可得BH 长.【例2】(2021·重庆中考真题)在等边ABC 中.6AB =.BD AC ⊥ .垂足为D .点E 为AB 边上一点.点F 为直线BD 上一点.连接EF .图1 图2图3(1)将线段EF 绕点E 逆时针旋转60°得到线段EG .连接FG .∠如图1.当点E 与点B 重合.且GF 的延长线过点C 时.连接DG .求线段DG 的长; ∠如图2.点E 不与点A .B 重合.GF 的延长线交BC 边于点H .连接EH .求证:3BE BH BF +=;(2)如图3.当点E 为AB 中点时.点M 为BE 中点.点N 在边AC 上.且2DN NC =.点F 从BD 中点Q 沿射线QD 运动.将线段EF 绕点E 顺时针旋转60°得到线段EP .连接FP .当12NP MP +最小时.直接写出DPN △的面积. 【答案】(1)21;∠见解析;(243【分析】(1)∠连接AG .根据题意得出∠ABC 和∠GEF 均为等边三角形.从而可证明∠GBC ∠∠GAC .进一步求出AD =3.AG =BG =23然后利用勾股定理求解即可;∠以点F 为圆心.FB 的长为半径画弧.与BH 的延长线交于点K .连接KF .先证明出∠BFK 是顶角为120°的等腰三角形.然后推出∠FEB ∠∠FHK .从而得出结论即可;(2)利用“胡不归”模型构造出含有30°角的直角三角形.构造出12NP MP NP PJ +=+.当N 、P 、J 三点共线的时候满足条件.然后利用相似三角形的判定与性质分别计算出PN 与DN 的长度.即可得出结论. 【详解】(1)解:∠如图所示.连接AG .由题意可知.∠ABC 和∠GEF 均为等边三角形. ∠∠GFB =60°. ∠BD ∠AC . ∠∠FBC =30°.∠∠FCB =30°.∠ACG =30°. ∠AC =BC .GC =GC . ∠∠GBC ∠∠GAC (SAS ). ∠∠GAC =∠GBC =90°.AG =BG . ∠AB =6.∠AD =3.AG =BG =3 ∠在Rt ∠ADG 中.()222223321DG AD AG =+=+=∠21DG =∠证明:以点F 为圆心.FB 的长为半径画弧.与BH 的延长线交于点K .连接KF .如图. ∠∠ABC 和∠GEF 均为等边三角形. ∠∠ABC =60°.∠EFH =120°. ∠∠BEF +∠BHF =180°. ∠∠BHF +∠KHF =180°. ∠∠BEF =∠KHF .由辅助线作法可知.FB =FK .则∠K =∠FBE . ∠BD 是等边∠ABC 的高. ∠∠K =∠DBC =∠DBA =30°. ∠∠BFK =120°. 在∠FEB 与∠FHK 中.FEB FHK FBE KFB FK ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠FEB ∠∠FHK (AAS ). ∠BE =KH .∠BE +BH =KH +BH =BK . ∠FB =FK .∠BFK =120°. ∠BK 3BF .即:3BE BH BF +=;(2)如图1所示.以MP 为边构造∠PMJ =30°.∠PJM =90°.则PJ =12MP . ∠求12NP MP +的最小值.即为求NP PJ +的最小值.如图2所示.当运动至N、P、J三点共线时.满足NP PJ+最小.此时.连接EQ.则根据题意可得EQ∠AD.且EQ=12 AD.∠∠MEQ=∠A=60°.∠EQF=90°.∠∠PEF=60°.∠∠MEP=∠QEF.由题意.EF=EP.∠∠MEP∠∠QEF(SAS).∠∠EMP=∠EQF=90°.又∠∠PMJ=30°.∠∠BMJ=60°.∠MJ∠AC.∠∠PMJ=∠DNP=90°.∠∠BDC=90°.∠四边形ODNJ为矩形.NJ=OD.由题.AD=3.BD=33∠MJ∠AC.∠∠BMO∠∠BAD.∠14 BM BO MOBA BD AD===.∠OD=34BD93OM=34AD=94.设PJ=x.则MJ3.OJ3-9 4 .由题意可知.DN =23CD =2. 9324x -=. 解得:113x =. 即:PJ =11312. ∠93113434123PN =-=. ∠11434322233DPNSDN PN ==⨯⨯=. 【例3】已知抛物线2(0)y ax bx c a =++≠过点(1,0)A .(3,0)B 两点.与y 轴交于点C .=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥.垂足为M .求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点.当PBC ∆面积最大时.求点P 的坐标; (4)若点Q 为线段OC 上的一动点.问:12AQ QC +是否存在最小值?若存在.求岀这个最小值;若不存在.请说明理由.【答案】(1)抛物线的表达式为:243y x x =-+.顶点(2,1)D -;(2)证明见解析;(3)点33,24P ⎛⎫- ⎪⎝⎭;(4)存在.12AQ QC +的最小值为233+. 【详解】(1)函数的表达式为:()()()2y a x 1x 3a x 4x 3=--=-+.即:3a=3.解得:a=1.故抛物线的表达式为:2y x 4x 3=-+. 则顶点D(2,1)-; (2)OB OC 3==.OBC OCB 45∠∠︒∴==.∠A(1,0).B(3,0).∠ OB=3.OA=1. ∠AB=2.∠AM MB ABsin452︒=== 又∠D(2.-1). ()()2221102-+--=∠AM=MB=AD=BD. ∠四边形ADBM 为菱形. 又∠AMB 90∠︒=.∴菱形ADBM 为正方形;(3)设直线BC 的解析式为y=mx+n.将点B 、C 的坐标代入得:303m n n +=⎧⎨=⎩. 解得:13m n =-⎧⎨=⎩.所以直线BC 的表达式为:y=-x+3. 过点P 作y 轴的平行线交BC 于点N.设点()2P x,x 4x 3-+.则点N (x,x+3)-.则()()22ΔPBC 133S PN OB x 3x 4x 3x 3x 222=⨯=-+-+-=--. 302-<.故ΔPBC S 有最大值.此时3x 2=. 故点33P ,24⎛⎫- ⎪⎝⎭; (4)存在.理由:如图.过点C 作与y 轴夹角为30︒的直线CF 交x 轴于点F.过点A 作AH CF ⊥.垂足为H.交y 轴于点Q. 此时1HQ CQ 2=.则1AQ QC2+最小值=AQ+HQ=AH.在Rt∠COF中.∠COF=90°.∠FOC=30°.OC=3.tan∠FCO=FO CO.3.∠F(3利用待定系数法可求得直线HC的表达式为:y3x3=+…∠.∠∠COF=90°.∠FOC=30°.∠∠CFO=90°-30°=60°.∠∠AHF=90°.∠∠FAH=90°-60°=30°.3∠Q(0,3 ).利用待定系数法可求得直线AH的表达式为:33 y x=+联立∠∠并解得:133 x4-=.故点13333H-+⎝⎭.而点A(1,0).则233+=AH.即1AQ QC2+的最小值为233+.1.如图.△ABC中.AB=AC=10.tanA=2.BE∠AC于点E.D是线段BE上的一个动点.则55CD BD的最小值是______.【答案】B【详解】如图.作DH∠AB于H.CM∠AB于M.提分作业∠BE∠AC. ∠∠AEB=90°. ∠tanA=BEAE=2.设AE=a.BE=2a. 则有:100=a 2+4a 2. ∠a 2=20.5-25. 5∠AB=AC.BE∠AC.CM∠AB.5 ∠∠DBH=∠ABE.∠BHD=∠BEA. ∠5sin DH AE DBH BD AB ∠===. 55BD=CD+DH. ∠CD+DH≥CM. 55 5BD 的最小值为5 故选B .2.在平面直角坐标系中.将二次函数()20y ax a =>的图象向右平移1个单位.再向下平移2个单位.得到如图所示的抛物线.该抛物线与x 轴交于点A 、B (点A 在点B 的左侧).1OA =.经过点A 的一次函数()0y kx b k =+≠的图象与y 轴正半轴交于点C .且与抛物线的另一个交点为D .ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方.求ACE ∆面积的最大值.并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点.在(2)的结论下.求35PE PA +的最小值. 【答案】(1)21322y x x =--;1122y x =+;(2)ACE ∆的面积最大值是2516.此时E 点坐标为315,28⎛⎫- ⎪⎝⎭;(3)35PE PA +的最小值是3. 【详解】解:(1)将二次函数()20y ax a =>的图象向右平移1个单位.再向下平移2个单位.得到的抛物线解析式为()212y a x =--. ∠1OA =.∠点A 的坐标为()1,0-. 代入抛物线的解析式得.420a -=.∠12a =. ∠抛物线的解析式为()21122y x =--.即21322y x x =--. 令0y =.解得11x =-.23x =.∠()3,0B . ∠4AB OA OB =+=. ∠ABD ∆的面积为5.∠152ABD D S AB y ∆=⋅=.∠52D y =. 代入抛物线解析式得.2513222x x =--.解得12x =-.24x =.∠54,2D ⎛⎫⎪⎝⎭. 设直线AD 的解析式为y kx b =+.∠5420k b k b ⎧+=⎪⎨⎪-+=⎩.解得:1212k b ⎧=⎪⎪⎨⎪=⎪⎩. ∠直线AD 的解析式为1122y x =+. (2)过点E 作EM y 轴交AD 于M .如图.设213,22E a a a ⎛⎫-- ⎪⎝⎭.则11,22M a a ⎛⎫+ ⎪⎝⎭.∠221113132222222EM a a a a a =+-++=-++. ∠112ACE AME CME S S S EM ∆∆∆=-=⨯⋅()22113121342224a a a a ⎛⎫=-++⨯=--- ⎪⎝⎭.213254216a ⎛⎫=--+⎪⎝⎭. ∠当32a =时.ACE ∆的面积有最大值.最大值是2516.此时E 点坐标为315,28⎛⎫- ⎪⎝⎭.(3)作E 关于x 轴的对称点F .连接EF 交x 轴于点G .过点F 作FH AE ⊥于点H .交x 轴于点P . ∠315,28E ⎛⎫-⎪⎝⎭.1OA =. ∠35122AG =+=.158EG =.∠5421538AG EG ==. ∠90AGE AHP ∠=∠=. ∠3sin 5PH EG EAG AP AE ∠===.∠35PH AP =. ∠E 、F 关于x 轴对称.∠PE PF =.∠35PE AP FP HP FH +=+=.此时FH 最小. ∠1515284EF =⨯=.AEG HEF ∠=∠. ∠4sin sin 5AG FH AEG HEF AE EF ∠=∠===. ∠415354FH =⨯=. ∠35PE PA +的最小值是3.3.已知抛物线2y x bx c =-+(b c ,为常数.0b >)经过点(1,0)A -.点(,0)M m 是x 轴正半轴上的动点.(∠)当2b =时.求抛物线的顶点坐标;(∠)点(,)D D b y 在抛物线上.当AM AD =.5m =时.求b 的值; (∠)点1(,)2Q Q b y +在抛物线上.22AM QM +332.求b 的值. 【答案】(∠)(1,4)-;(∠)321b =-;(∠)4b =. 【详解】解:(∠)∠抛物线2y x bx c =-+经过点(1,0)A -.∠10b c ++=.即1c b =--.当2b =时.2223(1)4y x x x =--=--.∠抛物线的顶点坐标为(1,4)-.(∠)由(∠)知.抛物线的解析式为21y x bx b =---. ∠点(,)D D b y 在抛物线21y x bx b =---上.∠211D y b b b b b =-⋅--=--.由0b >.得02bb >>.10b --<. ∠点(,1)D b b --在第四象限.且在抛物线对称轴2bx =的右侧. 如图.过点D 作DE x ⊥轴.垂足为E .则点(,0)E b . ∠1AE b =+.1DE b =+.得AE DE =. ∠在Rt ADE ∆中.45ADE DAE ︒∠=∠=. ∠2AD AE =. 由已知AM AD =.5m =. ∠5(1)2(1)b --=+. ∠321b =.(∠)∠点1(,)2Q Q b y +在抛物线21y x bx b =---上. ∠2113()()12224Q b y b b b b =+-+--=--. 可知点13(,)224b Q b +--在第四象限.且在直线x b =的右侧. 2222()QM AM QM +=+.可取点(0,1)N . 如图.过点Q 作直线AN 的垂线.垂足为G .QG 与x 轴相交于点M . 有45GAM ︒∠=.2AM GM =. 则此时点M 满足题意. 过点Q 作QHx ⊥轴于点H .则点1(,0)2H b +.在Rt MQH ∆中.可知45QMH MQH ︒∠=∠=.∠QH MH =.2QM MH =. ∠点(,0)M m . ∠310()()242b b m ---=+-.解得124b m =-. 332224AM QM +=. 1113322[()(1)]22[()()]242244b b b ---++--=. ∠4b =.4.如图.已知抛物线y x +2)(x ﹣4)(k 为常数.且k >0)与x 轴从左至右依次交于A.B 两点.与y 轴交于点C.经过点B 的直线y x +b 与抛物线的另一交点为D .(1)若点D 的横坐标为﹣5.求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P.使得以A.B.P 为顶点的三角形与∠ABC 相似.求k 的值;(3)在(1)的条件下.设F 为线段BD 上一点(不含端点).连接AF.一动点M 从点A 出发.沿线段AF 以每秒1个单位的速度运动到F.再沿线段FD 以每秒2个单位的速度运动到D 后停止.当点F 的坐标是多少时.点M 在整个运动过程中用时最少?【答案】(1);(2)或;(3)当点F 坐标为(﹣)时.点M在整个运动过程中用时最少.【解析】(1)抛物线y=(x+2)(x﹣4).令y=0.解得x=﹣2或x=4.∠A(﹣2.0).B (4.0).∠直线经过点B(4.0).∠×4+b=0.解得b=.∠直线BD解析式为:当x=﹣5时.y=.∠D(﹣).∠点D(﹣)在抛物线y=x+2)(x﹣4)上.∠5+2)(﹣5﹣4)=.∠.∠抛物线的函数表达式为:(x+2)(x﹣4).即.(2)由抛物线解析式.令x=0.得y=﹣k.∠C(0.﹣k).OC=k.因为点P在第一象限内的抛物线上.所以∠ABP为钝角.因此若两个三角形相似.只可能是∠ABC∠∠APB或∠ABC∠∠PAB.∠若∠ABC∠∠APB.则有∠BAC=∠PAB.如答图2﹣1所示.设P(x.y).过点P作PN∠x轴于点N.则ON=x.PN=y.tan∠BAC=tan∠PAB.即:.∠.∠P(+k).代入抛物线解析式y=x+2)(x﹣4).得x+2)(x﹣4x+k.整理得:x2﹣6x﹣16=0.解得:x=8或x=﹣2(与点A重合.舍去).∠P(8.5k).∠∠ABC∠∠APB.∠...∠若∠ABC∠∠PAB.则有∠ABC=∠PAB.如答图2﹣2所示.设P(x.y).过点P作PN∠x轴于点N.则ON=x.PN=y.tan∠ABC=tan∠PAB.即:.∠.∠P(x.x+).代入抛物线解析式y(x+2)(x﹣4).得x+2)(x﹣4x.整理得:x2﹣4x﹣12=0.解得:x=6或x=﹣2(与点A重合.舍去).∠P(6.2k).∠∠ABC∠∠PAB..∠.解得.∠k>0.∠.综上所述.或.(3)作DK∠AB.AH∠DK.AH交直线BD于点F.∠∠DBA=30°.∠∠BDH=30°.∠FH=DF×sin30°.∠当且仅当AH∠DK时.AF+FH 最小.点M在整个运动中用时为:.∠l BD:.∠F X=A X=﹣2.∠F(﹣).。
中考数学几何专题复习
专题 几何专题题型一考察概念基础知识点型例1如图1,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线是DE ,则△BEC 的周长为 ; 例2 如图2,菱形ABCD 中,60A ∠=°,E 、F 是AB 、AD 的中点,若2EF=,菱形边长是______.图1 图2 图3 例3 已知AB 是⊙O 的直径,PB 是⊙O 的切线,AB =3cm,PB =4cm,则BC = . 题型二折叠题型:折叠题要从中找到对就相等的关系,然后利用勾股定理即可求解; 沿DE 折叠,若48CDE ∠=°,则APD ∠等例4 D E ,分别为AC ,BC 边的中点,于 ;例5如图4.矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿 EF 折叠, 使点A 与点C 重合,折叠后在其一面着色图,则着色部分的面积为A . 8B .112C . 4D .52EDBC A P图4图5 图6题型三涉及计算题型:常见的有应用勾股定理求线段长度,求弧长,扇形面积及圆锥体积,侧面积,三角函数计算等;例6如图3,P 为⊙O 外一点,PA 切⊙O 于A,AB 是⊙O 的直径,PB 交⊙O 于C,PA =2cm,PC =1cm,则图中阴影部分的面积S 是A.2235cm π- B 2435cm π- C 24235cm π- D 2232cm π- 图3 题型四证明题型: 第二轮复习之几何一——三角形全等判定方法1:SAS例1如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且 AE=AF; 求证:△ACE ≌△ACF例2 在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . 1求证:△BEC ≌△DEC ;2延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 的度数.BD GFF ADFEBCDCBA EFG判定方法2:AASASA例3 如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于 E ,BF DE ∥,交 AG 于F ,求证:AFBF EF =+.例4如图,在□ABCD 中,分别延长BA,DC 到点E,使得AE=AB, CH=CD 连接EH,分别交AD,BC 于点F,G;求证:△AEF ≌△CHG.判定方法3:HL 专用于直角三角形例5在△ABC 中,AB=CB,∠ABC=90o,F 为AB 延长线上一点,点E在BC上, 且AE=CF. 1求证:Rt △AB E ≌Rt △CBF; 2若∠CAE=30o,求∠ACF 度数.对应练习1.如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F.1证明:∠DFA = ∠FAB; 2证明: △ABE≌△FCE.2.如图,点E 是正方形ABCD 内一点,CDE ∆是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . 1求证:BCE ADE ∆≅∆;5分2求AFB ∠的度数.5分3.如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与AB 相交于F .1求证:△CEB ≌△ADC ;2若AD =9cm,DE =6cm,求BE 及EF 的长.第二轮复习之几何二——三角形相似Ⅰ.三角形相似的判定例1如图,在平行四边形ABCD 中,过点A 作AE ⊥BC,垂足为E,连接DE,F 为线段DE 上一点,且∠AFE =∠B. 1求证:△ADF ∽△DEC2若AB =4,AD =33,AE =3,求AF 的长. 例2如图9,点P 是正方形ABCD 边AB 上一点不与点A .B重合,连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE, PE 交边BC 于点F .连接BE 、DF;E B D A CF AF DEB CABCEFABCDF EF ED CBA 1求证:∠ADP=∠EPB ; 2求∠CBE 的度数; 3当APAB的值等于多少时.△PFD ∽△BFP 并说明理由.2.相似与圆结合,注意求证线段乘积,一般是转化证它所在的三角形相似;将乘积式转化为比例式→比例式边长定位到哪个三角形→找条件证明所在的三角形相似 例3 如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 交AC 与E,交BC 与D .求证:1D 是BC 的中点;2△BEC∽△ADC; 3BC 2=2AB CE .3.相似与三角函数结合,①若题目给出三角函数值一般会将给出的三角函数值用等角进行转化,然后求线段的长度②求某个角的三角函数值,一般会先将这个角用等角转化,间接求三角函数值例4如图,点E 是矩形ABCD 中CD 边上一点,⊿BCE 沿BE 折叠为⊿BFE,点F 落在AD 上.1求证:⊿ABE∽⊿DFE ;2若sin∠DFE=31,求tan∠EBC 的值. 练习一、选择题1、如图1,将非等腰ABC △的纸片沿DE 折叠后,使点A 落在BC 边上的点F 处.若点D 为AB 边的中点,则下列结论:①BDF △是等腰三角形;②DFE CFE ∠=∠;③DE 是ABC △的中位线,成立的有 A .①②B .①③C .②③D .①②③图1 图22.如图,等边△ABC 中,BD=CE,AD 与BE 相交于点P,则∠APE 的度数是A .45° B.55° C.60° D.75° 3.如图3,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE等于A .1013 B .1513 C .6013 D .7513MEDCBA图3 图4 图5GFE CBADAO BCXY4.如图4,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM⊥DM;④BM=DM.正确结论的个数是 A1个 B2个 C3个 D4个5.如图5,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G,则FGAF= . 6.如图6,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,AC 平分∠BCD ,∠ADC = 120°,四边形ABCD 的周长为10cm .图中阴影部分的面积为 A. 32B.3C. 23D. 43图6 图7对折,使点A 落在点1A 处;已知7.如图7,在直角坐标系中,将矩形OABC 沿OB3=OA ,1=AB ,则点1A 的坐标是 ; A 、23,23 B 、23,3 C 、23,23 D 、21,23 三、解答题1如图,矩形ABCD 中,点E 是BC 上一点,AE =AD,DF⊥AE 于F,连结DE.求证:DF =DC .2.如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内.求证:1∠PBA =∠PCQ =30°;2PA =PQ .3.如图9,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .1求证:DE 平分∠BDC ;2若点M 在DE 上,且DC=DM ,求证: ME=BD . 4.如图5AB 是⊙O 的直径,AC 是弦,CD 是⊙O 的切线,C 为切点,AD ⊥CD 于点D .求证:1∠AOC =2∠ACD ; 2AC 2=AB ·AD . 、5.把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合E 、F 两点均在BD 上,折痕分别为BH 、DG;1求证:△BHE ≌△DGF ;2若AB =6cm,BC =8cm,求线段FG 的长;6.如图8,在Rt △ABC 中,∠BAC=90°,AC=2AB,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合, 连结BE 、EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.ABCDEAC B DPQABCDEF 第二轮复习之几何三——四边形例1 如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD、等 边△ABE;已知∠BAC=30o,EF⊥AB,垂足为F,连结DF;1试说明AC=EF ;2求证:四边形ADFE 是平行四边形;例2如图,AD ∥FE,点B 、C 在AD 上,∠1=∠2,BF =BC⑴求证:四边形BCEF 是菱形⑵若AB =BC =CD,求证:△ACF ≌△BDE例3如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一 点,连结AG,点E 、F 分别在AG 上,连接BE 、DF,∠1=∠2 ,∠3=∠4.1证明:△ABE≌△DAF; 2若∠AGB=30°,求EF 的长.例4如图,在等腰梯形ABCD 中,已知AD BC ∥,AB DC =,2AD =, 4BC =延长BC 到E ,使CE AD =.1证明:BAD DCE △≌△;2如果AC BD ⊥,求等腰梯形ABCD 的高DF 的值.对应练习1.如图,在菱形ABCD 中,∠A=60°,点P 、Q 分别在边AB 、BC 上,且AP=BQ . 1求证:△BDQ ≌△ADP ;2已知AD=3,AP=2,求cos ∠BPQ 的值结果保留根号.2、如图,E F ,是四边形ABCD 的对角线AC 上两点,AF CE DF BE DFBE ==,,∥. 求证:1AFD CEB △≌△.2四边形ABCD 是平行四边形.3. 如罔7,在一方形ABCD 中.E 为对角线AC 上一点,连接EB 、ED,1求证:△BEC ≌△DEC :2延长BE 交AD 于点F,若∠DEB=140°.求∠AFE 的度数.4.如图,在梯形ABCD 中,AD ∥BC ,延长CB 到点E ,使BE =AD ,连接DE 交AB 于点M .1求证:△AMD ≌△BM E ;2若N 是CD 的中点,且M N=5,BE =2,求BC 的长.第二轮复习之几何四——圆Ⅰ、证线段相等例1:如图,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .1求证:CF=BF ;2若CD =6, AC =8,则⊙O 的半径为 ___ ,CE 的长是 ___ .ABDEFCDAB EC F ACBDEFO2、证角度相等例2如图,AB 是⊙O 的直径,C 为圆周上一点,30ABC ∠=︒,过点B 的切线与CO 的延长线交于点D .:求证:1CAB BOD ∠=∠;2ABC ∆≌ODB ∆. 3、证切线点拨:证明切线的方法——连半径,证垂直;根据:过半径的外端且垂直于半径的直线是圆的切线例3如图,四边形ABCD 内接于⊙O,BD 是⊙O 的直径, AE⊥CD 于点E,DA 平分∠BDE;1求证:AE 是⊙O 的切线;2若∠DBC=30°,DE=1cm,求BD 的长;例4如图,点A 、B 、C 、D 都在⊙O 上,OC⊥AB,∠ADC=30°. 1求∠BOC 的度数;2求证:四边形AOBC 是菱形. 对应练习1.如图,已知⊙O 的直径AB 与弦CD 互相垂直,垂足为点E . ⊙O 的切线BF 与弦AD的延长线相交于点F ,且AD =3,cos ∠BCD= . 1求证:CD ∥BF ; 2求⊙O 的半径; 3求弦CD 的长.2.如图,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB =AD =AO .1求证:BD 是⊙O 的切线.2若点E 是劣弧BC 上一点,AE 与BC 相交于点F,且△BEF 的面积为8,cos∠BFA=32,求△ACF 的面积.1.一副三角板,如图所示叠放在一起,则图中∠α的度数是A .75B .60C .65D .55图1 图22.如图2,在边长为4的等边三角形ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是A .43B .33C .23D .33.如图3,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是DCBOADOBCA E 例7图43DOEC O图 8OFE BCADCB A O P D图3 图4 A B C D74. 如图4,直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是 A .247B .73C .724D .135.如图5,ABC △是等腰直角三角形,BC 是斜边,将ABP △绕点A 逆时针旋转后,能与ACP '△重合,如果3AP =,那么PP '的长等于 A .32B .23C .42 D .336. 图6,已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F,G,若∠ADF=80o ,则∠EGC 的度数为 图5 图67.如图,已知:在平行四边形ABCD 中,AB=4cm,AD=7cm,∠ABC 的平分线交AD•于点E,交CD 的延长线于点F,则DF=______cm .8.如图,矩形ABCD 中,AB =2,BC =3,对角线AC 的垂直平分线分别交AD,BC 于点E 、F,连接CE,则CE 的长________.9.如图,BD 是⊙O 的直径,OA ⊥OB,M 是劣弧错误!上一点,过点M 作⊙O 的切线MP 交OA 的延长线于P 点,MD 与OA 交于点N; 1求证:PM=PN ; 2若BD=4,PA=32AO,过B 点作BC ∥MP 交⊙O 于C 点,求BC 的长. 10.如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点P,PD ⊥AC 于点D,且PD 与⊙O 相切.1求证:AB =AC ;2若BC =6,AB =4,求CD 的值.11.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF,∠F=∠ACB=90°, ∠ E=45°,∠A=60°,AC=10,试求CD 的长.12.如图,四边形ABCD 是边长为a 的正方形,点G ,E 分别是边AB ,BC 的中点,∠AEF =90o,且EF 交正方形外角的平分线CF 于点F . 1证明:∠BAE =∠FEC ; 2证明:△AGE ≌△ECF ; 3求△AEF 的面积.13.如图,矩形ABCD 中,53AB AD ==,.点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G .1当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的68CEABD切线;2试探究:BE 能否与O ⊙相切 若能,求出此时DE 的长;若不能,请说明理由.几何之——解直角三角形1在△ABC 中,∠C=90°,sinA=45,则tanB =A .43B .34C .35D .452、在 ABC 中,若|sinA-22 |+23-cosB 2=0, ∠A.∠B 都是锐角,则∠C 的度数是A. 750B. 9003、如下左图,在△ABC 中,∠C=90°,AB=13,BC=5,则sinA 的值是A 、513B 、1213 C 、512D 、1354如上右图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=2, BC=5,CD=3,则tanC 等于A 、34B 、43C 、35D 、455、如,在矩形ABCD 中,DE⊥AC 于E,设∠ADE=α,且53cos =α, AB = 4, 则AD 的长为 . A3 B316 C 320 D 516 6在锐角△ABC 中,∠BAC=60°,BD、CE 为高,F 为BC 的中点,连接DE 、DF 、EF,则结论:①DF=EF;②AD:AB=AE :AC ;③△DEF 是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE=√2DE 中,一定正确的有A 、2个B 、3个C 、4个D 、5个7.084sin 45(3)4-︒+-π+-=为528.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离米,则这 个破面的坡度为 . 9.如图,已知直线1l∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= . 直角三角形常见模型1 张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30°,旗杆底部B 点的俯角为45°.若旗杆底部B 点到建筑物的水平距离BE=9米,旗杆台阶高1米,试求旗杆AB 的高度;2.海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东DE OCBG FAABC DαAABCDEADBE图6i =1:3C60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45方向,求此时灯塔B 到C 处的距离; 3某年入夏以来,松花江哈尔滨段水位不断下降,一条船在松花江某段自西向东沿直线航行,在A 处测得航标C 在北偏东60°方向上;前进100m 到达B 处,又测得航标C 在北偏东45°方向上如图,在以航标C 为圆心,120m 为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险4如图6,梯形ABCD 是拦水坝的横断面图,图中3:1=i 是指坡面的铅直高度DE 与水平宽度CE 的比,∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD 的面积.结果保留三位有效数字.参考数据:3≈,2≈3 1.73≈。
初三中考数学几何知识点归纳
初三中考数学几何知识点归纳目录初三中考数学几何知识点归纳学好数学的几条建议数学八种思维方法初三中考数学几何知识点归纳1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理有两边和它们的夹角对应相等的两个三角形全等23.角边角公理有两角和它们的夹边对应相等的两个三角形全等24.推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和高互相重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1:关于某条直线对称的两个图形是全等形43.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即ab=c47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a b=c,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线互相平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64.菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1:四边都相等的四边形是菱形68.菱形判定定理2:对角线互相垂直的平行四边形是菱形69.正方形性质定理1:正方形的四个角都是直角,四条边都相等70.正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(ab)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b d … n≠0),那么(a c … m)/(b d … n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1:两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3:三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2:相似三角形周长的比等于相似比98.性质定理3:相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆学好数学的几条建议1、要有学习数学的兴趣。
中考数学经典总复习专题动线、动形问题完美全文
学 (2)点P 、 Q在运动的过程中,△PCQ面积S有最 大值吗?若有,请求出最大值;若没有,请说明理 由。
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2). 作 (1)求抛物线的表达式;
学 存在,请说明理由;
y
解析:
C
AO
DB
x
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2).
作 互
( 3)点E 是 线 段 BC上的一个动点,过点E 作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积
8
1 2
3
x2+ 2
;
x+2;
∴抛物线的对称轴是x= ∴OD= .3
32.
∵C(0,2 2),
∴OC=2.
5
在Rt△OCD中,由勾股定理,得CD= .2
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP2=CP3=CD. 作CH⊥x轴于H,
∴HP1=HD=2,
∴∴DP1P(1=4.,32 4),P2(
中考数学---动线、动形问题
• 数学因运动而充满活力,数学因变化而精彩纷呈。动态题是中考 中必考的内容。
• 本节课重点来探究动态几何中的动线、动形问题。
• 一、关于动线、动形问题的解题方法:
• 1.“以静制动”,把动态问题转化成静态问题;
• 2.图形的运动主要有翻折、平移、旋转,在运动过程中,分清哪 些量不变,哪些量发生了变化,以不变的量作为解题基础,以变 化中的规律和特点作为解题的关键。
中考数学专题复习《一次函数几何分类专题(平移问题)》测试卷-附带答案
中考数学专题复习《一次函数几何分类专题(平移问题)》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.将直线22y x =-向上平移3个单位长度 所得直线经过点()6,a - 则a 的值为( ) A .11- B .8- C .7 D .132.在平面直角坐标系中 已知()0,2A ()0,4B 若把直线2y x =-向上平移k 个单位长度后与线段AB 有交点 则k 的取值范围是( )A .46k ≤≤B .46k <≤C .35k ≤≤D .13k ≤≤3.将直线y =3x ﹣1向上平移2个单位长度 平移后的直线所对应的函数解析式为( ) A .y =3x +5 B .y =3x ﹣3 C .y =3x +1 D .y =3x +34.如图 直线13y x =-与双曲线(0,0)k y k x x =<<交于点A 将直线13y x =-向上平移2个单位长度后 与y 轴交于点C 与双曲线交于点B 若3OA BC = 则k 的值为( )A .274-B .7-C .658-D .2716- 5.在平面直角坐标系中 将函数21y x =-的图象向左平移1个单位长度 则平移后的图象与y 轴的交点坐标为( )A .()0,2B .()0,2-C .()0,1D .()0,1-6.在平面直角坐标系中 将函数1y x =-的图象向下平移4个单位 平移后的图象与函数2y x b =-+的图象的交点恰好在第四象限 则b 的最大整数值为( )A .8B .9C .10D .11 7.如图 直线122y x =-与x 轴交于点A 以OA 为斜边在x 轴上方作等腰直角三角形OAB 将直线沿x 轴向左平移 当点B 落在平移后的直线上时 则直线平移的距离是( )A .6B .5C .4D .38.在平面直角坐标系中 将直线1l :22y x =--平移后得到直线2l :24y x =-+ 则下列平移作法正确的是( )A .将1l 向左平移3个单位长度B .将1l 向右平移6个单位长度C .将1l 向上平移2个单位长度D .将1l 向上平移6个单位长度二 填空题9.如果将一次函数y x r =- 的图象沿y 轴向上平移1个单位 那么平移后所得图象的函数解析式为 .10.把函数21y x =+的图象沿y 轴向下平移5个单位后所得图象与y 轴的交点坐标是 . 11.一次函数21y x =+向下平移2个单位长度 得到新的一次函数表达式是 一次函数21y x =+经过平移过程 (填向上或向下平移几个单位长度)得到一个正比例函数. 12.在平面直角坐标系中 ABCO 的边OC 落在x 轴的正半轴上 且点()()5,0,8,4C B 直线21y x =+以每秒1个单位的速度向下平移 经过 秒 该直线平分ABCO 的面积.13.如图 点()2,2A 在双曲线(0)k y x x=>上 将直线OA 向上平移若干个单位长度交y 轴于点B 交双曲线于点C .若2BC = 则点C 的坐标是 .三解答题14.在平面直角坐标系xOy中已知点C(m+2 3m﹣1)直线l经过点A(2 2)B(1 3).(1)求直线l的解析式(2)若A B C三点共线求m的值(3)若将直线l先沿y轴向上平移2个单位再沿x轴向右平移3个单位后经过点C求点C 的坐标.15.如图将直线AO向上平移1个单位得到一个一次函数的图象1l.l的表达式(1)求直线1(2)求直线1l 与x 轴 y 轴的交点的坐标.16.已知正比例函数的图像如图所示.(1)求此正比例函数的解析式(2)若一次函数图像是由(1)中的正比例函数的图像平移得到的 且经过点()1,2 求此一次函数的解析式.17.已知直线12:l y kx +=经过点A 将直线1l 向右平移4个单位后 得到的直线2l 与y 轴相交于点B 且经过点()23C ,点P 为x 轴正半轴上的一个动点.(1)请求出直线1l 与2l 的函数表达式(2)当四边形ABCP 的周长最小时 求四边形ABCP 的面积(3)在直线l 2上是否存在一点Q 使得以A C P Q 为顶点的四边形是平行四边形?若存在 若不存在 请说明理由.18.如图 在平面直角坐标系中 直线1l :32y x m =+与直线2l 交于点()2,3A - 直线2l 与x 轴交于点()4,0C 与y 轴交于点B 将直线2l 向下平移5个单位长度得到直线3l 3l 与y 轴交于点D 与1l 交于点E 连接AD .(1)求直线2l 的解析式(2)求△ADE 的面积参考答案:1.A2.A3.C4.D5.C6.B7.A8.D9.1y x r =-+10.()0,4-11. 21y x =- 向下平移一个单位 12.713. 14.(1)直线l 的解析式为4y x =-+ (2)34m =(3)()4,515.(1)21y x =+(2)直线1l 与x 轴 y 轴的交点分别为1,02⎛⎫- ⎪⎝⎭ ()0,116.(1)正比例函数的解析式为:2y x =-(2)一次函数的解析式为:24y x =-+.17.(1)直线1l 函数表达式为122y x =-+ 2l 函数表达式为142y x =-+ (2)225(3)存在 Q 的坐标为(2),5-或((10,1)-或(6,1)18.(1)122y x =-+ (2)454。
中考数学专题复习:几何综合题
【考点总结】四、全等三角形的性质与判定
1.概念:能够完全重合的两个三角形叫做全等三角形. 2.性质:全等三角形的对应边、对应角分别相等. 3.判定:(1)有三边对应相等的两个三角形全等,简记为(SSS); (2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).
三角形专题
1,掌握三角形相关基础知识(2课时)
目标
2,掌握三角形有关模型的全等或相似证明(3课时) 3,完成三角形有关模型的全等或相似证明(3课时)
三角形
模型
手拉手模型
三垂直模型
相似模型
三角形有关的知识
【考点总结】一、三角形中的重要线段 1.三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做 三角形的高线,简称高. 特性:三角形的三条高线相交于一点. 2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角 形的三条中线交于一点. 3.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线. 定理:三角形的中位线平行于第三边,且等于它的一半 4.三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线. 特性:三角形的三条角平分线交于一点,这点叫做三角形的内心. 性质:角平分线上的点到角的两边的距离相等.
小组合作
1.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段
中考数学专题复习_几何探究题
专题复习几何探究问题一、结论探究【例1】如图①,已知△ABC是等腰直角三角形,∠BAC=900,点D是BC中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论(2)将正方形DEFG绕点D逆时针旋转一定角度后(旋转角大于00,小于或等于3600),如图②,通过观察和测量等方法判断(1)中的结论是否仍然成立如果成立,请予以证明;如果不成立,请说明理由。
(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值。
'变式练习:已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)直接写出线段EG与CG的数量关系;(2)将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.你在(1)中得到的结论是否发生变化写出你的猜想并加以证明.(3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立(不要求证明)| A D]G图1FA[EG图2、AE图3DFEC BAB'C'二、条件探究【例2】已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G ,∠C=∠EFB=900,∠E=∠ABC=300,AB=DE=4 (1)求证:△EGB 是等腰三角形(2)若纸片DEF 不动,问△ABC 绕点F 旋转最小 度时,四边形ACDE 成为以ED 为底的梯形(如图(2)),求此梯形的高。
,【例3】如图,Rt △AB C 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC 交斜边于点E ,CC 的延长线交BB 于点F . |(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.;E图1A:CD图2三、类比探究 【例4】(1)操作发现:如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在举行ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗说明理由. (2)问题解决:保持(1)中的条件不变,若DC =2DF ,求ABAD的值; /(3)类比探求:保持(1)中条件不变,若DC =nDF ,求ABAD的值.【例5】如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________;((2)如图1,梯形ABCD 中,AB ∥DC ,如果延长DC 到E ,使CE =AB ,连接AE ,那么有S 梯形ABCD=S △ABE .请你给出这个结论成立的理由,并过点A 作出梯形ABCD 的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD 中,AB 与CD 不平行,S △ADC >S △ABC ,过点A 能否作出四边形ABCD 的面积等分线若能,请画出面积等分线,并给出证明;若不能,说明理由.AB。
中考数学专题复习8几何初步及三角形相关计算(原卷版)
几何初步及三角形相关计算复习考点攻略考点一直线、射线、线段相关概念和性质1.直线的性质(1)两条直线相交.只有一个交点;(2)经过两点有且只有一条直线.即两点确定一条直线;(3)直线的基本事实:经过两点有且只有一条直线.2.线段的性质:两点确定一条直线.两点之间.线段最短.两点间线段的长度叫两点间的距离.3.线段的中点性质:若C是线段AB中点.则AC=BC=12AB;AB=2AC=2BC.4.两条直线的位置关系在同一平面内.两条直线只有两种位置关系:平行和相交.5.垂线的性质(1)两条直线相交所构成的四个角中有一个角是直角.则这两条直线互相垂直.其中一条直线叫做另一条直线的垂线;(2)①经过一点有且只有一条直线与已知直线垂直;②直线外一点与直线上各点连接的所有线段中.垂线段最短.6.点到直线的距离:从直线外一点向已知直线作垂线.这一点和垂足之间线段的长度叫做点到直线的距离.7. 角:有公共端点的两条射线组成的图形.8.角平分线(1)定义:在角的内部.以角的顶点为端点把这个角分成两个相等的角的射线(2)角平分线的性质:①若OC是∠AOB的平分线.则∠AOC=∠BOC=12∠AOB.∠AOB=2∠AOC =2∠BOC.②角平分线上的点到角两边的距离相等。
9.度、分、秒的运算方法1°=60′.1′=60″.1°=3600″.1周角=2平角=4直角=360°.10.余角和补角(1)余角:∠1+∠2=90°⇔∠1与∠2互为余角;(2)补角:∠1+∠2=180°⇔∠1与∠2互为补角.(3)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.11.方向角和方位角在描述方位角时.一般应先说北或南.再说偏西或偏东多少度.而不说成东偏北(南)多少度或西偏北(南)多少度.当方向角在45°方向上时.又常常说成东南、东北、西南、西北方向.【例1】如图.在数轴上有A、B、C、D四个整数点(即各点均表示整数).且2AB=BC=3CD.若A、D两点表示的数分别为-5和6.且AC的中点为E.BD的中点为M.BC之间距点B的距离为13BC的点N.则该数轴的原点为A.点E B.点FC.点M D.点N【例2】如图.∠AOB=180°.∠BOC=80°.OD平分∠AOC.∠DOE=3∠COE.求∠BOE.【例3】如图.要修建一条公路.从A村沿北偏东75°方向到B村.从B村沿北偏西25°方向到C 村.若要保持公路CE与AB的方向一致.则∠ECB的度数为A.80°B.90°C.100°D.105°【例4】计算:18°30′=__________°考点二立体图形1.常见的立体图形有:球、柱体和锥体.圆柱和棱柱的区别:圆柱的底面是圆.棱柱的底面是多边形;圆柱的侧面是曲面.棱柱的侧面是四边形;圆锥和棱锥的区别:圆锥的底面是圆.侧面是曲面;棱锥的底面是多边形.侧面是三角形.2.点动成线.线动成面.面动成体.线没有粗细.点没有大小.3.设立体图形的面数为F.顶点数为V.棱数为E.则F+V-E=2.4.正方体的平面展开图有如下11种类型:【例5】如图是一个正方体包装盒的表面积展开图.若在其中的三个正方形A、B、C内分别填上适当的数.使得将这个表面展开图沿虚线折成正方体后.相对面上的两数互为相反数.则填在A、B、C内的三个数依次为A.0.-2.1 B.0.1.2C.1.0.-2 D.-2.0.1考点三三角形的基本概念(1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
中考数学几何图形复习专题13 二次函数区间及最值问题(学生版)
专题13 二次函数区间及最值问题1.如图,在平面直角坐标系xOy中,点A(–3,5),B(0,5).抛物线y=-x2+bx+c交x轴于C(1,0),D(-3,0)两点,交y轴于点E.(1)求抛物线的解析式及顶点坐标;(2)当-4≤x≤0时,求y的最大值与最小值的积;(3)连接AB,若二次函数y=-x2+bx+c的图象向上平移m(m>0)个单位时,与线段AB有一个公共点,结合函数图象,直接写出m的取值范围.本号资料皆*来源于微信公众号:数学第@@六感对于整个函数图像来说,最值在顶点处取到,而对于函数图像的一部分来说,则未必。
常见的两种类型分别为:一是给定区间,对称轴不确定;二是给定对称轴,区间不确定。
一般步骤是根据已知,画出函数图像,再根据给定的区间或对称轴进行分类讨论,根据题意建立方程求解。
难点是有时分类讨论次数较多,计算比较繁琐,容易出错。
2.已知抛物线2y x bx c =++的对称轴为直线1x =,图象与x 轴交于点()1,0-.(1)求抛物线的函数表达式.(2)若把抛物线的图象沿x 轴平移m 个单位,在自变量x 的值满足23x ≤≤的情况下,与其对应的函数值y 的最小值为-2,求m 的值.3.如图,抛物线22y x x c =-++与x 轴正半轴,y 轴正半轴分别交于点,A B ,且,OA OB =点G 为抛物线的顶点. 本号资料皆*来源于微信公众#号:数学第六感()1求抛物线的解析式及点G 的坐标;()2点,M N 为抛物线上两点(点M 在点N 的左侧) ,且到对称轴的距离分别为3个单位长度和5个单位长度,点Q 为抛物线上点,M N 之间(含点,M N )的一个动点,求点Q 的纵坐标Q y 的取值范围.4.如图,已知二次函数y =ax 2+3x +12的图像经过点A (-1,-3).(1)求a 的值和图像的顶点坐标.(2)若横坐标为m 的点B 在该二次函数的图像上.①当点B 向右平移4个单位长度后所得点B ′也落在该二次函数图像上时,求m 的值; ②若点B 到x 轴的距离不大于3,请根据图像直接写出m 的取值范围.5.如图,抛物线()230y ax bx a =+-≠与x 轴交于点()1,0A -,点()3,0B ,与y 轴交于点C .(1)求抛物线的表达式;(2)在对称轴上找一点Q ,使ACQ 的周长最小,求点Q 的坐标;(3)P 是第四象限内抛物线上的动点,求BPC △面积S 的最大值及此时P 点的坐标.6.如图,抛物线2y x mx =+与直线y x b =-+交于点A (2,0)和点B .。
中考数学复习几何专题复习教案1
中考数学专题复习六几何(一)【教学笔记】题型一:图像的几何变换1、主视图、左视图、府视图2、图形旋转、折叠3、求最短途径问题题型二:平面几何根底1、平行线、相交线题型三:三角形(全等、相像、三角函数)1、勾股定理1、题型一:图像的几何变换【例1】(2016•资阳)如图是一个正方体纸盒的外外表绽开图,则这个正方体是( )A .B .C .D .【解答】解:∵由图可知,实心圆点及空心圆点肯定在紧相邻的三个侧面上,∴C 符合题意. 故选C .【例2】(2015•资阳)如图1是一个圆台,它的主视图是 ( ) A . B . C . D . 解:B .【例3】(2015达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B ′,则图中阴影局部的面积是( ) A .12π B.24π C.6π D.36π【例4】(2014年四川资阳)如图,在Rt△ABC 中,∠BAC=90°.假如将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处.那么旋转的角度等于( )A .55°B . 60°C . 65°D . 80°解答:∵在Rt△ABC 中,∠BAC=90°,将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处,∴AB 1=BC ,BB 1=B 1C ,AB=AB 1,∴BB 1=AB=AB 1,∴△ABB 1是等边三角形,∴∠BAB 1=60°,∴旋转的角度等于60°.故选:B .【例5】(2015自贡)如图,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段BC 上的动点,将△EBF 沿EF 所在直线折叠得到△EB′F,连接B′D,则B ′D 的最小值是( )A .2102-B .6C .2132-D .4解析:【课后练习】1、(2014年四川资阳)下列立体图形中,俯视图是正方形的是( )A .B .C .D .解答: 解;A 、的俯视图是正方形,故A 正确;2、(2015内江)如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( B ) A 3 B .3.6 D 6解:连接BD,及AC交于点F.∵点B及D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=23=BE3、(2015甘孜州)下列图形中,是中心对称图形的为()A. B. C. D.解:A、是轴对称图形,不是中心对称图形.故A错误;B、不是轴对称图形,是中心对称图形.故B正确;C、是轴对称图形,不是中心对称图形.故C错误;D、是轴对称图形,不是中心对称图形.故D错误.故选B.4、(2015遂宁)在正方形、矩形、菱形、平行四边形、等腰梯形中,其中中心对称图形的个数是( C )A.2 B.3 C.4 D.5解:平行四边形是中心对称图形,矩形、菱形、正方形既是中心对称图形,又是轴对称图形,符合题意;而等腰梯形是轴对称图形,但不是中心对称图形,故中心对称图形的有4种.5、(2015泸州)如图,在△ABC中,AB=AC,BC=24,tanC=2,假如将△ABC沿直线l 翻折后,点B落在边AC的中点E处,直线l及边BC交于点D,那么BD的长为( A )A.13 B.152C.272D.12解:过点A作AQ⊥BC于点Q,∵AB=AC,BC=24,tanC=2,∴A Q/QC=2,QC=BQ=12,∴A Q=24,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过E点作EF⊥BC于点F,设BD=x,则DE=x,∴DF=24-x-6=18-x,∴x2=(18-x)2+122,得:x=13,则BD=13.故选A.6、(2015绵阳)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C及D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=( B )A.34B.45C.56D.677、(2015广元)如图,把RI△ABC放在直角坐标系内,其中∠CAB=90°,BC=5.点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线26y x=-上时,线段BC扫过的面积为( C )A.4 B.8 C.16 D.82解:∵∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),∴AC=4,当点C落在直线y=2x﹣6上时,如图,∴四边形BB'C'C是平行四边形,∴A'C'=AC=4,把y=4代入直线y=2x﹣6,解得x=5,即OA'=5,∴AA'=BB'=4,∴平行四边形BB'C'C的面积=BB' ×A'C'=44=16;故答案为:16.8、(2015成都)如图,在平行四边形ABCD中,AB=13,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好及点C重合,则折痕AE的长为_______.试题分析:点B恰好及点C重合,且四边形ABCD是平行四边形,依据翻折的性质,则AE⊥BC,BE=CE=2,在Rt△ABE中,.故答案为:3.由勾股定理得9、(2015达州)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,点D落在D′处,C′D′交AE于点M.若AB=6,BC=9,则AM的长为.10、(2015内江)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.11、(2015宜宾)如图,一次函数的图象及x轴、y轴分别相交于点A、B,将△AOB沿直线AB翻折,得△ACB.若C(32,32),则该一次函数的解析式为.12、(2015凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.13、(2015绵阳)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A 点逆时针旋转,使AB及AC重合,点D旋转至点E,则∠CDE的正切值为.14、(2015攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.15、(2015乐山)如图,已知A (23,2)、B (23,1),将△AOB 围着点O 逆时针旋转,使点A 旋转到点A′(﹣2,23)的位置,则图中阴影局部的面积为 .16、(2015南充)(10分)如图,点P 是正方形ABCD 内一点,点P 到点A 、B 和D 的间隔 分别为1,22,10,△ADP 沿点A 旋转至△ABP ′,连结PP ′,并延长AP 及BC 相交于点Q .(1)求证:△APP ′是等腰直角三角形;(2)求∠BPQ 的大小;(3)求CQ 的长.17、(2015自贡)(14分)在△ABC 中,AB=AC=5,cos∠ABC=53,将△ABC 绕点C 顺时针旋转,得到△A 1B 1C .(1)如图①,当点B 1在线段BA 延长线上时.①求证:BB 1∥CA 1;②求△AB 1C 的面积;(2)如图②,点E 是BC 边的中点,点F 为线段AB 上的动点,在△ABC 绕点C 顺时针旋转过程中,点F 的对应点是F 1,求线段EF 1长度的最大值及最小值的差.题型二:平面几何根底【例1】(2015资阳)如图,已知AB ∥CD ,∠C =70°,∠F =30°,则∠A 的度数为( C ) A .30° B.35° C.40° D.45°【例2】(2015广安)如图,半径为r 的⊙O 分别绕面积相等的等边三角形、正方形和圆用一样速度匀速滚动一周,用时分别为1t 、2t 、3t ,则1t 、2t 、3t 的大小关系为 .解:设面积相等的等边三角形、正方形和圆的面积为3.14,等边三角型的边长为a≈2, 等边三角形的周长为6;正方形的边长为b≈1.7,正方形的周长为1.7×4=6.8; 圆的周长为3.14×2×1=6.28,∵6.8>6.28>6,∴t 2>t 3>t 1.【例3】(2016•资阳)如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB= 36° .【解答】解:正多边形内角和;∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为:36°.【课后练习】1、(2015内江)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°2、(2015凉山州)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()m]A.52° B.38° C.42° D.60°3、(2015泸州)如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()A.90° B.100° C.110° D.120°4、(2015成都)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=________度.5、(2015遂宁)下列命题:①对角线相互垂直的四边形是菱形;②点G是△ABC的重心,若中线AD=6,则AG=3;③若直线y kx b=+经过第一、二、四象限,则k<0,b>0;④定义新运算:a*b=22a b-,若(2x)*(x﹣3)=0,则x=1或9;⑤抛物线2243y x x=-++的顶点坐标是(1,1).其中是真命题的有(只填序号)6、(2015宜宾)如图,A B∥CD,AD及BC交于点E.若∠B=35°,∠D=45°,则∠AEC= .[来7、(2015绵阳)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .题型三:三角形(全等、相像、三角函数)【例1】(2016•资阳)如图6,在△ABC中,∠ACB=90º,AC=BC=1,E、F为线段AB 上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=2;②当点E及点B重合时,MH=12;③AF+BE=EF;④MG•MH=12,其中正确结论为( C )A.①②③B.①③④C.①②④D.①②③④解答:①由题意知,△ABC是等腰直角三角形,∴AB==,故①正确;②如图1,当点E及点B重合时,点H及点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CE=AF=BF,∴FG是△ACB 的中位线,∴GC=AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠EBD=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2,故③错误;④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,∵∠A=∠5=45°,∴△ACE∽△BFC,∴AE/BC=,∴A E•BF=AC•BC=1,由题意知四边形CHMG是矩形,∴MG∥BC,MH=CG ,MH∥AC,∴=;=,即=;=,∴MG=AE;MH=BF ,∴MG•MH=AE×BF=AE•BF=AC•BC=,故④正确.故选:C.【例2】(2016•资阳)如图5,透亮的圆柱形容器(容器厚度忽视不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A处,则蚂蚁吃到饭粒需爬行的最短途径是()图5 A.13cm B.261cm C.61cm D.234cm考点:平面绽开-最短途径问题..解答:解:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm及饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面绽开,作A关于EF的对称点A′,连接A′B,则A′B即为最短间隔,A′B===13(Cm).故选:A.【例3】(2016•资阳)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中全部正确结论的序号是①②③④.【解答】解:①正确.如图,∵∠ACB=90°,AC=BC,CO⊥AB∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.③正确.∵AC=BC=1,∴S△A B C=×1×1=,S四边形D C E O =S△D O C+S△C E O=S△C D O+S△A D O=S△A O C=S△A B C=,故③正确.④正确.∵D、C、E、O四点共圆,∴OP•PC=DP•PE,∴2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴=,∴OP•OC=OE2,∴2OP2+2DP•PE=2OE2=DE2=CD2+CE2,∵CD=BE,CE=AD,∴AD2+BE2=2OP2+2DP•PE,∴AD2+BE2﹣2OP2=2DP•PE.故④正确.【例4】(2016•资阳)在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F及点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,推断线段AF及线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.【解答】解:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴∠ABC=45°,∴AC=CB,(2)①由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BB,∴∠BAC=∠ABD,∵∠ABD=∠FAD由旋转得,∠BAC=∠BAD,∴∠FAD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,,∴△AFD≌△BED,∴AF=BE,②如图,由旋转得,∠BAC=∠BAD,∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,由旋转得,AD=AB,∴∠ABD=∠ADB=2∠BAD,∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°,∴∠BAD=36°,设BD=x,作BG平分∠ABD,∴∠BAD=∠GBD=36°∴AG=BG=BC=x,∴DG=AD﹣AG=AD﹣BG=AD﹣BD,∵∠BDG=∠ADB,∴△BDG∽△ADB,∴.∴,∴,∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED,∴,∴AF==x.【课后练习】1、(2015成都)如图,在△ABC中,DE//BC,AD=6,BD=3,AE=4,则EC的长为()A.1 B.2 C.3 D.42、(2015达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°3、(2015遂宁)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1cm B.2cm C.3cm D.4cm4、(2015宜宾)如图,△OAB及△OCD是以点O为位似中心的位似图形,相像比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2) B.(1,1) C.(2,2) D.(2,1)5、(2015泸州)在平面直角坐标系中,点A(2,2),B(32,32),动点C 在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为()A.2 B.3 C.4 D.56、(2015眉山)如图,A.B是双曲线上的两点,过A点作AC⊥x轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .34B .38C .3D .47、(2015眉山)如图,AD ∥BE ∥CF ,直线l 1、l 2这及三条平行线分别交于点A 、B 、C和点D 、E 、F .已知AB =l ,BC =3,DE =2,则EF '的长为( )A .4B .5C .6D .88、(2015绵阳)如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 及D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :CF =( )A .34B .45C .56D .67 9、(2015绵阳)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为( )A .6B .12C .20D .2410、(2015绵阳)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC =( )A .118° B.119° C.120° D.121°11、(2015广安)一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长A.12 B.9 C.13 D.12或912、(2015甘孜州)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD 的大小为()A.110° B.80° C.70° D.60°13、(2015乐山)如图,1l∥2l∥3l,两条直线及这三条平行线分别交于点A、B、C和D、E、F.已知,则DEDF的值为()A.32B.23C.25D.3514、(2015成都)如图,在平行四边形ABCD中,AB=13,AD=4,将平行四边形ABCD 沿AE翻折后,点B恰好及点C重合,则折痕AE的长为________.15、(2015南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.16、(2015自贡)将一副三角板按图叠放,则△AOB及△DOC的面积之比等于.17、(2015宜宾)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD及CF相交于点H.给出下列结论:①△ABE≌△DCF;②;③2DP PH PB=⋅;④.其中正确的是.(写出全部正确结论的序号)18、(2015宜宾)如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的间隔为.19、(2015宜宾)如图,AB∥CD,AD及BC交于点E.若∠B=35°,∠D=45°,则∠AEC= .20、(2015凉山州)在▱ABCD中,M,N是AD边上的三等分点,连接BD,MC相交于O点,则S△MOD :S△COB= .21、(2015泸州)如图,在矩形ABCD中,BC=2AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O.给出下列命题:①∠AEB=∠AEH;②DH=22EH;③HO=12AE;④BC﹣BF=2EH.其中正确命题的序号是(填上全部正确命题的序号).22、(2015眉山)如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=1200时,四边形AEFD是正方形.其中正确的结论是________.(请写出正确结论的番号).23、(2015绵阳)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A 点逆时针旋转,使AB及AC重合,点D旋转至点E,则∠CDE的正切值为.24、(2015广元)一个等腰三角形两边的长分别为2m 、5cm .则它的周长为________cm . 25、(2015巴中)如图,在△ABC 中,AB =5,AC =3,AD 、AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连结DH ,则线段DH 的长为 . 26、(2015巴中)若a 、b 、c 为三角形的三边,且a 、b 满意229(2)0a b -+-=,则第三边c 的取值范围是 .27、(2015攀枝花)如图,在边长为2的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE +DE 的最小值为 .28、(2015乐山)如图,在等腰三角形ABC 中,AB=AC ,DE 垂直平分AB ,已知∠ADE=40°,则∠DBC= °.29、(2015乐山)(10分)如图,将矩形纸片ABCD 沿对角线BD 折叠,使点A 落在平面上的F 点处,DF 交BC 于点E .(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE 的长.30、(2015南充)(8分)如图,矩形纸片ABCD ,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP >AM ),点A 和点B 都及点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)推断△AMP ,△BPQ ,△CQD 和△FDM 中有哪几对相像三角形?(不需说明理由)(2)假如AM =1,sin ∠DMF =53,求AB 的长.31、(2015南充)(8分)如图,△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE . 求证:(1)△AEF ≌△CEB ;(2)AF =2CD .32、(2015内江)(本小题满分9分)如图,将▱ABCD 的边AB 延长至点E ,使AB =BE ,连接DE ,EC ,DE 交BC 于点O .(1)求证:△ABD ≌△BEC ;(2)连接BD ,若∠BOD =2∠A ,求证:四边形BECD 是矩形.33、(2015广安)(6分)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.解析:∵AD∥BC ∴∠CBD=∠ADB又∵∠EBD=∠CBD∴∠EBD=∠ADB∴OB=OD∵BC=BE AD=BC ∴BE=AD∴AD-OD=BE-OB∴OA=OE34、(2015巴中)(10分)如图,在菱形ABCD中,对角线AC及BD相交于点O,MN过点O且及边AD、BC分别交于点M和点N.(1)请你推断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.。
2020年中考数学复习:几何 专项练习题(含答案)
2020年中考数学复习:几何 专项练习题一、选择题1.如图,直角三角板ABC 的斜边AB=12cm ,∠A=30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6cmB.4cmC.cmD.cm2.如图,△ABC 和△DEF 是等腰直角三角形,∠C=∠F=90°,AB=2,DE=4.点B 与点D 重合,点A ,B (D ),E 在同一条直线上,将△ABC 沿DE 方向平移,至点A 与点E 重合时停止.设点B ,D 之间的距离为x ,△ABC 与△DEF 重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是( )A B C D 二、填空题3.如图,将两块直角三角板的斜边重合,E 是两直角三角形公共斜边AC 的中点.D 、B 分别为直角顶点,连接DE 、BE 、DB ,∠DAC=60°,∠BAC=45°.则∠EDB 的度数为_______.(6-()64.如图,一块直角三角形木板△ABC,将其在水平面上沿斜边AB所在直线按顺时针方向翻滚,使它滚动cm.三、解答题5.如图,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.(1)EF+AC =AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与点A1运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图,AF1平分∠B A1C1,交BD于F1,过F1作F1E1⊥A1C1,垂足为E1,试猜想F1E1,A1C1与AB之间的数量关系,并证明你的猜想.(3)在(2)的条件下,当A1 E1=3,C1 E1=2时,求BD的长.21216.如图,等腰Rt△ABC 中,∠C=90°,AC=6,动点P 、Q 分别从A 、B 两点同时以每秒1个单位长的速度按顺时针方向沿△ABC 的边运动,当Q 运动到A 点时,P 、Q 停止运动.设Q 点运动时间为t 秒,点P 运动的轨迹与PQ 、AQ 围成图形的面积为S.求S 关于t 的函数解析式.7.正方形ABCD中,点F为正方形ABCD 内的点,△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合. (1)如图1,若正方形ABCD 的边长为2,BE=1,FC=,求证:AE ∥BF ;(2)如图2,若点F 为正方形ABCD 对角线AC 上的点,且AF :FC=3:1,BC=2,求BF 的长.8.将正方形ABCD 和正方形BEFG 如图1摆放,连DF .∠DMC=_____;∠DMC 的值,并证明你的结论;3∠DMC=_________.请画出图形,并直接写出你的结论(不用证明).9.已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图(1)当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空:CE_____BD.(2)如图(2)把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图(3)在图2的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接BE′、DC′,过点A作AN⊥BE′于点N,反向延长AN交DC′于点M.求的值.10.将正方形ABCD和正方形CGEF如图1摆放,使D点在CF边上,M为AE中点,(1)连接MD、MF,则容易发现MD、MF间的关系是______________(2)操作:把正方形CGEF绕C点旋转,使对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M,探究线段MD、MF的关系,并加以说明;(3)将正方形CGEF绕点C旋转任意角度后(如图3),其他条件不变,(2)中的结论是否仍成立?直接写出猜想,不需要证明.DMDC交射线ON 于点B ,且使∠APB+∠MON=180°. (1)利用图1,求证:PA=PB ;(2)如图2,若点C 是AB 与OP 的交点,当S △POB =3S △PCB 时,求PB 与PC 的比值;(3)若∠MON=60°,OB=2,射线AP 交ON 于点D ,且满足且∠PBD=∠ABO ,请借助图3补全图形,并求OP 的长.12、在中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转得到线段EF(如图1)(1)在图1中画图探究:①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转 得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=,AE=1,在①的条件下,设CP 1=,S =,求与之间的函数关系式,并写出自变量的取值范围.图1 备用图13、已知:如图,N 、M 是以O 为圆心,1为半径的圆上的两点,B 是上一动点(B 不与点M 、N 重合),ABCD Y 90o90o 90o43x 11P FC V y y xx ¼MN∠MON=90°,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)四边形EPGQ (填“是”或者“不是”)平行四边形; (2)若四边形EPGQ 是矩形,求OA 的值.14、已知如图,在梯形中,点是的中点,是等边三角形.(1)求证:梯形是等腰梯形;(2)动点、分别在线段和上运动,且保持不变.设 求与的函数关系式;(3)在(2)中,当取最小值时,判断的形状,并说明理由.15、已知正方形ABCD 的边长为6cm ,点E 是射线BC 上的一个动点,连接AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B′ 处. (1)当=1 时,CF=______cm , (2)当=2 时,求sin∠DAB′ 的值; (3)当= x 时(点C 与点E 不重合),请写出△ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式,(只要写出结论,不要解题过程).ABCD 24AD BC AD BC ==∥,,,M AD MBC △ABCD P Q BC MC 60MPQ =︒∠PC x MQ y ==,,y x y PQC△CEBECEBECEBE16、在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =,,CD=,求线段CP 的长.(用含的式子表示)17、已知:如图(1),射线射线,是它们的公垂线,点、分别在、 上运动(点与点不重合、点与点不重合),是边上的动点(点与、不重合), 在运动过程中始终保持,且. (1)求证:∽;(2)如图(2),当点为边的中点时,求证:;(3)设,请探究:的周长是否与值有关?若有关,请用含有的代数式表示的周长;若无关,请说明理由.3=BC xx //AM BN AB D C AM BN D A C B E AB E A B EC DE ⊥a AB DE AD ==+ADE ∆BEC ∆E AB CD BC AD =+m AE =BEC ∆m m BEC∆18、已知正方形中,为对角线上一点,过点作交于,连接,为中点,连接. (1)直接写出线段与的数量关系;(2)将图1中绕点逆时针旋转,如图2所示,取中点,连接,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中绕点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)参考答案 一、选择题 1.【答案】C. 2.【答案】B. 二、填空题 3.【答案】15°.4.三、解答题5.【答案与解析】(1)证明:如图1,过点F 作FM ⊥AB 于点M ,在正方形ABCD 中,AC ⊥BD 于点E . ∵AF 平分∠BAC , ∴EF=MF , 又∵AF=AF ,ABCD E BD E EF BD ⊥BC F DF G DF EG CG ,EG CG BEF ∆B 45︒DF G EG CG ,BEF ∆B 图3图2图1FEABCDABC DEFGGFED C BA∴Rt △AMF ≌Rt △AEF , ∴AE=AM ,∵∠MFB=∠ABF=45°, ∴MF=MB,MB=EF , ∴EF+AC=MB+AE=MB+AM=AB .(2)E 1F 1,A 1C 1与AB 三者之间的数量关系:E 1F 1+A 1C 1=AB 证明:如图2,连接F 1C 1,过点F 1作F 1P ⊥A 1B 于点P ,F 1Q ⊥BC 于点Q , ∵A 1F 1平分∠BA 1C 1,∴E 1F 1=PF 1;同理QF 1=PF 1,∴E 1F 1=PF 1=QF 1, 又∵A 1F 1=A 1F 1,∴Rt △A 1E 1F 1≌Rt △A 1PF 1, ∴A 1E 1=A 1P ,同理Rt △QF 1C 1≌Rt △E 1F 1C 1, ∴C 1Q=C 1E 1, 由题意:A 1A=C 1C ,∴A 1B+BC 1=AB+A 1A+BC -C 1C=AB+BC=2AB , ∵PB=PF 1=QF 1=QB ,∴A 1B+BC 1=A 1P+PB+QB+C 1Q=A 1P+C 1Q+2E 1F 1, 即2AB=A 1E 1+C 1E 1+2E 1F 1=A 1C 1+2E 1F 1, ∴E 1F 1+A 1C 1=AB . (3)解:设PB=x ,则QB=x , ∵A 1E 1=3,QC 1=C 1E 1=2,Rt △A 1BC 1中,A 1B 2+BC 12=A 1C 12, 即(3+x )2+(2+x )2=52, ∴x 1=1,x 2=-6(舍去), ∴PB=1, ∴E 1F 1=1, 又∵A 1C 1=5,121212126.【答案与解析】当P运动到C点时:t=6当Q运动到A点:t=∴分两种情况讨论(1)当0≤t≤6时,如图:作PH⊥AB于H,则△APH为等腰直角三角形此时AP=t,BQ=t,则AQ=-tPH=APsin45°=t∴S△AQP=AQ·PH=·(-t)·t=t2+3t(2)当6<t≤时,如图:过P过PH⊥AB于H,此时△PBH为等腰直角三角形AC+CP=t,BQ=t∴BP=AC+CB-(AC+CP)=12-t∴PH=BPsin45°=(12-t)∴S四边形AQPC=S△ABC-S△BPQ=AC·BC-BQ·PH=·6·6-·t·(12-t)=18-t+t2=t2-t+18.综上,.7.【答案与解析】(1)证明:∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合∴BE=BF=1,∠EBF=∠ABC=90°,∠AEB=∠BFC在△BFC中,BC2=22=4∴BF2+FC2=BC2∴∠BFC=90°…(3分)∴∠AEB+∠EBF=180°∴AE ∥BF …(4分)(2)解:∵Rt △ABC 中,AB=BC=2,由勾股定理,得∵AF :FC=3:1,∵△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合∵四边形ABCD 是正方形∴∠ABC=90°∴∠BAC+∠ACB=90° ∴∠EAB+∠BAC=90°即∠EAF=90° 在Rt △EBF 中,EF 2=BE 2+BF 2∵BE=BF8.【答案与解析】(1)如图2,连接BF ,∵四边形ABCD 、四边形BEFG 是正方形,∴∠FBC=∠CBD=45°,∴∠CBD=∠GBC=90°,而BF=BG ,BD=BC ,∴△BFD ∽△BGC ,22而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90°=45°,(2)如图3,∵将图1中的正方形BEFG 绕B 点顺时针旋转45°,DF 的延长线交CG 于M ,∴B 、E 、D 三点在同一条直线上,而四边形ABCD 、四边形BEFG 是正方形,∴△BFD ∽△BGC ,而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90°=45°,即∠DMC=45°;9.【答案与解析】(1)CE ⊥BD .(2)延长CE 交BD 于M ,设AB 与EM 交于点F .∵∠BAC=∠DAE=90°, ∴∠CAE=∠BAD .又∵△ABC ≌△ADE ,∴AC=AE ,AB=AD , ∴∠ACE=,∠ABD=,∴∠ACE=∠ABD .又∵∠AFC=∠BFM ,∠AFC+∠ACE=90°,∴∠ABD+∠BFM=90°,∴∠BMC=90°,∴CE ⊥BD .(3)过C ′作C ′G ⊥AM 于G ,过D 作DH ⊥AM 交延长线于点H .∵∠∠E ′NA=∠AGC ′=90°,∴∠NE ′A+∠NAE ′=90°,∠NAE ′+∠C ′AG=90°,∴∠NE ′A=∠C ′AG ,∵AE ′=AC ′∴△ANE ′≌△C ′GA (AAS ),∴AN=C ′G .同理可证△BNA ≌△AHD ,AN=DH .∴C ′G=DH .在△C ′GM 与△DHM 中,∠C ′GM=∠DHM=90°,∠C ′MG=∠DMH ,C ′G=DH ,∴△C ′GM ≌△DHM ,∴C ′M=DM ,01802CAE -∠01802BAD -∠10.【答案与解析】如图1,延长DM交FE于N,图1∵正方形ABCD、CGEF,∴CF=EF,AD=DC,∠CFE=90°,AD∥FE,∴∠1=∠2,又∵MA=ME,∠3=∠4,∴△AMD≌△EMN,∴MD=MN,AD=EN.∵AD=DC,∴DC=NE.又∵FC=FE,∴FD=FN.又∵∠DFN=90°,∴FM⊥MD,MF=MD;(2)MD=MF,MD⊥MF.如图2,延长DM交CE于N,连接FD、FN.∵正方形ABCD,∴AD∥BE,AD=DC,∴∠1=∠2.又∵AM=EM,∠3=∠4,∴△ADM≌△ENM,∴AD=EN,MD=MN.∵AD=DC,∴DC=NE.又∵正方形CGEF,∴∠FCE=∠NEF=45°,FC=FE,∠CFE=90°.又∵正方形ABCD,∴∠BCD=90°,∴∠DCF=∠NEF=45°,∴△FDC≌△FNE,∴FD=FN,∠5=∠6,∠DFN=∠5+∠CFN=∠6+∠CFN=90°,∴△DFN为等腰直角三角形,且FM为斜边DN上的中线,∴MD=MF,MD⊥MF;(3)FM⊥MD,MF=MD.如图3,过点E作AD的平行线分别交DM、DC的延长线于N、H,连接DF、FN.∴∠ADC=∠H,AD∥EH,∴∠3=∠4.∵AM=ME,∠1=∠2,∴△AMD≌△EMN,∴DM=NM,AD=EN.∵正方形ABCD、CGEF,∴AD=DC,FC=FE,∠ADC=∠FCG=∠CFE=90°.∴∠H=90°,∠5=∠NEF,DC=NE.∴∠DCF+∠7=∠5+∠7=90°,∴∠DCF=∠5=∠NEF.∵FC=FE,∴△DCF≌△NEF.∴FD=FN,∠DFC=∠NFE.∵∠CFE=90°,∴∠DFN=90°.∴FM⊥MD,MF=MD.11、 【答案】(1)作PE ⊥OM ,PF ⊥ON ,垂足为E 、F ∵四边形OEPF 中,∠OEP=∠OFP=90°, ∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,∴∠EPF=∠APB ,即∠EPA+∠APF=∠APF+∠FPB ,∴∠EPA=∠FPB , 由角平分线的性质,得PE=PF ,∴△EPA ≌△FPB ,即PA=PB ;(2)∵S △POB =3S △PCB ,∴PO=3PC ,由(1)可知△PAB 为等腰三角形,则∠PBC=(180°-∠APB )=∠MON=∠BOP , 又∵∠BPC=∠OPB (公共角),∴△PBC ∽△POB ,∴, 即PB 2=PO •PC=3PC 2,∴ (3)作BH ⊥OT ,垂足为H ,当∠MON=60°时,∠APB=120°,由PA=PB ,得∠PBA=∠PAB=(180°-∠APB )=30°, 又∵∠PBD=∠ABO ,∠PBD+∠PBA+∠ABO=180°,∴∠ABO=(180°-30°)=75°,则∠OBP=∠ABO+∠ABP=105°, 在△OBP 中,∵∠BOP=30°,∴∠BPO=45°,在Rt △OBH 中,BH=OB=1,OH=, 1212PB PC PO PB=3PB PC=1212123在Rt △PBH 中,PH=BH=1,∴OP=OH+PH=+1.12、【答案与解析】(1)①直线与直线的位置关系为互相垂直.证明:如图1,设直线与直线的交点为.∵线段分别绕点逆时针旋转90°依次得到线段,∴.∵,, ∴. ∴. ∴. ∵,∴, ∴.31FG CD 1FG CD H 1EC EP 、E 1EF EG 、111190PEG CEF EG EP EF EC ∠=∠===°,,1190G EF PEF ∠=-∠°1190PEC PEF ∠=-∠°11G EF PEC ∠=∠11G EF PEC △≌△11G FE PCE ∠=∠EC CD ⊥190PCE ∠=°190G FE ∠=°FDC BAE 图1 G 2 G 1P 1 H P 2∴.∴.∴.②按题目要求所画图形见图1,直线与直线的位置关系为互相垂直.(2)∵四边形是平行四边形,∴.∵, ∴. 可得. 由(1)可得四边形为正方形.∴. ①如图2,当点在线段的延长线上时,∵, ∴. 90EFH ∠=°90FHC ∠=°1FG CD ⊥12G G CD ABCD B ADC ∠=∠461tan 3AD AE B ===,,45tan tan 3DE EBC B =∠==,4CE =EFCH 4CH CE ==1P CH 1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯⨯=△D G 1P 1 H C BAE F∴. ②如图3,当点在线段上(不与两点重合)时, ∵, ∴. ∴. ③当点与点重合时,即时,不存在.综上所述,与之间的函数关系式及自变量的取值范围是或. 13、【答案】(1)是.证明:连接OB ,如图①,212(4)2y x x x =->1P CH C H 、1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯=△212(04)2y x x x =-+<<1P H 4x =11PFG △y x x 212(4)2y x x x =->212(04)2y x x x =-+<<FG 1 P 1 CAB E D H∵BA ⊥OM ,BC ⊥ON , ∴∠BAO=∠BCO=90°, ∵∠AOC=90°, ∴四边形OABC 是矩形.∴AB ∥OC ,AB=OC ,∵E 、G 分别是AB 、CO 的中点,∴AE ∥GC ,AE=GC ,∴四边形AECG 为平行四边形.∴CE ∥AG ,∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,∴GF ∥OB ,DE ∥OB ,∴PG ∥EQ ,∴四边形EPGQ 是平行四边形;(2)解:如图②,∵口EPGQ 是矩形.∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE .∴△AED ∽△BCE ,∴, AD AE BE BC得y 2=2x 2,又∵OA 2+AB2=OB 2, 即x 2+y 2=12.∴x 2+2x 2=1,14、【答案与解析】(1)证明:∵是等边三角形∴∵是中点∴∵∴∴∴∴梯形是等腰梯形.(2)解:在等边中, ∴ ∴ ∴∴ MBC △60MB MC MBC MCB ===︒,∠∠M AD AM MD =AD BC ∥60AMB MBC ==︒∠∠,60DMC MCB ==︒∠∠AMB DMC △≌△AB DC =ABCD MBC △4MB MC BC ===,60MBC MCB ==︒∠∠,60MPQ =︒∠120BMP BPM BPM QPC +=+=︒∠∠∠∠BMP QPC =∠∠BMP CQP △∽△PC CQ BM BP=∵∴∴∴(3)解:为直角三角形,∵∴当取最小值时,∴是的中点,而∴∴∴为直角三角形.15、【答案与解析】(1)CF=6cm;(2)①如图1,当点E在BC上时,延长AB′交DC于点M,PC x MQ y==,44BP x QC y=-=-,444x yx-=-2144y x x=-+PQC△()21234y x=-+y2x PC==P BC MP BC⊥,60MPQ=︒∠,30CPQ=︒∠,90PQC=︒∠PQC△图1∵ AB ∥CF ,∴ △ABE ∽△FCE ,∴ . ∵ =2, ∴ CF=3. ∵ AB ∥CF,∴∠BAE=∠F .又∠BAE=∠B ′ AE , ∴ ∠B ′ AE=∠F .∴ MA=MF .设MA=MF=k ,则MC=k -3,DM=9-k .在Rt △ADM 中,由勾股定理得:k 2=(9-k)2+62, 解得 k=MA=. ∴ DM=. ∴ sin ∠DAB ′=; ②如图2,当点E 在BC 延长线上时,延长AD 交B ′ E 于点N ,同①可得NA=NE .设NA=NE=m ,则B ′ N=12-m .在Rt △AB ′ N 中,由勾股定理,得m 2=(12-m)2+62, 解得 m=AN=. ∴ B ′N=. ∴ sin ∠DAB ′=. (3)①当点E 在BC 上时,y=; FCAB CE BE =CEBE 13252135=AM DM 1529253='AN N B 18x x 1+图2②当点E 在BC 延长线上时,y=. 16、【答案与解析】(1)结论:CF ⊥BD ; 证明如下:AB=AC ,∠ACB =45º,∴∠ABC=45º.由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90º,∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD .∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD .(2)CF ⊥BD .(1)中结论仍成立.理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD(3)过点A 作AQ ⊥BC 交CB 的延长线于点Q ,①点D 在线段BC 上运动时,∵∠BCA=45º,可求出AQ= CQ=4.∴DQ=4-x ,易证△AQD ∽△DCP ,∴ ,∴, .18x 18x-ΘCP CD DQ AQ =44CP x x =-24x CP x ∴=-+②点D 在线段BC 延长线上运动时,∵∠BCA=45°,∴AQ=CQ=4,∴DQ=4+x .过A 作AQ ⊥BC , ∴∠Q=∠FQC=90°,∠ADQ=∠AFC ,则△AQD ∽△ACF .∴CF ⊥BD ,∴△AQD ∽△DCP ,∴, ∴, . 17、【答案】(1)证明:∵,∴.∴.又∵,∴.∴.∴∽.(2)证明:如图,过点作,交于点,∵是的中点,容易证明. CD DQ AQ 4+4x x =24x CP x ∴=+EC DE ⊥︒=∠90DEC ︒=∠+∠90BEC AED ︒=∠=∠90B A ︒=∠+∠90EDA AED EDA BEC ∠=∠ADE ∆BEC ∆E EF BC //CD F E AB )(21BC AD EF +=在中,∵ ,∴ . ∴ . ∴ .(3)解:的周长,. 设,则.∵ ,∴ .即.∴ . 由(1)知∽,∴ . ∴ 的周长的周长. ∴ 的周长与值无关.18、【答案与解析】(1)(2)(1)中结论没有发生变化,即.证明:连接,过点作于,与的延长线交于点. 在与中,∵,∴.∴.DEC Rt ∆CF DF =CD EF 21=)(21BC AD +CD 21=CD BC AD =+AED ∆DE AD AE ++=m a +=m a BE -=x AD =x a DE -=︒=∠90A 222AD AE DE +=22222x m x ax a +=+-am a x 222-=ADE ∆BEC ∆的周长的周长BEC ∆∆ADE BEAD =m a a m a --=222a m a 2+=BEC ∆⋅+=m a a 2ADE ∆a 2=BEC ∆m CG EG =CG EG =AG G MN AD ⊥M EF N DAG ∆DCG ∆AD CD ADG CDG DG DG =∠=∠=,,DAG DCG ∆∆≌AG CG =在与中,∵, ∴.∴在矩形中,在与中,∵,∴.∴.∴(3)(1)中的结论仍然成立.DMG ∆FNG ∆DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,DMG FNG ∆∆≌MG NG =AENM AM EN =Rt AMG ∆Rt ENG ∆AM EN MG NG ==,AMG ENG ∆∆≌AG EG =EG CG =M N图2A B CDE F GG图3FE A B CD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 3 如图,在 △ ABC 中, AB=AC ,以 AB 为直径的⊙ O 交 AC 与 E,交 BC 与 D . 求证:( 1) D 是 BC 的中点;
( 2) △ BEC ∽△ ADC ; (3) BC 2=2ABCE . 3. 相似与三角函数结合,
A
F
①若题目给出三角函数值一般会将给出的三角函数值用等角进行转化,然后求线
3
练习
一、选择题
1、如图 1,将非等腰 △ ABC 的纸片沿 DE 折叠后,使点 A 落在 BC 边上的点 F 处.若点 D 为 AB 边的中 点,则下列结论:① △ BDF 是等腰三角形;② DFE CFE ;③ DE 是 △ ABC 的中位线,成立的
有( )
A .①②
B .①③
C.②③
D.①②③
EB 、 EA ,延长 BE 交边 AD 于点 F .
3.如图,已知∠ ACB=90°, AC= BC, BE⊥ CE于 E, AD⊥ CE于
D, CE与 AB相交于
F.
(1) 求证:△ CEB≌△ ADC;
B
(2) 若 AD= 9cm,DE= 6cm,求 BE及 EF的长.
E
第二轮复习之几何(二)——三角形相似
函数计算等。
例 6 如图 3, P 为⊙ O外一点, PA切⊙ O于 A, AB是⊙ O 的直径, PB 交⊙ O于 C,
PA=2cm, PC= 1cm, 则图中阴影部分的面积 S 是 ( )
53
A.
2
cm2 B 5 3 4
cm2 C 5 3 2 cm2 D 2 3
4
2
cm2 图 3
【题型四】证明题型 : 第二轮复习之几何(一)——三角形全等
B
C
G
C
E
F
B
A
对应练习
1. 如图,在平行四边形 ABCD中, E 为 BC 中点, AE的延长线与 DC的延长线相交于点 F.
(1) 证明:∠ DFA = ∠FAB;
(2) 证明 : △ABE≌△ FCE.
2. 如图,点 E 是正方形 ABCD 内一点, CDE 是等边三角形,连接 ( 1)求证 : ADE BCE ;(5 分 ) ( 2)求 AFB 的度数 .(5 分 )
CH=CD 连接 EH,分别 交 AD,BC 于点 F,G 。求证:
△ AEF≌△ CHG.
【判定方法 3: HL(专用于直角三角形)】
E
例 5 在△ ABC中 ,AB=CB, ∠ ABC=90o,F 为 AB延长线上一点 , 点 E
在 BC
上 , 且 AE=CF.
F
(1) 求证 :Rt △ ABE≌ Rt △ CBF; (2) 若∠ CAE=30o,求∠ ACF度数 .
【判定方法 1: SAS】 例 1 如图, AC是菱形 ABCD的对角线,点 E、 F 分别在边 AB、 AD上,且
AE=AF 。 求证:△ ACE≌△ ACF
A 例 2 在正方形 ABCD中, AC为对角线, E 为 AC上一点,连接 EB、 ED.
( 1)求证:△ BEC≌△ DEC; ( 2)延长 BE交 AD于 F,当∠ BED=120°时,求∠ EFD的度数.E
F
D
B
C
AA
FF
DD
EE
BB
CC
【判定方法 2: AAS( ASA)】
例 3 如图, ABCD是正方形,点 G是 BC上的任意一点, DE ⊥ AG 于 E, BF ∥ DE ,交
AG于 F,求证: AF BF EF .
例 4 如图,在 □ABCD中,分别延长 BA, DC到点 E,使得
A
D AE=AB,
图1
图2
图3
例 3 已知 AB 是⊙ O 的直径, PB 是⊙ O 的切线, AB= 3cm , PB= 4cm ,则 BC=
.
题型 二 折叠题型:折叠题要从中找到对
就相等的关系,然后利用勾股定理即可求解。
例 4 D,E 分别为 AC , BC 边的中
点,沿 DE 折叠,若 CDE 48°,则
APD 等于
图1
图2
2.如图,等边△ ABC 中, BD=CE , AD 与 BE 相交于点 P,则∠ APE 的度数是(
)
A . 45 ° B . 55 ° C. 60 ° D . 75 °
3. 如图 3,在 △ ABC 中, AB AC 13, BC 10 ,点 D 为 BC 的中点, DE DE AB ,垂足为点
。
例 5 如图 4.矩形纸片 ABCD 的边长 AB=4,
AD =2.将矩形纸片沿 EF 折叠, 使点 A 与点 C
重合,折叠后在其一面着色(图),
则着色部分的面积为(
)
A. 8
11 B.
2
C. 4
A G
5 D.
2
P
D
FF
C
D
B
E
图4
C
A
E
B
图5
图6
【题型三】涉及计算题型:常见的有应用勾股定理求线段长度,求弧长,扇形面积及圆锥体积,侧面积,三角
F
Ⅰ . 三角形相似的判定
例 1 如图,在平行四边形 ABCD中,过点 A 作 AE⊥ BC,垂足为 E,
D
连接 DE, F 为线段 DE上一点,且∠ AFE=∠ B. (1) 求证:△ ADF∽△ DEC
A C
(2) 若 AB= 4,AD= 3 3 ,AE = 3, 求 AF 的长 .
例 2 如图 9,点 P 是正方形 ABCD边 AB上一点 ( 不与点 PD并将线段 PD绕点 P 顺时针方向旋转 90°得到线 于点 F.连接 BE、 DF。
专题 几何专题
题型一考察概念基础知识点型
例 1 如图 1, 等腰 △ ABC 的周长为 21,底边 BC = 5, AB 的垂直平分线是 DE ,则 △ BEC 的周长为
。
例 2 如图 2, 菱形 ABCD 中, A 60°, E 、 F 是 AB 、 AD 的中点,若 EF 2 ,菱形边长是 ______.
A. B 重合 ) ,连接 段 PE, PE 交边 BC
( 1)求证:∠ ADP=∠ EPB;
( 2)求∠ CBE的度数;
AP
( 3)当
的值等于多少时.△ PFD∽△ BFP?并说明理由.
AB
2. 相似与圆结合,注意求证线段乘积,一般是转化证它所在的三角形相似。
将乘积式转化为比例式→比例式边长定位到哪个三角形→找条件证明所在的三角形相似
长度②求某个角的三角函数源自,一般会先将这个角用等角转化,间接求三角函数值
B
D E 段的
C
例 4 如图,点 E 是矩形 ABCD中 CD边上一点,⊿ BCE 沿 BE折叠为⊿ BFE,点 F落在 AD上 .(1) 求证:⊿ ABE∽⊿ DFE ;(2)
1
若 sin ∠DFE= , 求 tan ∠EBC 的值 .