陕西省汉中市陕飞二中2020高考数学 基本计数原理第2课时教案
高中数学计数原理教案设计
高中数学计数原理教案设计
一、教学目标
1. 理解计数原理的概念及应用。
2. 能够解决包括排列、组合等在内的相关问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学重点和难点
重点:计数原理的理论与应用。
难点:排列组合问题的解决方法。
三、教学内容
1. 计数原理的基本概念。
2. 排列与组合的定义与性质。
3. 相关问题的解决方法。
四、教学过程
1. 导入(5分钟)
教师通过举例介绍计数原理的概念,引导学生对计数问题的思考,并问题引出排列组合的定义。
2. 讲解(15分钟)
讲解计数原理的基本概念,包括乘法原理、加法原理和排列、组合的性质,帮助学生理解计数问题的解决方法。
3. 练习(20分钟)
让学生尝试解决一些简单的排列、组合问题,帮助他们熟练运用计数原理解决实际问题。
4. 拓展(10分钟)
引导学生思考更复杂的排列、组合问题,锻炼他们的逻辑思维能力。
5. 总结(5分钟)
对本节课的内容进行总结,强调计数原理在实际生活中的应用,并提醒学生继续练习相关问题。
五、板书设计
1. 计数原理
2. 乘法原理、加法原理
3. 排列与组合
六、教学反馈
对学生进行实时反馈,及时纠正错误,鼓励正确的方法和思考方式。
七、作业布置
布置相关的练习题目作为作业,让学生巩固所学知识。
八、教学资源
多媒体教室、课件、教材、白板等。
九、教学评估
通过课堂练习和作业表现评估学生的掌握程度,调整教学策略。
2019-2020学年高中数学 第1章 计数原理 1.1 两个基本计数原理学案 苏教版2-3
1.1 两个基本计数原理1。
了解计数问题.2。
理解区分分类计数原理与分步计数原理.3.掌握用两个基本计数原理解决简单的实际计数问题.1.分类计数原理(加法原理)如果完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,…,在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步计数原理(乘法原理)如果完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.1.判断(正确的打“√”,错误的打“×”)(1)在分类计数原理中,两类不同方案中的方法可以相同.( )(2)在分类计数原理中,每类方案中的方法都能完成这件事.()(3)在分步计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步计数原理中,事情若是分两步完成的,那么其中任何一个单独的步骤都不能完成这件事,只有两个步骤都完成后,这件事情才算完成.( )答案:(1)×(2)√(3)√(4)√2.某校开设A类选修课3门,B类选修课4门,若要求从两类课程中选1门,则不同的选法共有()A.3种B.4种C.7种D.12种答案:C3.已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是()A.1 B.3C.6 D.9答案:D4.加工某个零件分三道工序,第一道工序有5人可以选择,第二道工序有6人可以选择,第三道工序有4人可以选择,从中选3人每人做一道工序,则选法有________种.答案:120分类计数原理的应用在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【解】法一:按十位上的数字分别是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别有8个、7个、6个、5个、4个、3个、2个、1个.由分类计数原理知,满足条件的两位数共有8+7+6+5+4+3+2+1=36个.法二:按个位上的数字分别是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个.由分类计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36个.在本例条件下,个位数字小于十位数字且为偶数的两位数有多少个?解:当个位数字是8时,十位数字取9,只有1个.当个位数字是6时,十位数字可取7,8,9,共3个.当个位数字是4时,十位数字可取5,6,7,8,9,共5个.同理可知,当个位数字是2时,共7个,当个位数字是0时,共9个.由分类计数原理知,符合条件的两位数共有1+3+5+7+9=25个.利用分类计数原理计数时的解题流程1.(1)某一数学问题可用综合法和分析法两种方法证明,有7位同学只会用综合法证明,有5位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数为________.(2)一个科技小组有3名男同学,5名女同学,从中任选1名同学参加学科竞赛,不同的选派方法共有________种.解析:(1)由分类计数原理可得,有7+5=12(种)不同的选法.(2)任选1名同学参加学科竞赛,有两类方案:第一类,从男同学中选取1名参加学科竞赛,有3种不同的选法;第二类,从女同学中选取1名参加学科竞赛,有5种不同的选法.由分类计数原理得,不同的选派方法共有3+5=8(种).答案:(1)12 (2)8分步计数原理的应用从-2,-1,0,1,2,3这六个数字中任选3个不重复的数字作为二次函数y=ax2+bx+c的系数a,b,c,则可以组成抛物线的条数为多少?【解】由题意知a不能为0,故a的值有5种选法;b的值也有5种选法;c的值有4种选法.由分步计数原理得:5×5×4=100条.1.若本例中的二次函数图象开口向下,则可以组成多少条抛物线?解:需分三步完成,第一步确定a有两种方法,第二步确定b 有5种方法,第三步确定c有4种方法,故可组成2×5×4=40条抛物线.2.若从本例的六个数字中选2个作为椭圆错误!+错误!=1的参数m,n,则可以组成椭圆的个数是多少?解:据条件知m>0,n>0,且m≠n,故需分两步完成,第一步确定m,有3种方法,第二步确定n,有2种方法,故确定椭圆的个数为3×2=6个.错误!利用分步计数原理计数时的解题流程2.体育场南侧有4个大门,北侧有3个大门,某人到该体育场晨练,则他进、出门的方案有()A.12种B.7种C.14种D.49种解析:选D。
基本计数原理教案
基本计数原理教案基本计数原理教案主要包括以下步骤:一、教材分析●地位和作用:基本计数原理是学习排列组合的基础,是推导排列数、组合数的重要理论,同时也给出了分析解决排列与组合问题的思维方法。
●重点、难点和关键:分类计数原理及分步计数原理的区别及应用。
二、学情分析和学法指导学生基础差,学习主动性差,缺乏学习兴趣。
从培养学生的兴趣入手,使学生在学习过程中学会观察问题、探究问题,自主归纳总结进而得出结论。
三、教学目标●知识目标:掌握计数的基本原理,并能用它们分析和解决一些简单的应用问题。
●能力目标:锻炼学生的观察能力和解决问题的能力。
●情感目标:培养学生对数学的兴趣和好奇心,建立自信心。
四、教学方法课堂上应积极引导学生进行思考和讨论,鼓励学生提问和发表自己的观点,以便更好地帮助他们掌握知识和提高能力。
五、教学过程●提出问题:从实例出发,提出有关排列与组合的问题,引导学生思考如何用计数原理来解决。
●讲解原理:详细解释分类计数原理和分步计数原理的定义和适用范围,对比两者的异同点。
●实例解析:通过具体的例子,让学生更好地理解如何运用计数原理来解决实际问题。
●总结反思:回顾分类计数原理和分步计数原理的主要内容,总结解题思路和方法,反思在解题过程中遇到的困难和问题。
●布置作业:根据教学内容和学生的学习情况,布置适当的练习题或思考题,巩固所学的知识。
六、教学评估通过课堂表现、作业完成情况、小组讨论等方式对学生的学习效果进行评估,及时发现问题并进行针对性的指导。
同时也可以设置一些测试题或小测验来检验学生对知识的掌握程度。
高中数学计数问题教案
高中数学计数问题教案目标:让学生能够熟练解决各种高中数学计数问题。
教学内容:
1. 基本计数原理
2. 排列与组合
3. 分子式计数
4. 递推数列求解
教学步骤:
1. 引入
- 讨论学生对计数问题的理解和认识
- 引入基本计数原理的概念和应用
2. 理论讲解
- 讲解基本计数原理的定义和公式
- 讲解排列与组合的计算方法
- 讲解分子式计数和递推数列的求解方法
3. 解题演练
- 给学生提供一些例题,让他们尝试解答
- 分组讨论,分享解题思路
- 教师指导,解答疑惑
4. 练习巩固
- 发放作业,让学生回家继续练习
- 下节课进行作业讲解,巩固知识点
5. 总结反馈
- 教师总结本节课的重点知识
- 学生反馈本节课的学习情况和问题
教学评估:
1. 通过学生的课堂表现和作业完成情况进行评估
2. 观察学生对计数问题的理解和应用能力
3. 及时给予学生反馈和指导,帮助他们提升解题能力
扩展延伸:
1. 可以给学生提供更复杂的计数问题,挑战他们的思维能力
2. 可以引导学生应用计数方法解决实际问题,提高他们的数学应用能力
结尾:通过本节课的学习,相信学生能够更加熟练地解决各种高中数学计数问题,提高他们的数学能力和解题技巧。
希望学生在以后的学习中能够继续努力,取得更好的成绩。
高中数学的计数原理教案
高中数学的计数原理教案
教学对象:高中生
教学目标:掌握计数原理的基本概念及应用方法,能够解决相关问题教学步骤:
一、导入(10分钟)
1. 引入计数原理的概念,让学生回顾一下之前所学的排列与组合知识;
2. 引入计数原理的重要性,介绍计数原理在数学中的应用;
3. 提出一个简单的排列与组合问题,让学生思考如何解决。
二、理论讲解(20分钟)
1. 讲解计数原理的基本概念:乘法原理和加法原理;
2. 讲解排列和组合的区别与联系,引入二项式定理的概念;
3. 通过实例演示计数原理的应用方法。
三、练习与讨论(20分钟)
1. 学生进行打卡练习,解决一些基本的计数问题;
2. 学生互相讨论解题思路,分析其中的问题和解决方法;
3. 有选择性地让学生上台解题,展示不同的解题思路。
四、拓展应用(15分钟)
1. 带领学生应用计数原理解决更加复杂的问题;
2. 引导学生思考计数原理在实际生活中的应用场景;
3. 提出一个挑战性问题,鼓励学生尝试解决。
五、课堂小结(5分钟)
1. 对本节课的重点内容进行总结归纳;
2. 强调计数原理的重要性及实际应用;
3. 鼓励学生多加练习,巩固所学知识。
教学反馈:提醒学生在课后加强练习,加深对计数原理的理解和掌握,及时反馈学生在课上的表现。
《计数基本原理》高二数学教案
《计数基本原理》高二数学教案一、教学目标1.理解分类计数原理与分步计数原理的基本概念。
2.能够运用分类计数原理与分步计数原理解决实际问题。
3.培养学生的逻辑思维能力及解决问题的能力。
二、教学重难点1.教学重点:分类计数原理与分步计数原理的理解和应用。
2.教学难点:实际问题的分析及解题策略的运用。
三、教学过程第一环节:导入新课1.引导学生回顾排列组合的基本概念,如排列数、组合数等。
2.提问:在实际问题中,如何运用排列组合知识进行计数?第二环节:新课讲解1.讲解分类计数原理:当完成一个任务有几种不同的分类方式时,每种分类方式中的方法数相加即为总方法数。
举例讲解:从A、B、C三个班级中各选一名学生参加比赛,共有多少种选法?2.讲解分步计数原理:当完成一个任务需要分成几个步骤时,每个步骤中的方法数相乘即为总方法数。
举例讲解:从A、B、C三个班级中各选一名学生参加比赛,且要求选出的学生依次站在一排拍毕业照,共有多少种排法?3.对比讲解分类计数原理与分步计数原理的区别和联系。
第三环节:案例分析1.分析案例1:从A、B、C三个班级中各选一名学生参加比赛,共有多少种选法?引导学生运用分类计数原理进行解答。
2.分析案例2:从A、B、C三个班级中各选一名学生参加比赛,且要求选出的学生依次站在一排拍毕业照,共有多少种排法?引导学生运用分步计数原理进行解答。
第四环节:课堂练习(1)从A、B、C三个班级中各选一名学生参加比赛,共有多少种选法?(2)从A、B、C三个班级中各选一名学生参加比赛,且要求选出的学生依次站在一排拍毕业照,共有多少种排法?2.老师对学生的解答进行点评,指出错误和不足之处。
第五环节:巩固拓展1.引导学生思考:如何运用分类计数原理与分步计数原理解决更复杂的问题?2.举例讲解:某学校举办运动会,有100名学生报名参加,其中跳远项目有20人报名,100米短跑项目有30人报名,200米短跑项目有50人报名。
现在需要从这三个项目中各选一名运动员参加比赛,共有多少种选法?第六环节:课堂小结2.强调在实际问题中,如何灵活运用这两个原理进行计数。
2020版高中数学 第一章 计数原理 1.3 第2课时 组合的应用学案 苏教版选修2-3
第2课时组合的应用学习目标 1.能应用组合知识解决有关组合的简单实际问题.2.能解决有限制条件的组合问题.知识点组合的特点思考组合的特征有哪些?梳理(1)组合的特点是只取不排组合要求n个元素是不同的,被取出的m个元素也是不同的,即从n个不同的元素中进行m次不放回地取出.(2)组合的特性元素的无序性,即取出的m个元素不讲究顺序,没有位置的要求.(3)相同的组合根据组合的定义,只要两个组合中的元素完全相同(不管顺序如何),就是相同的组合.类型一有限制条件的组合问题例1 男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)既要有队长,又要有女运动员.反思与感悟(1)解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于排列问题与取出元素之间的顺序有关,而组合问题与取出元素的顺序无关.(2)要注意两个基本原理的运用,即分类与分步的灵活运用,在分类和分步时,一定要注意有无重复或遗漏.跟踪训练1 在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加.类型二与几何有关的组合应用题例2 如图,在以AB为直径的半圆周上,有异于A,B的六个点C1,C2,…,C6,线段AB上有异于A,B的四个点D1,D2,D3,D4.(1)以这10个点中的3个点为顶点可作多少个三角形?其中含C1点的有多少个?(2)以图中的12个点(包括A,B)中的4个点为顶点,可作出多少个四边形?反思与感悟(1)图形多少的问题通常是组合问题,要注意共点、共线、共面、异面等情形,防止多算.常用直接法,也可采用间接法.(2)在处理几何问题中的组合问题时,应将几何问题抽象成组合问题来解决.跟踪训练2 空间中有10个点,其中有5个点在同一个平面内,其余点无三点共线,四点共面,则以这些点为顶点,共可构成四面体的个数为________.类型三分组、分配问题命题角度1 不同元素分组、分配问题例3 有6本不同的书,按下列分配方式分配,则共有多少种不同的分配方式?(1)分成三组,每组分别有1本,2本,3本;(2)分给甲、乙、丙三人,其中一个人1本,一个人2本,一个人3本;(3)分成三组,每组都是2本;(4)分给甲、乙、丙三人,每人2本.反思与感悟分组、分配问题的求解策略(1)分组问题属于“组合”问题,常见的分组问题有三种①完全均匀分组,每组的元素个数均相等.②部分均匀分组,应注意不要重复,若有n组均匀,最后必须除以n!.③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题.分配问题可以按要求逐个分配,也可以分组后再分配.跟踪训练3 某宾馆安排A、B、C、D、E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则不同的安排方法有________种.命题角度2 相同元素分配问题例4 将6个相同的小球放入4个编号为1,2,3,4的盒子,求下列方法的种数.(1)每个盒子都不空;(2)恰有一个空盒子;(3)恰有两个空盒子.反思与感悟相同元素分配问题的处理策略(1)隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”.每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法.隔板法专门解决相同元素的分配问题.(2)将n个相同的元素分给m个不同的对象(n≥m),有C m-1n-1种方法.可描述为n-1个空中插入m-1块板.跟踪训练4 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种.1.甲、乙、丙三位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有________种.2.把三张游园票分给10个人中的3人,分法有________种.3.某食堂每天中午准备4种不同的荤菜,7种不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭.则每天不同午餐的搭配方法共有________种.4.直角坐标平面xOy上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有________个.5.要从12人中选出5人参加一次活动,其中A,B,C三人至多两人入选,则有________种不同选法.1.无限制条件的组合应用题的解题步骤(1)判断.(2)转化.(3)求值.(4)作答.2.有限制条件的组合应用题的分类(1)“含”与“不含”问题:这类问题的解题思路是将限制条件视为特殊元素和特殊位置,一般来讲,特殊要先满足,其余则“一视同仁”.若正面入手不易,则从反面入手,寻找问题的突破口,即采用排除法.解题时要注意分清“有且仅有”“至多”“至少”“全是”“都不是”“不都是”等词语的确切含义,准确把握分类标准.(2)几何中的计算问题:在处理几何问题中的组合应用问题时,应先明确几何中的点、线、面及构型,明确平面图形和立体图形中的点、线、面之间的关系,将几何问题抽象成组合问题来解决.(3)分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者即使两组元素个数相同,但因元素不同,仍然是可区分的.答案精析问题导学知识点思考组合取出的元素是无序的.题型探究例1 解(1)第一步:选3名男运动员,有C36种选法;第二步:选2名女运动员,有C24种选法,故共有C36·C24=120(种)选法.(2)方法一(直接法)“至少有1名女运动员”包括以下几种情况,1女4男,2女3男,3女2男,4女1男.由分类计数原理知共有C14·C46+C24·C36+C34·C26+C44·C16=246(种)选法.方法二(间接法)不考虑条件,从10人中任选5人,有C510种选法,其中全是男运动员的选法有C56种,故“至少有1名女运动员”的选法有C510-C56=246(种).(3)当有女队长时,其他人选法任意,共有C49种选法;不选女队长时,必选男队长,共有C48种选法,其中不含女运动员的选法有C45种,故不选女队长时共有C48-C45种选法.所以既有队长又有女运动员的选法共有C49+C48-C45=191(种).跟踪训练1 解(1)从中任取5人是组合问题,共有C512=792(种)不同的选法.(2)甲、乙、丙三人必须参加,则只需从另外9人中选2人,是组合问题,共有C29=36(种)不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C59=126(种)不同的选法.(4)甲、乙、丙三人只能有1人参加,可分为两步:先从甲、乙、丙中选1人,有C13种选法,再从另外9人中选4人,有C49种选法,共有C13C49=378(种)不同的选法.例2 解(1)方法一可作出三角形C36+C16·C24+C26·C14=116(个).方法二可作三角形C310-C34=116(个),其中以C1为顶点的三角形有C25+C15·C14+C24=36(个).(2)可作出四边形C46+C36·C16+C26·C26=360(个).跟踪训练2 205解析方法一可以按从共面的5个点中取0个、1个、2个、3个进行分类,则得到所有的取法总个数为C05C45+C15C35+C25C25+C35C15=205.方法二从10个点中任取4个点的方法数中去掉4个点全部取自共面的5个点的情况,得到所有构成四面体的个数为C410-C45=205.例3 解(1)分三步:先选一本有C16种选法,再从余下的5本中选两本有C25种选法,最后余下的三本全选有C33种选法.由分步计数原理知,分配方式共有C16·C25·C33=60(种).(2)由于甲、乙、丙是不同的三个人,在(1)问的基础上,还应考虑再分配问题.因此,分配方式共有C16·C25·C33·A33=360(种).(3)先分三组,有C 26C 24C 22种分法,但是这里面出现了重复,不妨记六本书为A ,B ,C ,D ,E ,F ,若第一组取了A ,B ,第二组取了C ,D ,第三组取了E ,F ,则该种方法记为(AB ,CD ,EF ),但C 26C 24C 22种分法中还有(AB ,EF ,CD ),(CD ,AB ,EF ),(CD ,EF ,AB ),(EF ,CD ,AB ),(EF ,AB ,CD ),共A 33种情况,而这A 33种情况只能作为一种分法,故分配方式有C 26·C 24·C 22A 33=15(种). (4)在(3)的基础上再分配即可,共有分配方式C 26·C 24·C 22A 33·A 33=90(种). 跟踪训练3 114解析 5个人住三个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种.当为(3,1,1)时,有C 35A 33=60(种),A ,B 住同一房间有C 13A 33=18(种),故有60-18=42(种). 当为(2,2,1)时,有C 25C 23A 22·A 33=90(种),A ,B 住同一房间有C 13C 23A 22=18(种),故有90-18=72(种).根据分类计数原理共有42+72=114(种).例4 解 (1)先把6个相同的小球排成一行,在首尾两球外侧放置一块隔板,然后在小球之间5个空隙中任选3个空隙各插一块隔板,有C 35=10(种).(2)恰有一个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选2个空隙各插一块隔板,如|0|000|00|,有C 25种插法,然后将剩下的一块隔板与前面任意一块并放形成空盒,如|0|000||00|,有C 14种插法,故共有C 25·C 14=40(种). (3)恰有两个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选1个空隙各插一块隔板,有C 15种插法,如|00|0000|,然后将剩下的两块隔板插入形成空盒.①这两块板与前面三块板形成不相邻的两个盒子, 如||00||0000|,有C 23种插法. ②将两块板与前面三块板之一并放, 如|00|||0000|,有C 13种插法. 故共有C 15·(C 23+C 13)=30(种). 跟踪训练4 10解析 第一类:当剩余的一本是画册时,相当于把3本相同的集邮册和1本画册分给4位朋友,只有1位朋友得到画册.即把4位朋友分成人数为1,3的两队,有1个元素的那队分给画册,另一队分给集邮册,有C 14种分法. 第二类:当剩余的一本是集邮册时,相当于把2本相同的画册和2本相同的集邮册分给4位朋友,有2位朋友得到画册,即把4位朋友分成人数为2,2的两队,一队分给画册,另一队分给集邮册,有C 24种分法. 因此,满足题意的赠送方法共有C 14+C 24=4+6=10(种). 当堂训练1.96 2.120 3.210 4.225 5.756。
高中数学计数原理教案
高中数学计数原理教案
教学内容:计数原理
教学对象:高中学生
教学时间:一节课
教学目标:
1. 了解计数原理的概念和基本原理;
2. 能够应用计数原理解决相关问题;
3. 培养学生的逻辑思维和问题解决能力。
教学重点:
1. 计数原理的基本概念和原理;
2. 计数原理在实际问题中的应用。
教学难点:
1. 计数原理的具体运用;
2. 解决实际问题时的逻辑思维能力。
教学准备:
1. 计算器;
2. 实例题目。
教学过程:
一、导入(5分钟)
教师引导学生回顾排列、组合的概念,并提出计数原理的概念。
通过一个简单的例子引导学生了解计数原理的基本原理。
二、讲解(15分钟)
1. 计数原理的概念和原理;
2. 巴斯卡三角形及其应用;
3. 实例分析和解决。
三、练习(15分钟)
教师布置几道相关计数原理的练习题,学生针对每道题进行思考并给出答案,教师引导学生讨论解题方法,帮助学生掌握计数原理的运用技巧。
四、总结(5分钟)
教师对本节课的教学内容进行总结和回顾,强化学生对计数原理的理解和运用。
五、作业(5分钟)
布置相关练习题作为课后作业,加深学生对计数原理的掌握和应用。
【教学反思】
本节课主要通过讲解概念、实例分析和练习训练,帮助学生掌握计数原理的基本原理和运用技巧。
在以后的教学中,可以结合实际问题,进一步提高学生的问题解决能力和创新思维。
高中数学计数原理讲课教案
高中数学计数原理讲课教案
一、教学目标
1. 了解计数原理的概念和基本思想;
2. 掌握计数原理的应用方法;
3. 能够独立解决计数问题;
4. 培养学生的逻辑思维能力和数学分析能力。
二、教学重点
1. 计数原理的概念和基本思想;
2. 计数原理的应用方法。
三、教学难点
1. 计数原理的应用方法;
2. 计数问题的解决策略。
四、教学内容
1. 计数原理的概念介绍
2. 计数原理的基本思想
3. 计算原理的应用方法
五、教学过程
1. 导入:引导学生思考一个问题:有3个红球、4个蓝球和2个绿球,问一共有多少种不同的排列方式?
2. 讲解:引入计数原理的概念,讲解计数原理的基本思想和应用方法,例如排列、组合等概念。
3. 实践:让学生尝试解决一些计数问题,如:有5本数学书、4本物理书和3本化学书,问从这些书中随机选取一本书,选取一本数学书的概率是多少?
4. 拓展:通过更复杂的例题,让学生进一步理解计数原理的应用,提高他们的计数能力。
5. 总结:对计数原理的概念和应用方法进行总结,强调解决计数问题的关键思路和策略。
六、作业
1. 完成课堂练习题,巩固所学知识;
2. 拓展阅读相关数学问题,提升计数能力。
七、教学反馈
1. 对学生在实践中的表现进行评价和反馈;
2. 对学生提出的问题进行解答和指导。
八、板书设计
1. 计数原理的概念和基本思想;
2. 计数原理的应用方法;
3. 计数问题的解决策略。
2020版高中数学 第一章 计数原理 1.1 第2课时 分类计数原理与分步计数原理的应用学案 苏教版选修2-3
第2课时 分类计数原理与分步计数原理的应用学习目标 巩固分类计数原理和分步计数原理,并能灵活应用这两个计数原理解决实际问题.知识点一 两个计数原理的区别与联系知识点二 两个计数原理的综合应用解决较为复杂的计数问题,一般要将两个计数原理综合应用.使用时要做到目的明确,层次分明,先后有序,还需特别注意以下两点:(1)合理分类,准确分步:处理计数问题,应扣紧两个原理,根据具体问题首先弄清楚是“分类”还是“分步”,要搞清楚“分类”或者“分步”的具体标准.分类时需要满足两个条件:①类与类之间要互斥(保证不重复);②总数要完备(保证不遗漏),也就是要确定一个合理的分类标准.分步时应按事件发生的连贯过程进行分析,必须做到步与步之间互相独立,互不干扰,并确保连续性.(2)特殊优先,一般在后:解含有特殊元素、特殊位置的计数问题,一般应优先安排特殊元素,优先确定特殊位置,再考虑其他元素与其他位置,体现出解题过程中的主次思想.类型一 排数问题例1 用0,1,2,3,4五个数字,(1)可以排成多少个三位数字的电话号码? (2)可以排成多少个三位数? 引申探究由本例中的五个数字可组成多少个无重复数字的四位奇数?(3)可以排成多少个能被2整除的无重复数字的三位数?反思与感悟对于组数问题,应掌握以下原则:(1)明确特殊位置或特殊数字,是我们采用“分类”还是“分步”的关键.一般按特殊位置(末位或首位)分类,分类中再按特殊位置(或特殊元素)优先的策略分步完成;如果正面分类较多,可采用间接法求解.(2)要注意数字“0”不能排在两位数字或两位数字以上的数的最高位.跟踪训练1 用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)类型二抽取(分配)问题例2 如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为________.反思与感悟解决抽取(分配)问题的方法(1)当涉及对象数目不大时,一般选用列举法、树状图法、框图法或者图表法.(2)当涉及对象数目很大时,一般有两种方法:①直接使用分类计数原理或分步计数原理.一般地,若抽取是有顺序的就按分步进行;若是按对象特征抽取的,则按分类进行;②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.跟踪训练2 有四位同学参加三项不同的竞赛.(1)每位学生必须参加且只能参加一项竞赛,有多少种不同结果?(2)每项竞赛只许一位学生参加,有多少种不同的结果?类型三涂色与种植问题命题角度1 涂色问题引申探究若本例中的区域改为如图所示,其他条件均不变,则不同的涂法共有多少种?例3 将红、黄、蓝、白、黑五种颜色涂在如图所示“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?反思与感悟涂色问题的四个解答策略理这类问题的关键是要找准分类标准,求解涂色问题一般是直接利用两个计数原理求解,常用的方法有:(1)按区域的不同以区域为主分步计数,并用分步计数原理计算.(2)以颜色为主分类讨论法,适用于“区域、点、线段”问题,用分类计数原理计算.(3)将空间问题平面化,转化为平面区域的涂色问题.(4)对于不相邻的区域,常分为同色和不同色两类,这是常用的分类标准.跟踪训练3 如图所示,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱上的两端点异色,如果只有5种颜色可供使用,求不同的染色方法总数.命题角度2 种植问题例4 将3种作物全部种植在如图所示的5块试验田中,每块种植一种作物,且相邻的试验田不能种同一种作物,则不同的种植方法共有________种.反思与感悟按元素性质分类,按事件发生过程分步是计数问题的基本思想方法,区分“分类”与“分步”的关键,是验证所提供的某一种方法是否完成了这件事情,分类中的每一种方法都能完成这件事情,而分步中的每一种方法不能完成这件事情,只是向事情的完成迈进了一步.跟踪训练4 从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法.1.用0,1,2,3组成没有重复数字的四位数,其中奇数有________个.2.在2,3,5,7,11这五个数字中,任取两个数字组成分数,其中假分数的个数为________.3.有5名同学被安排在周一至周五值日,每人值日一天.已知同学甲只能在周三值日,那么这5名同学值日顺序的安排方案共有________种.4.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通.今发现A,B之间线路不通,则焊接点脱落的不同情况有________种.5.如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有________种.1.分类计数原理与分步计数原理是两个最基本、也是最重要的原理,是解答后面将要学习的排列、组合问题,尤其是较复杂的排列、组合问题的基础.2.应用分类计数原理要求分类的每一种方法都能把事件独立完成;应用分步计数原理要求各步均是完成事件必须经过的若干彼此独立的步骤.4.若正面分类的种类比较多,而问题的反面种类比较少时,则使用间接法会简单一些.答案精析题型探究例1 解(1)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125(种).(2)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100(种).(3)被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12(种)排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18(种)排法.因而有12+18=30(种)排法.即可以排成30个能被2整除的无重复数字的三位数.引申探究解完成“组成无重复数字的四位奇数”这件事,可以分四步:第一步定个位,只能从1,3中任取一个,有2种方法;第二步定首位,把1,2,3,4中除去用过的一个还有三个,可任取一个,有3种方法;第三步,第四步把剩下的包括0在内的还有3个数字先排百位有3种方法,再排十位有2种方法.由分步计数原理知共有2×3×3×2=36(个).跟踪训练1 14解析因为四位数的每个数位上都有两种可能性,其中四个数字全是2或3的情况不合题意,所以符合题意的四位数有24-2=14(个).例2 18解析从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G点的最短路径条数为6×3=18.跟踪训练2 解(1)学生可以选择竞赛项目,而竞赛项目对于学生无条件限制,所以每位学生均有3个不同的机会,要完成这件事必须是每位学生参加的竞赛全部确定下来才行,因此需分四步.而每位学生均有3个不同选择,所以用分步计数原理可得3×3×3×3=34=81(种)不同结果.(2)竞赛项目可挑选学生,而学生无选择项目的机会,每一个项目可挑选4位不同学生中的一位.要完成这件事必须是每项竞赛所参加的学生全部确定下来才行,因此需分三步,用分步计算原理可得4×4×4=43=64(种)不同结果.例3 解第1个小方格可以从5种颜色中任取一种颜色涂上,有5种不同的涂法.(1)当第2个、第3个小方格涂不同颜色时,有4×3=12(种)不同的涂法,第4个小方格有3种不同的涂法,由分步计数原理可知有5×12×3=180(种)不同的涂法.(2)当第2个、第3个小方格涂相同颜色时,有4种涂法,由于相邻两格不同色,因此,第4个小方格也有4种不同的涂法,由分步计数原理可知有5×4×4=80(种)不同的涂法.由分类计数原理可得共有180+80=260(种)不同的涂法.解依题意,可分两类情况:①④不同色;①④同色.第一类:①④不同色,则①②③④所涂的颜色各不相同,我们可将这件事情分成4步来完成.第一步涂①,从5种颜色中任选一种,有5种涂法;第二步涂②,从余下的4种颜色中任选一种,有4种涂法;第三步涂③与第四步涂④时,分别有3种涂法和2种涂法.于是由分步计数原理可得,不同的涂法为5×4×3×2=120(种).第二类:①④同色,则①②③不同色,我们可将涂色工作分成三步来完成.第一步涂①④,有5种涂法;第二步涂②,有4种涂法;第三步涂③,有3种涂法.于是由分步计数原理得,不同的涂法有5×4×3=60(种).综上可知,所求的涂色方法共有120+60=180(种).跟踪训练3 解由题意,四棱锥S-ABCD的顶点S,A,B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.当S,A,B染色确定时,不妨设其颜色分别为1,2,3.若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.由分类计数原理知,当S,A,B染法确定时,C,D有7种染法.由分步计数原理得,不同的染色方法有60×7=420(种).例4 42解析分别用a、b、c代表3种作物,先安排第一块田,有3种方法,不妨设放入a,再安排第二块田,有2种方法b或c,不妨设放入b,第三块也有2种方法a或c.(1)若第三块田放c:第四、五块田分别有2种方法,共有2×2=4((2)若第三块田放a:第四块有b或c2种方法,①若第四块放c:第五块有2种方法;②若第四块放b:第五块只能种作物c,共1种方法.综上,共有3×2×(2×2+2+1)=42(种)方法.跟踪训练4 解方法一(直接法)若黄瓜种在第一块土地上,则有3×2=6(种)不同的种植方法.同理,黄瓜种在第二块、第三块土地上,均有3×2=6(种)不同的种植方法.故不同的种植方法共有6×3=18(种).方法二(间接法)从4种蔬菜中选出3种,种在三块地上,有4×3×2=24(种),其中不种黄瓜有3×2×1=6(种),故不同的种植方法共有24-6=18(种).当堂训练1.8 2.10 3.24 4.13 5.108。
高中数学各类计数原理教案
高中数学各类计数原理教案
一、学习目标
1.了解基本的计数原理;
2.掌握排列、组合、二项式定理的概念;
3.能够应用计数原理解决实际问题。
二、教学重点和难点
1.计数原理的基本概念和应用;
2.排列、组合、二项式定理的计算方法;
3.实际问题的分析和解决。
三、教学内容
1.计数原理的基本概念
(1)基本计数原理
(2)排列
(3)组合
(4)二项式定理
2.计数原理的应用
(1)排列组合的实际应用
(2)二项式定理的应用
四、教学方法
1.讲解理论知识;
2.例题演练;
3.讨论解题思路;
4.引导学生独立思考和解题。
五、教学过程
1.引入:通过一个实际问题引入计数原理的概念,引起学生对计数问题的兴趣。
2.讲解:逐一讲解基本计数原理、排列、组合、二项式定理的概念和计算方法。
3.例题演练:选择一些典型的例题进行讲解和演练,让学生掌握解题思路。
4.课堂练习:布置一些练习题让学生独立完成,检验他们对计数原理的掌握程度。
5.拓展应用:引导学生通过思考和讨论,将计数原理应用到更复杂的问题中。
六、教学资料
1.教材相关知识点介绍;
2.相关例题及解析;
3.练习题及答案。
七、课后作业
1.完成教师布置的练习题;
2.独立解决一个实际问题,并写出解题思路和过程。
八、教学反思
1.检查学生对计数原理的理解和掌握情况;
2.总结教学中存在的不足之处,改进教学方法;
3.根据学生的反馈意见,调整教学内容和方式。
以上为高中数学计数原理教案范本,仅供参考。
高中数学-两个基本计数原理(2课时)教案
高中数学-两个基本计数原理(2课时)教案教学目标:1、知识传授目标:正确理解和掌握加法原理和乘法原理2、能力培养目标:能准确地应用它们分析和解决一些简单的问题3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力教学重点:加法原理,乘法原理。
解决方法:利用简单的举例得到一般的结论.教学难点:加法原理,乘法原理的区分。
解决方法:运用对比的方法比较它们的异同.教学过程:1.新课导入随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。
排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.2.新课我们先看下面两个问题.(l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?一般地,有如下原理:分类加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1十m2十…十m n种不同的方法.(2) 我们再看下面的问题:由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法?一般地,有如下原理:分步乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法.那么完成这件事共有N=m1m2…m n种不同的方法.例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书.1)从中任取一本,有多少种不同的取法?2)从中任取数学书与语文书各一本,有多少的取法?(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是 N=6X5=30.练习:一同学有4枚明朝不同古币和6枚清朝不同古币1)从中任取一枚,有多少种不同取法?2)从中任取明清古币各一枚,有多少种不同取法?例2(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数?(2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数?(3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数?练习:1、从甲地到乙地有2条陆路可走,从乙地到丙地有3条陆路可走,又从甲地不经过乙地到丙地有2条水路可走.(1)从甲地经乙地到丙地有多少种不同的走法?(2)从甲地到丙地共有多少种不同的走法?2.一名儿童做加法游戏.在一个红口袋中装着2O张分别标有数1、2、…、19、20的红卡片,从中任抽一张,把上面的数作为被加数;在另一个黄口袋中装着10张分别标有数1、2、…、9、1O的黄卡片,从中任抽一张,把上面的数作为加数.这名儿童一共可以列出多少个加法式子?3.由0-9这10个数字可以组成多少个没有重复数字的三位数?小结:要解决某个此类问题,首先要判断是分类,还是分步?分类时用加法,分步时用乘法。
2020-2021学年数学第二册教案:第3章3.13.1.1第2课时 基本计数原理的应用含解析
2020-2021学年新教材数学人教B版选择性必修第二册教案:第3章3.1 3.1.1 第2课时基本计数原理的应用含解析第2课时基本计数原理的应用学习目标核心素养1.熟练应用两个计数原理.(重点)2.能运用两个计数原理解决一些综合性的问题.(难点)1.借助两个计数原理解题,提升数学运算的素养.2.通过合理分类或分步解决问题,提升逻辑推理的素养.组数问题6少个无重复数字的:(1)银行存折的四位密码?(2)四位整数?(3)比2 000大的四位偶数?[思路点拨](1)用分步乘法计数原理求解(1)问;(2)0不能作首位,优先排首位,用分步乘法计数原理求解;(3)可以按个位是0,2,4分三类,也可以按首位是2,3,4,5分四类解决,也可以用间接法求解.[解](1)分步解决.第一步:选取左边第一个位置上的数字,有6种选取方法;第二步:选取左边第二个位置上的数字,有5种选取方法;第三步:选取左边第三个位置上的数字,有4种选取方法;第四步:选取左边第四个位置上的数字,有3种选取方法.由分步乘法计数原理知,可组成不同的四位密码共有6×5×4×3=360(个).(2)分步解决.第一步:首位数字有5种选取方法;第二步:百位数字有5种选取方法;第三步:十位数字有4种选取方法;第四步:个位数字有3种选取方法.由分步乘法计数原理知,可组成四位整数有5×5×4×3=300(个).(3)法一:按末位是0,2,4分为三类:第一类:末位是0的有4×4×3=48个;第二类:末位是2的有3×4×3=36个;第三类:末位是4的有3×4×3=36个.则由分类加法计数原理有N=48+36+36=120(个).法二:按千位是2,3,4,5分四类:第一类:千位是2的有2×4×3=24(个);第二类:千位是3的有3×4×3=36(个);第三类:千位是4的有2×4×3=24(个);第四类:千位是5的有3×4×3=36(个).则由分类加法计数原理有N=24+36+24+36=120(个).法三:用0,1,2,3,4,5可以组成的无重复数字的四位偶数分两类:第一类:末位是0的有5×4×3=60(个);第二类:末位是2或4的有2×4×4×3=96(个).共有60+96=156(个).其中比2 000小的有:千位是1的共有3×4×3=36(个),所以符合条件的四位偶数共有156-36=120(个).1.对于组数问题,一般按特殊位置(一般是末位和首位)由谁占领分类,分类中再按特殊位置(或者特殊元素)优先的方法分步完成;如果正面分类较多,可采用间接法从反面求解.2.解决组数问题,应特别注意其限制条件,有些条件是隐藏的,要善于挖掘.排数时,要注意特殊元素、特殊位置优先的原则.错误!1.四张卡片上分别标有数字“2”、“0”、“1”、“1",则由这四张卡片可组成不同的四位数的个数为()A.6B.9C.12 D.24B[法一:(列举法)根据0的位置分类:第一类:0在个位有:2110,1210,1120,共3个.第二类:0在十位有:2101,1201,1102,共3个.第三类:0在百位有:2011,1021,1012,共3个.故共有3+3+3=9个不同的四位数,故选B。
《两个基本计数原理的应用(2)》示范课教案【高中数学苏教版】
第七章计数原理7.1.2 两个基本计数原理的应用(第2课时)1.理解两个基本计数原理,能正确区分“类”和“步”,能正确使用两个原理解决简单计数问题;2.掌握分类计数原理和分步计数原理的区别和联系.教学重点:正确选择加法原理或乘法原理解决问题.教学难点:综合使用加法原理和乘法原理解决问题.一、情境导入前面我们学习了两个计数原理,知道了他们回答的都是有关做一件事的不同方法种数的问题,区别在于分类计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有每一个步骤都完成才算做完这件事.事实上,面对一个复杂的计数问题时,人们往往通过分类或分步将它分解为若干个简单问题的计数问题,在解决这些简单问题的基础上,将它们整合起来从而得到原问题的答案.下面我们就通过一些具体问题来示例.二、应用举例例1.要给如图所示的五个区域涂色,现有四种颜色可供选择,要求每个区域只涂一种颜色,且相邻区域所涂颜色不相同,则不同的涂色方案一共有多少种?问题1:本题中要完成的一件事是什么?答案:用四种颜色给如图所示的五个区域涂色,且相邻区域不同色.问题2:你会如何完成这件事情?答案:因为图中的区域有相邻,不相邻,所以选定一个区域开始涂色,根据其他区域与开始区域的相邻关系进行分类,然后按区域依次分析求解.◆教学目标◆教学重难点◆教学过程解:从区域A开始考虑,因为区域A与B、D、E均相邻,与C不相邻,所以按A与C颜色的相同和相异分类求解:第一类,A、C同色:第一步,给区域A涂色,有4种选择;第二步,给区域C涂色,有1中选择;第三步,给区域B涂色,有3种选择;第四步,给区域E涂色,有2种选择;第五步,给区域D涂色,有2种选择.则根据分步计数原理,一共有为4×1×3×2×2=48种不同的选择;第二类,A、C异色:第一步,给区域A涂色,有4种选择;第二步,给区域C涂色,有3种选择;第三步,给区域B涂色,有2种选择;第四步,给区域E涂色,只有1种选择;第五步,给区域D涂色,只有1种选择.则根据分步计数原理,一共有为4×3×2×1×1=24种不同的选择;综合以上,根据分类计数原理,该图形的不同涂色方案共有48+24=72种.问题3:你还有其他解决这个问题的方法吗?答案:观察图形中的位置,A、C对角,可以同色,B、D对角,也可以同色,因为总共只有4种颜色,所以A、C和B、D中至少会有一对同色,从而可以将这个问题的解决方案分三类:第一类:A、C同色,B、D不同色,此时先确定A、C的颜色,有4种可能,再依次确定B、E、D的颜色,分别有3,2,1种可能,所以共有4×3×2×1=24种不同的可能;第二类:A、C不同色,B、D同色,方法同第一类,也共有24种不同的可能;第三类:A、C同色,B、D同色,此时先确定A、C的颜色,有4种可能,再确定B、D的颜色,有3种可能,再确定E的颜色,有2种可能,所以共有4×3×2=24种不同的可能.根据分类计数原理,该图形不同的涂色方案共有24+24+24=72种.例2.电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用1个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.(1)1个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码包含了6763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?问题1:说一说本题目两个问题中分别要完成的一件事是什么?如何完成?答案:(1)要完成的一件事是“确定1个字节各二进制位上的数字”.由于每个字节有8个二进制位,每一位上的值都有0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步计数原理求解;(2)只要计算出多少个字节所能表示的不同字符不少于6763个即可.解:(1)用下图表示1个字节.1个字节共有8位,每位上有2种选择.根据分步计数原理,1个字节最多可以表示不同字符的个数是2×2×2×2×2×2×2×2=28=256.(2)由(1)知,1个字节所能表示的不同字符不够6763个,我们考虑2个字节能够表示多少个字符.前1个字节有256种不同的表示方法,后1个字节也有256种表示方法.根据分步计数原理,2个字节可以表示不同字符的个数是256×256=65536.这已经大于汉字国标码包含的汉字个数6763.因此要对这些汉字进行编码,每个汉字至少要用2个字节表示.例3. 通常,我国民用汽车号牌的编号由两部分组成:第一部分为用汉字表示的省、自治区、直辖市简称和用英文字母表示的发牌机关代号,第二部分为由阿拉伯数字和英文字母组成的序号,如图所示.其中,序号的编码规则为:(1)由10个阿拉伯数字和除O,I之外的24个英文字母组成;(2)最多只能有2个英文字母.如果某地级市发牌机关采用5位序号编码,那么这个发牌机关最多能发放多少张汽车号牌?问题1:该题目中要完成的“一件事情”是什么?答案:“最多能发放多少张汽车号牌”,意为“满足上面编码规则的不同号码牌一共有多少个”,所以本问题要解决的“一件事情”就是:“从10个数字和除O,I外的24个英文字母中选5个,其中字母至多2个,再将5个符号排序编码成一个汽车牌照序号”,简单地说,就是“按照规则生成一个汽车牌照序号”.问题2:说一说你会如何完成这“一件事情”?答案:因为编码规则要求字母至多2个,所以这个事情可以分三大类来考虑:①没有字母,②有1个字母,③有2个字母.在有字母的类中,可以以字母所在的位置为分类标准,将有1个字母的序号分为5类,将有2个字母的序号分为10类,依次进行分析解决.总的来说就是,先分大类,再分小类,小类中再分步.解:由号牌编号的组成可知,这个发牌机关所能发放的最多号牌数就是序号的个数.根据序号编码规则,5位序号可以分为三类:没有字母,有1个字母,有2个字母.(1)当没有字母时,序号的每一位都是数字,确定一个序号可以分5个步骤,每一步都可以从10个数字中选1个,各有10种选法.根据分步计数原理,这类号牌张数为10×10×10×10×10=100000.(2)当有1个字母时,这个字母可以分别在序号的第1位、第2位、第3位、第4位或第5位,这类序号可以分为五个子类.当第1位是字母时,分5个步骤确定一个序号中的字母和数字:第1步,从24个字母中选1个放在第1位,有24种选法;第2~5步都是从10个数字中选1个放在相应的位置,各有10种选法.根据分步计数原理,号牌张数为24×10×10×10×10=240000.同样,其余四个子类号牌也各有240000张.根据分类计数原理,这类号牌张数一共为240000+240000+240000+240000+240000=1200000.(3)当有2个字母时,根据这2个字母在序号中的位置,可以将这类序号分为十个子类:第1位和第2位,第1位和第3位,第1位和第4位,第1位和第5位,第2位和第3位,第2位和第4位,第2位和第5位,第3位和第4位,第3位和第5位,第4位和第5位.当第1位和第2位是字母时,分5个步骤确定一个序号中的字母和数字:第1,2步都是从24个字母中选1个分别放在第1位、第2位,各有24种选法;第3~5步都是从10个数字中选1个放在相应的位置,各有10种选法.根据分步计数原理,号牌张数为24×24×10×10×10=576000.同样,其余九个子类号牌也各有576000张.于是,这类号牌张数一共为576000×10=5760000.综合(1)(2)(3),根据分类计数原理,这个发牌机关最多能发放的汽车号牌张数为100000+1200000+5760000=7060000.三、课堂练习1.设东、西、南、北四面通往山顶的路各有2,3,3,4条路,只从一面上山,而从其他任意一面下山,不同的走法可能有多少?解:只从一面上山,而从其他任意一面下山,一共有四类可能:若从东面上山,走法数量为:2(3+3+4)=20;若从西面上山,走法数量为:3(2+3+4)=27;若从南面上山,走法数量为:3(2+3+4)=27;若从北面上山,走法数量为:4(2+3+3)=32.故只从一面上山,而从其他任意一面下山总的可能走法数量为20+27+27+32=106.2.用4种不同的颜色涂在四棱锥的各个面上,要求相邻面不同色,共有多少种涂法?解:先给底面涂色,有4种涂法,设4个侧面为A、B、C、D,然后给A面涂色,有3种;给B面涂色,有2种;给C面,若C与A相同色,则D面可以涂2种;若C与A不同色,则D面可以涂1种,所以总的涂色方法有4×3×2×(2+1)=72种.四、梳理小结问题:回顾用两个计数原理解决计数问题的过程,尝试说一说其中的要点都有哪些?答案:用两个计数原理解决计数问题时,最重要的是在开始计算之前要仔细分析两点:(1)要完成的“一件事”是什么;(2)需要分类还是需要分步.分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类计数原理求和,得到总数.分步要做到“步骤完整”,即完成了所有步骤,恰好完成任务.分步后再计算每一步的方法数,最后根据分步计数原理,把完成每一步的方法数相乘,得到总数.五、课后作业教材P57,习题7.1理解·感受第7,8题,思考·运用第10题,拓展·探究第13题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省汉中市陕飞二中2020高考数学 基本计数原理第2课时教案 教学目标:
会利用两个原理分析和解决一些简单的应用问题
教学重点: 会利用两个原理分析和解决一些简单的应用问题
教学过程
一、复习引入:
1、分类计数原理:
(1)加法原理:如果完成一件工作有k 种途径,由第1种途径有n 1种方法可以完成,由第2种途径有n 2种方法可以完成,……由第k 种途径有n k 种方法可以完成。
那么,完成这件工作共有n 1+n 2+……+n k 种不同的方法。
(2)、乘法原理:如果完成一件工作可分为K 个步骤,完成第1步有n 1种不同的方法,完成第2步有n 2种不同的方法,……,完成第K 步有nK 种不同的方法。
那么,完成这件工作共有n 1×n 2×……×n k 种不同方法
二、讲解新课:
例1 、 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.
(1)若从这些书中任取一本,有多少种不同的取法?
(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?
(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?
例2、在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种? 解:取b a +与取a b +是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,由分步计数原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据分类计数原理共有45+45=90种不同取法.。